JP2004260105A - Tape carrier for semiconductor device - Google Patents

Tape carrier for semiconductor device Download PDF

Info

Publication number
JP2004260105A
JP2004260105A JP2003051689A JP2003051689A JP2004260105A JP 2004260105 A JP2004260105 A JP 2004260105A JP 2003051689 A JP2003051689 A JP 2003051689A JP 2003051689 A JP2003051689 A JP 2003051689A JP 2004260105 A JP2004260105 A JP 2004260105A
Authority
JP
Japan
Prior art keywords
tape
thickness
tab tape
copper foil
insulating resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003051689A
Other languages
Japanese (ja)
Other versions
JP3903931B2 (en
Inventor
Norihiro Ashizuka
紀尋 芦塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003051689A priority Critical patent/JP3903931B2/en
Publication of JP2004260105A publication Critical patent/JP2004260105A/en
Application granted granted Critical
Publication of JP3903931B2 publication Critical patent/JP3903931B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tape carrier for semiconductor devices with which a TAB tape can be easily bent while maintaining proper strength and whose package reliability is enhanced to contribute to miniaturization of the package with the reduced manufacturing cost. <P>SOLUTION: The TAB tape 10 is used by bending after a semiconductor chip 6 is loaded on a TAB tape 10 having two layers consisting of a polyimide tape 1 and a copper foil 3, or a TAB tape 10 having three layers consisting of a polyimide tape 1, an adhesive 2, and a copper foil 3. The tape carrier for semiconductor devices is constituted such that the thickness of an insulating resin 7 (solder resist) on the copper foil 3 positioned at an bending section 1A of the TAB tape 10 is formed thinner than the insulating resin 7 positioned at a non-bending section 1B to provide flexibility for easy bending, and the total rigidity of the polyimide tape 1 and the insulating resin 7 (solder resist) positioned at the bending section 1A is reduced to make bending easy. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体チップを実装するTAB(Tape Automated Bonding)テープ、特にポリイミドテープと銅箔を有する2層構成のTABテープ、あるいはポリイミドテープ、接着剤、および銅箔を有する3層構成のTABテープに、半導体チップを実装してTABテープを折り曲げ、TABテープの底面に接続用のはんだボールを備えるBGA(Ball Grid Array)型の半導体パッケージに仕上げる半導体装置用テープキャリアに関するものである。
【0002】
【従来の技術】
最近、パソコン、高速デジタル・データ処理機器に使用される半導体装置とそのテープキャリアは、特に小型化、薄型化が要望されている。
【0003】
図10は、従来の技術により3層のTABテープ10に半導体チップ6を実装した横断面を示している。
図10において、3層のTABテープ10は、ポリイミドテープ1の上に接着剤2を介して銅箔3を貼り付けて構成される。例えば通常は、ポリイミドテープ厚さは30〜75μm、接着剤厚さは12〜20μm、銅箔厚さは15〜40μmの構成のものが使用されている。
TABテープ10に搭載する半導体チップ6を電気的に接続するために、銅箔3には、感光剤(ソルダーレジスト)を応用したホトリソグラフィ技術によって所定の電気配線(配線パターン)が形成される。
銅箔3の上には、電気配線(配線パターン)のために厚さ0.2〜1.5μmのAu/Niのめっき層4を有する。TABテープ10に搭載される半導体チップ6と銅箔3(配線パターン)の電気的な接続は、Agペーストあるいははんだペースト等の導電性ペ一スト5を、150℃以上の高温で10〜30秒以上加熱することにより行われる。
銅箔3上には、電気的な絶縁を保持し、導電性ペースト5の流れを防止するために印刷等による絶縁樹脂7が設けられる。銅箔3の上に設ける絶縁樹脂7(ソルダーレジスト)の厚さは5〜50μmである。
3層のTABテープ10は、ポリイミドテープ1の折り曲げない部分1Bにバイアホール11と、TABテープ10の折り曲げる部分1Aを折り曲げ易くするために開けたスリット穴12を有する。
【0004】
図11は、図10に示す従来の技術による半導体チップ6を実装したTABテープ10を折り曲げた横断面を示している。
図11において、半導体チップ6を実装するTABテープ10は、少ないスペースに数多くの半導体チップ6を搭載して実装密度を向上させるために、一つの半導体パッケージ内に2個以上の半導体チップ6を搭載し、TABテープ10のほぼ真ん中を折り曲げて使用される。
TABテープ10は、2個以上の半導体チップ6を実装したのち、TABテープ10の真ん中を折り曲げて、モールド樹脂8により半導体パッケージの形状とし、バイアホール11に外部接続用のはんだボール9を載せて半導体パッケージを完成させる。
ポリイミドテープ1を折り曲げ易くするため折り曲げる部分1Aに開けたスリット穴12には、ポリイミドテープ1のスリット穴12の機械強度を確保するために、ポリイミドテープ1を折り曲げた後のスリット穴12に埋め込み樹脂13が塗布される。
【0005】
従来の技術に関連する特許文献としては、つぎのものがある。
1)フレキシブル絶縁基板の導体パターンと交又する方向に切り欠き部を設け、切り欠き部から露出する導体パターンに保護用樹脂を塗布した折り曲げ部を有するフレキシブル絶縁基板がある(特許文献1参照)。
2)折り曲げ部分の絶縁ベース材の厚さを薄く形成したTAB用フィルムキャリアがある(特許文献2参照)。
3)絶縁基材上に設ける導体の孔位置に対応する部分に絶縁性薄膜合成樹脂を塗布したTAB用フィルムキャリアがある(特許文献3参照)。
4)銅を導体パターンとし、折り曲げ部のベースフイルムがスリットされているTABにおいて、折り曲げ部の外面または内面に樹脂を被覆するTABテープがある(特許文献4参照)。
5)絶縁フィルムに銅リードパターンを形成したTAB用テープキャリアにおいて、絶縁フィルムと銅リードに折り曲げ用のスリット穴を設け、スリット穴上の銅リードに絶縁フィルムより厚みが薄い可撓性樹脂保護被膜を形成したTAB用テープキャリアがある(特許文献5参照)。
6)ベースフィルムに折り曲げ用のスリット穴を設け、フィルム上の銅リード表面にSnめっきと可撓性樹脂被膜を施し、折り曲げ部の銅リード表面は可撓性樹脂被膜を設けてめっきを施さないTAB用テープキャリアがある(特許文献6参照)。
7)導体と接着剤と絶縁基材を有するフィルムキャリアにおいて、絶縁基材にあけたスリット孔位置に対応する部分の導体と接着剤を残して構成したTAB用テープキャリアがある(特許文献7参照)。
8)絶縁テープに導電パターンを形成したTABテープの折り曲げ予定部に溝を形成したTAB式電子部品がある(特許文献8参照)。
9)絶縁フィルムに形成された折り曲げ用の複数のスリットの内部に、各スリットの曲げ角度に応じた膜厚の保護樹脂を塗布したTAB用テープキャリアがある(特許文献9参照)。
10)フレキシブル絶縁基板の折り曲げ部に切り欠き部を設け、切り欠き部から露出する導体パターンに保護用樹脂を形成したフレキシブル絶縁基板がある(特許文献10参照)。
11)支持フィルム上に導電性材料の配線と絶縁保護塗膜が施された配線板の屈曲部に、スリット状開口部がフィルムに形成され、スリット状開口部を横切る配線に、保護塗膜が被覆された柔軟性配線板がある(特許文献11参照)。
12)銅リード配線パターンが形成された絶縁フィルムに厚み調整用スリットを形成し、厚み調整用スリット近傍のソルダーレジスト層の層厚を薄くした電子部品実装用フィルムキャリアテープがある(特許文献12参照)。
13)フレキシブル絶縁基板の折り曲げ部に切り欠き部を設け、切り欠き部から露出する導体パターンに保護用樹脂を形成したフレキシブル絶縁基板がある(特許文献13参照)。
14)ストレス緩和用スリットの中央部に反りを抑制するための架橋手段を備えた可撓性フィルム接続基板がある(特許文献14参照)。
【0006】
【特許文献1】特開平2−132418号公報(第1−2頁、第1図)
【特許文献2】特開平4−91450号公報(第1−2頁、第1図)
【特許文献3】特開平4−162542号公報(第1−2頁、第1図)
【特許文献4】特開平5−3228号公報(第1−2頁、第3図)
【特許文献5】特開平5−315403号公報(第1−2頁、第1図)
【特許文献6】特開平5−326643号公報(第2−3頁、第1図)
【特許文献7】特開平6−5661号公報(第1−2頁、第1図)
【特許文献8】特開平6−140474号公報(第3頁、第1図)
【特許文献9】特開平7−297235号公報(第3−4頁、第1図)
【特許文献10】特開平9−274446号公報(第1−2頁、第1図)
【特許文献11】特開平11−220248号公報(第1−2頁、第1図)
【特許文献12】特開2000−195908号公報(第2−5頁、第2図)
【特許文献13】特開2000−261138号公報(第3−4頁、第1図)
【特許文献14】特開2001−237280号公報(第3−5頁、第1図)
【0007】
【発明が解決しようとする課題】
しかし、従来のTABテープあるいは半導体装置用テープキャリアを用いた半導体装置によると、TABテープに折り曲げ用のスリット穴を形成しているために、テープの製造コストが高くなるとともに、製造途中にTABテープのスリット穴の部分の銅箔が切れてしまい、半導体パッケージの組立て作業効率が低いという問題があった。
また、TABテープに折り曲げ用のスリット穴が設けられているにも拘わらず、TABテープを構成しているポリイミドテープ、接着剤、銅箔、銅箔上のソルダーレジスト(感光剤)、めっき層等の材料の剛性が大きいために、TABテープの折り曲げ工程においてテープが折り曲げにくいという問題、あるいは無理に折り曲げるとテープが割れてしまうという現象が起きることがあった。
特に、銅箔と比べて、折り曲げ部分に位置する電気配線上のめっき層が比較的硬いために、TABテープの折り曲げ時にめっき層が割れて、半導体パッケージの外観異常が発生し、信頼性が低下するという課題が残されていた。
【0008】
それ故、本発明の目的は、TABテープの折り曲げが容易で適正な強度を維持しつつ、半導体パッケージの信頼性を向上させて小型化に寄与し、しかも製造コストの廉価な半導体装置用テープキャリアを提供することにある。
【0009】
【課題を解決するための手段】
本発明は、上記の目的を達成するため、ポリイミドテープと銅箔を有する2層のTAB(Tape Automated Bonding)テープ、あるいはポリイミドテープ、接着剤、および銅箔を有する3層のTABテープを、テープ長さ方向に折り曲げて用いる構成の半導体装置用テープキャリアにおいて、
前記2層あるいは3層のTABテープは、前記TABテープの折り曲げる部分に位置する前記銅箔上の絶縁樹脂(ソルダーレジスト)の厚さを、前記TABテープの折り曲げない部分に位置する前記銅箔上の絶縁樹脂の厚さよりも薄く形成して、前記TABテープの折り曲げる部分に位置する前記絶縁樹脂に折り曲げ容易な柔軟性を付与するとともに、
前記TABテープの折り曲げる部分に位置する前記ポリイミドテープと前記絶縁樹脂で合成される複合剛性を低減させることにより、
前記2層あるいは3層のTABテープの折り曲げを容易に構成したことを特徴とする半導体装置用テープキャリアを提供する。
【0010】
また、本発明は、上記の目的を達成するために、前記2層あるいは3層のTABテープは、前記ポリイミドテープの折り曲げる部分に位置する前記銅箔上の絶縁樹脂の厚さを1〜10μmに形成し、前記TABテープの折り曲げる部分にめっき層を有しない構成の半導体装置用テープキャリアを提供する。
【0011】
また、本発明は、上記の目的を達成するために、前記2層あるいは3層のTABテープは、前記TABテープの折り曲げる部分に位置する前記ポリイミドテープの樹脂厚さが5〜40μm(好ましくは5〜30μm)、前記接着剤厚さが3〜20μm(好ましくは5〜18μm)、前記銅箔厚さが5〜30μm(好ましくは8〜20μm)、前記銅箔上の絶縁樹脂の厚さが1〜10μm(好ましくは3〜10μm)に形成したことを特徴とする半導体装置用テープキャリアを提供する。
【0012】
また、本発明は、上記の目的を達成するために、前記2層あるいは3層のTABテープは、前記TABテープの折り曲げない部分に位置する前記ポリイミドテープの樹脂厚さが5〜50μm(好ましくは10〜40μm)、前記接着剤厚さが3〜20μm(好ましくは5〜18μm)、前記銅箔厚さが5〜30μm(好ましくは8〜20μm)、前記銅箔上の絶縁樹脂の厚さが5〜50μm(好ましくは5〜30μm)に形成したことを特徴とする半導体装置用テープキャリアを提供する。
【0013】
【発明の実施の形態】
図1は、本発明の第1の実施の形態による2層のTABテープ10に半導体チップ6を実装した半導体装置用テープキャリアの横断面を示している。
図1において、ポリイミドテープ1と銅箔3を有する2層のTABテープ10は、バイアホール11を有し、TABテープ10の折り曲げる部分1Aに位置する銅箔3(導体パターン)上の絶縁樹脂7(ソルダーレジスト)の厚さを、TABテープ10の折り曲げない部分1Bに位置する銅箔3(導体パターン)上の絶縁樹脂7(ソルダーレジスト)の厚さよりも薄く形成して、TABテープ10の折り曲げる部分1Aに位置する絶縁樹脂7(ソルダーレジスト)に折り曲げ容易な柔軟性を付与するとともに、TABテープ10の折り曲げる部分1Aに位置するポリイミドテープ1と絶縁樹脂7(ソルダーレジスト)で合成される複合剛性を低減させて、折り曲げ容易な2層のTABテープ10を構成している。
【0014】
図1に示したTABテープ10の場合、ポリイミドテープ1の厚さが5〜50μm(好ましくは10〜40μm)、銅箔3の厚さが5〜30μm(好ましくは8〜20μm)、折り曲げる部分1Aに位置する絶縁樹脂7の厚さが1〜10μm(好ましくは3〜10μm)、折り曲げない部分1Bに位置する絶縁樹脂7の厚さは、特に制限されないが厚さが5〜50μm(好ましくは5〜30μm)に形成される。
【0015】
図1のTABテープ10には、半導体チップ6が搭載される。TABテープ10に搭載する半導体チップ6を電気的に接続するために、銅箔3には、感光剤(ソルダーレジスト)を応用したホトリソグラフィ技術によって所定の電気配線(配線パターン)が形成される。
TABテープ10に搭載される半導体チップ6と銅箔3(配線パターン)の電気的な接続は、Agペーストあるいははんだペースト等の導電性ペースト5を150℃以上の高温で10〜30秒以上加熱することにより行われる。銅箔3上の絶縁樹脂7は、電気的な絶縁を保持し、導電性ペースト5の流れを防止するために印刷等により設けられる。
【0016】
図2は、本発明の第1の実施の形態による2層のTABテープ10に半導体チップ6を実装した半導体装置用テープキャリアを折り曲げた横断面を示している。
図2において、半導体チップ6を実装するTABテープ10は、少ないスペースに数多くの半導体チップ6を搭載して実装密度を向上させるために、一つの半導体パッケージ内に2個以上の半導体チップ6を搭載し、TABテープ10のほぼ真ん中を折り曲げて使用される。
図2のTABテープ10は、折り曲げる部分1Aに位置する銅箔3上に形成される絶縁樹脂7(ソルダーレジスト)の厚さが、折り曲げない部分1Bに位置する銅箔3上の絶縁樹脂7(ソルダーレジスト)の厚さよりも薄く形成されて、折り曲げる部分1Aに位置する絶縁樹脂7(ソルダーレジスト)に折り曲げ容易な柔軟性が付与されており、この結果、ポリイミドテープ1と絶縁樹脂7(ソルダーレジスト)の複合剛性が低減され、TABテープ10の折り曲げが容易に行える。
TABテープ10は、2個以上の半導体チップ6を実装したのち、TABテープ10の真ん中を折り曲げて、モールド樹脂8により半導体パッケージの形状とし、バイアホール11に外部接続用のはんだボール9を載せて半導体パッケージが完成される。
【0017】
図3は、本発明の第2の実施の形態による3層のTABテープ10に半導体チップ6を実装した半導体装置用テープキャリアの横断面を示している。
図3において、ポリイミドテープ1、接着剤2、銅箔3を有する3層のTABテープ10は、バイアホール11を有し、TABテープ10の折り曲げる部分1Aに位置する銅箔3(導体パターン)上の絶縁樹脂7(ソルダーレジスト)の厚さを、TABテープ10の折り曲げない部分1Bに位置する銅箔3(導体パターン)上の絶縁樹脂7(ソルダーレジスト)の厚さよりも薄く形成して、TABテープ10の折り曲げる部分1Aに位置する絶縁樹脂7(ソルダーレジスト)に折り曲げ容易な柔軟性を付与するとともに、TABテープ10の折り曲げる部分1Aに位置するポリイミドテープ1、接着剤2、絶縁樹脂7(ソルダーレジスト)で合成される複合剛性を低減させて、折り曲げ容易な3層のTABテープ10を構成している。
【0018】
図3に示したTABテープ10の場合、ポリイミドテープ1の厚さが5〜50μm(好ましくは10〜40μm)、接着剤2の厚さが3〜20μm(好ましくは5〜18μm)、銅箔3の厚さが5〜30μm(好ましくは8〜20μm)、折り曲げる部分1Aに位置する絶縁樹脂7の厚さが1〜10μm(好ましくは3〜10μm)、折り曲げない部分1Bに位置する絶縁樹脂7の厚さは、特に制限されないが厚さが5〜50μm(好ましくは5〜30μm)に形成される。
【0019】
図3のTABテープ10には、半導体チップ6が搭載される。TABテープ10に搭載する半導体チップ6を電気的に接続するために、銅箔3には、感光剤(ソルダーレジスト)を応用したホトリソグラフィ技術によって所定の電気配線(配線パターン)が形成される。
TABテープ10に搭載される半導体チップ6と銅箔3(配線パターン)の電気的な接続は、Agペーストあるいははんだペースト等の導電性ペースト5を150℃以上の高温で10〜30秒以上加熱することにより行われる。銅箔3上の絶縁樹脂7は、電気的な絶縁を保持し、導電性ペースト5の流れを防止するために印刷等により設けられる。
【0020】
図4は、本発明の第2の実施の形態による3層のTABテープ10に半導体チップ6を実装した半導体装置用テープキャリアを折り曲げた横断面を示している。
図4において、半導体チップ6を実装するTABテープ10は、少ないスペースに数多くの半導体チップ6を搭載して実装密度を向上させるために、一つの半導体パッケージ内に2個以上の半導体チップ6を搭載し、TABテープ10のほぼ真ん中を折り曲げて使用される。
図4のTABテープ10は、また、折り曲げる部分1Aに位置する銅箔3上に形成される絶縁樹脂7(ソルダーレジスト)の厚さが、折り曲げない部分1Bに位置する銅箔3上の絶縁樹脂7(ソルダーレジスト)の厚さよりも薄く形成されて、折り曲げる部分1Aに位置する絶縁樹脂7(ソルダーレジスト)に折り曲げ容易な柔軟性が付与されており、この結果、ポリイミドテープ1と接着剤2と絶縁樹脂7(ソルダーレジスト)の複合剛性が低減され、TABテープ10の折り曲げが容易に行える。
TABテープ10は、2個以上の半導体チップ6を実装したのち、TABテープ10の真ん中を折り曲げて、モールド樹脂8により半導体パッケージの形状とし、バイアホール11に外部接続用のはんだボール9を載せて半導体パッケージが完成される。
【0021】
図5は、本発明の第3の実施の形態による2層のTABテープ10に半導体チップ6を実装した半導体装置用テープキャリアの横断面を示している。
図5において、ポリイミドテープ1と銅箔3から構成される2層のTABテープ10は、バイアホール11を有する。TABテープ10は、TABテープ10の折り曲げる部分1Aに位置するポリイミドテープ1の厚さを、TABテープ10の折り曲げない部分1Bに位置するポリイミドテープ1の厚さよりも薄く形成して、折り曲げる部分1Aに位置するポリイミドテープ1を折り曲げ易く構成している。
【0022】
図5のTABテープ10は、さらにTABテープ10の折り曲げる部分1Aに位置する銅箔3(導体パターン)上の絶縁樹脂7(ソルダーレジスト)の厚さを、TABテープ10の折り曲げない部分1Bに位置する銅箔3(導体パターン)上の絶縁樹脂7(ソルダーレジスト)の厚さよりも薄く形成して、TABテープ10の折り曲げる部分1Aに位置する絶縁樹脂7(ソルダーレジスト)に折り曲げ容易な柔軟性を付与するとともに、TABテープ10の折り曲げる部分1Aに位置するポリイミドテープ1と絶縁樹脂7(ソルダーレジスト)で合成される複合剛性を低減させて、折り曲げ容易なTABテープ10を構成している。
【0023】
図5に示したTABテープ10の場合、折り曲げる部分1Aのポリイミドテープ1の厚さが5〜40μm(好ましくは5〜30μm)、銅箔3の厚さが5〜30μm(好ましくは8〜20μm)であり、折り曲げない部分1Bのポリイミドテープ1の厚さが5〜50μm(好ましくは10〜40μm)、銅箔3の厚さが5〜30μm(好ましくは8〜20μm)に形成される。
また、TABテープ10の折り曲げる部分1Aに位置する銅箔3上に形成する絶縁樹脂7(ソルダーレジスト)の厚さ1〜10μm(好ましくは3〜10μm)は、TABテープ10の折り曲げない部分1Bに位置する銅箔3上の絶縁樹脂7(ソルダーレジスト)の厚さ5〜50μm(好ましくは5〜30μm)よりも薄く構成することにより、TABテープ10の折り曲げる部分1Aに位置するポリイミドテープ1と絶縁樹脂7(ソルダーレジスト)の複合剛性を低減させて、TABテープ10に折り曲げ容易な柔軟性を付与させている。
【0024】
図5のTABテープ10には、半導体チップ6が搭載される。TABテープ10に搭載する半導体チップ6を電気的に接続するために、銅箔3には、感光剤(ソルダーレジスト)を応用したホトリソグラフィ技術によって所定の電気配線(配線パターン)が形成される。
TABテープ10に搭載される半導体チップ6と銅箔3(配線パターン)の電気的な接続は、Agペーストあるいははんだペースト等の導電性ペースト5を150℃以上の高温で10〜30秒以上加熱することにより行われる。銅箔3上の絶縁樹脂7は、電気的な絶縁を保持し、導電性ペースト5の流れを防止するために印刷等の方法により設けられる。
【0025】
図6は、本発明の第3の実施の形態による2層のTABテープ10に半導体チップ6を実装した半導体装置用テープキャリアを折り曲げた横断面を示している。
図6において、半導体チップ6を実装するTABテープ10は、少ないスペースに数多くの半導体チップ6を搭載して実装密度を向上させるために、一つの半導体パッケージ内に2個以上の半導体チップ6を搭載し、TABテープ10のほぼ真ん中を折り曲げて使用される。
図6のTABテープ10は、折り曲げる部分1Aに位置するポリイミドテープ1の厚さが、折り曲げない部分1Bの厚さよりも薄く形成されてポリイミドテープ1が折り曲げ易くなっている。また、折り曲げる部分1Aに位置する銅箔3上に形成される絶縁樹脂7(ソルダーレジスト)の厚さが、折り曲げない部分1Bに位置する銅箔3上の絶縁樹脂7(ソルダーレジスト)の厚さよりも薄く形成されて、折り曲げる部分1Aに位置する絶縁樹脂7(ソルダーレジスト)に折り曲げ容易な柔軟性が付与されており、この結果、ポリイミドテープ1と絶縁樹脂7(ソルダーレジスト)の複合剛性が低減され、TABテープ10の折り曲げが容易に行える。
TABテープ10は、2個以上の半導体チップ6を実装したのち、TABテープ10の真ん中を折り曲げて、モールド樹脂8により半導体パッケージの形状とし、バイアホール11に外部接続用のはんだボール9を載せて半導体パッケージが完成される。
【0026】
図7は、本発明の第4の実施の形態による3層のTABテープ10に半導体チップ6を実装した半導体装置用テープキャリアの横断面を示している。
図7において、ポリイミドテープ1の上に、銅箔3を接着剤2により貼り付けて3層のTABテープ10が構成される。TABテープ10は、バイアホール11を有し、TABテープ10の折り曲げる部分1Aに位置するポリイミドテープ1の厚さ、および銅箔3上に形成する絶縁樹脂7(ソルダーレジスト)の厚さを、TABテープ10の折り曲げない部分1Bに位置するポリイミドテープ1の厚さ、および銅箔3上に形成する絶縁樹脂7(ソルダーレジスト)の厚さよりも薄く形成して、折り曲げる部分1Aに位置するポリイミドテープ1および銅箔3上に形成する絶縁樹脂7(ソルダーレジスト)を折り曲げ易く構成している。
【0027】
図7に示したTABテープ10の場合、折り曲げる部分1Aのポリイミドテープ1の厚さが5〜40μm(好ましくは5〜30μm)、接着剤2の厚さが3〜20μm(好ましくは5〜18μm)、銅箔3の厚さが5〜30μm(好ましくは8〜20μm)であり、折り曲げない部分1Bのポリイミドテープ1の厚さが5〜50μm(好ましくは10〜40μm)、接着剤2の厚さが3〜20μm(好ましくは5〜18μm)、銅箔3の厚さが5〜30μm(好ましくは8〜20μm)に形成される。
また、TABテープ10の折り曲げる部分1Aに位置する銅箔3上に形成する絶縁樹脂7(ソルダーレジスト)の厚さ1〜10μm(好ましくは3〜10μm)は、TABテープ10の折り曲げない部分1Bに位置する銅箔3上の絶縁樹脂7(ソルダーレジスト)の厚さ5〜50μm(好ましくは5〜30μm)よりも薄く構成することにより、TABテープ10の折り曲げる部分1Aに位置するポリイミドテープ1、接着剤2、絶縁樹脂7(ソルダーレジスト)で合成される複合剛性を低減させて、TABテープ10に折り曲げ容易な柔軟性を付与させている。
【0028】
図7のTABテープ10には、半導体チップ6が搭載される。TABテープ10に搭載する半導体チップ6を電気的に接続するために、銅箔3には、感光剤(ソルダーレジスト)を応用したホトリソグラフィ技術によって所定の電気配線(配線パターン)が形成される。
TABテープ10に搭載した半導体チップ6と銅箔3(配線パターン)の電気的な接続は、Agペーストあるいははんだペースト等の導電性ペースト5を150℃以上の高温で10〜30秒以上加熱することにより行われる。銅箔3上の絶縁樹脂7は、電気的な絶縁を保持し、導電性ペースト5の流れを防止するために印刷等の方法により設けられる。
【0029】
図8は、本発明の第4の実施の形態による3層のTABテープ10に半導体チップ6を実装した半導体装置用テープキャリアを折り曲げた横断面を示している。
図8において、半導体チップ6を実装するTABテープ10は、少ないスペースに数多くの半導体チップ6を搭載して実装密度を向上させるために、一つの半導体パッケージ内に2個以上の半導体チップ6を搭載し、TABテープ10のほぼ真ん中を折り曲げて使用される。
図8のTABテープ10は、折り曲げる部分1Aに位置するポリイミドテープ1の厚さが、折り曲げない部分1Bの厚さよりも薄く形成されてポリイミドテープ1が折り曲げ易くなっている。また、折り曲げる部分1Aに位置する銅箔3上に形成される絶縁樹脂7(ソルダーレジスト)の厚さが、折り曲げない部分1Bに位置する銅箔3上の絶縁樹脂7(ソルダーレジスト)の厚さよりも薄く形成されて、折り曲げる部分1Aに位置する絶縁樹脂7(ソルダーレジスト)に折り曲げ容易な柔軟性が付与されており、この結果、ポリイミドテープ1と接着剤2と絶縁樹脂7(ソルダーレジスト)の複合剛性が低減され、TABテープ10の折り曲げが容易に行える。
TABテープ10は、2個以上の半導体チップ6を実装したのち、TABテープ10の真ん中を折り曲げて、モールド樹脂8により半導体パッケージの形状とし、バイアホール11に外部接続用のはんだボール9を載せて半導体パッケージが完成される。
【0030】
図1,図3,図5,図7に示した本発明の実施の形態のTABテープ10においては、TABテープ10の折り曲げない部分1Bの銅箔3による電気配線(配線パターン)に、電気接続に必要なAuまたはAu/Ni等のめっき層(図示省略)が、めっき液に浸して0.2〜1.5μmの厚さで設けられ、一方、TABテープ10の折り曲げる部分1Aには、めっき層が形成されないように構成されている。
銅箔3への電気配線(配線パターン)の形成に当たり、TABテープ10の折り曲げる部分1Aの銅箔3(配線パターン)上にめっき層が施されないようにするため、めっき工程前に、折り曲げる部分1Aの銅箔3に柔軟性の薄い樹脂(図示省略)を印刷または塗布して、柔軟な樹脂の下面の銅箔3(配線パターン)をめっき液から保護することにより、配線パターンにめっき層を施さないようにするとともに、柔軟な樹脂に折り曲げる部分1Aの機械的な強度を補う役割を担わせている。なお、柔軟性の薄い樹脂は、折り曲げる部分1Aの片面(ポリイミドテープ1の表面)だけでなく、折り曲げる部分1Aの背面(ポリイミドテープ1の裏面)にも、印刷または塗布して設けることにより、ポリイミドテープ1の両面に柔軟性の薄い樹脂を設けることができる。
【0031】
図9は、本発明の実施の形態による半導体装置用テープキャリアの構成材厚さと曲げ形状合格率の関係を示す特性図である。
図9のテープキャリアの構成は、図1に示したテープキャリア(折り曲げる部分1Aに位置するポリイミドテープ1の厚さ5〜50μm、銅箔3の厚さ5〜30μm、絶縁樹脂7の厚さ1〜10μmに形成したTABテープ)において、ソルダーレジスト(絶縁樹脂7)の厚さとして、折り曲げない部分1Bのソルダーレジストの厚さを5〜50μmに形成し、折り曲げる部分1Aのソルダーレジストの厚さを、各々、5μm、10μm、20μm、30μm、40μmに形成した試料(試料数nは、各々4個、合計n=20個のテープキャリア)を用いて測定したものであり、各々の試料を規定の製造ラインで1回だけ折り曲げて、試料が折り曲げられた試料を合格とし、折り曲げられない試料を不合格として判定した。
【0032】
図9によると、曲げ形状合格率(%)は、ソルダーレジスト厚さ5μmと10μmの試料は100%合格、ソルダーレジスト厚さ20μmの試料は40%合格であるのに対して、ソルダーレジスト厚さ30μmと40μmの試料は、合格率がほぼ0%であることが分かる。
また、ソルダーレジスト厚さ5μmと10μmの試料における折り曲げる部分の樹脂の割れ不良、欠け不良は見られなかった。
図9の特性図から明らかなように、本発明の実施の形態のテープキャリアの折り曲げ部に位置する銅箔3(導体パターン)上のソルダーレジスト厚さは、1〜15μm、望ましくは5〜10μmが最適であることが解明された。
【0033】
図9に示した特性図を補う試料の測定のために、図7に示した実施の形態のテープキャリアとして、
折り曲げない部分1Bのポリイミドテープ1の厚さ20〜40μmよりも、折り曲げる部分1Aに位置するポリイミドテープ1の厚さを10〜30μmと薄く形成し、また、銅箔3に形成された配線パターン上の折り曲げない部分1Bに位置する絶縁樹脂7(ソルダーレジスト)の厚さ20〜30μmよりも、折り曲げる部分1Aに位置する銅箔3に形成された配線パターン上の絶縁樹脂7(ソルダーレジスト)の厚さを5〜10μmと薄く形成するテープキャリアにおいて、ソルダーレジスト(絶縁樹脂7)の厚さとして、図9に示した5種類(ソルダーレジスト厚さ、5μm、10μm、20μm、30μm、40μmの試料)の場合の各試料のテープキャリアについて、その特性を測定した。
その結果、折り曲げる部分1Aのポリイミドテープ1の厚さ、絶縁樹脂7(ソルダーレジスト)の厚さを薄く形成した場合の曲げ形状合格率(%)は、図9の特性図とほぼ同様の特性を示すことが分かった。
【0034】
【発明の効果】
本発明の半導体装置用テープキャリアによると、2層あるいは3層のTABテープの折り曲げる部分に位置する銅箔上の絶縁樹脂の厚さを、折り曲げない部分に位置する絶縁樹脂の厚さよりも薄く形成して折り曲げ容易な柔軟性を付与するとともに、折り曲げる部分に位置するポリイミドテープと絶縁樹脂により合成される複合剛性を低減させているから、三者の相乗作用により極めて折り曲げ易い2層あるいは3層のTABテープ構成の半導体装置用テープキャリアを提供することができる。
【0035】
本発明の2層あるいは3層のTABテープの半導体装置用テープキャリアによると、TABテープに折り曲げ用のスリット穴を形成していないので、製造途中にTABテープの銅箔がスリット穴の部分から切れてしまうという問題は起こらないから、半導体パッケージの組立て作業効率を高めることができる。
しかも、折り曲げ部分に位置する電気配線上にめっき層を形成することなく、折り曲げる部分のTABテープを構成しているポリイミドテープ、接着剤、銅箔、銅箔上の絶縁樹脂などによる複合剛性を低めに保持してTABテープの適正な強度を維持しているから、TABテープの180度の折り曲げが容易になり、TABテープの斜めの折り曲げなど、自由な角度の曲げと、折り畳みが可能であるとともに、折り曲げ時のめっき層の割れによる半導体パッケージの外観異常発生の問題は全く一掃され、高密度の半導体パッケージに仕上げることが実現して半導体装置の高密度実装に著しく寄与することができる。
【0036】
このように本発明の半導体装置用テープキャリアは、TABテープの折り曲げが容易で、製造コストの廉価な半導体装置用テープキャリアを提供でき、この結果、小型化、薄型化が要望されているパソコン、高速デジタル・データ処理機器に使用される半導体パッケージの信頼性の向上と小型化に貢献できるという効果が得れらる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による2層のTABテープに半導体チップを実装した半導体装置用テープキャリアの横断面を示す説明図である。
【図2】本発明の第1の実施の形態による2層のTABテープに半導体チップを実装した半導体装置用テープキャリアを折り曲げた横断面を示す説明図である。
【図3】本発明の第2の実施の形態による3層のTABテープに半導体チップを実装した半導体装置用テープキャリアの横断面を示す説明図である。
【図4】本発明の第2の実施の形態による3層のTABテープに半導体チップを実装した半導体装置用テープキャリアを折り曲げた横断面を示す説明図である。
【図5】本発明の第3の実施の形態による2層のTABテープに半導体チップを実装した半導体装置用テープキャリアの横断面を示す説明図である。
【図6】本発明の第3の実施の形態による2層のTABテープに半導体チップを実装した半導体装置用テープキャリアを折り曲げた横断面を示す説明図である。
【図7】本発明の第4の実施の形態による3層のTABテープに半導体チップを実装した半導体装置用テープキャリアの横断面を示す説明図である。
【図8】本発明の第4の実施の形態による3層のTABテープに半導体チップを実装した半導体装置用テープキャリアを折り曲げた横断面を示す説明図である。
【図9】本発明の実施の形態による半導体装置用テープキャリアの構成材厚さと曲げ形状合格率の関係を示す特性図である。
【図10】従来の技術により3層のTABテープに半導体チップを実装した横断面を示す説明図である。
【図11】従来の技術による半導体チップを実装した3層のTABテープを折り曲げた横断面を示す説明図である。
【符号の説明】
1 ポリイミドテープ
1A 折り曲げる部分
1B 折り曲げない部分
2 接着剤
3 銅箔(導体パターン)
4 めっき層
5 導電性ペ一スト
6 半導体チップ
7 絶縁樹脂(ソルダーレジスト)
8 モールド樹脂
9 はんだボール
10 TABテープ
11 バイアホール
12 スリット穴
13 埋め込み樹脂
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a TAB (Tape Automated Bonding) tape for mounting a semiconductor chip, in particular, a two-layer TAB tape having a polyimide tape and a copper foil, or a three-layer TAB tape having a polyimide tape, an adhesive, and a copper foil. The present invention relates to a tape carrier for a semiconductor device for mounting a semiconductor chip, bending a TAB tape, and finishing a BGA (Ball Grid Array) type semiconductor package having solder balls for connection on the bottom surface of the TAB tape.
[0002]
[Prior art]
Recently, semiconductor devices used in personal computers and high-speed digital data processing equipment and their tape carriers are required to be particularly small and thin.
[0003]
FIG. 10 shows a cross section in which a semiconductor chip 6 is mounted on a three-layer TAB tape 10 by a conventional technique.
In FIG. 10, a three-layer TAB tape 10 is configured by attaching a copper foil 3 on a polyimide tape 1 via an adhesive 2. For example, usually, a polyimide tape having a thickness of 30 to 75 μm, an adhesive thickness of 12 to 20 μm, and a copper foil thickness of 15 to 40 μm is used.
In order to electrically connect the semiconductor chips 6 mounted on the TAB tape 10, predetermined electric wiring (wiring pattern) is formed on the copper foil 3 by a photolithography technique using a photosensitive agent (solder resist).
An Au / Ni plating layer 4 having a thickness of 0.2 to 1.5 μm is provided on the copper foil 3 for electric wiring (wiring pattern). Electrical connection between the semiconductor chip 6 mounted on the TAB tape 10 and the copper foil 3 (wiring pattern) is performed by applying a conductive paste 5 such as an Ag paste or a solder paste at a high temperature of 150 ° C. or more for 10 to 30 seconds. The above is performed by heating.
An insulating resin 7 is provided on the copper foil 3 by printing or the like to maintain electrical insulation and prevent the flow of the conductive paste 5. The thickness of the insulating resin 7 (solder resist) provided on the copper foil 3 is 5 to 50 μm.
The three-layer TAB tape 10 has a via hole 11 in a non-bending portion 1B of the polyimide tape 1 and a slit hole 12 formed to make the bending portion 1A of the TAB tape 10 easier to bend.
[0004]
FIG. 11 shows a cross section obtained by bending the TAB tape 10 on which the semiconductor chip 6 according to the conventional technique shown in FIG. 10 is mounted.
In FIG. 11, the TAB tape 10 on which the semiconductor chips 6 are mounted has two or more semiconductor chips 6 mounted in one semiconductor package in order to increase the mounting density by mounting many semiconductor chips 6 in a small space. Then, the middle of the TAB tape 10 is bent and used.
After mounting two or more semiconductor chips 6 on the TAB tape 10, the center of the TAB tape 10 is bent to form a semiconductor package with the mold resin 8, and the solder balls 9 for external connection are placed in the via holes 11. Complete the semiconductor package.
In order to ensure the mechanical strength of the slit hole 12 of the polyimide tape 1, a resin embedded in the slit hole 12 after bending the polyimide tape 1 is inserted into a slit hole 12 formed in the bent portion 1 </ b> A to make the polyimide tape 1 easier to bend. 13 is applied.
[0005]
Patent documents related to the prior art include the following.
1) There is a flexible insulating substrate having a cutout portion provided in a direction intersecting with the conductor pattern of the flexible insulating substrate, and having a bent portion obtained by applying a protective resin to the conductor pattern exposed from the cutout portion (see Patent Document 1). .
2) There is a film carrier for TAB in which the thickness of the insulating base material at the bent portion is reduced (see Patent Document 2).
3) There is a TAB film carrier in which an insulating thin film synthetic resin is applied to a portion corresponding to a hole position of a conductor provided on an insulating base material (see Patent Document 3).
4) In a TAB in which copper is used as a conductive pattern and a base film of a bent portion is slit, there is a TAB tape that coats a resin on an outer surface or an inner surface of the bent portion (see Patent Document 4).
5) In a TAB tape carrier in which a copper lead pattern is formed on an insulating film, a slit hole for bending is formed in the insulating film and the copper lead, and the copper lead on the slit hole has a thinner flexible resin protective coating than the insulating film. (See Patent Document 5).
6) A slit hole for bending is provided in the base film, Sn plating and a flexible resin film are applied to the surface of the copper lead on the film, and the copper lead surface of the bent portion is provided with a flexible resin film and is not plated. There is a TAB tape carrier (see Patent Document 6).
7) In a film carrier having a conductor, an adhesive, and an insulating base material, there is a TAB tape carrier configured to leave a portion of the conductor and the adhesive corresponding to the position of the slit hole formed in the insulating base material (see Patent Document 7). ).
8) There is a TAB-type electronic component in which a groove is formed in a portion to be bent of a TAB tape in which a conductive pattern is formed on an insulating tape (see Patent Document 8).
9) There is a TAB tape carrier in which a protective resin having a film thickness corresponding to the bending angle of each slit is applied inside a plurality of bending slits formed in the insulating film (see Patent Document 9).
10) There is a flexible insulating substrate in which a notch is provided in a bent portion of a flexible insulating substrate and a protective resin is formed on a conductor pattern exposed from the notch (see Patent Document 10).
11) A slit-shaped opening is formed in the film at the bent portion of the wiring board in which the wiring of the conductive material and the insulating protective coating are applied on the support film, and the protective coating is formed on the wiring crossing the slit-shaped opening. There is a coated flexible wiring board (see Patent Document 11).
12) There is a film carrier tape for mounting electronic components in which a slit for adjusting thickness is formed in an insulating film on which a copper lead wiring pattern is formed, and a layer thickness of a solder resist layer in the vicinity of the slit for adjusting thickness is reduced. ).
13) There is a flexible insulating substrate in which a notch is provided in a bent portion of a flexible insulating substrate and a protective resin is formed on a conductor pattern exposed from the notch (see Patent Document 13).
14) There is a flexible film connection substrate provided with a bridging means for suppressing warpage at the center of the stress relaxation slit (see Patent Document 14).
[0006]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2-132418 (Page 1-2, FIG. 1)
[Patent Document 2] JP-A-4-91450 (page 1-2, FIG. 1)
[Patent Document 3] Japanese Patent Application Laid-Open No. 4-162542 (page 1-2, FIG. 1)
[Patent Document 4] JP-A-5-3228 (page 1-2, FIG. 3)
[Patent Document 5] JP-A-5-315403 (Page 1-2, FIG. 1)
[Patent Document 6] Japanese Patent Application Laid-Open No. 5-326543 (page 2-3, FIG. 1)
[Patent Document 7] JP-A-6-5661 (page 1-2, FIG. 1)
[Patent Document 8] JP-A-6-140474 (page 3, FIG. 1)
[Patent Document 9] JP-A-7-297235 (page 3-4, FIG. 1)
[Patent Document 10] Japanese Patent Application Laid-Open No. 9-274446 (page 1-2, FIG. 1)
[Patent Document 11] JP-A-11-220248 (page 1-2, FIG. 1)
[Patent Document 12] Japanese Patent Application Laid-Open No. 2000-195908 (Pages 2-5, FIG. 2)
[Patent Document 13] Japanese Patent Application Laid-Open No. 2000-261138 (Page 3-4, FIG. 1)
[Patent Document 14] Japanese Patent Application Laid-Open No. 2001-237280 (Page 3-5, FIG. 1)
[0007]
[Problems to be solved by the invention]
However, according to a conventional TAB tape or a semiconductor device using a tape carrier for a semiconductor device, since a slit hole for bending is formed in the TAB tape, the manufacturing cost of the tape increases, and the TAB tape is in the middle of manufacturing. In this case, the copper foil in the slit hole portion is cut off, and there is a problem that the efficiency of assembling the semiconductor package is low.
In addition, despite the fact that the TAB tape has slit holes for bending, a polyimide tape, an adhesive, a copper foil, a solder resist (photosensitive agent) on the copper foil, a plating layer, etc., which constitute the TAB tape. Due to the high rigidity of the material, the TAB tape may be difficult to bend in the bending step, or the tape may be broken if it is forcibly bent.
In particular, since the plating layer on the electrical wiring located at the bent portion is relatively harder than the copper foil, the plating layer breaks when the TAB tape is bent, causing an abnormal appearance of the semiconductor package and lowering reliability. The task of doing so remained.
[0008]
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to improve the reliability of a semiconductor package by contributing to miniaturization while maintaining the appropriate strength by easily bending a TAB tape, and to reduce the manufacturing cost of a tape carrier for a semiconductor device. Is to provide.
[0009]
[Means for Solving the Problems]
To achieve the above object, the present invention provides a two-layer TAB (Tape Automated Bonding) tape having a polyimide tape and a copper foil, or a three-layer TAB tape having a polyimide tape, an adhesive, and a copper foil. In a semiconductor device tape carrier configured to be used by being bent in the length direction,
The thickness of the insulating resin (solder resist) on the copper foil positioned at the bent portion of the TAB tape is adjusted by changing the thickness of the insulating resin (solder resist) on the copper foil positioned at the bent portion of the TAB tape. Formed thinner than the thickness of the insulating resin to impart bending flexibility to the insulating resin located at the bending portion of the TAB tape,
By reducing the composite rigidity synthesized by the polyimide resin and the insulating resin located at the bent portion of the TAB tape,
A tape carrier for a semiconductor device, characterized in that the two-layer or three-layer TAB tape is easily bent.
[0010]
According to the present invention, in order to achieve the above object, the two-layer or three-layer TAB tape has a thickness of the insulating resin on the copper foil located at a bending portion of the polyimide tape of 1 to 10 μm. The present invention provides a tape carrier for a semiconductor device which is formed and has no plating layer in a bent portion of the TAB tape.
[0011]
According to the present invention, in order to achieve the above object, the two-layer or three-layer TAB tape has a resin thickness of 5 to 40 μm (preferably 5 to 40 μm) at a position where the TAB tape is bent. -30 μm), the adhesive thickness is 3-20 μm (preferably 5-18 μm), the copper foil thickness is 5-30 μm (preferably 8-20 μm), and the thickness of the insulating resin on the copper foil is 1 Provided is a tape carrier for a semiconductor device, wherein the tape carrier is formed to have a thickness of 10 to 10 μm (preferably 3 to 10 μm).
[0012]
According to the present invention, in order to achieve the above object, the two-layer or three-layer TAB tape has a resin thickness of 5 to 50 μm (preferably, a resin thickness of the polyimide tape located at a non-bending portion of the TAB tape). 10 to 40 μm), the thickness of the adhesive is 3 to 20 μm (preferably 5 to 18 μm), the thickness of the copper foil is 5 to 30 μm (preferably 8 to 20 μm), and the thickness of the insulating resin on the copper foil is Provided is a tape carrier for a semiconductor device, which is formed to have a thickness of 5 to 50 μm (preferably 5 to 30 μm).
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a cross section of a semiconductor device tape carrier in which a semiconductor chip 6 is mounted on a two-layer TAB tape 10 according to a first embodiment of the present invention.
In FIG. 1, a two-layer TAB tape 10 having a polyimide tape 1 and a copper foil 3 has a via hole 11, and an insulating resin 7 on the copper foil 3 (conductor pattern) located at a bent portion 1 </ b> A of the TAB tape 10. The thickness of the (solder resist) is formed thinner than the thickness of the insulating resin 7 (solder resist) on the copper foil 3 (conductor pattern) located in the unbent portion 1B of the TAB tape 10, and the TAB tape 10 is bent. In addition to imparting easy bending flexibility to the insulating resin 7 (solder resist) located at the portion 1A, the composite rigidity synthesized by the polyimide tape 1 and the insulating resin 7 (solder resist) located at the bending portion 1A of the TAB tape 10 Is reduced, and the two-layer TAB tape 10 that is easy to bend is configured.
[0014]
In the case of the TAB tape 10 shown in FIG. 1, the thickness of the polyimide tape 1 is 5 to 50 μm (preferably 10 to 40 μm), the thickness of the copper foil 3 is 5 to 30 μm (preferably 8 to 20 μm), and the bent portion 1A The thickness of the insulating resin 7 located in the unfolded portion 1B is not particularly limited, but is 5 to 50 μm (preferably 5 to 10 μm). 3030 μm).
[0015]
The semiconductor chip 6 is mounted on the TAB tape 10 of FIG. In order to electrically connect the semiconductor chips 6 mounted on the TAB tape 10, predetermined electric wiring (wiring pattern) is formed on the copper foil 3 by a photolithography technique using a photosensitive agent (solder resist).
The electrical connection between the semiconductor chip 6 mounted on the TAB tape 10 and the copper foil 3 (wiring pattern) is performed by heating the conductive paste 5 such as an Ag paste or a solder paste at a high temperature of 150 ° C. or more for 10 to 30 seconds or more. It is done by doing. The insulating resin 7 on the copper foil 3 is provided by printing or the like in order to maintain electrical insulation and prevent the flow of the conductive paste 5.
[0016]
FIG. 2 shows a cross section of a semiconductor device tape carrier in which a semiconductor chip 6 is mounted on a two-layer TAB tape 10 according to the first embodiment of the present invention.
In FIG. 2, the TAB tape 10 on which the semiconductor chips 6 are mounted has two or more semiconductor chips 6 mounted in one semiconductor package in order to improve the mounting density by mounting many semiconductor chips 6 in a small space. Then, the middle of the TAB tape 10 is bent and used.
In the TAB tape 10 shown in FIG. 2, the thickness of the insulating resin 7 (solder resist) formed on the copper foil 3 located on the bent portion 1A is such that the insulating resin 7 on the copper foil 3 located on the unfolded portion 1B ( The thickness is smaller than the thickness of the solder resist, so that the insulating resin 7 (solder resist) located at the bent portion 1A has flexibility to be easily bent. As a result, the polyimide tape 1 and the insulating resin 7 (solder resist) 2), the composite rigidity is reduced, and the TAB tape 10 can be easily bent.
After mounting two or more semiconductor chips 6 on the TAB tape 10, the center of the TAB tape 10 is bent to form a semiconductor package with the mold resin 8, and the solder balls 9 for external connection are placed in the via holes 11. The semiconductor package is completed.
[0017]
FIG. 3 shows a cross section of a semiconductor device tape carrier in which a semiconductor chip 6 is mounted on a three-layer TAB tape 10 according to a second embodiment of the present invention.
In FIG. 3, a three-layer TAB tape 10 having a polyimide tape 1, an adhesive 2, and a copper foil 3 has a via hole 11 on a copper foil 3 (conductor pattern) located at a bent portion 1 </ b> A of the TAB tape 10. The thickness of the insulating resin 7 (solder resist) is smaller than the thickness of the insulating resin 7 (solder resist) on the copper foil 3 (conductor pattern) located at the unbent portion 1B of the TAB tape 10 and the TAB The insulating resin 7 (solder resist) located at the bending portion 1A of the tape 10 is given flexibility to be easily bent, and the polyimide tape 1, the adhesive 2, and the insulating resin 7 (solder) located at the bending portion 1A of the TAB tape 10 are provided. A three-layer TAB tape 10 that is easy to bend by reducing the composite rigidity synthesized by the resist is formed.
[0018]
In the case of the TAB tape 10 shown in FIG. 3, the thickness of the polyimide tape 1 is 5 to 50 μm (preferably 10 to 40 μm), the thickness of the adhesive 2 is 3 to 20 μm (preferably 5 to 18 μm), Is 5 to 30 μm (preferably 8 to 20 μm), the thickness of the insulating resin 7 located at the bent portion 1A is 1 to 10 μm (preferably 3 to 10 μm), and the thickness of the insulating resin 7 located at the unfolded portion 1B is Although the thickness is not particularly limited, the thickness is formed to 5 to 50 μm (preferably 5 to 30 μm).
[0019]
The semiconductor chip 6 is mounted on the TAB tape 10 shown in FIG. In order to electrically connect the semiconductor chips 6 mounted on the TAB tape 10, predetermined electric wiring (wiring pattern) is formed on the copper foil 3 by a photolithography technique using a photosensitive agent (solder resist).
The electrical connection between the semiconductor chip 6 mounted on the TAB tape 10 and the copper foil 3 (wiring pattern) is performed by heating the conductive paste 5 such as an Ag paste or a solder paste at a high temperature of 150 ° C. or more for 10 to 30 seconds or more. It is done by doing. The insulating resin 7 on the copper foil 3 is provided by printing or the like in order to maintain electrical insulation and prevent the flow of the conductive paste 5.
[0020]
FIG. 4 shows a cross section of a semiconductor device tape carrier in which a semiconductor chip 6 is mounted on a three-layer TAB tape 10 according to a second embodiment of the present invention.
In FIG. 4, the TAB tape 10 on which the semiconductor chips 6 are mounted has two or more semiconductor chips 6 mounted in one semiconductor package in order to increase the mounting density by mounting a large number of semiconductor chips 6 in a small space. Then, the middle of the TAB tape 10 is bent and used.
The TAB tape 10 shown in FIG. 4 has a thickness of the insulating resin 7 (solder resist) formed on the copper foil 3 located on the bent portion 1A, and the insulating resin on the copper foil 3 located on the unfolded portion 1B. 7 (solder resist), the insulating resin 7 (solder resist) located at the portion 1A to be bent is provided with easy bending flexibility. As a result, the polyimide tape 1, the adhesive 2, The composite rigidity of the insulating resin 7 (solder resist) is reduced, and the TAB tape 10 can be easily bent.
After mounting two or more semiconductor chips 6 on the TAB tape 10, the center of the TAB tape 10 is bent to form a semiconductor package with the mold resin 8, and the solder balls 9 for external connection are placed in the via holes 11. The semiconductor package is completed.
[0021]
FIG. 5 shows a cross section of a semiconductor device tape carrier in which a semiconductor chip 6 is mounted on a two-layer TAB tape 10 according to a third embodiment of the present invention.
In FIG. 5, a two-layer TAB tape 10 composed of a polyimide tape 1 and a copper foil 3 has a via hole 11. The TAB tape 10 is formed such that the thickness of the polyimide tape 1 located at the bendable portion 1A of the TAB tape 10 is smaller than the thickness of the polyimide tape 1 located at the non-bendable portion 1B of the TAB tape 10, and The polyimide tape 1 located is configured to be easily bent.
[0022]
In the TAB tape 10 of FIG. 5, the thickness of the insulating resin 7 (solder resist) on the copper foil 3 (conductor pattern) located at the bent portion 1A of the TAB tape 10 is further positioned at the unbent portion 1B of the TAB tape 10. The thickness of the insulating resin 7 (solder resist) on the copper foil 3 (conductor pattern) to be formed is smaller than the thickness of the insulating resin 7 (solder resist) located on the bending portion 1A of the TAB tape 10 so that the insulating resin 7 (solder resist) can be easily bent. In addition to this, the composite rigidity synthesized by the polyimide tape 1 and the insulating resin 7 (solder resist) located at the bent portion 1A of the TAB tape 10 is reduced to form the TAB tape 10 which can be easily bent.
[0023]
In the case of the TAB tape 10 shown in FIG. 5, the thickness of the polyimide tape 1 in the bent portion 1A is 5 to 40 μm (preferably 5 to 30 μm), and the thickness of the copper foil 3 is 5 to 30 μm (preferably 8 to 20 μm). The thickness of the polyimide tape 1 in the unbent portion 1B is 5 to 50 μm (preferably 10 to 40 μm), and the thickness of the copper foil 3 is 5 to 30 μm (preferably 8 to 20 μm).
In addition, the thickness 1 to 10 μm (preferably 3 to 10 μm) of the insulating resin 7 (solder resist) formed on the copper foil 3 located at the bent portion 1A of the TAB tape 10 is applied to the unbent portion 1B of the TAB tape 10. The insulating resin 7 (solder resist) on the copper foil 3 is thinner than 5 to 50 μm (preferably 5 to 30 μm), so that it is insulated from the polyimide tape 1 located at the bent portion 1A of the TAB tape 10. The composite rigidity of the resin 7 (solder resist) is reduced to give the TAB tape 10 flexibility that can be easily bent.
[0024]
The semiconductor chip 6 is mounted on the TAB tape 10 shown in FIG. In order to electrically connect the semiconductor chips 6 mounted on the TAB tape 10, predetermined electric wiring (wiring pattern) is formed on the copper foil 3 by a photolithography technique using a photosensitive agent (solder resist).
The electrical connection between the semiconductor chip 6 mounted on the TAB tape 10 and the copper foil 3 (wiring pattern) is performed by heating the conductive paste 5 such as an Ag paste or a solder paste at a high temperature of 150 ° C. or more for 10 to 30 seconds or more. It is done by doing. The insulating resin 7 on the copper foil 3 is provided by a method such as printing in order to maintain electrical insulation and prevent the flow of the conductive paste 5.
[0025]
FIG. 6 is a cross-sectional view of a semiconductor device tape carrier in which a semiconductor chip 6 is mounted on a two-layer TAB tape 10 according to a third embodiment of the present invention.
In FIG. 6, the TAB tape 10 on which the semiconductor chips 6 are mounted has two or more semiconductor chips 6 mounted in one semiconductor package in order to increase the mounting density by mounting many semiconductor chips 6 in a small space. Then, the middle of the TAB tape 10 is bent and used.
In the TAB tape 10 of FIG. 6, the thickness of the polyimide tape 1 located at the portion 1A to be bent is formed thinner than the thickness of the portion 1B not to be bent, so that the polyimide tape 1 is easily bent. Further, the thickness of the insulating resin 7 (solder resist) formed on the copper foil 3 located at the portion 1A to be bent is larger than the thickness of the insulating resin 7 (solder resist) on the copper foil 3 located at the portion 1B not to be bent. Also, the insulating resin 7 (solder resist) located at the portion 1A to be bent has flexibility to be easily bent. As a result, the composite rigidity of the polyimide tape 1 and the insulating resin 7 (solder resist) is reduced. Therefore, the TAB tape 10 can be easily bent.
After mounting two or more semiconductor chips 6 on the TAB tape 10, the center of the TAB tape 10 is bent to form a semiconductor package with the mold resin 8, and the solder balls 9 for external connection are placed in the via holes 11. The semiconductor package is completed.
[0026]
FIG. 7 shows a cross section of a semiconductor device tape carrier in which a semiconductor chip 6 is mounted on a three-layer TAB tape 10 according to a fourth embodiment of the present invention.
In FIG. 7, a copper foil 3 is adhered on a polyimide tape 1 with an adhesive 2 to form a three-layer TAB tape 10. The TAB tape 10 has a via hole 11. The thickness of the polyimide tape 1 located at the bent portion 1 </ b> A of the TAB tape 10 and the thickness of the insulating resin 7 (solder resist) formed on the copper foil 3 The polyimide tape 1 located at the unfolded portion 1A of the tape 10 is formed to be thinner than the thickness of the polyimide tape 1 located at the unbent portion 1B and the thickness of the insulating resin 7 (solder resist) formed on the copper foil 3. The insulating resin 7 (solder resist) formed on the copper foil 3 is easily bent.
[0027]
In the case of the TAB tape 10 shown in FIG. 7, the thickness of the polyimide tape 1 at the bent portion 1A is 5 to 40 μm (preferably 5 to 30 μm), and the thickness of the adhesive 2 is 3 to 20 μm (preferably 5 to 18 μm). The thickness of the copper foil 3 is 5 to 30 μm (preferably 8 to 20 μm), the thickness of the polyimide tape 1 in the unbent portion 1B is 5 to 50 μm (preferably 10 to 40 μm), and the thickness of the adhesive 2 Is formed in a thickness of 3 to 20 μm (preferably 5 to 18 μm), and the thickness of the copper foil 3 is 5 to 30 μm (preferably 8 to 20 μm).
In addition, the thickness 1 to 10 μm (preferably 3 to 10 μm) of the insulating resin 7 (solder resist) formed on the copper foil 3 located at the bent portion 1A of the TAB tape 10 is applied to the unbent portion 1B of the TAB tape 10. By making the thickness of the insulating resin 7 (solder resist) on the located copper foil 3 thinner than 5 to 50 μm (preferably 5 to 30 μm), the polyimide tape 1 positioned at the bent portion 1A of the TAB tape 10 is bonded. The composite rigidity synthesized by the agent 2 and the insulating resin 7 (solder resist) is reduced to give the TAB tape 10 flexibility that can be easily bent.
[0028]
The semiconductor chip 6 is mounted on the TAB tape 10 shown in FIG. In order to electrically connect the semiconductor chips 6 mounted on the TAB tape 10, predetermined electric wiring (wiring pattern) is formed on the copper foil 3 by a photolithography technique using a photosensitive agent (solder resist).
The electrical connection between the semiconductor chip 6 mounted on the TAB tape 10 and the copper foil 3 (wiring pattern) is performed by heating the conductive paste 5 such as an Ag paste or a solder paste at a high temperature of 150 ° C. or more for 10 to 30 seconds or more. Is performed by The insulating resin 7 on the copper foil 3 is provided by a method such as printing in order to maintain electrical insulation and prevent the flow of the conductive paste 5.
[0029]
FIG. 8 shows a cross section of a semiconductor device tape carrier in which a semiconductor chip 6 is mounted on a three-layer TAB tape 10 according to a fourth embodiment of the present invention.
In FIG. 8, the TAB tape 10 on which the semiconductor chips 6 are mounted has two or more semiconductor chips 6 mounted in one semiconductor package in order to improve the mounting density by mounting many semiconductor chips 6 in a small space. Then, the middle of the TAB tape 10 is bent and used.
In the TAB tape 10 shown in FIG. 8, the thickness of the polyimide tape 1 located at the portion 1A to be bent is formed thinner than the thickness of the portion 1B not to be bent, so that the polyimide tape 1 is easily bent. Further, the thickness of the insulating resin 7 (solder resist) formed on the copper foil 3 located at the portion 1A to be bent is larger than the thickness of the insulating resin 7 (solder resist) on the copper foil 3 located at the portion 1B not to be bent. Also, the insulating resin 7 (solder resist) located at the bent portion 1A is provided with flexibility to be easily bent. As a result, the polyimide tape 1, the adhesive 2, and the insulating resin 7 (solder resist) The composite rigidity is reduced, and the TAB tape 10 can be easily bent.
After mounting two or more semiconductor chips 6 on the TAB tape 10, the center of the TAB tape 10 is bent to form a semiconductor package with the mold resin 8, and the solder balls 9 for external connection are placed in the via holes 11. The semiconductor package is completed.
[0030]
In the TAB tape 10 according to the embodiment of the present invention shown in FIGS. 1, 3, 5, and 7, an electric connection (wiring pattern) of the copper foil 3 of the unbent portion 1B of the TAB tape 10 is made. A plating layer (not shown) such as Au or Au / Ni necessary for plating is provided with a thickness of 0.2 to 1.5 μm by immersion in a plating solution, while a bent portion 1A of the TAB tape 10 is provided with a plating layer. It is configured such that no layer is formed.
In forming the electric wiring (wiring pattern) on the copper foil 3, in order to prevent the plating layer from being applied to the copper foil 3 (wiring pattern) of the bending portion 1A of the TAB tape 10, the bending portion 1A is formed before the plating step. By printing or applying a thin flexible resin (not shown) on the copper foil 3 of FIG. 1 and protecting the copper foil 3 (wiring pattern) on the lower surface of the flexible resin from the plating solution, a plating layer is formed on the wiring pattern. In addition, it serves to supplement the mechanical strength of the portion 1A to be bent into a flexible resin. The thin flexible resin is printed or applied not only on one side of the bent portion 1A (the front surface of the polyimide tape 1) but also on the back surface of the bent portion 1A (the back surface of the polyimide tape 1) to provide a polyimide. A thin flexible resin can be provided on both sides of the tape 1.
[0031]
FIG. 9 is a characteristic diagram showing the relationship between the thickness of the constituent material of the tape carrier for a semiconductor device according to the embodiment of the present invention and the bending shape acceptance ratio.
The configuration of the tape carrier of FIG. 9 is the same as that of the tape carrier shown in FIG. 1 (the polyimide tape 1 having a thickness of 5 to 50 μm, the copper foil 3 having a thickness of 5 to 30 μm, and the insulating resin 7 having a thickness of 1 to 5 μm. The thickness of the solder resist (insulating resin 7) of the non-bent portion 1B is set to 5 to 50 μm, and the thickness of the solder resist of the portion 1A to be bent is set as the thickness of the solder resist (insulating resin 7). Each of the samples was measured using 5 μm, 10 μm, 20 μm, 30 μm, and 40 μm formed samples (the number of samples n was 4, each having a total of n = 20 tape carriers). The sample was bent only once in the production line, and the sample where the sample was bent was determined to be acceptable, and the sample that was not bent was determined to be rejected.
[0032]
According to FIG. 9, the bending shape acceptance rate (%) is such that the solder resist thickness of 5 μm and 10 μm samples pass 100%, the solder resist thickness 20 μm sample passes 40%, whereas the solder resist thickness It can be seen that the pass rates of the 30 μm and 40 μm samples are almost 0%.
In addition, in the samples having the solder resist thicknesses of 5 μm and 10 μm, no cracking or chipping failure of the bent portion of the resin was observed.
As is clear from the characteristic diagram of FIG. 9, the thickness of the solder resist on the copper foil 3 (conductor pattern) located at the bent portion of the tape carrier according to the embodiment of the present invention is 1 to 15 μm, preferably 5 to 10 μm. Was found to be optimal.
[0033]
In order to measure a sample that supplements the characteristic diagram shown in FIG. 9, the tape carrier of the embodiment shown in FIG.
The thickness of the polyimide tape 1 located at the portion 1A to be bent is formed to be as thin as 10 to 30 μm than the thickness 20 to 40 μm of the polyimide tape 1 at the portion 1B which is not to be bent, and on the wiring pattern formed on the copper foil 3. The thickness of the insulating resin 7 (solder resist) on the wiring pattern formed on the copper foil 3 located on the portion 1A to be bent is smaller than the thickness of the insulating resin 7 (solder resist) located on the portion 1B where the portion is not bent. In a tape carrier having a thickness as small as 5 to 10 μm, the solder resist (insulating resin 7) has five thicknesses as shown in FIG. 9 (samples having solder resist thicknesses of 5 μm, 10 μm, 20 μm, 30 μm, and 40 μm). In the case of the above, the characteristics of the tape carrier of each sample were measured.
As a result, the bending shape acceptance ratio (%) when the thickness of the polyimide tape 1 in the bent portion 1A and the thickness of the insulating resin 7 (solder resist) are reduced is almost the same as the characteristic diagram of FIG. It turned out to show.
[0034]
【The invention's effect】
According to the tape carrier for a semiconductor device of the present invention, the thickness of the insulating resin on the copper foil located at the bent portion of the two-layer or three-layer TAB tape is formed smaller than the thickness of the insulating resin located at the unfolded portion. In addition to providing flexibility that is easy to bend and reducing the composite rigidity that is synthesized by the polyimide tape and the insulating resin located at the portion to be bent, two or three layers that are extremely easy to bend due to the synergistic action of the three members A tape carrier for a semiconductor device having a TAB tape configuration can be provided.
[0035]
According to the tape carrier for a semiconductor device of the two-layer or three-layer TAB tape of the present invention, since the TAB tape does not have a slit hole for bending, the copper foil of the TAB tape is cut off from the slit hole during the manufacturing. Therefore, the efficiency of assembling the semiconductor package can be improved.
Moreover, the composite rigidity is reduced by the polyimide tape, adhesive, copper foil, insulating resin on the copper foil, etc. that make up the TAB tape at the bent part without forming a plating layer on the electrical wiring located at the bent part. To maintain the appropriate strength of the TAB tape, making it easy to bend the TAB tape at 180 degrees, and it is possible to bend and fold at any angle, such as diagonal bending of the TAB tape. In addition, the problem of appearance abnormality of the semiconductor package due to cracking of the plating layer at the time of bending is completely eliminated, and it is possible to achieve a high-density semiconductor package, which can significantly contribute to high-density mounting of a semiconductor device.
[0036]
As described above, the tape carrier for a semiconductor device of the present invention can provide a tape carrier for a semiconductor device in which the TAB tape can be easily bent and the manufacturing cost is inexpensive. The effect of improving reliability and reducing the size of a semiconductor package used in high-speed digital data processing equipment can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a cross section of a semiconductor device tape carrier in which a semiconductor chip is mounted on a two-layer TAB tape according to a first embodiment of the present invention.
FIG. 2 is an explanatory view showing a cross section in which a semiconductor device tape carrier in which a semiconductor chip is mounted on a two-layer TAB tape according to the first embodiment of the present invention is bent.
FIG. 3 is an explanatory view showing a cross section of a semiconductor device tape carrier in which a semiconductor chip is mounted on a three-layer TAB tape according to a second embodiment of the present invention.
FIG. 4 is an explanatory view showing a cross section of a semiconductor device tape carrier in which a semiconductor chip is mounted on a three-layer TAB tape according to a second embodiment of the present invention;
FIG. 5 is an explanatory view showing a cross section of a semiconductor device tape carrier in which a semiconductor chip is mounted on a two-layer TAB tape according to a third embodiment of the present invention.
FIG. 6 is an explanatory view showing a cross section in which a semiconductor device tape carrier in which a semiconductor chip is mounted on a two-layer TAB tape according to a third embodiment of the present invention is bent.
FIG. 7 is an explanatory view showing a cross section of a semiconductor device tape carrier in which a semiconductor chip is mounted on a three-layer TAB tape according to a fourth embodiment of the present invention.
FIG. 8 is an explanatory view showing a cross section of a semiconductor device tape carrier in which a semiconductor chip is mounted on a three-layer TAB tape according to a fourth embodiment of the present invention.
FIG. 9 is a characteristic diagram showing the relationship between the thickness of a component of a tape carrier for a semiconductor device and a bending shape acceptance ratio according to an embodiment of the present invention.
FIG. 10 is an explanatory view showing a cross section in which a semiconductor chip is mounted on a three-layer TAB tape by a conventional technique.
FIG. 11 is an explanatory diagram showing a cross section obtained by bending a three-layer TAB tape on which a semiconductor chip according to a conventional technique is mounted.
[Explanation of symbols]
1 Polyimide tape
1A Bending part
1B Non-bending part
2 adhesive
3 Copper foil (conductor pattern)
4 Plating layer
5 Conductive paste
6 Semiconductor chip
7 Insulating resin (solder resist)
8 Mold resin
9 solder balls
10 TAB tape
11 Via Hole
12 slit holes
13 Embedding resin

Claims (4)

ポリイミドテープと銅箔を有する2層のTAB(Tape Automated Bonding)テープ、あるいはポリイミドテープ、接着剤、および銅箔を有する3層のTABテープを、テープ長さ方向に折り曲げて用いる構成の半導体装置用テープキャリアにおいて、
前記2層あるいは3層のTABテープは、前記TABテープの折り曲げる部分に位置する前記銅箔上の絶縁樹脂(ソルダーレジスト)の厚さを、前記TABテープの折り曲げない部分に位置する前記銅箔上の絶縁樹脂の厚さよりも薄く形成して、前記TABテープの折り曲げる部分に位置する前記絶縁樹脂に折り曲げ容易な柔軟性を付与するとともに、
前記TABテープの折り曲げる部分に位置する前記ポリイミドテープと前記絶縁樹脂で合成される複合剛性を低減させることにより、
前記2層あるいは3層のTABテープの折り曲げを容易に構成したことを特徴とする半導体装置用テープキャリア。
For a semiconductor device having a configuration in which a two-layer TAB (Tape Automated Bonding) tape having a polyimide tape and a copper foil, or a three-layer TAB tape having a polyimide tape, an adhesive, and a copper foil are bent in the tape length direction. In tape carriers,
The thickness of the insulating resin (solder resist) on the copper foil positioned at the bent portion of the TAB tape is adjusted by changing the thickness of the insulating resin (solder resist) on the copper foil positioned at the bent portion of the TAB tape. Formed thinner than the thickness of the insulating resin to impart bending flexibility to the insulating resin located at the bending portion of the TAB tape,
By reducing the composite rigidity synthesized by the polyimide resin and the insulating resin located at the bent portion of the TAB tape,
A tape carrier for a semiconductor device, wherein the two-layer or three-layer TAB tape is easily bent.
前記2層あるいは3層のTABテープは、前記ポリイミドテープの折り曲げる部分に位置する前記銅箔上の絶縁樹脂の厚さを1〜10μmに形成し、
前記TABテープの折り曲げる部分にめっき層を有しない構成の請求項1に記載の半導体装置用テープキャリア。
The two-layer or three-layer TAB tape is formed so that the thickness of the insulating resin on the copper foil located at the bent portion of the polyimide tape is 1 to 10 μm,
2. The tape carrier for a semiconductor device according to claim 1, wherein the TAB tape does not have a plating layer in a bent portion of the TAB tape. 3.
前記2層あるいは3層のTABテープは、前記TABテープの折り曲げる部分に位置する前記ポリイミドテープの樹脂厚さが5〜40μm、前記接着剤厚さが3〜20μm、前記銅箔厚さが5〜30μm、前記銅箔上の絶縁樹脂の厚さが1〜10μmに形成したことを特徴とする請求項1に記載の半導体装置用テープキャリア。The two-layer or three-layer TAB tape has a resin thickness of 5 to 40 μm, an adhesive thickness of 3 to 20 μm, and a copper foil thickness of 5 to 40 μm of the polyimide tape located at a bent portion of the TAB tape. 2. The tape carrier for a semiconductor device according to claim 1, wherein the thickness is 30 [mu] m and the thickness of the insulating resin on the copper foil is 1 to 10 [mu] m. 前記2層あるいは3層のTABテープは、前記TABテープの折り曲げない部分に位置する前記ポリイミドテープの樹脂厚さが5〜50μm、前記接着剤厚さが3〜20μm、前記銅箔厚さが5〜30μm、前記銅箔上の絶縁樹脂(ソルダーレジスト)の厚さが5〜50μmに形成したことを特徴とする請求項1に記載の半導体装置用テープキャリア。The two-layer or three-layer TAB tape has a resin thickness of 5 to 50 μm, an adhesive thickness of 3 to 20 μm, and a copper foil thickness of 5 to 50 μm of the polyimide tape located at the unbent portion of the TAB tape. 2. The tape carrier for a semiconductor device according to claim 1, wherein the thickness of the insulating resin (solder resist) on the copper foil is 5 to 50 [mu] m.
JP2003051689A 2003-02-27 2003-02-27 Tape carrier for semiconductor devices Expired - Fee Related JP3903931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003051689A JP3903931B2 (en) 2003-02-27 2003-02-27 Tape carrier for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003051689A JP3903931B2 (en) 2003-02-27 2003-02-27 Tape carrier for semiconductor devices

Publications (2)

Publication Number Publication Date
JP2004260105A true JP2004260105A (en) 2004-09-16
JP3903931B2 JP3903931B2 (en) 2007-04-11

Family

ID=33116774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003051689A Expired - Fee Related JP3903931B2 (en) 2003-02-27 2003-02-27 Tape carrier for semiconductor devices

Country Status (1)

Country Link
JP (1) JP3903931B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029813A1 (en) * 2006-09-04 2008-03-13 Nec Corporation Wiring board composite body, semiconductor device, and method for manufacturing the wiring board composite body and the semiconductor device
WO2008038377A1 (en) * 2006-09-28 2008-04-03 Shinoda Plasma Co., Ltd. Display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029813A1 (en) * 2006-09-04 2008-03-13 Nec Corporation Wiring board composite body, semiconductor device, and method for manufacturing the wiring board composite body and the semiconductor device
JPWO2008029813A1 (en) * 2006-09-04 2010-01-21 日本電気株式会社 Wiring board composite, semiconductor device, and manufacturing method thereof
WO2008038377A1 (en) * 2006-09-28 2008-04-03 Shinoda Plasma Co., Ltd. Display device
JPWO2008038377A1 (en) * 2006-09-28 2010-01-28 篠田プラズマ株式会社 Display device
JP4927855B2 (en) * 2006-09-28 2012-05-09 篠田プラズマ株式会社 Display device

Also Published As

Publication number Publication date
JP3903931B2 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
CN106605454B (en) Multi-layer flexible printed circuit board and its manufacturing method
JPH0697225A (en) Semiconductor device
JP2006060128A (en) Semiconductor device
JP2006165517A (en) Flexible wiring board, manufacturing method therof semiconductor device and electronic apparatus using it
JP2008085089A (en) Resin wiring board and semiconductor device
JP6226167B2 (en) Multilayer wiring board
US10531569B2 (en) Printed circuit board and method of fabricating the same
US10020248B2 (en) Tape for electronic devices with reinforced lead crack
US11019722B2 (en) Wiring substrate
JP5627097B2 (en) Wiring board
US6896173B2 (en) Method of fabricating circuit substrate
JP2008177618A (en) Flexible wiring board, semiconductor device and electronic equipment using the wiring board
JP2004260105A (en) Tape carrier for semiconductor device
JP4728417B2 (en) Method for manufacturing printed circuit board
US8853551B2 (en) Wired circuit board and producing method thereof
CN112566390B (en) Multilayer flexible circuit board and preparation method thereof
WO2023080097A1 (en) Re-wiring circuit board and method for manufacturing same
US20150282315A1 (en) Printed circuit board and method of manufacturing the same
JPH05235498A (en) Printed circuit board having protruding electrode and bonding method therefor
JP2002232104A (en) Wiring module
JP2006303217A (en) Electronic equipment
JP3910937B2 (en) Semiconductor device
JP6384179B2 (en) Electronic equipment
JPH01183192A (en) Flexible printed wiring board and manufacture thereof
JP4263211B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050415

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060921

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Effective date: 20070101

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120119

LAPS Cancellation because of no payment of annual fees