JP2004258426A - Birefringence inducing material and retardation film - Google Patents

Birefringence inducing material and retardation film Download PDF

Info

Publication number
JP2004258426A
JP2004258426A JP2003050225A JP2003050225A JP2004258426A JP 2004258426 A JP2004258426 A JP 2004258426A JP 2003050225 A JP2003050225 A JP 2003050225A JP 2003050225 A JP2003050225 A JP 2003050225A JP 2004258426 A JP2004258426 A JP 2004258426A
Authority
JP
Japan
Prior art keywords
axis
refractive index
birefringence
retardation film
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003050225A
Other languages
Japanese (ja)
Inventor
Takeya Sakai
丈也 酒井
Masao Uetsuki
正雄 植月
Yoshihiro Kawatsuki
喜弘 川月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Original Assignee
Hayashi Telempu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp filed Critical Hayashi Telempu Corp
Priority to JP2003050225A priority Critical patent/JP2004258426A/en
Publication of JP2004258426A publication Critical patent/JP2004258426A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a retardation film having an optical compensation effect at low cost. <P>SOLUTION: The retardation film is manufactured in the processes including irradiation of light and heating and cooling of a material which induces birefringence (birefringence inducing material) by the molecular motion by irradiation of light and heating and by the molecular orientation based on the molecular motion. In this manufacturing method, a compound having a naphthylacryloyl structure or its derivative or biphenylacryloyl or its derivative is used for the birefringence inducing material. Thus, the retardation film having an optical compensation effect can be manufactured at low cost. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示装置の視野角特性を改善するため用いられる位相差フィルムに関する。
【0002】
【従来の技術】
位相差フィルムは、互いに垂直な主軸方向に振動する直線偏光成分を透過させ、この二成分間に必要な位相差を与える複屈折性を有するフィルムである。このような位相差フィルムは液晶表示分野にも活用されてきており、特に負の複屈折性を有する液晶性材料を傾斜ないしはベンド配向させた位相差フィルムは液晶表示装置の視野角拡大に有効な光学補償フィルムとして利用されてきている。このような位相差フィルムによって大幅な視野角拡大効果が得られてはいるが、液晶表示装置を見る方向によっては光学補償効果が十分得られていないのが実状である。
位相差フィルムを製造する他の製造法として光照射により位相差を発現させる方法が挙げられる。この方法として、特開平7−168020号や特開平7−207037号に光異性化するアゾベンゼン部を含む高分子のシートに光照射し光軸の傾いた負の一軸性を有する位相差フィルムが提案されている。しかしながら、アゾベンゼンの光異性化を利用しているため耐熱性などの面で実用性に欠けると考えられる。また、特開平11−183722号にシンナモイル基、カルコン基またはその誘導体が例として示された光反応性置換基を有する液晶性材料の膜に光照射し、照射光の照射方向への射影方向が得られるフィルムのフィルム面内の進相軸方向または遅相軸方向と一致し、該進相軸または遅相軸を傾斜軸とした場合のレタデーション値の傾斜角依存性が法線方向に対して非対称である位相差フィルムが記載されている。しかしながら、このような、進相軸または遅相軸を傾斜軸とした場合のレタデーション値の傾斜角依存性が法線方向に対して非対称にするのみでは光学補償効果は十分でない。
これに対し、本発明者は、特願2002−114490号、特願2002−114491号に、光照射または光照射と加熱冷却により複屈折を誘起する材料に光照射と加熱冷却する操作を含む工程によって作製される光学補償効果の大きい位相差フィルムおよびその製造法を提案した。これらの発明では、シンナモイル基などを感光性基とする材料を用いており、十分な位相差を得るためには比較的大きな光照射エネルギー量が必要であった(このことは、シンナモイル基またはその誘導体を感光性基として用いている前述の特開平11−183722号でも同様と考えられる)。このため、製造においては大出力の光源を要するまたは十分な照射エネルギー量を照射するために照射時間が長くなるなど製造コストが高くなるなどの問題がある。
【参考文献】
特開平7−168020号
特開平7−207037号
特開平11−183722号
特願2002−114490号
特願2002−114491号
【0003】
【発明が解決しようとする課題】
本発明は、TN型液晶表示装置の視野角特性を改善する、即ち、着色現象、階調反転を低減する位相差フィルムを提供しようとするものである。
【0004】
【課題を解決する手段】
複屈折誘起材料に光照射と加熱冷却する操作を含む工程によって作製される位相差フィルムにおいて、複屈折誘起材料にナフチルアクリロイル構造またはその誘導体、ないしは、ビフェニルアクリロイルまたはその誘導体を有する化合物を用いることによって上記課題を解決することができる。
【0005】
【発明の実施の形態】
以下に、本発明の詳細を説明する。
本発明において、複屈折誘起材料に化学式1または化学式2で示されるナフチルアクリロイル構造またはその誘導体、ないしは、化学式3または化学式4または化学式5で示されるビフェニルアクリロイルまたはその誘導体を有する材料を用いる。該複屈折誘起材料は、メソゲン成分として多用されているビフェニル、ターフェニル、フェニルベンゾエート、アゾベンゼンなどの置換基とナフチルアクリロイル構造またはその誘導体、ないしは、ビフェニルアクリロイルまたはその誘導体である感光性基を結合した構造を含む側鎖を有し、炭化水素、アクリレート、メタクリレート、シロキサンなどの構造を主鎖に有する化学式6で表されるような重合体を挙げることができる。該重合体は同一の繰り返し単位からなる単一重合体または構造の異なる側鎖を有する単位の共重合体でもよく、該共重合体の構造の異なる単位として、シンナモイル基、カルコン基、シンナミリデン基、β−(2−フリル)アクリロイル基(または、それらの誘導体)などの感光性基とメソゲン成分として多用されているビフェニル、ターフェニル、フェニルベンゾエート、アゾベンゼンなどの置換基とを結合した構造を含む側鎖を有するものなども挙げられる。また、感光性基を含まない側鎖を有する単位を共重合させることも可能であり、炭化水素、アクリレートアルキルエステル、メタクリレートアルキルエステル、シロキサンなどを共重合させることによりヘイズ抑制などフィルムの光学特性の良化に役立つ場合がある。
【化1】

Figure 2004258426
【化2】
Figure 2004258426
【化3】
Figure 2004258426
【化4】
Figure 2004258426
【化5】
Figure 2004258426
【化6】
Figure 2004258426
但し、−R〜−R11=−H、ハロゲン基、−CN、ニトロ基、アミノ基、アルキル基またはメトキシ基などのアルキルオキシ基、またはそれらを弗化した基、x:y=100〜0:0〜100、n=1〜12、m=1〜12、j=1〜12、X,Y,=none、−COO、−OCO−、−N=N−、−C=C−or−C−、W,W=化学式1または化学式2で表される構造である。
【0006】
また、特願2000−400356号に記載したようなメソゲン成分として多用されているビフェニル、ターフェニル、フェニルベンゾエート、アゾベンゼンなどの置換基を有する結晶性または、液晶性を有する低分子化合物を混合することもできる。混合する低分子化合物は、単一の化合物のみとは限らず複数種の化合物を混合することも可能である。
更には、液晶性を損なわない程度に配向性を向上させるための配向助剤や耐熱性を向上させるための架橋剤を添加することや、液晶性を損なうことなく液晶性を示さない単量体を感光性の重合体に共重合してもかまわない。
【0007】
本発明の複屈折誘起材料では、比較的少ない照射エネルギー量で位相差を発現できる。これは、該複屈折誘起材料が、同様の構造を持つ桂皮酸基の場合と比較して、より長波長域まで吸収が延び、感光性が向上しているためである。
図3に、W=化学式1、x:y=100:0、n=6、m=2、X=none、−R〜−R=−Hの本発明の材料と、同様の構造でW=桂皮酸基の材料での分光吸収スペクトルを示す。後者の光吸収末端が330nm付近なのに対し、本発明の材料は、380nm付近まで光吸収末端が延びていることが分かる。これら2つの材料を透明基板上に塗布し塗布面、基板裏面の両面から、高圧水銀ランプを光源として用い直線偏紫外光を照射した場合の片面からの照射エネルギー量と発現する位相差の相対強度の関係を図4に示す。これらの材料は、照射エネルギー量の増加とともに位相差が増加するが、ある程度の照射エネルギー量を照射すると照射後の加熱冷却工程での分子運動による配向が阻害され位相差が低下する。この位相差が最大になる照射エネルギー量を比較すると、同様の構造でW=桂皮酸基の材料では300mJ/cm程度必要であるのに対し、本発明の複屈折誘起材料では、60mJ/cm程度であり、比較的少ない照射エネルギー量で位相差フィルムを作製できることが分かる。
本発明の位相差フィルムの製造例としては、照射する光の偏光度や照射角度によって複屈折性を調整された光学的に1軸性の異方性を有するフィルム、光学的に2軸性の異方性を有するフィルム、それら屈折率楕円体がフィルム面に対して傾斜した配置にあるフィルム、本発明者が提案した特願平2002−114490号に記載した、図5に示すような、X軸とY軸の成す面をフィルム面内としZ軸を厚さ方向とした場合にX軸方向に主屈折率nx、Y軸方向に主屈折率ny、Z軸方向に主屈折率nzを有する第1の屈折率楕円体51(ここで第1の屈折率楕円体の主屈折率の関係は、nx>ny≧nzである)と、第1の屈折率楕円体を、Y軸を回転軸として角度θ1°回転させ、更にZ軸を回転軸として角度θ2°回転させた方向に主屈折率nx´、ny´、nz´を有する第2の屈折率楕円体52(ここで第2の屈折率楕円体の主屈折率の関係は、nx´>ny´≧nz´である)とを併せてなる複屈折性を有する位相差フィルム、ないしは、図6に示すような、フィルム面に平行するX軸、Y軸およびフィルム面法線方向のZ軸からなる座標系に対して、X、Y、Zの各軸方向にそれぞれ主屈折率nx、ny、nz(nx≠ny≠nz)を有する2軸性の屈折率楕円体を仮定したときに、この屈折率楕円体を前記X軸を回転軸として任意の回転角γ1°回転させ、次にY軸を回転軸として任意の回転角γ2°回転させてなる2軸性の屈折率楕円体の主屈折率nx´(61a軸方向)、ny´(61b軸方向)、nz´(61c軸方向)で示される複屈折特性を有する位相差フィルムを挙げることができる。但し、これに限定されるものではない。
本発明の位相差フィルムの実施例において用いた感光性重合体の原料化合物および低分子化合物に関する合成方法を以下に示す。
【0008】
(単量体1)
4,4’−ビフェニルジオールと2−クロロエタノールを、アルカリ条件下で加熱することにより、4−ヒドロキシ−4’−ヒドロキシエトキシビフェニルを合成した。この生成物に、アルカリ条件下で1,6−ジブロモヘキサンを反応させ、4−(6−ブロモヘキシルオキシ)−4’−ヒドロキシエトキシビフェニルを合成した。次いで、リチウムメタクリレートを反応させ、4−ヒドロキシエトキシ−4’−(6−メタクリロイルヘキシルオキシ)ビフェニルを合成した。最後に、塩基性の条件下において、3−(1−ナフチル)アクリロイルクロライドを加え、化学式7に示される単量体1を合成した。
【化7】
Figure 2004258426
【0009】
(単量体2)
4,4’−ビフェニルジオールと2−クロロエタノールを、アルカリ条件下で加熱することにより、4−ヒドロキシ−4’−ヒドロキシエトキシビフェニルを合成した。この生成物に、アルカリ条件下で1,6−ジブロモヘキサンを反応させ、4−(6−ブロモヘキシルオキシ)−4’−ヒドロキシエトキシビフェニルを合成した。次いで、リチウムメタクリレートを反応させ、4−ヒドロキシエトキシ−4’−(6−メタクリロイルヘキシルオキシ)ビフェニルを合成した。最後に、塩基性の条件下において、3−(4−ビフェニル)アクリロイルクロライドを加え、化学式8に示される単量体1を合成した。
【化8】
Figure 2004258426
【0010】
(単量体3)
4,4’−ビフェニルジオールと2−クロロエタノールを、アルカリ条件下で加熱することにより、4−ヒドロキシ−4’−ヒドロキシエトキシビフェニルを合成した。この生成物に、アルカリ条件下で1,6−ジブロモヘキサンを反応させ、4−(6−ブロモヘキシルオキシ)−4’−ヒドロキシエトキシビフェニルを合成した。次いで、リチウムメタクリレートを反応させ、4−ヒドロキシエトキシ−4’−(6−メタクリロイルヘキシルオキシ)ビフェニルを合成した。最後に、塩基性の条件下において、桂皮酸クロライドを加え、化学式9に示される単量体3を合成した。
【化9】
Figure 2004258426
【0011】
(重合体1)
単量体1をテトラヒドロフラン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより感光性の重合体1を得た。この重合体1は、液晶性を呈した。
【0012】
(重合体2)
単量体2をテトラヒドロフラン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより感光性の重合体2を得た。この重合体2も液晶性を呈した。
【0013】
(重合体3)
単量体1と単量体3をモル比1:5でテトラヒドロフラン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより感光性の重合体3を得た。この重合体3も液晶性を呈した。
【0014】
(重合体4)
単量体3をテトラヒドロフラン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより感光性の重合体4を得た。この重合体4も液晶性を呈した。
【0015】
(低分子化合物1)
4,4’−ビフェニルジオールと6−ブロモヘキサノールを、アルカリ条件下で反応させ、4,4’− ビス(6−ブロモヘキシルオキシ)ビフェニルを合成した。次いで、塩基性の条件下において、メタクリル酸クロライドを加え反応させ、生成物を再結晶することにより化学式10に示される低分子化合物1を合成した。
【化10】
Figure 2004258426
【0016】
図1には、本発明の位相差フィルムの製造方法(装置)を、例を挙げて示す。紫外線ランプ(12)、集光鏡(13)、平面鏡(14、14´)、インテグレータレンズ(15)、コリメーターレンズ(16)などから構成されている通常用いられている光照射装置の光路中ないしは光照射装置と被照射サンプル(11)の間に、非偏光性の紫外線を所望の偏光度に変換する素子(17)を介して被照射サンプルに任意の方法で照射する。
実施例1から実施例3は、本発明の製造法により光軸の傾いた位相差フィルムまたは異方性を有するフィルムを作製した実施例である。
【0017】
(実施例1) 4.2重量%の重合体1と0.8重量%の低分子化合物1をシクロヘキサノンに溶解し、該溶液をケン化処理したTAC基材(支持体)上に塗布し、約1.5μmの厚さの塗布膜を作製した。該基材を水平面に対して45度傾け、塗布面が照射面となるように配置し、完全偏光成分と非偏光成分からなる偏光度(ここで、偏光度は、完全偏光成分/(完全偏光成分+非偏光成分)×100%である。)が63.5%の紫外線を、完全偏光成分の電界振動方向が照射面の傾斜軸に対して45°回転させて水平面に対し垂直方向から室温で60mJ/cm照射し、次に基材裏面より同様に紫外線を60mJ/cm照射した。続いて、100℃に加熱した後、室温まで冷却した。更に、配向を固定するために300mJ/cmの非偏光性の紫外光を照射した。このように作製した位相差フィルムのフィルム法線方向から見た場合のリタデーションは、633nmの測定波長に対して50nmであった。
【0018】
(実施例2) 4.2重量%の重合体1と0.8重量%の低分子化合物1をシクロヘキサノンに溶解し、該溶液をケン化処理したTAC基材(支持体)上に塗布し、約1.5μmの厚さの塗布膜を作製した。該基材を水平面に対して20度傾け、塗布面が照射面となるように配置し、完全偏光成分と非偏光成分からなる偏光度(ここで、偏光度は、完全偏光成分/(完全偏光成分+非偏光成分)×100%である。)が63.5%の紫外線を、完全偏光成分の電界振動方向が照射面の傾斜軸に対して45°回転させて水平面に対し垂直方向から室温で80mJ/cm照射し、次に基材裏面より同様に紫外線を80mJ/cm照射した。続いて、100℃に加熱した後、室温まで冷却した。更に、配向を固定するために300mJ/cmの非偏光性の紫外光を照射した。このように作製した位相差フィルムのフィルム法線方向から見た場合のリタデーションは、633nmの測定波長に対して40nmであった。
【0019】
(実施例3) 4.2重量%の重合体3と0.8重量%の低分子化合物1をシクロヘキサノンに溶解し、該溶液をケン化処理したTAC基材(支持体)上に塗布し、約1.5μmの厚さの塗布膜を作製した。該基材を水平面に対して45度傾け、塗布面が照射面となるように配置し、完全偏光成分と非偏光成分からなる偏光度が63.5%の紫外線を、完全偏光成分の電界振動方向が照射面の傾斜軸に対して45°回転させて水平面に対し垂直方向から室温で100mJ/cm照射し、次に基材裏面より同様に紫外線を100mJ/cm照射した。続いて、100℃に加熱した後、室温まで冷却した。更に、配向を固定するために300mJ/cmの非偏光性の紫外光を照射した。このように作製した位相差フィルムのフィルム法線方向から見た場合のリタデーションは、633nmの測定波長に対して90nmであった。
【0020】
実施例3で作製した位相差フィルムを、カシオ製液晶カラーテレビEV−510の偏光シートを剥がし、液晶セルの上下面に1枚ずつ貼り合わせ、次いで、偏光シート(日東電工製 HEG1425DU)を上下1枚ずつ貼り合わせた。各光学素子の軸配置は、図2のようにした。
図2において、41、41´は本発明の位相差フィルムであり、a、a´はその位相鎖フィルムを正面から見たときの遅相軸の方向を示し、42は液晶セルであり、b、b´がプレチルト方向を示し、43、43´は偏光シートであり、c、c´がそれぞれの光透過軸方向を示している。
このような構成で液晶カラーテレビを駆動したところ、左右方向で黄色味を呈することなく大幅に視野角特性が改善され、更に、上下方向でも視野角拡大効果が確認された。
【0021】
(比較例1)実施例1と同様に、4.2重量%の重合体4および0.8重量%の低分子化合物1をシクロヘキサノンに溶解し、ケン化処理したTAC基材(支持体)上に約1.5μmの厚さで塗布した。実施例1と同様の方法で、完全偏光成分と非偏光成分からなる偏光度が63.5%の紫外線を照射し、100℃に加熱した後、室温まで冷却し比較サンプルを作製したところ、十分な位相差を得るには塗布面側、基材裏面側の照射エネルギーはそれぞれ300mJ/cm必要であった。このように作製した位相差フィルムのフィルム法線方向から見た場合のリタデーションは、633nmの測定波長に対して60nmであった。
【0022】
実施例より、複屈折誘起材料にナフチルアクリロイル構造またはその誘導体、ないしは、ビフェニルアクリロイルまたはその誘導体を有する化合物を用いることによって、着色現象、階調反転を低減する位相差フィルムの製造工程における光照射エネルギー量を削減できることが立証された。
【0023】
【発明の効果】
従来技術の光照射により位相差を発現させる位相差フィルムおよびその製造方法では、十分な位相差を得るためには比較的大きな光照射エネルギー量が必要であり、その製造においては大出力の光源を要するまたは十分な照射エネルギー量を照射するために照射時間が長くなるなど製造コストが高くなるなどの問題があったが、本発明の複屈折誘起材料のナフチルアクリロイル構造またはその誘導体、ないしは、ビフェニルアクリロイルまたはその誘導体である化合物を用いることにより製造工程における光照射エネルギー量を削減でき、位相差フィルムの製造コストを低減できる。
【0024】
【図面の簡単な説明】
【図1】本発明の位相差フィルムの製造方法を示す概念図
【図2】視野角特性評価時の光学系
【図3】本発明の3−(1−ナフチル)アクリロイル基を有する複屈折誘起材料および同様の構造でW1=桂皮酸基の材料の分光吸収スペクトル
【図4】本発明の3−(1−ナフチル)アクリロイル基を有する複屈折誘起材料および同様の構造でW1=桂皮酸基の材料の照射エネルギー量と発現する位相差の関係
【図5】本発明の複屈折材料を用いて製造した位相差フィルムの例1の複屈折性を示す説明図
【図6】本発明の複屈折材料を用いて製造した位相差フィルムの例2の複屈折性を示す説明図
【符号の説明】
11・・・被照射サンプル
12・・・紫外線ランプ
13・・・集光鏡
14,14・・・平面鏡
15・・・インテグレータレンズ
16・・・コリメータレンズ
17・・・偏光度変換素子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a retardation film used for improving viewing angle characteristics of a liquid crystal display device.
[0002]
[Prior art]
The retardation film is a film having birefringence that transmits linearly polarized components that vibrate in directions of principal axes perpendicular to each other and gives a necessary retardation between the two components. Such a retardation film has been utilized in the field of liquid crystal display, and in particular, a retardation film in which a liquid crystalline material having a negative birefringence is inclined or bend-aligned is effective in expanding the viewing angle of a liquid crystal display device. It has been used as an optical compensation film. Although such a retardation film provides a significant viewing angle widening effect, the actual situation is that a sufficient optical compensation effect is not obtained depending on the viewing direction of the liquid crystal display device.
As another production method for producing the retardation film, there is a method of expressing the retardation by light irradiation. As this method, a retardation film having a negative uniaxial property in which the optical axis is tilted by irradiating a polymer sheet containing an azobenzene moiety to be photoisomerized in Japanese Patent Application Laid-Open Nos. 7-168020 and 7-207037 is proposed. Has been. However, since it utilizes photoisomerization of azobenzene, it is considered that the practicality is lacking in terms of heat resistance. Further, a film of a liquid crystalline material having a photoreactive substituent whose cinnamoyl group, chalcone group or derivative thereof is shown as an example in JP-A No. 11-183722 is irradiated with light, and the projection direction to the irradiation direction of the irradiation light is The inclination angle dependence of the retardation value with respect to the normal direction is the same as the fast axis direction or slow axis direction in the film plane of the obtained film, and the fast axis or slow axis is the tilt axis. An asymmetric retardation film is described. However, the optical compensation effect is not sufficient if the inclination angle dependency of the retardation value when the fast axis or the slow axis is the tilt axis is made asymmetric with respect to the normal direction.
On the other hand, the inventor of the present invention includes, in Japanese Patent Application No. 2002-114490 and Japanese Patent Application No. 2002-114491, a process including light irradiation and heating / cooling on a material that induces birefringence by light irradiation or light irradiation and heating and cooling. Proposed a retardation film having a large optical compensation effect and a method for producing the same. In these inventions, a material having a cinnamoyl group or the like as a photosensitive group is used, and in order to obtain a sufficient phase difference, a relatively large amount of light irradiation energy is necessary (this is the cinnamoyl group or its The same applies to the above-mentioned JP-A-11-183722 using a derivative as a photosensitive group). For this reason, in manufacture, there is a problem that a high output light source is required or a manufacturing cost becomes high, such as a long irradiation time for irradiating a sufficient amount of irradiation energy.
[References]
JP 7-168020 A JP 7-207037 JP 11-183722 JP 2002-114490 JP 2002-114491 JP
[Problems to be solved by the invention]
The present invention is intended to provide a retardation film that improves the viewing angle characteristics of a TN liquid crystal display device, that is, reduces coloring phenomenon and gradation inversion.
[0004]
[Means for solving the problems]
By using a compound having a naphthylacryloyl structure or a derivative thereof, or biphenylacryloyl or a derivative thereof as a birefringence inducing material in a retardation film produced by a process including an operation of irradiating light and heating and cooling the birefringence inducing material. The above problems can be solved.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below.
In the present invention, a material having a naphthylacryloyl structure represented by Chemical Formula 1 or Chemical Formula 2 or a derivative thereof, or biphenylacryloyl represented by Chemical Formula 4 or Chemical Formula 5 or a derivative thereof is used as the birefringence inducing material. The birefringence inducing material combines a substituent such as biphenyl, terphenyl, phenylbenzoate, and azobenzene, which are frequently used as a mesogenic component, with a naphthylacryloyl structure or a derivative thereof, or a photosensitive group that is a biphenylacryloyl or a derivative thereof. A polymer having a side chain including a structure and having a structure such as hydrocarbon, acrylate, methacrylate, siloxane or the like in the main chain can be given. The polymer may be a single polymer composed of the same repeating unit or a copolymer of units having side chains with different structures, and as units having different structures of the copolymer, cinnamoyl group, chalcone group, cinnamylidene group, β A side chain comprising a structure in which a photosensitive group such as-(2-furyl) acryloyl group (or a derivative thereof) and a substituent such as biphenyl, terphenyl, phenylbenzoate and azobenzene, which are frequently used as mesogenic components, are combined. The thing which has is mentioned. It is also possible to copolymerize a unit having a side chain that does not contain a photosensitive group. By copolymerizing hydrocarbon, acrylate alkyl ester, methacrylate alkyl ester, siloxane, etc., the optical properties of the film such as haze suppression can be improved. May help to improve.
[Chemical 1]
Figure 2004258426
[Chemical 2]
Figure 2004258426
[Chemical 3]
Figure 2004258426
[Formula 4]
Figure 2004258426
[Chemical formula 5]
Figure 2004258426
[Chemical 6]
Figure 2004258426
However, -R < 1 >-R < 11 > =-H, a halogen group, -CN, a nitro group, an amino group, an alkyl group such as an alkyl group or a methoxy group, or a group obtained by fluorinating them, x: y = 100- 0: 0-100, n = 1-12, m = 1-12, j = 1-12, X, Y, = none, -COO, -OCO-, -N = N-, -C = C-or —C 6 H 4 —, W 1 , W 2 = a structure represented by Chemical Formula 1 or Chemical Formula 2.
[0006]
In addition, a low molecular weight compound having crystallinity or liquid crystallinity having a substituent such as biphenyl, terphenyl, phenylbenzoate, or azobenzene, which is frequently used as a mesogen component as described in Japanese Patent Application No. 2000-400366, is mixed. You can also. The low molecular compound to be mixed is not limited to a single compound, and a plurality of types of compounds can be mixed.
Furthermore, a monomer which does not exhibit liquid crystallinity without adding an alignment aid for improving alignment to the extent that liquid crystallinity is not impaired or a crosslinking agent for improving heat resistance, or without impairing liquid crystallinity. May be copolymerized with a photosensitive polymer.
[0007]
In the birefringence inducing material of the present invention, a phase difference can be expressed with a relatively small amount of irradiation energy. This is because the absorption of the birefringence inducing material is extended to a longer wavelength region and the photosensitivity is improved as compared with the case of a cinnamic acid group having a similar structure.
FIG. 3 shows a structure similar to that of the material of the present invention in which W 1 = Chemical Formula 1, x: y = 100: 0, n = 6, m = 2, X = none, −R 1 to −R 9 = −H. And shows a spectral absorption spectrum of a material of W 1 = cinnamic acid group. It can be seen that the light absorption terminal of the material of the present invention extends to around 380 nm, whereas the latter light absorption terminal is around 330 nm. When these two materials are coated on a transparent substrate and irradiated with linear polarized ultraviolet light using a high-pressure mercury lamp as the light source from both the coated surface and the back surface of the substrate, the relative intensity of the irradiation energy amount from one surface and the expressed phase difference The relationship is shown in FIG. In these materials, the phase difference increases as the irradiation energy amount increases. However, when a certain amount of irradiation energy amount is irradiated, the orientation due to molecular motion in the heating / cooling process after irradiation is hindered and the phase difference is lowered. Comparing the amount of irradiation energy that maximizes this phase difference, W 1 = cinnamate-based material having the same structure requires about 300 mJ / cm 2 , whereas the birefringence inducing material of the present invention requires 60 mJ / cm 2. It is about cm 2 , and it can be seen that a retardation film can be produced with a relatively small amount of irradiation energy.
Examples of the production of the retardation film of the present invention include a film having optically uniaxial anisotropy whose birefringence is adjusted by the degree of polarization and the irradiation angle of the irradiated light, and optically biaxially. A film having anisotropy, a film in which the refractive index ellipsoids are inclined with respect to the film surface, and X shown in FIG. 5 described in Japanese Patent Application No. 2002-114490 proposed by the present inventor, When the plane formed by the axis and the Y axis is in the film plane and the Z axis is the thickness direction, the X axis direction has a main refractive index nx, the Y axis direction has a main refractive index ny, and the Z axis direction has a main refractive index nz. The first refractive index ellipsoid 51 (where the relationship of the main refractive index of the first refractive index ellipsoid is nx> ny ≧ nz), the first refractive index ellipsoid, and the Y axis as the rotation axis Is rotated by an angle θ1 °, and the main bend in the direction rotated by an angle θ2 ° with the Z axis as the rotation axis. A second refractive index ellipsoid 52 having the indices nx ′, ny ′, and nz ′ (where the relationship of the main refractive index of the second refractive index ellipsoid is nx ′> ny ′ ≧ nz ′). A phase difference film having birefringence, or a coordinate system consisting of an X axis parallel to the film surface, a Y axis, and a Z axis in the normal direction of the film surface, as shown in FIG. Assuming a biaxial refractive index ellipsoid having principal refractive indexes nx, ny, nz (nx ≠ ny ≠ nz) in the respective Y and Z axis directions, this refractive index ellipsoid is moved along the X axis. A main refractive index nx ′ (61a axis direction) of a biaxial refractive index ellipsoid obtained by rotating an arbitrary rotation angle γ1 ° as a rotation axis and then rotating an arbitrary rotation angle γ2 ° using the Y axis as a rotation axis, A retardation film having birefringence characteristics indicated by ny ′ (61b axis direction) and nz ′ (61c axis direction) It can gel. However, it is not limited to this.
The synthesis method regarding the raw material compound and low molecular weight compound of the photosensitive polymer used in the examples of the retardation film of the present invention is shown below.
[0008]
(Monomer 1)
4-Hydroxy-4'-hydroxyethoxybiphenyl was synthesized by heating 4,4'-biphenyldiol and 2-chloroethanol under alkaline conditions. This product was reacted with 1,6-dibromohexane under alkaline conditions to synthesize 4- (6-bromohexyloxy) -4′-hydroxyethoxybiphenyl. Subsequently, lithium methacrylate was reacted to synthesize 4-hydroxyethoxy-4 ′-(6-methacryloylhexyloxy) biphenyl. Finally, 3- (1-naphthyl) acryloyl chloride was added under basic conditions to synthesize monomer 1 represented by Chemical Formula 7.
[Chemical 7]
Figure 2004258426
[0009]
(Monomer 2)
4-Hydroxy-4'-hydroxyethoxybiphenyl was synthesized by heating 4,4'-biphenyldiol and 2-chloroethanol under alkaline conditions. This product was reacted with 1,6-dibromohexane under alkaline conditions to synthesize 4- (6-bromohexyloxy) -4′-hydroxyethoxybiphenyl. Subsequently, lithium methacrylate was reacted to synthesize 4-hydroxyethoxy-4 ′-(6-methacryloylhexyloxy) biphenyl. Finally, 3- (4-biphenyl) acryloyl chloride was added under basic conditions to synthesize monomer 1 represented by Chemical Formula 8.
[Chemical 8]
Figure 2004258426
[0010]
(Monomer 3)
4-Hydroxy-4'-hydroxyethoxybiphenyl was synthesized by heating 4,4'-biphenyldiol and 2-chloroethanol under alkaline conditions. This product was reacted with 1,6-dibromohexane under alkaline conditions to synthesize 4- (6-bromohexyloxy) -4′-hydroxyethoxybiphenyl. Subsequently, lithium methacrylate was reacted to synthesize 4-hydroxyethoxy-4 ′-(6-methacryloylhexyloxy) biphenyl. Finally, cinnamic acid chloride was added under basic conditions to synthesize monomer 3 represented by Chemical Formula 9.
[Chemical 9]
Figure 2004258426
[0011]
(Polymer 1)
Monomer 1 was dissolved in tetrahydrofuran, and AIBN (azobisisobutyronitrile) was added as a reaction initiator for polymerization to obtain photosensitive polymer 1. This polymer 1 exhibited liquid crystallinity.
[0012]
(Polymer 2)
The monomer 2 was dissolved in tetrahydrofuran, and AIBN (azobisisobutyronitrile) was added as a reaction initiator for polymerization to obtain a photosensitive polymer 2. This polymer 2 also exhibited liquid crystallinity.
[0013]
(Polymer 3)
Monomer 1 and monomer 3 are dissolved in tetrahydrofuran at a molar ratio of 1: 5, and AIBN (azobisisobutyronitrile) is added as a reaction initiator and polymerized to form photosensitive polymer 3. Obtained. This polymer 3 also exhibited liquid crystallinity.
[0014]
(Polymer 4)
The monomer 3 was dissolved in tetrahydrofuran, and AIBN (azobisisobutyronitrile) was added as a reaction initiator for polymerization to obtain a photosensitive polymer 4. This polymer 4 also exhibited liquid crystallinity.
[0015]
(Low molecular compound 1)
4,4′-biphenyldiol and 6-bromohexanol were reacted under alkaline conditions to synthesize 4,4′-bis (6-bromohexyloxy) biphenyl. Next, methacrylic acid chloride was added and reacted under basic conditions, and the product was recrystallized to synthesize a low molecular compound 1 represented by Chemical Formula 10.
[Chemical Formula 10]
Figure 2004258426
[0016]
In FIG. 1, the manufacturing method (apparatus) of the retardation film of this invention is shown as an example. In the optical path of a commonly used light irradiation device composed of an ultraviolet lamp (12), a condenser mirror (13), a plane mirror (14, 14 '), an integrator lens (15), a collimator lens (16), etc. Alternatively, the irradiated sample is irradiated by an arbitrary method between the light irradiation device and the irradiated sample (11) via an element (17) that converts non-polarizing ultraviolet light into a desired degree of polarization.
Examples 1 to 3 are examples in which a retardation film having an inclined optical axis or a film having anisotropy was produced by the production method of the present invention.
[0017]
Example 1 4.2% by weight of polymer 1 and 0.8% by weight of low molecular weight compound 1 were dissolved in cyclohexanone, and the solution was applied onto a saponified TAC substrate (support). A coating film having a thickness of about 1.5 μm was prepared. The substrate is tilted 45 degrees with respect to the horizontal plane, and the coating surface is arranged to be the irradiation surface, and the degree of polarization composed of a completely polarized component and a non-polarized component (where the degree of polarization is a completely polarized component / (completely polarized component) Component + non-polarized component) × 100%)) of 63.5% ultraviolet light, the electric field oscillation direction of the completely polarized component is rotated 45 ° with respect to the tilt axis of the irradiated surface, and the room temperature is perpendicular to the horizontal plane. in 60 mJ / cm 2 was irradiated, then similarly ultraviolet than the substrate back surface 60 mJ / cm 2 was irradiated. Then, after heating to 100 degreeC, it cooled to room temperature. Furthermore, in order to fix the orientation, 300 mJ / cm 2 of non-polarizing ultraviolet light was irradiated. The retardation of the retardation film produced in this way when viewed from the film normal direction was 50 nm with respect to the measurement wavelength of 633 nm.
[0018]
(Example 2) 4.2% by weight of polymer 1 and 0.8% by weight of low molecular weight compound 1 were dissolved in cyclohexanone, and the solution was applied onto a saponified TAC substrate (support). A coating film having a thickness of about 1.5 μm was prepared. The substrate is tilted by 20 degrees with respect to a horizontal plane, and the coating surface is arranged to be an irradiation surface, and the degree of polarization composed of a completely polarized component and a non-polarized component (where the degree of polarization is a completely polarized component / (completely polarized component) Component + non-polarized component) × 100%)) of 63.5% ultraviolet light, the electric field oscillation direction of the completely polarized component is rotated 45 ° with respect to the tilt axis of the irradiated surface, and the room temperature is perpendicular to the horizontal plane. in 80 mJ / cm 2 was irradiated, then similarly ultraviolet than the substrate back surface 80 mJ / cm 2 was irradiated. Then, after heating to 100 degreeC, it cooled to room temperature. Furthermore, in order to fix the orientation, 300 mJ / cm 2 of non-polarizing ultraviolet light was irradiated. The retardation of the retardation film produced in this way when viewed from the film normal direction was 40 nm with respect to the measurement wavelength of 633 nm.
[0019]
(Example 3) 4.2% by weight of polymer 3 and 0.8% by weight of low molecular weight compound 1 were dissolved in cyclohexanone, and the solution was applied onto a saponified TAC substrate (support). A coating film having a thickness of about 1.5 μm was prepared. The substrate is tilted 45 degrees with respect to the horizontal plane, and the coating surface is arranged to be the irradiation surface. Ultraviolet light having a polarization degree of 63.5% consisting of a completely polarized component and a non-polarized component is applied to the electric field vibration of the completely polarized component. direction at room temperature 100 mJ / cm 2 was irradiated from a direction perpendicular to the 45 ° rotation is allowed by the horizontal plane to the inclined axis of the irradiation surface, then similarly ultraviolet than the substrate backside was irradiated 100 mJ / cm 2. Then, after heating to 100 degreeC, it cooled to room temperature. Furthermore, in order to fix the orientation, 300 mJ / cm 2 of non-polarizing ultraviolet light was irradiated. The retardation of the retardation film produced in this manner when viewed from the film normal direction was 90 nm with respect to the measurement wavelength of 633 nm.
[0020]
The retardation film produced in Example 3 is peeled off the polarizing sheet of the Casio liquid crystal color television EV-510, and bonded to the upper and lower surfaces of the liquid crystal cell one by one, and then the polarizing sheet (HEG1425DU manufactured by Nitto Denko) Laminated one by one. The axial arrangement of each optical element was as shown in FIG.
In FIG. 2, 41 and 41 'are the retardation films of the present invention, a and a' indicate the direction of the slow axis when the phase chain film is viewed from the front, 42 is a liquid crystal cell, b B ′ indicate the pretilt direction, 43 and 43 ′ indicate polarizing sheets, and c and c ′ indicate the respective light transmission axis directions.
When the liquid crystal color television was driven with such a configuration, the viewing angle characteristics were greatly improved without yellowing in the left-right direction, and the viewing angle expansion effect was confirmed also in the up-down direction.
[0021]
(Comparative Example 1) On the TAC substrate (support) in which 4.2% by weight of the polymer 4 and 0.8% by weight of the low molecular weight compound 1 were dissolved in cyclohexanone and saponified as in Example 1. To a thickness of about 1.5 μm. In the same manner as in Example 1, after irradiating ultraviolet rays having a degree of polarization of 63.5% consisting of a completely polarized component and a non-polarized component, heating to 100 ° C., and then cooling to room temperature, a comparative sample was produced. In order to obtain such a phase difference, the irradiation energy on the coated surface side and the back surface side of the substrate was 300 mJ / cm 2 respectively. The retardation of the retardation film produced in this way when viewed from the film normal direction was 60 nm with respect to a measurement wavelength of 633 nm.
[0022]
From the examples, the light irradiation energy in the production process of a retardation film that reduces coloring phenomenon and gradation inversion by using a compound having a naphthylacryloyl structure or a derivative thereof or biphenylacryloyl or a derivative thereof as a birefringence inducing material. It was proved that the amount could be reduced.
[0023]
【The invention's effect】
In the retardation film and its manufacturing method that develops a phase difference by light irradiation in the prior art, a relatively large amount of light irradiation energy is necessary to obtain a sufficient phase difference, and a large output light source is used in the manufacture. There was a problem that the manufacturing cost was increased because the irradiation time was long to irradiate a necessary or sufficient amount of irradiation energy, but the naphthylacryloyl structure of the birefringence inducing material of the present invention or a derivative thereof, or biphenylacryloyl Alternatively, by using a compound that is a derivative thereof, the amount of light irradiation energy in the production process can be reduced, and the production cost of the retardation film can be reduced.
[0024]
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a method for producing a retardation film of the present invention. FIG. 2 is an optical system for viewing angle characteristics evaluation. FIG. 3 is a birefringence-inducing compound having a 3- (1-naphthyl) acryloyl group of the present invention. Spectral absorption spectrum of W1 = cinnamic acid group material and similar structure FIG. 4 is a birefringence inducing material having a 3- (1-naphthyl) acryloyl group of the present invention and W1 = cinnamic acid group of similar structure. FIG. 5 is an explanatory diagram showing the birefringence of Example 1 of a retardation film produced using the birefringent material of the present invention. FIG. 6 is a diagram showing the birefringence of the present invention. Explanatory drawing which shows the birefringence of Example 2 of the retardation film manufactured using the material
DESCRIPTION OF SYMBOLS 11 ... Irradiated sample 12 ... Ultraviolet lamp 13 ... Condensing mirrors 14, 14 ... Plane mirror 15 ... Integrator lens 16 ... Collimator lens 17 ... Polarization degree conversion element

Claims (4)

光照射と加熱による分子運動とそれに基づく分子配向により複屈折を誘起する材料であって、ナフチルアクリロイルまたはその誘導体、もしくはビフェニルアクリロイルまたはその誘導体を含有することを特徴とする複屈折誘起材料。A birefringence-inducing material which induces birefringence by molecular movement caused by light irradiation and heating and molecular orientation based thereon, and contains naphthylacryloyl or a derivative thereof, or biphenylacryloyl or a derivative thereof. ナフチルアクリロイルまたはその誘導体、もしくはビフェニルアクリロイルまたはその誘導体が屈曲部を介してまたは介さずビフェニル、ターフェニル、フェニルベンゾエート、アゾベンゼンなどで表されるメソゲン成分として多用されている剛直な構造と結合した側鎖を有し、該側鎖が屈曲成分を介し主鎖に結合し、該主鎖が炭化水素、アクリレート、メタクリレート、マレイミド、N−フェニルマレイミド、シロキサンなどである感光性を有する側鎖型の単独重合体または共重合体を含有することを特徴とする複屈折誘起材料。Naphthylacryloyl or a derivative thereof, or a side chain bonded to a rigid structure in which biphenylacryloyl or a derivative thereof is frequently used as a mesogenic component represented by biphenyl, terphenyl, phenylbenzoate, azobenzene or the like, with or without a bend The side chain is bonded to the main chain through a bending component, and the main chain is hydrocarbon, acrylate, methacrylate, maleimide, N-phenylmaleimide, siloxane, etc. A birefringence-inducing material comprising a polymer or a copolymer. 請求項1ないし請求項2に記載の複屈折誘起材料で形成したフィルム内に3次元的な分子配向を誘起させて形成したことを特徴とする位相差フィルム。A retardation film formed by inducing a three-dimensional molecular orientation in a film formed of the birefringence inducing material according to claim 1. 請求項3に記載の位相差フィルムであって、X軸とY軸の成す面をフィルム面内としZ軸を厚さ方向とした場合に、X軸方向に主屈折率nx、Y軸方向に主屈折率ny、Z軸方向に主屈折率nzを有する第1の屈折率楕円体(ここで第1の屈折率楕円体の主屈折率の関係は、nx>ny≧nzである)と、第1の屈折率楕円体を、Y軸を回転軸として角度θ1°回転させ、更にZ軸を回転軸として角度θ2°回転させた方向に主屈折率nx´、ny´、nz´を有する第2の屈折率楕円体(ここで第2の屈折率楕円体の主屈折率の関係は、nx´>ny´≧nz´である)とを併せてなる複屈折性、ないしは、フィルム面に平行するX軸、Y軸およびフィルム面法線方向のZ軸からなる座標系に対して、X、Y、Zの各軸方向にそれぞれ主屈折率nx、ny、nz(nx≠ny≠nz)を有する2軸性の屈折率楕円体を仮定したときに、 この屈折率楕円体を、前記X軸を回転軸として任意の回転角γ1°回転させ、次にY軸を回転軸として任意の回転角γ2°回転させてなる2軸性の屈折率楕円体の主屈折率nx´、ny´、nz´で示される複屈折特性を有することを特徴とする位相差フィルム。4. The retardation film according to claim 3, wherein when the surface formed by the X axis and the Y axis is in the film plane and the Z axis is the thickness direction, the main refractive index nx is in the X axis direction and the Y axis direction is in the Y axis direction. A first refractive index ellipsoid having a main refractive index ny and a main refractive index nz in the Z-axis direction (where the relationship of the main refractive index of the first refractive index ellipsoid is nx> ny ≧ nz); The first refractive index ellipsoid has a main refractive index nx ′, ny ′, nz ′ in a direction rotated by an angle θ1 ° with the Y axis as the rotation axis and further rotated by an angle θ2 ° with the Z axis as the rotation axis. 2 refractive index ellipsoid (here, the relationship of the main refractive index of the second refractive index ellipsoid is nx ′> ny ′ ≧ nz ′) or parallel to the film surface. The main refractive index n in each of the X, Y and Z axis directions with respect to the coordinate system consisting of the X axis, the Y axis and the Z axis in the normal direction of the film surface. , Ny, nz (nx ≠ ny ≠ nz) assuming a biaxial refractive index ellipsoid, the refractive index ellipsoid is rotated at an arbitrary rotation angle γ1 ° about the X axis as a rotation axis, Next, the biaxial refractive index ellipsoid obtained by rotating the Y axis as a rotation axis by an arbitrary rotation angle γ2 ° has a birefringence characteristic indicated by main refractive indexes nx ′, ny ′, nz ′. Retardation film.
JP2003050225A 2003-02-27 2003-02-27 Birefringence inducing material and retardation film Pending JP2004258426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003050225A JP2004258426A (en) 2003-02-27 2003-02-27 Birefringence inducing material and retardation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003050225A JP2004258426A (en) 2003-02-27 2003-02-27 Birefringence inducing material and retardation film

Publications (1)

Publication Number Publication Date
JP2004258426A true JP2004258426A (en) 2004-09-16

Family

ID=33115697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003050225A Pending JP2004258426A (en) 2003-02-27 2003-02-27 Birefringence inducing material and retardation film

Country Status (1)

Country Link
JP (1) JP2004258426A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012168514A (en) * 2011-01-27 2012-09-06 Sumitomo Chemical Co Ltd Production method of optical anisotropic layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012168514A (en) * 2011-01-27 2012-09-06 Sumitomo Chemical Co Ltd Production method of optical anisotropic layer

Similar Documents

Publication Publication Date Title
US6743487B2 (en) Retardation film and process for producing the same
TWI546597B (en) Optical film laminate, method for producing the same, and liquid crystal display panel using the same
JP5531419B2 (en) Compound and optical film containing the compound
JP2008164925A (en) Retardation film and method for producing the same
JP2007297606A (en) Ultraviolet-curable composition, retardation film and method for producing retardation film
JP2008050440A (en) Polymerizable monomer, macromolecular compound, optically anisotropic film, optical compensation sheet, polarizing plate, liquid crystal display, and method for producing optical compensation sheet
JP6636253B2 (en) Retardation film, method for producing the same, and optical member having the retardation film
JP2008276165A (en) Photosensitive material for forming optically functional layer, composition for forming optically functional layer, optically functional film, and production method of optically functional film
KR101888220B1 (en) Method for producing phase difference film
JP2000212310A (en) Oriented film, its production and liquid crystal display device
JP4636353B2 (en) Retardation film
JP2008089894A (en) Method for manufacturing retardation filmmethod for manufacturing retardation film
JP2004170595A (en) Manufacture method of retardation film and the retardation film
JP2003167124A (en) Method for manufacturing birefringent holographic optical element and birefringent holographic optical element
JP2002202406A (en) Retardation film and method for manufacturing the same
JP2004258426A (en) Birefringence inducing material and retardation film
JP2004258427A (en) Birefringence inducing material, retardation film, method for manufacturing retardation film, and photosensitive polymer
WO2006064950A1 (en) Preparation of an optical compensation sheet using photosensitive compounds
JP2003014928A (en) Method for manufacturing optically anisotropic element and optically anisotropic element
JP2002202407A (en) Retardation film and method for manufacturing the same
JP4836335B2 (en) Phenylacetylene polymer, optical anisotropic body, and optical or liquid crystal device
JP2007063155A (en) Liquid-crystalline polymerizable low molecular compound, birefringent film using the compound and birefringent cell, and their production methods
JP2003014930A (en) Method for manufacturing optically anisotropic element, and optically anisotropic element
JP2002082224A (en) Birefringent film and method for manufacturing the same
JP2003014929A (en) Method for manufacturing optically anisotropic element and optically anisotropic element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324