JP2004257789A - ガス物性値の測定方法 - Google Patents

ガス物性値の測定方法 Download PDF

Info

Publication number
JP2004257789A
JP2004257789A JP2003047111A JP2003047111A JP2004257789A JP 2004257789 A JP2004257789 A JP 2004257789A JP 2003047111 A JP2003047111 A JP 2003047111A JP 2003047111 A JP2003047111 A JP 2003047111A JP 2004257789 A JP2004257789 A JP 2004257789A
Authority
JP
Japan
Prior art keywords
sensor output
gas
sensor
voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003047111A
Other languages
English (en)
Inventor
Toshihiro Harada
鋭博 原田
Kazuhiro Inuzuka
和宏 犬塚
Yoshito Konno
誉人 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2003047111A priority Critical patent/JP2004257789A/ja
Publication of JP2004257789A publication Critical patent/JP2004257789A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

【課題】温度エージングやマイクロフローセンサのヒータ抵抗の経時変化の影響を効果的に除去し、常時正確に被測定ガスの物性値を測定することを可能にした測定方法を提供する。
【解決手段】マイクロフローセンサに含まれるヒータに対して第1電圧が印加され(ステップS2)、次に、第1電圧が印加されたときのセンサ出力が、第1センサ出力として取得され(ステップS3)、次に、第1電圧の印加終了から所定時間後に、ヒータに対して第1電圧とは異なる第2電圧が印加され(ステップS6、ステップS7)、次に、第2電圧が印加されたときのセンサ出力が、第2センサ出力として取得され(ステップS8)、次に、第1センサ出力と第2センサ出力との差分である差分センサ出力が求められる(ステップS11)。そして、この差分センサ出力に基づいて被測定ガスの物性値が測定される。
【選択図】 図5

Description

【0001】
【発明の属する技術分野】
本発明は、ガス物性値の測定方法に関し、特に、マイクロフローセンサを用いたガス物性値の測定方法に関する。
【0002】
【従来の技術】
近年、都市ガス提供事業としては、対電力提供事業とのコスト競争にともない、天然ガスのストレート供給及び託送の時代を迎えると、供給されるガスの成分及び熱量にかなりの変動がでることが予想される。そうなると、工業炉やバーナーの燃焼にも影響が出てきて、性能低下や製品不良が発生することも予想される。これを防止するための一方策としては、供給されるガスとガス器具との適応性を所定の指標を用いて判断する必要があるが、そのためには、熱伝導率やガス密度等のように、それぞれのガスに特有の物性値を正確に測定する必要がでてくる。
【0003】
そこで、このような物性値をマイクロフローセンサを利用して測定するというアイディアが、本出願人らにより、特願2002−292049及び特願2002−292050にて出願されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来例のようにマイクロフローセンサを利用してガス物性値を測定する場合、装置小型化の観点からは大きな長所があるもの、センサ出力が温度エージングの影響を受けるという問題があった。すなわち、上記従来例によると、通常の使用温度と比べて高温に長時間さらされた後、通常温度にもどしても、所定のセンサ出力が得られないことがあった。更に、マイクロフローセンサに含まれるマイクロヒータのヒータ抵抗の経時変化に起因するセンサ出力変動の問題もあった。このような温度エージングやヒータ抵抗の経時変化に起因するセンサ出力のドリフトのため、マイクロフローセンサを利用して、常時正確に被測定ガスの物性値を測定することは困難であると考えられていた。
【0005】
よって本発明は、上述した現状に鑑み、マイクロフローセンサを利用したガス物性値の測定方法において、温度エージングやヒータ抵抗の経時変化の影響を効果的に除去し、常時正確に被測定ガスの物性値を測定することを可能にした測定方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
上記課題を解決するためになされた請求項1記載のガス物性値の測定方法は、被測定ガスが通過するガス流路に取り付けられたマイクロフローセンサに含まれる複数のサーモパイルのうちの少なくともいずれかひとつから得られるセンサ出力を利用して、前記被測定ガスの物性値を測定する方法であって、前記マイクロフローセンサに含まれるヒータに対して第1電圧を印加する第1電圧印加工程と、前記第1電圧が印加されたときの前記センサ出力を、第1センサ出力として取得する第1センサ出力取得工程と、前記第1電圧の印加終了から所定時間後に、前記ヒータに対して前記第1電圧とは異なる第2電圧を印加する第2電圧印加工程と、前記第2電圧が印加されたときの前記センサ出力を、第2センサ出力として取得する第2センサ出力取得工程と、前記第1センサ出力と前記第2センサ出力との差分である差分センサ出力を求める差分センサ出力計算工程と、を含み、この差分センサ出力に基づいて前記被測定ガスの物性値を測定する、ことを特徴とする。
【0007】
また、上記課題を解決するためになされた請求項2記載のガス物性値の測定方法は、請求項1記載のガス物性値の測定方法において、所定の調整ガスを用いて、前記物性値の影響をできるがぎり除去するように、前記第1電圧と前記第2電圧との差を調整する、ことを特徴とする。
【0008】
また、上記課題を解決するためになされた請求項3記載のガス物性値の測定方法は、被測定ガスが通過するガス流路に取り付けられたマイクロフローセンサに含まれる複数のサーモパイルのうちの少なくともいずれかひとつから得られるセンサ出力を利用して、前記被測定ガスの物性値を測定する方法であって、前記マイクロフローセンサに含まれるヒータの非駆動時の前記センサ出力を、第1センサ出力として取得する第1センサ出力取得工程と、前記ヒータに対して所定電圧を印加したときの前記センサ出力を、第2センサ出力として取得する第2センサ出力取得工程と、前記被測定ガスの温度を取得する温度取得工程と、この温度における前記第1センサ出力と前記第2センサ出力との差分である差分センサ出力を求める差分センサ出力計算工程と、予め定められた温度補正式を用いて、前記差分センサ出力を温度補正した補正センサ出力を求める補正センサ出力計算工程と、前記補正センサ出力を用いて、前記被測定ガスの所定の規格値を求める規格値計算工程と、前記規格値と熱伝導率との関係を確定する確定工程と、を含み、この関係に基づいて前記被測定ガスの物性値を測定する、ことを特徴とする。
【0009】
また、上記課題を解決するためになされた請求項4記載のガス物性値の測定方法は、請求項1〜3のいずれか一項に記載のガス物性値の測定方法において、前記センサ出力は、複数のサーモパイルからそれぞれ得られる出力値を組み合わせて取得される、ことを特徴とする。
【0010】
また、上記課題を解決するためになされた請求項5記載のガス物性値の測定方法は、請求項1〜4のいずれか一項に記載のガス物性値の測定方法において、前記物性値は、前記被測定ガスの熱伝導率との相関関係に基づいて計算される密度である、ことを特徴とする。
【0011】
請求項1及び5記載の発明によれば、被測定ガスが通過するガス流路に取り付けられたマイクロフローセンサに含まれる複数のサーモパイルのうちの少なくともいずれかひとつから得られるセンサ出力を利用して、被測定ガスの物性値が測定される。詳しくは、マイクロフローセンサに含まれるヒータに対して第1電圧が印加され、次に、第1電圧が印加されたときのセンサ出力が、第1センサ出力として取得され、次に、第1電圧の印加終了から所定時間後に、ヒータに対して第1電圧とは異なる第2電圧が印加され、次に、第2電圧が印加されたときのセンサ出力が、第2センサ出力として取得され、次に、第1センサ出力と第2センサ出力との差分である差分センサ出力が求められる。そして、この差分センサ出力に基づいて被測定ガスの物性値、例えば、密度が測定される。このように、第1センサ出力と第2センサ出力との差分を利用することにより、温度エージングやヒータ抵抗の経時変化に起因するセンサ出力のドリフト成分が効果的に除去される。
【0012】
また、請求項2記載の発明によれば、所定の調整ガスを用いて、物性値の影響をできるがぎり除去するように、第1電圧と前記第2電圧との差を調整するようにしたので、温度エージングやヒータ抵抗の経時変化に起因するセンサ出力のドリフト成分がより効果的に除去される。
【0013】
また、請求項3及び5記載の発明によれば、被測定ガスが通過するガス流路に取り付けられたマイクロフローセンサに含まれる複数のサーモパイルのうちの少なくともいずれかひとつから得られるセンサ出力を利用して、被測定ガスの物性値が測定される。詳しくは、マイクロフローセンサに含まれるヒータの非駆動時のセンサ出力が、第1センサ出力として取得され、次に、ヒータに対して所定電圧を印加したときのセンサ出力が、第2センサ出力として取得され、次に、被測定ガスの温度が取得され、次に、この温度における第1センサ出力と第2センサ出力との差分である差分センサ出力が求められ、次に、予め定められた温度補正式を用いて、差分センサ出力を温度補正した補正センサ出力が求められ、次に、補正センサ出力を用いて、被測定ガスの所定の規格値が求められ、そして、この規格値と熱伝導率との相関関係に基づいて、被測定ガスの物性値、例えば、密度が測定される。このように、非稼働時及び稼働時のセンサ出力の差分を利用し、かつ、温度補正して規格化することにより、温度エージングやヒータ抵抗の経時変化に起因するセンサ出力のドリフト成分が効果的に除去される。
【0014】
また、請求項4記載の発明によれば、センサ出力は複数のサーモパイルからそれぞれ得られる出力値を組み合わせて取得されるので、より正確な被測定ガスの物性値の測定が可能となる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明において、ガス物性値の検出素子として使用されるマイクロフローセンサ1(1′)を例示する平面図である。このマイクロフローセンサ1は、Si基板2、ダイヤフラム3、ダイヤフラム3上に形成された白金等からなるマイクロヒータ4、マイクロヒータ4の下流側でダイヤフラム3上に形成された下流側サーモパイル5、マイクロヒータ4に図示しない電源から駆動電流を供給する電源端子6A、6B、マイクロヒータ4の上流側でダイヤフラム3上に形成された上流側サーモパイル8、下流側サーモパイル5から出力される第1温度検出信号を出力する第1出力端子7A、7B、上流側サーモパイル8から出力される第2温度検出信号を出力する第2出力端子9A、9B、を備える。
【0016】
また、マイクロフローセンサ1は、マイクロヒータ4に対してガスの流れ方向(PからQへの方向)と略直交方向に配置され、第3温度検出信号を出力する右側サーモパイル11、この右側サーモパイル11から出力される第3温度検出信号を出力する第3出力端子12A、12B、マイクロヒータ4に対してガスの流れ方向(PからQへの方向)と略直交方向に配置され、第4温度検出信号を出力する左側サーモパイル13、この左側サーモパイル13から出力される第4温度検出信号を出力する第4出力端子14A、14B、ガスの温度を得るための抵抗15、16、これらの抵抗15、16からのガスの温度信号を出力する出力端子17A、17Bを備える。
【0017】
上流側サーモパイル8、下流側サーモパイル5、右側サーモパイル11及び左側サーモパイル13は、熱電対から構成されている。この熱電対は、p++ ̄Si及びAlにより構成され、冷接点と温接点とを有し、熱を検出し、冷接点と温接点との温度差から熱起電力が発生することにより、温度検出信号を出力するようになっている。また、Si基板2上に形成されたダイヤフラム3には、マイクロヒータ4、上流側サーモパイル8、下流側サーモパイル5、右側サーモパイル11及び左側サーモパイル13のそれぞれの温接点が形成されている。
【0018】
このような構成のマイクロフローセンサ1において、マイクロヒータ4が外部からの駆動電流により過熱された際の上記第1温度検出信号及び第2温度検出信号は、例えば所定の流路を通過する被測定ガスの流速を求めるために利用され、上記第3温度検出信号及び/又は第4温度検出信号は、例えばこの被測定ガスの物性値等を求めるために利用される。マイクロフローセンサ1を用いた流速計測方法は、周知であるので、ここでは詳細な説明は省略する。また、このマイクロフローセンサ1を被測定ガスの密度や熱伝導率の検出素子として利用した例は、上述したように、本出願人らにより出願されている。そこでは、左側又は右側サーモパイルの出力と密度や熱伝導率とは略直線性の関係があることが着目され、次の図2に示すように、マイクロフローセンサが密度や熱伝導率の検出素子として利用されている。
【0019】
すなわち、図2(A)に示すように、被測定ガスが通過するガス流路20の内壁に凹形状に形成され、ガス流路20の通じる開口部21Aを有するポケット部21が形成されている。このポケット部21内には、密度センサとして、図1で示した構成のマイクロフローセンサ1′が取り付けられている。ガス流路20には、周知のように、マイクロフローセンサ1′と同一構成の流量センサとしてのマイクロフローセンサ1が取り付けられていてもよい。また、このマイクロフローセンサ1の設置箇所に基づいて、ガス流路20の断面を均等に分割するように、複数の整流格子22がそれぞれ等間隔かつ平行になるように配置されていてもよい。更に、この整流格子22を上流側P及び下流側Qからそれぞれ挟み込むように、メッシュ23A〜23C及びメッシュ23Dが、ガス流路20の途中に配置されていてもよい。
【0020】
図2(B)に示すように、ポケット部21は、例えば、略円筒形をしており、上部には、測定面が下を向くようにして、マイクロフローセンサ1′が取り付けられている。また、ポケット部21の下部には、ガス流路20の通じる略円形状の開口部21Aが形成されている。この開口部21Aの口径は、ガス流路20を通過する被測定ガスによる流れの影響を受けないように、ポケット部21の容積に対して十分小さくしている。
【0021】
なお、流量用センサとしてのマイクロフローセンサ1は、本発明では必ずしも必要ではない。また、ガス流のない状態で密度や熱伝導率を測定する際には、ポケット部21は必ずしも必要ではない。但し、本発明では、図2に示すような構成を前提として説明を続ける。また、本明細書中、上流側サーモパイル8、下流側サーモパイル5をサーモパイルTP1、TP2とよび、右側サーモパイル11、左側サーモパイル13をサーモパイルTP3、TP4とよぶこともある。
【0022】
上記ポケット部21に取り付けられた密度センサとしてのマイクロフローセンサ1′に接続される測定回路部について図3を用いて説明する。図3は、本発明の第1実施形態に係る測定回路部の回路構成図である。図3に示すように、この測定回路部においては、マイクロフローセンサ1′の下流側サーモパイル5、上流側サーモパイル8、右側サーモパイル11及び左側サーモパイル13にはそれぞれ、増幅器AMP1、増幅器AMP2、増幅器AMP3及び増幅器AMP4が接続されている。増幅器AMP1、増幅器AMP2、増幅器AMP3及び増幅器AMP4は、下流側サーモパイル5、上流側サーモパイル8、右側サーモパイル11及び左側サーモパイル13からそれぞれ供給される第1温度検出信号、第2温度検出信号、第3温度検出信号及び第4温度検出信号を増幅して加算回路30に出力する。
【0023】
加算回路30では、基本的に、第1〜第4検出信号を加算してゼロ点調整回路40に出力する。但し、必ずしも、第1〜第4検出信号の全てを使用する必要はない。すなわち、第1〜第4温度検出信号の少なくともいずれかひとつを使用してもよいし、第1〜第4検出信号のうちのいずれか2つ以上を使用するようにしてもよい。その組み合わせ方も任意であり、例えば、第1検出信号と第2検出信号との組み合わせ、第3検出信号と第4検出信号の組み合わせ等であってもよい。これにより、複数の温度検出信号のうちで良好な温度検出信号を採用することが可能になり、最終的にセンサ出力を向上させることができるようになる。また、ポケット部の渦流量の影響も除去することができるようになる。
【0024】
ゼロ点調整回路40は、抵抗R1、R2、Rx、可変抵抗器VR1、増幅定数変更スイッチSW40及び増幅器AMP5を含んで構成され、その入力端が加算回路30に接続され、出力端がスパン調整回路50に接続されている。そして、増幅定数変更スイッチSW40を切り替え制御することにより、増幅器AMP5の増幅率を調整することが可能である。
【0025】
スパン調整回路50は、抵抗R3、R4、Ry、可変抵抗器VR2、増幅定数変更スイッチSW50及び増幅器AMP6を含んで構成され、その入力端がゼロ点調整回路40に接続され、出力端がA/D変換回路60に接続されている。そして、増幅定数変更スイッチSW50を切り替え制御することにより、増幅器AMP6の増幅率を調整することが可能である。
【0026】
A/D変換回路60は、スパン調整回路50の増幅器AMP6から供給される増幅されたアナログ値であるセンサ出力をディジタル値に変換する。このディジタル値は制御部70を介してディジタル出力端子71から直接、出力するようにしてもよいし、制御部70にて、パルス変換して出力するようにしてもよいし、周波数変換して出力するようにしてもよいし、或いは、通信電文に変換して出力するようにしてもよい。
【0027】
制御部70は、ヒータ駆動回路90を指令して、マイクロヒータ4を最適な温度に制御したり、センサ出力を所定のディジタル出力に変換してディジタル出力端子71から出力させる。また、この制御部70は第1実施形態に係るガス物性値測定用ロジック701を含む。このロジック701に関しては、図5を用いて後述する。
【0028】
D/A変換回路80は、制御部70から供給されるディジタル出力値を、必要なアナログ規格値に適合する範囲内のアナログ信号に変換して、アナログ出力端子81から出力する。出力方法としては、例えば4−20mAの定電流信号や、1−5Vの定電圧信号等が適用可能である。
【0029】
ヒータ駆動回路90は、例えばトランジスタ回路により構成され、制御部70に指令されて、所定電圧をマイクロヒータ4に印加してマイクロヒータ4の温度制御を行う回路である。駆動方法としては、公知の定電圧駆動、定電流駆動、定電力駆動、定温度駆動、或いは、定温度差駆動等が適用可能である。このヒータ駆動回路90について、次に図4を用いて説明する。
【0030】
図4は、本発明の第1実施形態に係るヒータ駆動回路90の一例を示す回路構成図である。図4に示すように、第1スイッチSW1、第2スイッチSW2、ヒータ駆動回路90は、レギュレータREG、増幅器AMP91、トランジスタTR91、及びこれらの間に介設される抵抗R91〜R96、VR91を含んで構成される。これら各構成要素は、周知のデバイスであるので詳細な説明は省略する。なお、図中、マイクロヒータ4は、上記図3のそれに対応する。
【0031】
このような回路構成において、制御部70からの指令により、第1スイッチSW1、第2スイッチSW2がそれぞれ開閉され、トランジスタTR91がオンオフ制御されて、マイクロヒータ4に第1電圧、及び第1電圧とは異なる第2電圧が印加される。その結果、マイクロヒータ4は、第1電圧及び第2電圧に対応して異なる温度で発熱する。この制御方法については、図5及び図6を用いて後述する。なお、ヒータ駆動回路90は、上記構成に限定されず、同様の機能を有するものであれば他の回路構成であってもよい。
【0032】
続いて、図6のタイムチャートを参照しつつ、図5を用いて、本発明の第1実施形態に係る処理手順について説明する。すなわち、図5のステップS1においては、例えば、制御部に70に含まれるタイマ機能を利用してサンプリング時刻が待機されている(ステップS1のN)。ここで、サンプリング時刻になると(ステップS1のY)、ステップS2に進んで、図6に示すように、第1スイッチSW1オンが指令される。なお、このとき、図6に示すように、第2スイッチSW2はオフとなっている。なお、ステップS2は、請求項1中の第1電圧印加工程に対応する。
【0033】
これにともない、ステップS3において、図6に示すように、第1センサ出力VMH1データが取得される。ここで、第1センサ出力VMH1は、例えば、サーモパイルTP1、TP2のセンサ出力の和とする。ここで取得された第1センサ出力VMH1データは、後の計算で利用するため、制御部に70に含まれるメモリに一時保存される。そして、第1センサ出力VMH1データの取得が終了すると、ステップS4に進んで、図6に示すように、第1スイッチSW1オフが指令される。なお、ステップS3は、請求項1中の第1センサ出力取得工程に対応する。
【0034】
次に、ステップS5においては、例えば、制御部に70に含まれるタイマ機能を利用して所定の遅延時間tが待機されている(ステップS5のN)。ここで、この遅延時間tが経過すると(ステップS5のY)、ステップS6及びステップS7に進んで、図6に示すように、第2スイッチSW2オン及び第1スイッチSW1オンが指令される。なお、ステップS6、ステップS7は、請求項1中の第2電圧印加工程に対応する。
【0035】
これにともない、ステップS8において、図6に示すように、第2センサ出力VMH2データが取得される。ここで、第2センサ出力VMH2は、例えば、サーモパイルTP1、TP2のセンサ出力の和とする。ここで取得された第2センサ出力VMH2データも、後の計算で利用するため、制御部に70に含まれるメモリに一時保存される。ステップS8は、請求項1中の第2センサ出力取得工程に対応する。そして、第2センサ出力VMH2データの取得が終了すると、ステップS9及びステップS10に進んで、図6に示すように、第2スイッチSW2オフ及び第1スイッチSW1オフが指令される。
【0036】
そして、ステップS11において、メモリに保存されている上記第1センサ出力VMH1及び第2センサ出力VMH2が読み出されて、差分センサ出力ΔVが求められる。更に、ステップS12においてゼロ点調整が行われ、ステップS13においてスパン調整が行われる。これらゼロ点調整及びスパン調整は、上述したように、ゼロ点調整回路40及びスパン調整回路50を用いて実行可能である。なお、ステップS11は、請求項1中の差分センサ出力計算工程に対応する。
【0037】
ここで、上記差分センサ出力ΔVについて、以下に説明を加える。すなわち、マイクロフローセンサにおいて、センサ出力の大きな要素は、マイクロヒータの発熱、マイクロヒータからサーモパイルまでの熱伝導率(熱抵抗)、サーモパイルの起電力である。例えば、マイクロヒータ4の発熱要素は、一般的に、
f(V/(Rd+Rt+Rr)) のような関数となることが知られている。
ここで、Vは印加電圧、Rdはドリフトによるヒータ抵抗値変化、Rtは温度によるヒータ抵抗値変化、Rrは物性値によるヒータ抵抗値変化を示す。
【0038】
上記第1センサ出力VMH1と第2センサ出力VMH2との電位差、すなわち、差分センサ出力をΔVとすると、
f1((V+ΔV)/(Rd+Rt+Rr))−f2(V/(Rd+Rt+Rr))=Δf((2*V*ΔV+ΔV)/(Rd+Rt+Rr)) となる。
ここで、f1、f2は、上記fと同等の関数であり、Δfは、これらの差分を示す関数である。
【0039】
ドリフト及び温度による影響度を低減する条件は、
((2*V*ΔV+ΔV)/(V+ΔV))<1 となる。
ここで、ΔVを限りなく小さくすると、上記低減度はもっとも大きくなるのだが、逆に、物性値による影響も取り除くことになるため、最適なΔVを求める必要がある。最適な差分センサ出力ΔVを求めるためには、例えば、ゼロ点を調整するためのいわゆるゼロガスを用いることが好ましい。
【0040】
このようにして求められた差分センサ出力ΔVについて図7を用いて説明する。図7(A)には、第1センサ出力VMH1と第2センサ出力VMH2との差分である差分センサ出力ΔVが示されている。センサ出力が正規の値であっても、ドリフトした値であっても、図7(A)に示す差分センサ出力ΔVと同等の特性が得られることが確認されている。図7(B)に示すように、従来、正規なセンサ出力VMH1−Nと、正規なセンサ出力VMH1−Nからドリフトしたときセンサ出力VMH1−Dとは、同じ密度であっても大きく異なるセンサ出力になっていたものが、図7(A)に示すように、差分センサ出力ΔVを用いることにより、ドリフトの影響が除去されていることがわかる。なお、図中、Gはゼロガスを用いた場合の密度、Gは所定のスパンガスを用いた場合の密度を示す。
【0041】
また、図8に示すように、差分センサ出力ΔVと第1センサ出力VMH1とを温度による変化量で規格化して比較した結果から明らかなように、差分センサ出力ΔVと差分センサ出力ΔVの値の方がより小さくなっており、すなわち、上記差分センサ出力ΔVを用いることにより、ドリフトによる変化分が小さくなっていることがわかる。
【0042】
このように第1実施形態によれば、上記差分センサ出力ΔVを用いて被測定ガスの物性値を求めることにより、温度エージングやヒータ抵抗の経時変化に起因するセンサ出力のドリフト成分が効果的に除去され、正確に被測定ガスの物性値、例えば、密度を測定することが可能になる。
【0043】
次に、本発明の第2実施形態について以下に図面を用いて説明する。第2実施形態において使用されるマイクロフローセンサ及び測定部は、上記図1及び図2で示した構成と同等であるので、繰り返し説明は省略する。測定回路部の回路構成も、上記図3で示した第1実施形態に準じたものとなるが、但し、第2実施形態においては、ヒータ駆動回路及びガス物性値測定ロジックが異なる。すなわち、第2実施形態におけるガス物性値測定ロジック701′については、図11を用いて後述する。
【0044】
また、第2実施形態におけるヒータ駆動回路90′は、図10に示すように、スイッチSW′、レギュレータREG′、増幅器AMP91′、トランジスタTR91′、及びこれらの間に介設される抵抗R91′〜R94′を含んで構成される。これら各構成要素は、周知のデバイスであるので詳細な説明は省略する。
【0045】
このような回路構成において、制御部70′からの指令により、スイッチSWが開閉され、トランジスタTR91′がオンオフ制御されて、マイクロヒータ4が駆動/非駆動されて、マイクロヒータ4は所定の温度で適宜発熱する。この制御方法については、図11及び図12を用いて後述する。なお、ヒータ駆動回路90′は、上記構成に限定されず、同様の機能を有するものであれば他の回路構成であってもよい。
【0046】
続いて、図12のタイムチャートを参照しつつ、図11を用いて、本発明の第2実施形態に係る処理手順について説明する。すなわち、図11のステップS21においては、例えば、制御部に70′に含まれるタイマ機能を利用してサンプリング時刻が待機されている(ステップS21のN)。ここで、サンプリング時刻になると(ステップS21のY)、ステップS22に進んで、図12に示すように、スイッチSW′オフが指令される。なお、スイッチSW′の初期状態がオフの場合には、このステップは不要である。
【0047】
これにともない、ステップS23において、図12に示すように、第1センサ出力V′12、V′34データが取得される。ここで、第1センサ出力V′12は、この時点における、例えば、サーモパイルTP1、TP2のセンサ出力の和とし、第1センサ出力V′34は、この時点における、例えば、サーモパイルTP3、TP4のセンサ出力の和とする。ここで取得された第1センサ出力V′12、V′34データは、後の計算で利用するため、制御部に70′に含まれるメモリに一時保存される。なお、ステップS23は、請求項3中の第1センサ出力取得工程に対応する。そして、第1センサ出力V′12、V′34データの取得が終了すると、ステップS24に進んで、図12に示すように、スイッチSW′がオンが指令される。
【0048】
これにともない、ステップS25において、図12に示すように、第2センサ出力V″12、V″34データが取得される。ここで、第2センサ出力V″12は、この時点における、例えば、サーモパイルTP1、TP2のセンサ出力の和とし、第2センサ出力V″34は、この時点における、例えば、サーモパイルTP3、TP4のセンサ出力の和とする。ここで取得された第2センサ出力V″12、V″34データも、後の計算で利用するため、制御部に70′に含まれるメモリに一時保存される。なお、ステップS25は、請求項3中の第2センサ出力取得工程に対応する。そして、第2センサ出力V″12、V″34データの取得が終了すると、ステップS26に進む。
【0049】
ステップS26においては、上記メモリに保存されている第1センサ出力V′12、V′34及び第2センサ出力V″12、V″34が読み出されて、差分センサ出力ΔV12(=V′12−V″12)、ΔV34(=V′34−V″34)が求められる。更に、ステップS27において、この時点のガス温度Tが取得される。なお、ステップS26は請求項3中の差分センサ出力計算工程に対応し、ステップS27は請求項3中の温度取得工程に対応する。
【0050】
次に、ステップS28及びステップS29においては、温度補正値q12及びq34が求められる。ここで、温度補正値q12は上記差分センサ出力ΔV12に対応する温度補正値であり、温度補正値q34は上記差分センサ出力ΔV34に対応する温度補正値である。これら温度補正値q12及びq34はいずれも、sx+tx+uと表される。ここで、s、t、uは共に所定の温度補正係数であるが、但しその値が異なる。xは温度に対応する。そして、上記ガス温度Tをガス温度データxとして上式に代入して、上記温度補正値q12及びq34が求められる。
【0051】
次に、ステップS30及びステップS31においては、補正センサ出力y12(=ΔV12−q12)及びy34(=ΔV34−q34)がそれぞれ求められる。図13(B)に示すように、センサ出力に与える温度エージングやヒータ抵抗の経時変化の影響をほぼ除去していることがわかる。なお、図13(A)は、従来の方法において、70℃48hrの温度を掛けた後、定常温度にて測定されたセンサ出力を示すグラフである。ステップS28〜ステップS31は請求項3中の補正センサ出力計算工程に対応する。
【0052】
次に、ステップS32において、規格値γが求められる。この規格値γは、上記ステップS30及びステップS31にて求められた補正センサ出力y12及びy34の比率y12/y34とする。次に、ステップS33において、補正規格値γと熱伝導率ρとの間に温度補正された直線関係が導かれる。なお、ステップS32は請求項3中の規格値計算工程に対応し、ステップS33は請求項3中の確定工程に対応する。そして、ステップS34においてゼロ点調整が行われ、ステップS35においてスパン調整が行われる。これらゼロ点調整及びスパン調整は、上述したように、ゼロ点調整回路40及びスパン調整回路50を用いて実行可能である。
【0053】
このように第2実施形態によれば、非稼働時及び稼働時のセンサ出力の差分を利用し、かつ、温度補正して規格化することにより、温度エージングやヒータ抵抗の経時変化に起因するセンサ出力のドリフト成分が効果的に除去され、常時正確に被測定ガスの物性値を測定することが可能になる。
【0054】
以上のように、本発明の実施形態によれば、マイクロフローセンサを利用したガス物性値の測定方法において、そのヒータ抵抗の経時変化によるセンサ出力のドリフト成分を効果的に除去し、常時正確に被測定ガスの物性値を測定することが可能になる。
【0055】
なお、本発明は、上記実施形態に限定されず、その主旨を逸脱しない範囲で適宜変更可能である。例えば、ヒータ駆動回路は上記実施形態に限定されず、同機能を有する他の回路構成であってもよい。また、測定すべきガス物性値としては、密度のみならず、熱伝導率、比熱、粘性等であってもよい。
【0056】
【発明の効果】
以上説明したように、請求項1及び5記載の発明によれば、被測定ガスが通過するガス流路に取り付けられたマイクロフローセンサに含まれる複数のサーモパイルのうちの少なくともいずれかひとつから得られるセンサ出力を利用して、被測定ガスの物性値が測定される。詳しくは、マイクロフローセンサに含まれるヒータに対して第1電圧が印加され、次に、第1電圧が印加されたときのセンサ出力が、第1センサ出力として取得され、次に、第1電圧の印加終了から所定時間後に、ヒータに対して第1電圧とは異なる第2電圧が印加され、次に、第2電圧が印加されたときのセンサ出力が、第2センサ出力として取得され、次に、第1センサ出力と第2センサ出力との差分である差分センサ出力が求められる。そして、この差分センサ出力に基づいて被測定ガスの物性値、例えば、密度が測定される。このように、第1センサ出力と第2センサ出力との差分を利用することにより、温度エージングやヒータ抵抗の経時変化に起因するセンサ出力のドリフト成分が効果的に除去され、常時正確に被測定ガスの物性値を測定することが可能になる。
【0057】
また、請求項2記載の発明によれば、所定の調整ガスを用いて、物性値の影響をできるがぎり除去するように、第1電圧と前記第2電圧との差を調整するようにしたので、温度エージングやヒータ抵抗の経時変化に起因するセンサ出力のドリフト成分がより効果的に除去され、より正確に被測定ガスの物性値を測定することが可能になる。
【0058】
また、請求項3及び5記載の発明によれば、被測定ガスが通過するガス流路に取り付けられたマイクロフローセンサに含まれる複数のサーモパイルのうちの少なくともいずれかひとつから得られるセンサ出力を利用して、被測定ガスの物性値が測定される。詳しくは、マイクロフローセンサに含まれるヒータの非駆動時のセンサ出力が、第1センサ出力として取得され、次に、ヒータに対して所定電圧を印加したときのセンサ出力が、第2センサ出力として取得され、次に、被測定ガスの温度が取得され、次に、この温度における第1センサ出力と第2センサ出力との差分である差分センサ出力が求められ、次に、予め定められた温度補正式を用いて、差分センサ出力を温度補正した補正センサ出力が求められ、次に、補正センサ出力を用いて、被測定ガスの所定の規格値が求められ、そして、この規格値と熱伝導率との関係に基づいて、被測定ガスの物性値、例えば、密度が測定される。このように、非稼働時及び稼働時のセンサ出力の差分を利用し、かつ、温度補正して規格化することにより、温度エージングやヒータ抵抗の経時変化に起因するセンサ出力のドリフト成分が効果的に除去され、常時正確に被測定ガスの物性値を測定することが可能になる。
【0059】
また、請求項4記載の発明によれば、センサ出力は複数のサーモパイルからそれぞれ得られる出力値を組み合わせて取得されるので、より正確な被測定ガスの物性値の測定が可能となる。
【図面の簡単な説明】
【図1】本発明にて使用されるマイクロフローセンサの構成図である。
【図2】図2(A)はガス物性値の測定部近傍の概略断面図であり、図2(B)は図2(A)のポケット部の拡大断面図である。
【図3】本発明の第1実施形態に係る回路構成図である。
【図4】本発明の第1実施形態に係るヒータ駆動回路の一例を示す回路構成図である。
【図5】本発明の第1実施形態に係る処理手順を示すフローチャートである。
【図6】図5の処理手順に係るタイムチャートである。
【図7】図7(A)は第1センサ出力、第2センサ出力及び差分センサ出力を示すグラフであり、図7(B)は従来の正規なセンサ出力及び正規なセンサ出力からドリフトしたときセンサ出力を示すグラフである。
【図8】差分センサ出力と第1センサ出力とを温度による変化量で規格化して比較した結果を示すグラフである。
【図9】本発明の第2実施形態に係る回路構成図である。
【図10】本発明の第2実施形態に係るヒータ駆動回路の一例を示す回路構成図である。
【図11】本発明の第2実施形態に係る処理手順を示すフローチャートである。
【図12】図11の処理手順に係るタイムチャートである。
【図13】図13(A)は従来の方法において、70℃48hrの温度を掛けた後、定常温度にて測定されたセンサ出力を示すグラフであり、図13(B)は第2実施形態において、70℃48hrの温度を掛けた後、定常温度にて測定されたセンサ出力を示すグラフである。
【符号の説明】
1′ マイクロフローセンサ(密度センサ)
20 流路
30 加算回路
40 ゼロ点調整回路
50 スパン調整回路
60 A/D変換回路
70、70′ 制御部
71 ディジタル出力端子
80 D/A変換回路
81 アナログ出力端子
90、90′ ヒータ駆動回路

Claims (5)

  1. 被測定ガスが通過するガス流路に取り付けられたマイクロフローセンサに含まれる複数のサーモパイルのうちの少なくともいずれかひとつから得られるセンサ出力を利用して、前記被測定ガスの物性値を測定する方法であって、
    前記マイクロフローセンサに含まれるヒータに対して第1電圧を印加する第1電圧印加工程と、
    前記第1電圧が印加されたときの前記センサ出力を、第1センサ出力として取得する第1センサ出力取得工程と、
    前記第1電圧の印加終了から所定時間後に、前記ヒータに対して前記第1電圧とは異なる第2電圧を印加する第2電圧印加工程と、
    前記第2電圧が印加されたときの前記センサ出力を、第2センサ出力として取得する第2センサ出力取得工程と、
    前記第1センサ出力と前記第2センサ出力との差分である差分センサ出力を求める差分センサ出力計算工程と、を含み、
    この差分センサ出力に基づいて前記被測定ガスの物性値を測定する、
    ことを特徴とするガス物性値の測定方法。
  2. 請求項1記載のガス物性値の測定方法において、
    所定の調整ガスを用いて、前記物性値の影響をできるがぎり除去するように、前記第1電圧と前記第2電圧との差を調整する、
    ことを特徴とするガス物性値の測定方法。
  3. 被測定ガスが通過するガス流路に取り付けられたマイクロフローセンサに含まれる複数のサーモパイルのうちの少なくともいずれかひとつから得られるセンサ出力を利用して、前記被測定ガスの物性値を測定する方法であって、
    前記マイクロフローセンサに含まれるヒータの非駆動時の前記センサ出力を、第1センサ出力として取得する第1センサ出力取得工程と、
    前記ヒータに対して所定電圧を印加したときの前記センサ出力を、第2センサ出力として取得する第2センサ出力取得工程と、
    前記被測定ガスの温度を取得する温度取得工程と、
    この温度における前記第1センサ出力と前記第2センサ出力との差分である差分センサ出力を求める差分センサ出力計算工程と、
    予め定められた温度補正式を用いて、前記差分センサ出力を温度補正した補正センサ出力を求める補正センサ出力計算工程と、
    前記補正センサ出力を用いて、前記被測定ガスの所定の規格値を求める規格値計算工程と、
    前記規格値と熱伝導率との関係を確定する確定工程と、を含み、
    この関係に基づいて前記被測定ガスの物性値を測定する、
    ことを特徴とするガス物性値の測定方法。
  4. 請求項1〜3のいずれか一項に記載のガス物性値の測定方法において、
    前記センサ出力は、複数のサーモパイルからそれぞれ得られる出力値を組み合わせて取得される、
    ことを特徴とするガス物性値の測定方法。
  5. 請求項1〜4のいずれか一項に記載のガス物性値の測定方法において、
    前記物性値は、前記被測定ガスの熱伝導率との相関関係に基づいて計算される密度である、
    ことを特徴とするガス物性値の測定方法。
JP2003047111A 2003-02-25 2003-02-25 ガス物性値の測定方法 Pending JP2004257789A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047111A JP2004257789A (ja) 2003-02-25 2003-02-25 ガス物性値の測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047111A JP2004257789A (ja) 2003-02-25 2003-02-25 ガス物性値の測定方法

Publications (1)

Publication Number Publication Date
JP2004257789A true JP2004257789A (ja) 2004-09-16

Family

ID=33113440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047111A Pending JP2004257789A (ja) 2003-02-25 2003-02-25 ガス物性値の測定方法

Country Status (1)

Country Link
JP (1) JP2004257789A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017129470A (ja) * 2016-01-20 2017-07-27 オムロン株式会社 流量測定装置、流量の測定方法及び流量測定プログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017129470A (ja) * 2016-01-20 2017-07-27 オムロン株式会社 流量測定装置、流量の測定方法及び流量測定プログラム
WO2017126269A1 (ja) * 2016-01-20 2017-07-27 オムロン株式会社 流量測定装置、流量の測定方法及び流量測定プログラム
US20180180455A1 (en) * 2016-01-20 2018-06-28 Omron Corporation Flow measurement device, flow measurement method, and flow measurement program
US11112285B2 (en) 2016-01-20 2021-09-07 Omron Corporation Flow measurement device, flow measurement method, and flow measurement program

Similar Documents

Publication Publication Date Title
US5753815A (en) Thermo-sensitive flow sensor for measuring flow velocity and flow rate of a gas
JP4050857B2 (ja) 流体判別装置及び流量計測装置
EP1441206B1 (en) Sensor temperature control in a thermal anemometer
KR100791431B1 (ko) 유체 계측 장치 및 유체 계측 방법
US20060096305A1 (en) Fluid flowmeter and engine control system using the same
JP3726261B2 (ja) 熱式流量計
JP2004257789A (ja) ガス物性値の測定方法
JP2001298160A (ja) 集積回路
JP4068475B2 (ja) ガス物性値の測定方法
JP4003867B2 (ja) 熱式流量計
JP3555013B2 (ja) 感熱式流量計
JP4648662B2 (ja) フローセンサの駆動方法および駆動回路
JP3968324B2 (ja) ガス物性値の測定装置
JP3210222B2 (ja) 温度測定装置
JP3896060B2 (ja) マイクロフローセンサを用いたガス密度測定方法
JP2001141539A (ja) フローセンサの温度補正方法及びフローセンサ回路
JPH1096703A (ja) 抵抗体による熱伝導パラメータセンシング方法及びセンサ回路
JP2616150B2 (ja) 熱式空気流量計
JP4820017B2 (ja) フローセンサを用いた流量計測装置
JP2008046143A (ja) 熱式流体センサ及びフローセンサ
JP4904008B2 (ja) 熱式流量計
JP2000018991A (ja) 流量計測装置のヒータ駆動回路
JPH05288113A (ja) 内燃機関の吸入空気流量検出装置
JPH0523366B2 (ja)
KR20020080137A (ko) 유량 계측용 센서 및 이를 이용한 질량유량제어장치 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408