JP2004256367A - 光ファイバ素線の製造方法 - Google Patents

光ファイバ素線の製造方法 Download PDF

Info

Publication number
JP2004256367A
JP2004256367A JP2003050988A JP2003050988A JP2004256367A JP 2004256367 A JP2004256367 A JP 2004256367A JP 2003050988 A JP2003050988 A JP 2003050988A JP 2003050988 A JP2003050988 A JP 2003050988A JP 2004256367 A JP2004256367 A JP 2004256367A
Authority
JP
Japan
Prior art keywords
optical fiber
temperature
annealing furnace
furnace
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003050988A
Other languages
English (en)
Inventor
Kenji Okada
健志 岡田
Munehisa Fujimaki
宗久 藤巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2003050988A priority Critical patent/JP2004256367A/ja
Publication of JP2004256367A publication Critical patent/JP2004256367A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • C03B37/02727Annealing or re-heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/55Cooling or annealing the drawn fibre prior to coating using a series of coolers or heaters
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/56Annealing or re-heating the drawn fibre prior to coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

【課題】光ファイバ素線の製造において、紡糸後の光ファイバ裸線を小型の徐冷炉を用いて、効率的に徐冷でき、非架橋酸素ホールセンターを含む欠陥を減少し、水素特性の良好な光ファイバ素線を製造できるようにすることにある。
【解決手段】紡糸炉1からの溶融紡糸直後の光ファイバ裸線を徐冷炉11に導入して徐冷したのち、さらに冷却し、これに被覆層を形成して光ファイバ素線とする際に、徐冷炉11の温度を800〜1300℃とし、光ファイバ裸線の入線温度を900〜1300℃とする。また、徐冷炉11の温度を光ファイバ裸線の入線温度と同一として効率的に徐冷する。さらに、徐冷炉11での徐冷時間を0.1〜0.5秒とする。
【選択図】図1

Description

【0001】
【発明の属する技術分野】
この発明は、光ファイバ素線の製造方法に関し、紡糸速度を高速化させても水素特性の良好な光ファイバ素線を得られるようにするものである。
【0002】
【従来の技術】
光ファイバ素線の製造は、通常図5に示すように、紡糸炉1内に光ファイバ母材2を収容し、その先端部分を加熱し、溶融紡糸して、径125μmの光ファイバ裸線とし、これを冷却筒3に送り込み、次工程の一次被覆層の形成に好適な温度まで冷却する。
【0003】
冷却筒3で冷却された光ファイバ裸線は、一次被覆層形成用のコータ4および架橋筒5により一次被覆層が形成され、さらに二次被覆層形成用のコータ6および架橋筒7により二次被覆層が形成されて、径250μmの光ファイバ素線とされる。この光ファイバ素線は、引き取り機8、ダンサーロール9を経て、巻き取りドラム10に巻き取られる。
【0004】
近時、光ファイバ素線の生産性を高めるため、紡糸速度を高め、1000m/分以上の線速とすることが行われている。このような高速紡糸になると、製造設備上の制限から、高温度の光ファイバ裸線が冷却筒3に導入されることになり、冷却筒3において急速に冷却されることになる。
【0005】
光ファイバ裸線の温度が高温である時点からこれを急速に冷却すると、得られる光ファイバ素線の水素特性が悪化すると言う問題が生じる。ここでの水素特性とは、IEC60793−2に準拠した水素試験方法によって測定された波長1383nmでの伝送損失増分によって評価されるものである。
【0006】
この光ファイバ素線の水素特性が悪化する理由は、一般に石英ガラスを高温で溶融すると、溶融石英ガラス中に非架橋酸素ホールセンター(Non Bonding Oxygen Hole Center、NBOHC)を含む欠陥が生成し、この溶融石英ガラスを急速に冷却すると、冷却後の石英ガラス内部にそのまま欠陥が存在し、この欠陥が雰囲気中の水素と反応して水酸基が生成し、この水酸基により伝送損失が増大するためである。
【0007】
このため、かかる水素特性の悪化を防止するためには、溶融石英ガラスを冷却する際に、これをゆっくりと冷却し、すなわち徐冷し、非架橋酸素ホールセンターを含む欠陥を徐冷中に再結合させ、冷却後の石英ガラス中に残存する非架橋酸素ホールセンターを含む欠陥を減少させることで可能となる。
【0008】
したがって、高速紡糸の際に、紡糸炉1の次段に徐冷炉を配置して、光ファイバ裸線をここで徐冷すればよいことになるが、十分な徐冷を行い、かかる欠陥を減少させるには、炉長の長い徐冷炉が必要となる。
しかし、製造設備、例えば建屋の高さの制限などから、大型の徐冷炉を既設の製造ラインに設置することは現実的に不可能である。
【0009】
光ファイバ裸線の冷却に徐冷炉を用いて徐冷する技術に関する先行技術文献としては、以下のようなものがあるが、水素特性の改善に言及しているものはない。
【0010】
【特許文献1】
特許第2944534号公報
【特許文献2】
特開2002−160946号公報
【特許文献3】
特開2001−192230号公報
【0011】
【発明が解決しようとする課題】
よって、本発明における課題は、小型の徐冷炉を用いて、効率的に光ファイバ裸線を徐冷でき、非架橋酸素ホールセンターを含む欠陥を減少し、水素特性の良好な光ファイバ素線を製造できるようにすることにある。
【0012】
【課題を解決するための手段】
かかる課題を解決するため、
請求項1にかかる発明は、溶融紡糸直後の光ファイバ裸線を徐冷炉に導入して徐冷したのち、さらに冷却し、これに被覆層を形成して光ファイバ素線とする際に、徐冷炉の温度を800〜1300℃とし、光ファイバ裸線の入線温度を900〜1300℃とすることを特徴とする光ファイバ素線の製造方法である。
【0013】
請求項2にかかる発明は、溶融紡糸直後の光ファイバ裸線を徐冷炉に導入して徐冷したのち、さらに冷却し、これに被覆層を形成して光ファイバ素線とする際に、徐冷炉の温度を光ファイバ裸線の入線温度と同一にすることを特徴とする光ファイバ素線の製造方法である。
【0014】
請求項3にかかる発明は、徐冷炉での徐冷時間を0.1〜0.5秒とすることを特徴とする請求項1または2記載の光ファイバ素線の製造方法である。
請求項4にかかる発明は、請求項1ないし3のいずれかに記載の製造方法で製造され、水素試験(IEC60793−2準拠)後の波長1383nmでの損失増加量が0.02dB/km以下であることを特徴とする光ファイバ素線である。
【0015】
【発明の実施の形態】
以下、本発明を詳しく説明する。
図1は、本発明の光ファイバ素線の製造方法に用いられる製造装置の一例を示すもので、この製造装置は紡糸炉1の次段に徐冷炉11を設置した以外は図5に示した製造装置と同様である。
【0016】
この徐冷炉11は、溶融紡糸直後の光ファイバ裸線を挿通して徐冷するためのもので、その内部に電気ヒータなどの加熱手段を備え、その内部温度(炉内温度)を800〜1300℃の範囲に制御できるようになっている。
また、その炉長は、0.4〜8m程度とされ、光ファイバ裸線の線速が200〜1500m/分の範囲においても炉内を通過するのに要する時間(これを徐冷時間と定義する)が0.1〜0.5秒となるようになっている。
さらに、この徐冷炉11は、これに入口と紡糸炉1の出口との距離が0〜2mとなる位置に設置されている。
【0017】
そして、この製造装置を用いて光ファイバ素線を製造する際は、紡糸炉1からの溶融紡糸直後の光ファイバ裸線を徐冷炉11に導入して、これを徐冷したのち、冷却筒3でさらに冷却して被覆層形成工程に送る。
【0018】
ところで、二酸化ケイ素(SiO)を主体とする石英ガラスを対象としたとき、その溶融状態から冷却するまでの温度変化の際に、800〜1300℃の温度範囲に、できるだけ長時間置くことが、非架橋酸素ホールセンターを含む欠陥の再結合に好適であることが判明した。
【0019】
したがって、溶融紡糸直後の高温の光ファイバ裸線を徐冷炉11に導入して徐冷する際にも、徐冷炉11内で走行する光ファイバ裸線を800〜1300℃の温度範囲(以下、徐冷好適温度域と言うことがある。)に、できる限り長時間保持することが好ましいことになる。
【0020】
このため、徐冷炉11内の温度を800〜1300℃の範囲に設定し、光ファイバ裸線の徐冷炉11への入線温度を同じく800〜1300℃とすれば、上述の条件が最大限満たされることになり、光ファイバ裸線を長時間徐冷好適温度域で保持することが可能となる。
【0021】
また、光ファイバ裸線の徐冷炉11への入線温度を低くすることは、紡糸炉1と徐冷炉11との間隔を広げることになって、製造ラインの長さが長くなり、製造設備の高さが増すことから、避けるべきである。このため、実用的には入線温度の下限を900℃とすることが好ましい。
【0022】
また、光ファイバ裸線を徐冷炉11内で徐冷好適温度域内に保つ時間、すなわち徐冷時間は、0.1〜0.5秒とされる。徐冷時間が0.1秒未満では水素特性の改善がなされず、0.5秒を越えると徐冷炉11の炉長が長くなり、大型化して好ましくない。
【0023】
このような徐冷条件を採用することにより、光ファイバ裸線が冷却される際に、徐冷好適温度域である800〜1300℃の範囲に0.1〜0.5秒間存在することになり、溶融紡糸時に発生した非架橋酸素ホールセンターを含む欠陥が十分に再結合してその大部分が消滅し、この結果得られる光ファイバ素線の水素特性が良好となる。
【0024】
また、炉長の長い大型の徐冷炉を用いる必要がなく、設備的に無理がなく、既設設備を活用することができ、設備コストが大きく増加することもない。さらに、幅広い紡糸速度にも対応でき、光ファイバ母材の種類、サイズ、形状等に限定されることもない。
【0025】
なお、本発明における光ファイバ裸線の温度は、以下のようにして推定した。
一般に、光ファイバの温度は、次の(1)式を使用して推定できる。
【数1】
Figure 2004256367
ここで、E′:輻射率
σ:ステファンボルツマン係数
T′:光ファイバ周囲の温度
T :ファイバ温度
h :対流熱伝達率
:ガラスの比熱
ρ :ガラスの密度
d :ファイバ直径
t :時間である。
【0026】
この(1)式で問題となるのは、対流熱伝達率hである。この対流熱伝達率は紡糸線速に依存するため、一概にファイバ周囲の雰囲気ガスの対流熱伝達率で代表することができない。そこで、(1)式の輻射伝熱の項を無視し、Tについて積分を実行すると、次式(2)を得る。
【数2】
Figure 2004256367
ここで、Tstart、Tend:2点のファイバ温度
air:ファイバ周囲雰囲気ガスの温度
:ガラスの比熱
:ファイバ直径
V:紡糸速度
h:対流熱伝達率
L:2点間のファイバ温度測定距離である。
【0027】
この(2)式を用いて、対流熱伝達率hを求めることができる。以上の関係式(1)、(2)を用いて光ファイバ裸線の温度を推定した。
【0028】
本発明の光ファイバ素線は、上述の製造法、すなわち徐冷操作を行って得られたもので、水素特性が良好であり、水素試験(IEC60793−2準拠)後の波長1383nmでの損失増加量が0.02dB/km以下のものである。また、光ファイバ素線としては、シングルモードファイバ、分散シフトファイバ、分散補償ファイバ、カットオフファイバなどいかなるものも対象となる。
【0029】
以下、具体例を示す。
共通条件
光ファイバ裸線:外径125μm、波長1.3μm伝送用シングルモードファイバ
一次および二次被覆材:ウレタン−アクリレート系紫外線硬化型樹脂
被覆径:250μm
紡糸速度:200〜1500mm/分
【0030】
実施例1
紡糸速度1000m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1500℃、徐冷炉の位置:紡糸炉出口から0.5m、徐冷炉長1.7m、徐冷時間0.1秒、徐冷炉出口での光ファイバ裸線の温度1150℃の条件で徐冷を行った。得られた光ファイバ素線の水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.052dB/kmであった。
【0031】
実施例2
紡糸速度1000m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1300℃、徐冷炉の位置:紡糸炉出口から0.8m、徐冷炉長1.7m、徐冷時間0.1秒、徐冷炉出口での光ファイバ裸線の温度1100℃の条件で徐冷を行った。得られた光ファイバ素線の水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.020dB/kmであった。
【0032】
実施例3
紡糸速度1000m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、徐冷炉の位置:紡糸炉出口から1.3m、徐冷炉長1.7m、徐冷時間0.1秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバ素線の水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.013dB/kmであった。
【0033】
実施例4
紡糸速度1000m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度800℃、徐冷炉の位置:紡糸炉出口から1.8m、徐冷炉長1.7m、徐冷時間0.1秒、徐冷炉出口での光ファイバ裸線の温度950℃の条件で徐冷を行った。得られた光ファイバ素線の水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.023dB/kmであった。
【0034】
実施例5
紡糸速度1000m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度600℃、徐冷炉の位置:紡糸炉出口から2.6m、徐冷炉長1.7m、徐冷時間0.1秒、徐冷炉出口での光ファイバ裸線の温度850℃の条件で徐冷を行った。得られた光ファイバ素線の水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.048dB/kmであった。
【0035】
比較例1
紡糸速度1000m/分、徐冷炉なし(自然冷却 紡糸炉出口から0.8mでの光ファイバ裸線の温度が1300℃であり、これからさらに1.7m後の温度は600℃であった。)の条件で光ファイバ素線を製造した。得られた光ファイバ素線の水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.048dB/kmであった。
【0036】
以上の実施例1ないし5および比較例1の結果を、表1、表2および図2、図3に示す。
【0037】
【表1】
Figure 2004256367
【0038】
【表2】
Figure 2004256367
【0039】
図2の結果から、ファイバ入線温度が800〜1300℃の範囲であれば、水素特性がある程度改善されることが確認できる。これは、表1より、光ファイバ裸線の出口での出線温度を見ると、入線温度が1500℃、600℃の場合は、出線温度がそれぞれ1150℃、850℃であり、水素特性の改善に効果のある徐冷好適温度域である800〜1300℃の範囲で徐冷される時間が短いことが原因と考えられる。
【0040】
また、図3および表2から、ファイバ入線温度が低い場合、徐冷炉の設置位置を紡糸炉から離さなければならず、限られた建屋の高さを有効に使用することができないことがわかる。このことから、光ファイバ裸線の入線温度の下限を900℃とすることが好ましい。
【0041】
実施例6
紡糸速度1200m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、徐冷炉の位置:紡糸炉出口から1.3m、徐冷炉長1.7m、徐冷時間0.085秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバ素線の水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.018dB/kmであった。
【0042】
実施例7
紡糸速度1500m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、徐冷炉の位置:紡糸炉出口から1.3m、徐冷炉長1.7m、徐冷時間0.068秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバ素線の水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.033dB/kmであった。
【0043】
実施例8
紡糸速度800m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、徐冷炉の位置:紡糸炉出口から1.3m、徐冷炉長1.7m、徐冷時間0.13秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバ素線の水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.010dB/kmであった。
【0044】
実施例9
紡糸速度400m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、徐冷炉の位置:紡糸炉出口から1.3m、徐冷炉長1.7m、徐冷時間0.26秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバ素線の水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.007dB/kmであった。
【0045】
実施例10
紡糸速度200m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、徐冷炉の位置:紡糸炉出口から1.3m、徐冷炉長1.7m、徐冷時間0.51秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバ素線の水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.003dB/kmであった。
【0046】
以上の実施例1ないし10の結果を、表3および図4に示す。
【0047】
【表3】
Figure 2004256367
【0048】
表3および図4の結果から、水素特性の改善には、徐冷時間を0.1秒以上とすることが望ましく、0.5秒程度あれば、十分であり、0.5秒を超えて徐冷するとすれば、設備の高さが必要であり、建設コストの面からも現実的ではない。この点から徐冷時間を0.1〜0.5秒とすることが望ましい。
【0049】
【発明の効果】
以上説明したように、本発明の光ファイバ素線の製造方法によれば、溶融紡糸直後の光ファイバ裸線を徐冷炉に導入して、徐冷好適温度域で長時間にわたって徐冷するようにしているので、溶融時にガラス中に生成した非架橋酸素ホールセンターを含む欠陥が、この徐冷中に再結合して消滅し、これによって得られる光ファイバ素線の水素特性が良好なものとなる。
【0050】
また、徐冷炉の炉長をむやみに長くする必要がないので、設備的に無理がなく、既設の設備にも適用することができる。さらに、ガラス母材の種類等に限定されることがなく、広い紡糸速度に対応することができる。
【図面の簡単な説明】
【図1】本発明の製造方法に用いられる装置の一例を示す概略構成図である。
【図2】具体例の結果を示す図表である。
【図3】具体例の結果を示す図表である。
【図4】具体例の結果を示す図表である。
【図5】従来の製造方法に用いられる装置を示す概略構成図である。
【符号の説明】
1・・・紡糸炉、11・・・徐冷炉。

Claims (4)

  1. 溶融紡糸直後の光ファイバ裸線を徐冷炉に導入して徐冷したのち、さらに冷却し、これに被覆層を形成して光ファイバ素線とする際に、
    徐冷炉の温度を800〜1300℃とし、光ファイバ裸線の入線温度を900〜1300℃とすることを特徴とする光ファイバ素線の製造方法。
  2. 溶融紡糸直後の光ファイバ裸線を徐冷炉に導入して徐冷したのち、さらに冷却し、これに被覆層を形成して光ファイバ素線とする際に、
    徐冷炉の温度と光ファイバ裸線の入線温度を同一とすることを特徴とする光ファイバ素線の製造方法。
  3. 徐冷炉での徐冷時間を0.1〜0.5秒とすることを特徴とする請求項1または2記載の光ファイバ素線の製造方法。
  4. 請求項1ないし3のいずれかに記載の製造方法で製造され、水素試験(IEC60793−2準拠)後の波長1383nmでの損失増加量が0.02dB/km以下であることを特徴とする光ファイバ素線。
JP2003050988A 2003-02-27 2003-02-27 光ファイバ素線の製造方法 Pending JP2004256367A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003050988A JP2004256367A (ja) 2003-02-27 2003-02-27 光ファイバ素線の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003050988A JP2004256367A (ja) 2003-02-27 2003-02-27 光ファイバ素線の製造方法

Publications (1)

Publication Number Publication Date
JP2004256367A true JP2004256367A (ja) 2004-09-16

Family

ID=33116256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003050988A Pending JP2004256367A (ja) 2003-02-27 2003-02-27 光ファイバ素線の製造方法

Country Status (1)

Country Link
JP (1) JP2004256367A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063030A (ja) * 2005-08-29 2007-03-15 Fujikura Ltd 光ファイバ裸線の製造方法、光ファイバ素線の製造方法と製造装置並びに光ファイバ素線
JP2009298664A (ja) * 2008-06-16 2009-12-24 Fujikura Ltd 希土類添加光ファイバの製造方法
CN106199867A (zh) * 2016-08-04 2016-12-07 成都亨通光通信有限公司 一种全介质8字形自承式玻纤带光缆的生产工艺
WO2017044543A1 (en) * 2015-09-10 2017-03-16 Corning Incorporated Method and apparatus for producing an optical fiber with low fictive temperature and optical fiber so obtained

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063030A (ja) * 2005-08-29 2007-03-15 Fujikura Ltd 光ファイバ裸線の製造方法、光ファイバ素線の製造方法と製造装置並びに光ファイバ素線
JP2009298664A (ja) * 2008-06-16 2009-12-24 Fujikura Ltd 希土類添加光ファイバの製造方法
WO2017044543A1 (en) * 2015-09-10 2017-03-16 Corning Incorporated Method and apparatus for producing an optical fiber with low fictive temperature and optical fiber so obtained
CN108025943A (zh) * 2015-09-10 2018-05-11 康宁股份有限公司 生产具有低假想温度的光纤的方法和设备以及由此获得的光纤
US10221089B2 (en) 2015-09-10 2019-03-05 Corning Incorporated Optical fiber with low fictive temperature
US10696580B2 (en) 2015-09-10 2020-06-30 Corning Incorporated Optical fiber with low fictive temperature
CN108025943B (zh) * 2015-09-10 2021-04-06 康宁股份有限公司 生产具有低假想温度的光纤的方法和设备以及由此获得的光纤
CN106199867A (zh) * 2016-08-04 2016-12-07 成都亨通光通信有限公司 一种全介质8字形自承式玻纤带光缆的生产工艺

Similar Documents

Publication Publication Date Title
US20060191293A1 (en) Furnace and process for drawing radiation resistant optical fiber
US20090084141A1 (en) Single Mode Optical Fiber and Manufacturing Method Therefor
JP2005162610A (ja) 光ファイバの作製方法
JP4990430B2 (ja) 線引き中の光ファイバーの冷却方法
EP1243568A1 (en) Production device and method for optical fiber
JP2007197273A (ja) 光ファイバ素線及びその製造方法
JP4663277B2 (ja) 光ファイバ素線及びその製造方法
JP4302367B2 (ja) 光ファイバの線引き方法および線引き装置
JP2004256367A (ja) 光ファイバ素線の製造方法
JP6295234B2 (ja) 光ファイバの製造方法
JPWO2005049516A1 (ja) 光ファイバ裸線の線引方法、光ファイバ素線の製造方法、光ファイバ素線
JP4459720B2 (ja) 光ファイバ素線の製造方法
JP4400026B2 (ja) 光ファイバの製造方法
US6907757B2 (en) Drawing method of optical fiber and drawing furnace
JP2004338972A (ja) 光ファイバの製造方法及び製造装置
AU698948B2 (en) Optical fiber drawing method and apparatus
JP3511811B2 (ja) 光ファイバの製造方法
KR20020081325A (ko) 광섬유 제조를 위한 막대모양 모재와 이의 제조방법
JP2003176149A (ja) 光ファイバ素線の製造方法および装置
JP4215943B2 (ja) 光ファイバ素線の製造方法
JP2006111461A (ja) 光ファイバ製造方法
JP2002234751A (ja) 光ファイバ紡糸方法
JP2968678B2 (ja) 光ファイバの製造方法及び光ファイバ製造用紡糸炉
JP2005187285A (ja) 光ファイバの線引き方法およびその線引き装置
KR100288740B1 (ko) 금속코팅광섬유제조용냉각장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106