【0001】
【産業上の利用分野】
本発明は有機質肥料およびその製造方法に関する。詳細には、植物の生育作用に優れる有機質肥料およびその製造方法に関する。
【0002】
【従来の技術】
これまで多用されてきた化成肥料は、即効性はあるものの濃度障害による植物の成育不良や枯れ、連用による土のやせ、環境汚染等の問題を生じている。そこで、化成肥料のそのような欠点を解消するものとして、鶏フン、豚フン、牛フン、骨粉等の動物由来の有機質物や、油カス、麦かん、稲藁、落葉等の植物由来の有機質物を原料とする有機質肥料が見直されている。
【0003】
有機質肥料では、一般に、有機質肥料原料中に含まれる窒素分の一部は、堆肥化時の発酵でアンモニア態窒素、硝酸態窒素や亜硝酸態窒素などの無機態窒素となり、それらの無機態窒素が土壌中に浸み込んで植物の根から吸収されて、植物の生育を促進するとされている。発酵の進んだ有機質肥料ほど、有機質肥料原料中に含まれていた蛋白質などの有機態窒素含有物質の分解・低分子化が進んでいるために、無機態窒素の含有量が多い。そのため、完熟した有機質肥料を植物に適度に施す場合はよいが、過度に施すと、植物体中に硝酸態窒素などの無機態窒素が多量に蓄積されて、植物が軟弱になり病気になり易いと云われている。さらに、土壌中に浸透した硝酸態窒素は、土壌の酸性化や、地下水、下水、河川などの水系の酸性化を招き、環境問題に発展している。
【0004】
また、近年、植物は窒素分をアンモニア態窒素、硝酸態窒素などのような無機態で吸収するだけではなく、水溶性有機態窒素などの有機態でも吸収すること、そして植物の種類によっては、窒素分を水溶性有機態窒素などの有機態で吸収することによって、より良好な生育を示すことが知られるようになっている。水溶性の有機態窒素は、植物が吸収しても、硝酸態窒素などのような酸性の無機態窒素のような障害を示さないというメリットがある。
しかしながら、従来の方法で製造された有機質肥料は、植物が吸収し得る水溶性の有機態窒素の含有量が少なく、かかる点から、植物が吸収し得る水溶性の有機態窒素の含有量の高い有機質肥料およびそのような有機質肥料を円滑に製造する方法が求められていた。
【0005】
一方、人糞尿および/または家畜糞尿に対して、硫酸第一鉄アンモニウム、硫酸鉄、硝酸鉄、塩化鉄、鉄アンモニウムミョウバン、鉄カリウムミョウバンまたは鉄ナトリウムミョウバンと硫酸アルミニウムとの混合物の20〜25ボーメ度水溶液に硫酸を加えてpH1〜3に調整したものを添加・混合・反応させて調製したpH7.1〜7.6の水肥を、藁、おが屑、紙屑、木葉、草、籾殻、豆殻、とうもろこし殻またはそれらの混合物よりなる堆積物に散布・含浸させ、それを7日以内に堆肥として使用することが提案されている(特許文献1を参照)。
しかしながら、この従来技術で得られている堆肥では、前記した水肥を藁などの堆肥原料に散布・含浸させた後、殆ど発酵を行わずに短期間のうちにそのまま堆肥として用いているため、藁などの堆肥原料の分解や発酵が殆ど進行しておらず、植物に施しても十分な生育作用を示さず、肥効性が低い。
【0006】
【特許文献1】
特公平2−16278号公報
【0007】
【発明が解決しようとする課題】
本発明の目的は、植物が吸収し得る無機態窒素および水溶性の有機態窒素をバランス良く且つ多量に含有していて、植物に対する肥料効果が高く、植物を健全に生育することのできる、肥効性の高い有機質肥料、およびその製造方法を提供を提供することである。
【0008】
【課題を解決するための手段】
上記の目的を達成すべく、本発明者は検討を重ねてきた。その結果、有機質肥料原料に鉄化合物およびアルミニウム化合物から選ばれる少なくとも1種の金属化合物を添加して発酵を行って有機質肥料を製造すると、無機態窒素および水溶性の有機態窒素をバランス良く且つ多量に含有する肥効性の高い有機質肥料が得られることを見出した。
そして、本発明者は、有機質肥料原料に添加する前記金属化合物としては、硫酸第1鉄、硫酸第2鉄、塩化第1鉄、塩化第2鉄、フェリハイドライト、硫酸アルミニウム、ポリ塩化アルミニウムおよび水酸化アルミニウムの1種または2種以上が好ましく用いられること、また前記金属化合物の有機質肥料原料に対する添加量は、0.1〜20質量%の範囲内であることが好ましいことを見出した。
さらに、本発明者は、鉄化合物およびアルミニウム化合物のうちの少なくとも1種を添加して発酵されて得られた有機質肥料を、土壌面積10アール当たり10〜4000kgの割合で使用して植物を生育させると、植物がより良好に生育することを見出し、それらの知見に基づいて本発明を完成した。
【0009】
すなわち、本発明は、
(1) 有機質肥料原料に、鉄化合物およびアルミニウム化合物から選ばれる少なくとも1種の金属化合物を添加して発酵させることを特徴とする有機質肥料の製造方法である。
【0010】
そして、本発明は、
(2) 有機質肥料原料の質量に対して、鉄化合物およびアルミニウム化合物から選ばれる少なくとも1種の金属化合物を0.1〜20質量%の割合で添加する前記(1)の製造方法;
(3) 金属化合物が、硫酸第1鉄、硫酸第2鉄、塩化第1鉄、塩化第2鉄、フェリハイドライト、硫酸アルミニウム、ポリ塩化アルミニウムおよび水酸化アルミニウムから選ばれる少なくとも1種の金属化合物である前記(1)または(2)の製造方法;
である。
【0011】
さらに、本発明は、
(4) 前記(1)〜(3)のいずれかの製造方法で得られる有機質肥料である。
そして、本発明は、
(5) 前記(1)〜(3)のいずれかの製造方法で得られる有機質肥料を土壌面積10アール当たり10〜4000kgの割合で使用して植物を生育させる方法である。
【0012】
【発明の実施の形態】
以下に本発明について詳細に説明する。
本発明で用いる有機質肥料原料の種類は特に制限されず、有機質肥料の製造に従来から用いられている有機質肥料原料のいずれもが使用できる。
本発明で用い得る有機質肥料原料としては、例えば、鶏、豚、牛、ヤギ、羊、馬などの家禽類や家畜類などの動物の糞尿;人糞尿;活性汚泥;油カス;米ぬか、小麦フスマなどの穀類の糟糠類;モミガラ、麦かん、稲ワラ、落ち葉、樹木の伐採物、剪定枝などの植物発生材;食品残渣;家庭からの生ゴミなどを挙げることができ、これらの有機質肥料原料は単独で使用しても、または2種以上を混合使用してもよい。
そのうちでも、本発明では、有機質肥料原料として、糞尿が窒素含有量が高い点から好ましく用いられる。
【0013】
有機質肥料原料は、未発酵のものを使用してもよいし、一部発酵させたもの(予備発酵または一次発酵したもの)を使用してもよいし、または未発酵のものと一部発酵させたものを併用してももよい。
有機質肥料原料として、一部発酵させたもの(予備発酵または一次発酵させたもの)を用い、それに鉄化合物およびアルミニウム化合物から選ばれる少なくとも1種の金属化合物を添加すると、無機態窒素および水溶性の有機態窒素の含有量の高い有機質肥料を比較的短期間の発酵で製造することができる。
有機質肥料原料として、未発酵のものを用いるか又は一部発酵させたもの(一次発酵させたもの)を用いるかは、有機質肥料原料の種類、発酵条件などに応じて決めることができる。例えば、動物由来の糞尿、活性汚泥、食物残渣などのような発酵し易い有機質肥料原料を用いる場合は、未発酵のものに鉄化合物および/またはアルミニウム化合物を直接添加して発酵を行ってもよいし、または短期間(例えば1〜2週間程度)一次発酵させた後に、鉄化合物および/またはアルミニウム化合物を添加して発酵を行ってもよい。また、植物発生材のようなそれ自体で発酵しにくい有機質肥料原料を用いる場合は、一次発酵をかなり行った(例えば4〜5週間程度)後に、鉄化合物および/またはアルミニウム化合物を添加してさらに発酵を行うとよい。
一般的には、有機質肥料原料中での窒素分の含有量が、乾物換算で、0.5〜100mg/g程度[以下乾物(Dry)1g当たりの含有量を「mg/g・D」と表記する]であるときに、鉄化合物および/またはアルミニウム化合物を添加して発酵を行うと、無機態窒素および水溶性の有機態窒素をバランス良く且多く含有する有機質肥料を円滑に製造することができるので好ましい。
【0014】
有機質肥料原料に添加する鉄化合物およびアルミニウム化合物としては、有機質肥料原料中および/または土壌中で、鉄イオンまたはアルミニウムイオンを発生する鉄化合物およびアルミニウム化合物のいずれもが使用できる。そのうちでも、鉄化合物の好ましい具体例としては、硫酸第1鉄、硫酸第2鉄、塩化第1鉄、塩化第2鉄、フェリハイドライトを挙げることができる。また、アルミニウム化合物の好ましい具体例としては、硫酸アルミニウム、ポリ塩化アルミニウム、水酸化アルミニウムを挙げることができる。
本発明では、前記した鉄化合物およびアルミニウム化合物のうちの少なくとも1種を用いることができ、例えば、1種類の鉄化合物を使用してもよいし、2種類以上の鉄化合物を使用してもよいし、1種類のアルミニウム化合物を使用してもよいし、2種以上のアルミニウム化合物を使用してもよいし、或いは1種または2種以上の鉄化合物と1種または2種以上のアルミニウム化合物を併用してもよい。
【0015】
有機質肥料原料に対する鉄化合物および/またはアルミニウム化合物の添加量は、有機質肥料原料の種類や性状、鉄化合物および/またはアルミニウム化合物の種類などの応じて調整し得るが、一般的には、有機質肥料原料の質量に対して、鉄化合物およびアルミニウム化合物から選ばれる少なくとも1種の金属化合物を0.1〜20質量%の割合で添加することが、無機態窒素および水溶性の有機態窒素をバランス良く且つ多量に含有する肥効性に優れる有機質肥料が円滑に得られる点から好ましく、1〜5質量%の割合で添加することがより好ましい。前記した好ましい添加量は、2種類以上の鉄化合物および/またはアルミニウム化合物を用いる場合はそれらの合計添加量をいう。
鉄化合物および/またはアルミニウム化合物の添加量が0.1質量%未満であると、有機質肥料中の無機態窒素および水溶性の有機態窒素の含有量が少なくなり、一方鉄化合物および/またはアルミニウム化合物の添加量が20質量%を超えると発酵が行われにくくなり易い。
【0016】
本発明の方法により得られる有機質肥料に含まれる水溶性の有機態窒素としては、何ら限定されるものではないが、例えば、水溶性蛋白質類、水溶性ペプチド類(ポリペプチド、オリゴペプチドなど)、水溶性アミノ酸類、尿素、尿酸やそれらの誘導体中に含まれる窒素分などを挙げることができる。水溶性の有機態窒素は、植物の根などを通して植物に吸収されて、無機態窒素と同様に、植物の生育促進に寄与する。
【0017】
有機質肥料原料には、必要に応じて、ゼオライト、バーミキュライトなどの鉱物材料、木炭、クン炭、モミガラ炭、活性炭、骨炭などの炭類、リン源、カリウム源となる無機質肥料成分などの有機質肥料の製造に従来から用いられている各種添加材、有機質肥料原料の発酵を促進するための各種有用微生物資材などを添加してもよい。
【0018】
有機質肥料原料に、鉄化合物およびアルミニウム化合物から選ばれる少なくとも1種の金属化合物を、必要に応じて他の添加材と共に添加して、それら有機質肥料原料中に均一に分散・混合して、発酵を行う。
発酵は、有機質肥料原料の水分含量を30〜75質量%、特に55〜65質量%に調節して行うことが好ましい。
水分含量が少な過ぎると、発酵温度が急激に上昇して有効成分であるチッソ分等の揮発や有用微生物の死滅を招き易くなり、一方多すぎると発酵時に温度が上がらず、発酵が不十分になり易い。発酵の途中で必要に応じて水を供給して、前記した水分含量になるようにするのがよい。
【0019】
発酵温度は、約20〜70℃、特に60〜70℃であることが好ましい。発酵温度が低すぎると、発酵を司る有用微生物の増殖が十分に行われなくなって、肥効性成分への分解が不十分になる。一方、発酵温度が高すぎると、発酵を司る有用微生物の死滅、チッソ分等の揮散などを招き易くなる。発酵温度の調整は、発酵を行う雰囲気温度の調整、発酵の途中での有機質肥料原料の切り返し(撹拌)、水分の調整などによって行うことができる。
【0020】
また、発酵は、pH6〜10の条件下で行うことが好ましく、pH7〜9の条件下で行うことがより好ましい。発酵時のpHが6よりも低いと発酵を促進する有用微生物の増殖が行われにくくなり、発酵が停止し易くなる。一方pHが10よりも高くても、発酵を促進する有用微生物の増殖が行われにくくなったり、腐敗が生じ易くなる。
pHの調整は、使用する有機質肥料原料の種類や性状などに応じて、有機質肥料原料に、消石灰、炭酸カルシウムなどの塩基性資材やリン酸、リン酸一ナトリウム、リン酸二ナトリウムなどの酸性資材添加することによって行うことができる。
【0021】
発酵時間は、有機質肥料原料の種類、性状、有機質肥料への鉄化合物および/またはアルミニウム化合物の添加量、発酵条件などの応じて調整できるが、一般的には、上記した条件で、好気性下に、4〜12週間程度発酵を行うことによって、無機態窒素と水溶性の有機態窒素をバランス良く且つ多量に含有する肥効性に優れる本発明の有機質肥料を得ることができる。
【0022】
有機質肥料における無機態窒素および水溶性の有機態窒素の含有量は、有機質肥料を施肥する植物の種類、施用時期などに応じて適当な含有量を選択することができる。
【0023】
本発明により得られる有機質肥料は、草花、野菜、稲、麦、豆類、樹木、果樹等のいずれの植物に対しても有効に使用できる。特に、本発明の有機質肥料を、トウモロコシ、ホウレンソウ、コマツナ、イネ、チンゲンサイ、カブ、ニンジンなどにの作物に施用すると、有機質肥料中に含まれる無機態窒素および水溶性の有機態窒素がこれらの作物に良好に摂取されて、極めて良好に生育させることができる。
【0024】
【実施例】
以下に実施例などにより本発明について具体的に説明するが、本発明は以下の例により何ら限定されない。
以下の例で製造した有機質肥料における全窒素含量、無機態窒素の含有量および水溶性の有機態窒素の含有量並びに有機質肥料を施した土壌中における無機態窒素の含有量および水溶性の有機態窒素の含有量は、以下のようにして測定した。
【0025】
(1)有機質肥料における全窒素含量(mg/g・D):
下記の(a)の硫酸法で求めた窒素含有量と、下記の(c)の方法で求めた硝酸態窒素含量を合計して、有機質肥料における全窒素含有量(mg/g・D)とした。
(a)硫酸法による有機質肥料の窒素含有量の測定:
試料(有機質肥料)0.5gを採取し、これに分解触媒(日本ゼネラル株式会社製「ケルタブC」)1個と硫酸4mlを加えて、400℃で30分〜1時間加熱処理して分解し、緑色になった時点で加熱分解を終了した。放冷後、蒸留水40mlを加え、それにより得られた試料水溶液を用いて、日本ゼネラル株式会社製の蒸留・分析装置「KJELTEC AUTO 1030 Analiyzer」を使用して、窒素含有量(mg/g・D)を測定した。
(b)有機質肥料における水溶性のアンモニア態窒素含有量の測定:
試料(有機質肥料)1gを採取し、これに2N塩化カリウム水溶液40mlを加えて、30分間振とうした後、遠心分離(3000rpmで10分間)し、上澄み液を濾過して濾液を回収し、それにより得られた濾液を用いて、前記(a)で使用したのと同じ蒸留・分析装置を使用して、アンモニア態窒素含有量(mg/g・D)を測定した。
(c)有機質肥料における硝酸態窒素含有量の測定:
上記(b)でアンモニア態窒素含有量を測定した溶液に、デバルタ合金3.5gを入れ、上記(a)で使用したのと同じ蒸留・分析装置を使用して、硝酸態窒素含有量(mg/g・D)を測定した。
【0026】
(2)有機質肥料における無機態窒素含有量:
上記(1)の(b)で測定したアンモニア態窒素含有量と、上記(1)の(c)で測定した硝酸態窒素含有量を合計して、有機質肥料における無機態度窒素含有量(mg/g・D)とした。
【0027】
(3)有機質肥料における水溶性の有機態窒素の含有量の測定:
(a) 試料(有機質肥料)1gを採取し、これに1/15Mリン酸緩衝液40mlを加えて、1時間振とうした後、遠心分離(3000rpmで10分間)し、上澄み液を濾過して濾液を回収し、それにより得られた濾液の一部を用いて、上記(1)の(a)で使用したのと同じ蒸留・分析装置を使用して、アンモニア態窒素含有量(mg/g・D)を測定した。
(b) 更に、上記(a)で回収した濾液の別の一部を用いて、上記(1)の(a)と同じ方法(硫酸法)によって、濾液中の窒素含有量(mg/g・D)を測定し、この(b)の測定で得られた窒素含有量(mg/g・D)の値から、前記(a)で得られたアンモニア態窒素含有量(mg/g・D)の値を差し引いて、水溶性の有機態度窒素の含有量とした。
【0028】
(4)有機質肥料を施した土壌中における無機態窒素の含有量:
有機質肥料を施した土壌を試料として用いて、試料の採取量を10gとし、加える2N塩化カリウム水溶液量を10mlとし、それ以外は上記(1)と同様にしてアンモニア態窒素含有量(mg/g・D)と硝酸態窒素含有量(mg/g・D)をそれぞれ測定し、そのアンモニア態窒素含有量(mg/g・D)と硝酸態窒素含有量(mg/g・D)を合計して、土壌中における無機態窒素の含有量(mg/g・D)とした。
【0029】
(5)有機質肥料を施した土壌中における水溶性の有機態窒素の含有量:
有機質肥料を施した土壌を試料として用いて、試料の採取量を10gとし、加える1/15Mリン酸緩衝液量を100mlとし、それ以外は上記(3)と同様にして、土壌中における水溶性の有機態窒素の含有量(mg/g・D)を求めた。
【0030】
《実施例1》
個液分離した豚糞100質量部に、硫酸第一鉄5質量部を添加して均一に分散させ、消石灰を用いてpH7.7に調整した後、堆積して、外気温15〜25℃下で3カ月発酵させて(途中1、2、3、4、5、8および10週間目に切り返しを行った)、有機質肥料を製造した。これにより得られた有機質肥料における全窒素含量、無機態窒素の含有量および水溶性の有機態窒素の含有量を上記した方法で測定したところ、それぞれ63.7mg/g・D、1.5mg/g・Dおよび8.5mg/g・Dであった。
【0031】
《実施例2》
実施例1で使用したのと同じ豚糞100質量部に、硫酸第二鉄5質量部を添加した以外は実施例1と同様にして有機質肥料を製造した。これにより得られた有機質肥料における全窒素含量、無機態窒素の含有量および水溶性の有機態窒素の含有量を上記した方法で測定したところ、それぞれ61.2mg/g・D、0.6mg/g・Dおよび4.8mg/g・Dであった。
【0032】
《実施例3》
実施例1で使用したのと同じ豚糞100質量部に、塩化第二鉄5質量部を添加した以外は実施例1と同様にして有機質肥料を製造した。これにより得られた有機質肥料における全窒素含量、無機態窒素の含有量および水溶性の有機態窒素の含有量を上記した方法で測定したところ、それぞれ58.5mg/g・D、12.2mg/g・Dおよび7.6mg/g・Dであった。
【0033】
《実施例4》
実施例1で使用したのと同じ豚糞100質量部に、硫酸アルミニウム5質量部を添加した以外は実施例1と同様にして有機質肥料を製造した。
【0034】
《実施例5》
実施例1で使用したのと同じ豚糞100質量部に、ポリ塩化アルミニウム5質量部を添加した以外は実施例1と同様にして有機質肥料を製造した。これにより得られた有機質肥料における全窒素含量、無機態窒素の含有量および水溶性の有機態窒素の含有量を上記した方法で測定したところ、それぞれ57.8mg/g・D、3.5mg/g・Dおよび5.3mg/g・Dであった。
【0035】
《対照例1》
実施例1で使用したのと同じ豚糞を、鉄化合物およびアルミニウム化合物を添加せずに、pH調整のみを行って、実施例1と同様にして発酵させて有機質肥料を製造した。これにより得られた有機質肥料における全窒素含量、無機態窒素の含有量および水溶性の有機態窒素の含有量を上記した方法で測定したところ、それぞれ66.2mg/g・D、0.2mg/g・Dおよび4.5mg/g・Dであった。
【0036】
《試験例1》[トウモロコシの生育試験]
(1) 砂と黄色土壌とが80:20(質量比)で混ざった土壌に、実施例1〜5および対照例1で製造した有機質肥料のそれぞれを土壌面積10アール当たり窒素量が25kgになるように施すと共に、過燐酸石灰を10アール当たり30kgおよび硫酸カリを10アール当たり30kgの割合で施して、植物栽培用の土壌をそれぞれ調製した。
(2) 上記(1)で調製したそれぞれの土壌800gを計り採り、それを直径105mm、深さ75mmのビニールポットにそれぞれ充填し、そこに、有機質肥料を施してない土壌[上記(1)で用いた砂:黄色土壌=80:20の混合土壌]で予め2週間育苗しておいたトウモロコシ苗2本を移植して6週間栽培し、6週間後に苗の地上部分の重さ(苗2本の合計)を測定したところ、下記の表1に示すとおりであった。
【0037】
《試験例2》[ホウレン草の生育試験]
試験例1の(1)で調製したそれぞれの土壌800gを計り採り、それを直径105mm、深さ75mmのビニールポットにそれぞれ充填し、そこに、有機質肥料を施してない土壌[上記(1)で用いた砂:黄色土壌=80:20の混合土壌]で予め2週間育苗しておいたホウレン草2本を移植して6週間栽培し、6週間後の苗の地上部分の重さ(苗2本の合計)を測定したところ、下記の表1に示すとおりであった。
【0038】
《試験例3》[土壌中の窒素含有量の測定]
(1) 試験例1の(1)で調製したそれぞれの土壌800gを計り採り、それを直径105mm、深さ75mmのビニールポットにそれぞれ充填し、植物の苗は移植せず、最大容水量の60%を保つように調整して加水した。
(2) 6週間後に、土壌中における無機態窒素の含有量および水溶性の有機態窒素の含有量を上記した方法で測定したところ、下記の表1に示すとおりであった。
【0039】
【表1】
【0040】
上記の表1の結果にみるように、鉄化合物またはアルミニウム化合物からなる金属化合物を添加して発酵を行って製造した実施例1〜5の有機質肥料を施した土壌では、土壌中での無機態窒素の含有量および水溶性の有機態窒素の含有量が、鉄化合物およびアルミニウム化合物のいずれをも添加せずに発酵して製造した対照例1の有機質肥料を施した土壌に比べて高くなっていて、トウモロコシおよびホウレン草の生育が促進された。
【0041】
【発明の効果】
本発明による場合は、植物の生育促進効果の高い、無機態窒素および水溶性の有機態窒素がバランス良く且つ多量に含まれる肥効性に優れる有機質肥料を円滑に製造することができる。
本発明により得られる有機質肥料は植物の生育に有用な無機態窒素および水溶性の有機態窒素の含有率が高いので、従来よりも土壌に施す全窒素分を低減することができ、それによって無機態窒素の蓄積に伴う植物の生育障害、酸性の無機態窒素の土壌への浸透による土壌の酸性化、下水、地下水、河川などへの流入による環境汚染を軽減することができる。[0001]
[Industrial applications]
The present invention relates to an organic fertilizer and a method for producing the same. Specifically, the present invention relates to an organic fertilizer excellent in plant growth and a method for producing the same.
[0002]
[Prior art]
Chemical fertilizers that have been widely used up to now have immediate effects, but have problems such as poor plant growth or withering due to concentration disturbance, thinning of soil due to continuous use, and environmental pollution. Therefore, to overcome such drawbacks of chemical fertilizers, organic matter derived from animals such as chicken dung, pork dung, cow dung, bone meal, and plant-derived organic matter such as oily scum, wheat cane, rice straw, and deciduous leaves. Organic fertilizers made from raw materials are being reviewed.
[0003]
In organic fertilizers, in general, a part of nitrogen contained in the raw material of organic fertilizer becomes inorganic nitrogen such as ammonia nitrogen, nitrate nitrogen and nitrite nitrogen during fermentation during composting, and the inorganic nitrogen Is said to penetrate into the soil and be absorbed from the roots of the plant, promoting plant growth. The more fermented organic fertilizer, the higher the decomposition and lower molecular weight of organic nitrogen-containing substances such as proteins contained in the raw material of organic fertilizer, so that the content of inorganic nitrogen is larger. Therefore, it is good to apply a mature organic fertilizer to the plant moderately, but if it is applied excessively, a large amount of inorganic nitrogen such as nitrate nitrogen is accumulated in the plant body, the plant becomes soft and easily becomes ill. It is said. Furthermore, nitrate nitrogen that has penetrated into soil causes acidification of soil and acidification of water systems such as groundwater, sewage, and rivers, and is developing environmental problems.
[0004]
In recent years, plants have not only absorbed nitrogen in inorganic forms such as ammonia nitrogen and nitrate nitrogen, but also in organic forms such as water-soluble organic nitrogen, and depending on the type of plant, It has been known that by absorbing nitrogen in an organic state such as water-soluble organic nitrogen, better growth is exhibited. Water-soluble organic nitrogen has the merit that, even when absorbed by plants, it does not exhibit the obstacles of acidic inorganic nitrogen such as nitrate nitrogen.
However, the organic fertilizer produced by the conventional method has a low content of water-soluble organic nitrogen that can be absorbed by plants, and from this point, the content of water-soluble organic nitrogen that can be absorbed by plants is high. There has been a need for an organic fertilizer and a method for producing such an organic fertilizer smoothly.
[0005]
On the other hand, for human manure and / or livestock manure, 20 to 25 Baume of ammonium ferrous sulfate, iron sulfate, iron nitrate, iron chloride, iron ammonium alum, iron potassium alum or a mixture of iron sodium alum and aluminum sulfate is used. The aqueous fertilizer of pH 7.1 to 7.6 prepared by adding, mixing and reacting the aqueous solution adjusted to pH 1 to 3 by adding sulfuric acid to straw, sawdust, paper waste, tree leaves, grass, chaff, bean husk, It has been proposed to spray and impregnate corn husks or sediments composed of a mixture thereof and use them as compost within 7 days (see Patent Document 1).
However, in the compost obtained by this conventional technique, since the above-mentioned water fertilizer is sprayed and impregnated into a compost material such as straw, the fertilizer is used as it is in a short period of time without fermentation. Decomposition and fermentation of such compost raw materials have hardly progressed, and when applied to plants, they do not show a sufficient growth effect and have low fertilizing efficiency.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 2-16278
[Problems to be solved by the invention]
An object of the present invention is to provide a fertilizer that contains a large amount of inorganic nitrogen and water-soluble organic nitrogen that can be absorbed by plants in a well-balanced manner, has a high fertilizer effect on plants, and can grow plants healthy. It is to provide a highly effective organic fertilizer and a method for producing the same.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present inventor has repeatedly studied. As a result, when an organic fertilizer is manufactured by adding at least one metal compound selected from iron compounds and aluminum compounds to an organic fertilizer raw material and performing fermentation, the inorganic nitrogen and the water-soluble organic nitrogen are well-balanced and abundant. It has been found that an organic fertilizer having high fertilizing effect can be obtained.
The inventor has proposed that the metal compound to be added to the organic fertilizer raw material includes ferrous sulfate, ferric sulfate, ferrous chloride, ferric chloride, ferrihydrite, aluminum sulfate, polyaluminum chloride, and the like. It has been found that one or more aluminum hydroxides are preferably used, and that the amount of the metal compound added to the organic fertilizer raw material is preferably in the range of 0.1 to 20% by mass.
Furthermore, the present inventors use an organic fertilizer obtained by fermentation by adding at least one of an iron compound and an aluminum compound at a ratio of 10 to 4000 kg per 10 ares of soil to grow plants. And found that the plant grows better, and completed the present invention based on those findings.
[0009]
That is, the present invention
(1) A method for producing an organic fertilizer, wherein at least one metal compound selected from an iron compound and an aluminum compound is added to a raw material of the organic fertilizer and fermented.
[0010]
And the present invention
(2) The method according to (1), wherein at least one metal compound selected from an iron compound and an aluminum compound is added at a ratio of 0.1 to 20% by mass relative to the mass of the organic fertilizer raw material;
(3) The metal compound is at least one metal compound selected from ferrous sulfate, ferric sulfate, ferrous chloride, ferric chloride, ferrihydrite, aluminum sulfate, polyaluminum chloride and aluminum hydroxide. The method according to (1) or (2) above,
It is.
[0011]
Further, the present invention provides
(4) An organic fertilizer obtained by the production method according to any one of (1) to (3).
And the present invention
(5) A method of growing a plant using the organic fertilizer obtained by any one of the above-mentioned production methods (1) to (3) at a rate of 10 to 4000 kg per 10 ares of soil area.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The type of the organic fertilizer raw material used in the present invention is not particularly limited, and any of the organic fertilizer raw materials conventionally used for the production of the organic fertilizer can be used.
Examples of the organic fertilizer raw material that can be used in the present invention include manure of animals such as poultry and livestock such as chickens, pigs, cows, goats, sheep and horses; human manure; activated sludge; oily scum; rice bran and wheat bran Cereals such as cereals; plant material such as firgrass, wheat cane, rice straw, fallen leaves, cut down trees, pruned branches, etc .; food residues; garbage from homes; May be used alone or as a mixture of two or more.
Among them, in the present invention, manure is preferably used as an organic fertilizer raw material because of its high nitrogen content.
[0013]
Organic fertilizer raw materials may be unfermented, partially fermented (preliminary or primary fermented), or unfermented and partially fermented. May be used in combination.
When partially fermented (preliminarily fermented or primary fermented) is used as an organic fertilizer raw material and at least one metal compound selected from iron compounds and aluminum compounds is added thereto, inorganic nitrogen and water-soluble An organic fertilizer having a high content of organic nitrogen can be produced by fermentation for a relatively short period of time.
Whether to use unfermented or partially fermented (primarily fermented) organic fertilizer materials can be determined according to the type of organic fertilizer materials, fermentation conditions, and the like. For example, when using an organic fertilizer raw material that is easily fermented such as animal-derived manure, activated sludge, food residue, or the like, fermentation may be performed by directly adding an iron compound and / or an aluminum compound to unfermented one. Alternatively, after primary fermentation for a short period (for example, about 1 to 2 weeks), fermentation may be performed by adding an iron compound and / or an aluminum compound. In addition, when an organic fertilizer material that is difficult to ferment by itself, such as a plant-generating material, is used, after a primary fermentation is performed considerably (for example, about 4 to 5 weeks), an iron compound and / or an aluminum compound is added. Fermentation should be performed.
Generally, the content of nitrogen in the organic fertilizer material is about 0.5 to 100 mg / g in terms of dry matter [hereinafter, the content per 1 g of dry matter (Dry) is referred to as “mg / g · D”. When the fermentation is carried out by adding an iron compound and / or an aluminum compound, the organic fertilizer containing inorganic nitrogen and water-soluble organic nitrogen in a well-balanced and large amount can be produced smoothly. It is preferable because it is possible.
[0014]
As the iron compound and the aluminum compound to be added to the organic fertilizer raw material, any of an iron compound and an aluminum compound that generate iron ions or aluminum ions in the organic fertilizer raw material and / or in the soil can be used. Among them, preferred specific examples of the iron compound include ferrous sulfate, ferric sulfate, ferrous chloride, ferric chloride, and ferrihydrite. Preferred specific examples of the aluminum compound include aluminum sulfate, polyaluminum chloride and aluminum hydroxide.
In the present invention, at least one of the above-described iron compounds and aluminum compounds can be used. For example, one iron compound may be used, or two or more iron compounds may be used. And one aluminum compound may be used, two or more aluminum compounds may be used, or one or two or more iron compounds and one or two or more aluminum compounds are used. You may use together.
[0015]
The amount of the iron compound and / or aluminum compound added to the organic fertilizer raw material can be adjusted according to the type and properties of the organic fertilizer raw material, the type of the iron compound and / or the aluminum compound, and generally, the organic fertilizer raw material The addition of at least one metal compound selected from an iron compound and an aluminum compound at a ratio of 0.1 to 20% by mass with respect to the mass of inorganic nitrogen and water-soluble organic nitrogen with a good balance. It is preferable from the viewpoint that an organic fertilizer excellent in fertilizing effect contained in a large amount can be obtained smoothly, and it is more preferable to add it at a ratio of 1 to 5% by mass. When two or more kinds of iron compounds and / or aluminum compounds are used, the preferable addition amount described above refers to the total addition amount thereof.
When the addition amount of the iron compound and / or the aluminum compound is less than 0.1% by mass, the content of the inorganic nitrogen and the water-soluble organic nitrogen in the organic fertilizer decreases, while the iron compound and / or the aluminum compound are reduced. If the amount exceeds 20% by mass, fermentation is difficult to be performed.
[0016]
Examples of the water-soluble organic nitrogen contained in the organic fertilizer obtained by the method of the present invention include, but are not limited to, water-soluble proteins, water-soluble peptides (such as polypeptides and oligopeptides), Examples thereof include nitrogen contained in water-soluble amino acids, urea, uric acid and derivatives thereof. Water-soluble organic nitrogen is absorbed by plants through plant roots and the like, and contributes to plant growth promotion, like inorganic nitrogen.
[0017]
Organic fertilizer raw materials include, as necessary, mineral materials such as zeolite and vermiculite, charcoal such as charcoal, kun charcoal, burrow charcoal, activated carbon and bone charcoal; Various additives conventionally used in the production, various useful microbial materials for promoting the fermentation of the organic fertilizer raw material, and the like may be added.
[0018]
At least one metal compound selected from an iron compound and an aluminum compound is added to the organic fertilizer raw material together with other additives as necessary, and uniformly dispersed and mixed in the organic fertilizer raw material to perform fermentation. Do.
The fermentation is preferably performed by adjusting the water content of the organic fertilizer raw material to 30 to 75% by mass, particularly 55 to 65% by mass.
If the water content is too low, the fermentation temperature rises sharply and the active ingredients such as nitrogen tend to volatilize and kill useful microorganisms.On the other hand, if the water content is too high, the temperature does not rise during fermentation, resulting in insufficient fermentation. Easy to be. During the fermentation, it is preferable to supply water as needed so that the above-mentioned water content is obtained.
[0019]
The fermentation temperature is preferably about 20-70C, especially 60-70C. If the fermentation temperature is too low, the useful microorganisms responsible for fermentation will not be sufficiently grown, and the decomposition into fertilizer-effective components will be insufficient. On the other hand, if the fermentation temperature is too high, the useful microorganisms responsible for fermentation are likely to be killed, and the volatilization of nitrogen and the like is likely to occur. The adjustment of the fermentation temperature can be performed by adjusting the temperature of the atmosphere in which the fermentation is performed, turning back (stirring) the organic fertilizer raw material during the fermentation, adjusting the water content, and the like.
[0020]
Further, the fermentation is preferably performed under the condition of pH 6 to 10, more preferably under the condition of pH 7 to 9. When the pH during fermentation is lower than 6, it becomes difficult for useful microorganisms that promote fermentation to grow, and fermentation is easily stopped. On the other hand, even when the pH is higher than 10, useful microorganisms that promote fermentation are hardly proliferated, and decay is likely to occur.
Adjustment of pH depends on the type and properties of the organic fertilizer raw materials to be used, and the organic fertilizer raw materials include basic materials such as slaked lime and calcium carbonate and acidic materials such as phosphoric acid, monosodium phosphate and disodium phosphate. It can be performed by adding.
[0021]
The fermentation time can be adjusted according to the type and properties of the raw material of the organic fertilizer, the amount of the iron compound and / or the aluminum compound added to the organic fertilizer, the fermentation conditions, and the like. Furthermore, by conducting fermentation for about 4 to 12 weeks, it is possible to obtain the organic fertilizer of the present invention which contains inorganic nitrogen and water-soluble organic nitrogen in a well-balanced manner and has a good fertilizing effect.
[0022]
The content of inorganic nitrogen and water-soluble organic nitrogen in the organic fertilizer can be appropriately selected according to the type of plant to which the organic fertilizer is applied, the application time, and the like.
[0023]
The organic fertilizer obtained by the present invention can be effectively used for any plants such as flowers, vegetables, rice, wheat, beans, trees, and fruit trees. In particular, when the organic fertilizer of the present invention is applied to crops such as corn, spinach, komatsuna, rice, bok choy, turnip, carrot, etc., inorganic nitrogen and water-soluble organic nitrogen contained in the organic fertilizer can be used for these crops. And can be grown very well.
[0024]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples and the like, but the present invention is not limited to the following Examples.
Total nitrogen content, inorganic nitrogen content and water-soluble organic nitrogen content in organic fertilizers produced in the following examples, and inorganic nitrogen content and water-soluble organic state in soils treated with organic fertilizer The nitrogen content was measured as follows.
[0025]
(1) Total nitrogen content (mg / g · D) in organic fertilizer:
The total nitrogen content (mg / g · D) in the organic fertilizer is obtained by summing the nitrogen content obtained by the following sulfuric acid method in (a) and the nitrate nitrogen content obtained by the following method (c). did.
(A) Measurement of nitrogen content of organic fertilizer by sulfuric acid method:
0.5 g of a sample (organic fertilizer) is collected, and one decomposition catalyst ("Keltab C" manufactured by Nippon General Co., Ltd.) and 4 ml of sulfuric acid are added thereto, and the mixture is heated at 400 ° C. for 30 minutes to 1 hour to be decomposed. When it turned green, the thermal decomposition was terminated. After cooling, 40 ml of distilled water was added, and the nitrogen solution (mg / g · g / g · g) was obtained using a sample solution obtained by using a distillation / analysis device “KJELTEC AUTO 1030 Analyzer” manufactured by Japan General Co., Ltd. D) was measured.
(B) Measurement of water-soluble ammonia nitrogen content in organic fertilizer:
1 g of a sample (organic fertilizer) is collected, 40 ml of a 2N aqueous potassium chloride solution is added thereto, shaken for 30 minutes, centrifuged (3,000 rpm for 10 minutes), and the supernatant is filtered to collect the filtrate. Using the filtrate obtained in the above, the ammonia nitrogen content (mg / g · D) was measured using the same distillation / analysis apparatus as used in the above (a).
(C) Measurement of nitrate nitrogen content in organic fertilizer:
Into the solution whose ammonia nitrogen content was measured in the above (b), 3.5 g of the Devarta alloy was added, and the nitrate nitrogen content (mg) was measured using the same distillation / analysis apparatus used in the above (a). / G · D) was measured.
[0026]
(2) Content of inorganic nitrogen in organic fertilizer:
The ammonia nitrogen content measured in (b) of the above (1) and the nitrate nitrogen content measured in the above (1) (c) are summed to obtain an inorganic nitrogen content (mg / mg) in the organic fertilizer. g · D).
[0027]
(3) Measurement of the content of water-soluble organic nitrogen in organic fertilizer:
(A) 1 g of a sample (organic fertilizer) was collected, 40 ml of a 1/15 M phosphate buffer was added thereto, shaken for 1 hour, centrifuged (3,000 rpm for 10 minutes), and the supernatant was filtered. The filtrate was recovered, and a part of the filtrate obtained was used to obtain the ammonia nitrogen content (mg / g) using the same distillation / analysis apparatus as used in (a) of (1) above. -D) was measured.
(B) Further, using another part of the filtrate recovered in the above (a), the nitrogen content (mg / g · g) in the filtrate is obtained by the same method (sulfuric acid method) as in (a) of the above (1). D) is measured, and from the value of the nitrogen content (mg / g · D) obtained in the measurement of (b), the ammonia nitrogen content (mg / g · D) obtained in (a) is obtained. Was subtracted to give the content of water-soluble organic attitude nitrogen.
[0028]
(4) Content of inorganic nitrogen in the soil treated with organic fertilizer:
Using the soil to which the organic fertilizer was applied as a sample, the amount of the collected sample was 10 g, the amount of the added 2N potassium chloride aqueous solution was 10 ml, and the other conditions were the same as in (1) above, except for the ammonia nitrogen content (mg / g). D) and the content of nitrate nitrogen (mg / g · D) were measured, and the ammonia content (mg / g · D) and the nitrate nitrogen content (mg / g · D) were totaled. Thus, the content of inorganic nitrogen in the soil (mg / g · D) was determined.
[0029]
(5) Content of water-soluble organic nitrogen in soil to which organic fertilizer has been applied:
Using the soil to which the organic fertilizer was applied as a sample, the amount of the collected sample was 10 g, the amount of the added 1/15 M phosphate buffer was 100 ml, and the water solubility in the soil was the same as in (3) above. The content (mg / g · D) of organic nitrogen was determined.
[0030]
<< Example 1 >>
5 parts by mass of ferrous sulfate was added to 100 parts by mass of the pig droppings separated into individual liquids, uniformly dispersed and adjusted to pH 7.7 using slaked lime, and then deposited, at an ambient temperature of 15 to 25 ° C. For 3 months (returned at 1, 2, 3, 4, 5, 8, and 10 weeks on the way) to produce an organic fertilizer. The total nitrogen content, the content of inorganic nitrogen and the content of water-soluble organic nitrogen in the organic fertilizer thus obtained were measured by the methods described above, and were 63.7 mg / g · D and 1.5 mg / g, respectively. g · D and 8.5 mg / g · D.
[0031]
<< Example 2 >>
An organic fertilizer was produced in the same manner as in Example 1 except that 5 parts by mass of ferric sulfate was added to 100 parts by mass of the same pig droppings as used in Example 1. The total nitrogen content, the content of inorganic nitrogen and the content of water-soluble organic nitrogen in the organic fertilizer thus obtained were measured by the methods described above, and were 61.2 mg / g · D and 0.6 mg / g, respectively. gD and 4.8 mg / gD.
[0032]
<< Example 3 >>
An organic fertilizer was produced in the same manner as in Example 1 except that 5 parts by mass of ferric chloride was added to 100 parts by mass of the same pig dung as used in Example 1. The total nitrogen content, the content of inorganic nitrogen, and the content of water-soluble organic nitrogen in the obtained organic fertilizer were measured by the methods described above, and were 58.5 mg / g · D and 12.2 mg / g, respectively. gD and 7.6 mg / gD.
[0033]
<< Example 4 >>
An organic fertilizer was manufactured in the same manner as in Example 1 except that 5 parts by mass of aluminum sulfate was added to 100 parts by mass of the same pig dung as used in Example 1.
[0034]
<< Example 5 >>
An organic fertilizer was produced in the same manner as in Example 1, except that 5 parts by mass of polyaluminum chloride was added to 100 parts by mass of the same pig droppings as used in Example 1. The total nitrogen content, the content of inorganic nitrogen and the content of water-soluble organic nitrogen in the organic fertilizer thus obtained were measured by the methods described above, and were 57.8 mg / g · D and 3.5 mg / g, respectively. g · D and 5.3 mg / g · D.
[0035]
<< Comparative Example 1 >>
The same pig droppings as used in Example 1 were fermented in the same manner as in Example 1 except that only the pH was adjusted without adding an iron compound and an aluminum compound, thereby producing an organic fertilizer. The total nitrogen content, the content of inorganic nitrogen and the content of water-soluble organic nitrogen in the organic fertilizer thus obtained were measured by the above-mentioned methods, and were 66.2 mg / g · D and 0.2 mg / g, respectively. g · D and 4.5 mg / g · D.
[0036]
<< Test Example 1 >> [Growth test of corn]
(1) Each of the organic fertilizers manufactured in Examples 1 to 5 and Comparative Example 1 was mixed with sand and yellow soil at a ratio of 80:20 (mass ratio) to a soil amount of 25 kg per 10 ares of soil area. In addition, the soil for plant cultivation was prepared by applying lime perphosphate at a rate of 30 kg per 10 ares and potassium sulfate at a rate of 30 kg per 10 ares.
(2) Take 800 g of each soil prepared in the above (1), fill them into vinyl pots with a diameter of 105 mm and a depth of 75 mm, and put the soil on which no organic fertilizer is applied [in the above (1) Sand: yellow soil = mixed soil of 80:20], two corn seedlings that had been raised in advance for 2 weeks were transplanted and cultivated for 6 weeks. After 6 weeks, the weight of the above-ground portion of the seedlings (2 seedlings) Was measured, and the results were as shown in Table 1 below.
[0037]
<< Test Example 2 >> [Spinach growth test]
800 g of each soil prepared in (1) of Test Example 1 was weighed, and each was filled into a vinyl pot having a diameter of 105 mm and a depth of 75 mm, and the soil to which no organic fertilizer was applied [the above (1) Sand: yellow soil = mixed soil of 80:20], two spinach plants that had been raised in advance for 2 weeks were transplanted and cultivated for 6 weeks, and the weight of the above-ground portion of the seedlings after 6 weeks (2 seedlings) Was measured, and the results were as shown in Table 1 below.
[0038]
<< Test Example 3 >> [Measurement of nitrogen content in soil]
(1) 800 g of each soil prepared in (1) of Test Example 1 was weighed and filled in a plastic pot having a diameter of 105 mm and a depth of 75 mm, and a plant seedling was not transplanted. % And water was added.
(2) Six weeks later, the content of inorganic nitrogen and the content of water-soluble organic nitrogen in the soil were measured by the above-described method, and the results were as shown in Table 1 below.
[0039]
[Table 1]
[0040]
As can be seen from the results in Table 1 above, in the soil to which the organic fertilizer of Examples 1 to 5 produced by adding and fermenting a metal compound consisting of an iron compound or an aluminum compound, the inorganic state in the soil was The content of nitrogen and the content of water-soluble organic nitrogen are higher than those of the soil treated with the organic fertilizer of Comparative Example 1 produced by fermentation without adding any of the iron compound and the aluminum compound. The growth of corn and spinach was promoted.
[0041]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the organic fertilizer which is excellent in the fertilizer effect which contains the inorganic nitrogen and the water-soluble organic nitrogen in a good balance with a high plant growth promotion effect can be smoothly manufactured.
Since the organic fertilizer obtained according to the present invention has a high content of inorganic nitrogen and water-soluble organic nitrogen useful for plant growth, it is possible to reduce the total nitrogen content applied to soil as compared with the conventional method, thereby enabling inorganic fertilizer to be reduced. It is possible to reduce plant growth disorders caused by accumulation of nitrogen, acidification of soil by infiltration of acidic inorganic nitrogen into soil, and environmental pollution caused by inflow into sewage, groundwater, rivers and the like.