JP2010132524A - Peptide chelate-containing fertilizer - Google Patents

Peptide chelate-containing fertilizer Download PDF

Info

Publication number
JP2010132524A
JP2010132524A JP2009057624A JP2009057624A JP2010132524A JP 2010132524 A JP2010132524 A JP 2010132524A JP 2009057624 A JP2009057624 A JP 2009057624A JP 2009057624 A JP2009057624 A JP 2009057624A JP 2010132524 A JP2010132524 A JP 2010132524A
Authority
JP
Japan
Prior art keywords
fertilizer
protein
iron
solution
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009057624A
Other languages
Japanese (ja)
Inventor
Tsukasa Bodai
司 菩提
Narikazu Kojima
成和 児島
Yoshihiro Nomura
義宏 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Original Assignee
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2009057624A priority Critical patent/JP2010132524A/en
Publication of JP2010132524A publication Critical patent/JP2010132524A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Fertilizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fertilizer which is prepared by reutilizing wastes from the protein industry as a nitrogen source, is inexpensively and easily producible, and exhibits an excellent fertilizing effect. <P>SOLUTION: The fertilizer is composed of hydrolysates of proteins, and a peptide chelate compound formed of a metal ion selected from among iron, zinc, manganese, and copper. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ペプチドキレート化合物からなる肥料に関する。   The present invention relates to a fertilizer comprising a peptide chelate compound.

肥料は、植物の栄養のために植物や土壌に施されたり、植物の栽培に資するために土壌に化学的変化をもたらすことを目的として土地に施される。植物の成育に必要な必須要素は、多量要素である、窒素、燐、加里、炭素、酸素、水素、カルシウム、マグネシウム、硫黄と、微量要素である、マンガン、鉄、銅、亜鉛、硼素、モリブデン、塩素であるとされ、種々の肥料より植物へ供給される。   Fertilizers are applied to plants and soil for plant nutrition, or to the land for the purpose of bringing about chemical changes in the soil to contribute to plant cultivation. Essential elements necessary for plant growth are nitrogen, phosphorus, potassium, carbon, oxygen, hydrogen, calcium, magnesium, sulfur, and trace elements such as manganese, iron, copper, zinc, boron, and molybdenum. It is said to be chlorine and is supplied to plants from various fertilizers.

肥料成分は、水に溶ける水溶性、2%のクエン酸に溶けるく溶性、1/2規定の塩酸に溶ける可溶性の3種に分類される。このうち、水溶性の肥料成分は速効性であり、緊急を要する用途に最適である。微量要素である各元素を水溶性の肥料成分とするには、例えば各元素を硫酸塩や酸化塩の形態にして水に溶解させる方法があるが、この方法では沈澱物を生じ散布できない場合や土壌中で不溶化するという問題があった。このため、微量要素である各元素をキレート化する方法が提案されている。   Fertilizer components are classified into three types: soluble in water, soluble in 2% citric acid, and soluble in 1/2 N hydrochloric acid. Of these, water-soluble fertilizer components are fast-acting and are optimal for urgent applications. To make each element, which is a trace element, a water-soluble fertilizer component, for example, there is a method in which each element is dissolved in water in the form of a sulfate or an oxide salt. There was a problem of insolubilization in the soil. For this reason, a method of chelating each element which is a trace element has been proposed.

キレート化剤としては、エチレンジアミン、ビピリジン、EDTA(エチレンジアミン四酢酸)、フェナトロリンなどの鎖状配位物やポリフィリン、クラウンエーテルなどの環状配位物質が利用されているが、最近では、アミノ酸と金属とを混合して形成されたキレート化合物を含有する肥料も報告されている(特許文献1〜2)。   As chelating agents, chain coordination products such as ethylenediamine, bipyridine, EDTA (ethylenediaminetetraacetic acid) and phenatroline, and cyclic coordination substances such as porphyrin and crown ether are used. Recently, amino acids and metals are used. A fertilizer containing a chelate compound formed by mixing with a fertilizer has also been reported (Patent Documents 1 and 2).

しかしながら、EDTAは高価であるため経済的に問題であり、またEDTAが分解されないという課題がある。アミノ酸キレート化合物はアミノ酸と金属塩との結合割合が厳格であり、またアミノ酸が高価であることから、汎用性ある肥料としては不向きである。   However, since EDTA is expensive, it is economically problematic and there is a problem that EDTA is not decomposed. The amino acid chelate compound is not suitable as a versatile fertilizer because the binding ratio between the amino acid and the metal salt is strict and the amino acid is expensive.

一方、蛋白産業廃棄物、例えば、皮革産業におけるカット屑、シェーヴィング屑、廃棄される自動車のシート皮革物、魚市場などから排出される魚類廃棄物、食肉加工工場から出されるカット肉屑や動物や鶏などの毛などの廃棄物、洋服の縫製工場などから出される羊毛屑、ふとんなどに利用されているフェザー、ダウンなどの洗浄工程上の屑等、が多くの産業から排出されている。特に産業廃棄物として年間22000トンが焼却処分されているといわれている皮革製造副産物は、炭酸ガス排出規制における環境保護の観点から再利用への検討が急務になっている。   On the other hand, protein industrial waste, such as cut waste in the leather industry, shaving waste, discarded leather seats for automobiles, fish waste discharged from the fish market, cut meat waste and animals from meat processing plants Wastes such as hair from chickens and chickens, wool waste from clothes garment factories, feathers used for futons, waste from cleaning processes such as down, etc. are emitted from many industries. In particular, leather production by-products, which are said to be incinerated at an annual rate of 22,000 tons as industrial waste, are urgently required to be reused from the viewpoint of environmental protection in CO2 emission regulations.

他方、蛋白質加水分解物と金属イオンとのキレートは、蛋白質加水分解生成物と第1鉄塩から得られる分子量30万以下のキレート化合物が泡消火剤となり得ることが報告されているが(特許文献3)、蛋白質加水分解物がクルードな状態でキレート形成することは知られておらず、肥料として使用することもこれまでに報告されていない。   On the other hand, as for the chelate of protein hydrolyzate and metal ion, it has been reported that a chelate compound having a molecular weight of 300,000 or less obtained from protein hydrolyzate and ferrous salt can serve as a foam fire extinguisher (Patent Document) 3) It is not known that a protein hydrolyzate forms a chelate in a crude state, and it has not been reported so far as a fertilizer.

特開2001−151589号公報JP 2001-151589 A 特開2002−173388号公報JP 2002-173388 A 特公平3−33031号公報Japanese Patent Publication No. 3-33031

本発明は、窒素源として蛋白産業廃棄物を再利用すると共に、安価で且つ容易に製造可能であり、優れた肥料効果を発揮する肥料を提供することに関する。   The present invention relates to providing a fertilizer that reuses protein industrial waste as a nitrogen source, is inexpensive and can be easily manufactured, and exhibits an excellent fertilizer effect.

本発明者等は、前記課題を解決すべく検討した結果、蛋白質加水分解物が、鉄、亜鉛、マンガン及び銅から選ばれる金属イオンに対して安定化なキレートを形成し、当該キレート化合物が肥料成分として有効に機能することを見出した。
すなわち、本発明は、以下の1)〜8)の発明に係るものである。
1)蛋白質加水分解物と、鉄、亜鉛、マンガン及び銅から選ばれる金属イオンから形成されるペプチドキレート化合物からなる肥料。
2)蛋白質加水分解物が、蛋白質材料を5〜20%(w/v)濃度のアルカリ溶液を用いて、50〜80℃で1〜6時間処理して得られる上記1)の肥料。
3)蛋白質材料を浴比1:1〜1:5の水酸化カリウム溶液(5〜20%(w/v))を用いて処理する上記2)の肥料。
4)蛋白質加水分解物の平均分子量が1,000〜50,000である上記1)〜3)の何れかの肥料。
5)蛋白質材料を浴比 1:1〜1:5の水酸化カリウム溶液(5〜20%(w/v))を用いて、50〜80℃で1〜6時間加水分解処理し、中和処理した後、鉄、亜鉛、マンガン及び銅から選ばれる金属の塩を添加することにより得られるペプチドキレート化合物含有肥料。
6)蛋白質材料が、蛋白廃棄物由来のものである上記2)〜5)の肥料
7)産業廃棄物が、皮革廃材又は皮革製造副産物である上記6)の肥料。
8)上記1)〜7)の肥料を含有する肥料組成物。
As a result of studying the above problems, the present inventors have found that the protein hydrolyzate forms a stable chelate with respect to a metal ion selected from iron, zinc, manganese and copper, and the chelate compound is a fertilizer. It has been found that it functions effectively as an ingredient.
That is, the present invention relates to the following inventions 1) to 8).
1) A fertilizer comprising a protein hydrolyzate and a peptide chelate compound formed from a metal ion selected from iron, zinc, manganese and copper.
2) The fertilizer according to 1) above, wherein the protein hydrolyzate is obtained by treating the protein material with an alkaline solution having a concentration of 5 to 20% (w / v) at 50 to 80 ° C. for 1 to 6 hours.
3) The fertilizer according to 2) above, wherein the protein material is treated with a potassium hydroxide solution (5 to 20% (w / v)) having a bath ratio of 1: 1 to 1: 5.
4) The fertilizer according to any one of 1) to 3) above, wherein the protein hydrolyzate has an average molecular weight of 1,000 to 50,000.
5) The protein material is hydrolyzed at 50 to 80 ° C. for 1 to 6 hours using a potassium hydroxide solution (5 to 20% (w / v)) having a bath ratio of 1: 1 to 1: 5 and neutralized. A peptide chelate compound-containing fertilizer obtained by adding a metal salt selected from iron, zinc, manganese and copper after treatment.
6) The fertilizer according to 2) to 5) above, wherein the protein material is derived from protein waste. 7) The fertilizer according to 6) above, wherein the industrial waste is a leather waste material or a leather manufacturing byproduct.
8) A fertilizer composition containing the fertilizers of 1) to 7) above.

本発明のペプチドキレート化合物は、土壌中で安定であり、かつ肥料として植物に栄養として利用され、土壌環境にも良好な農業資材となり得る。また、原料として年間2万トン近く焼却処分されている皮革廃材や皮革製造副産物等の産業廃棄物を利用できることから、安価で製造でき、同時に資源の再利用を図ることができる。すなわち、本発明によれば、環境保護と農業資源の確保という2局面の問題を解消しつつ、高付加価値を付けた肥料が提供される。   The peptide chelate compound of the present invention is stable in the soil, is used as a nutrient for plants as a fertilizer, and can be a good agricultural material in the soil environment. Further, since industrial waste such as leather waste and leather production by-products, which are incinerated annually as raw materials, can be used as a raw material, it can be manufactured at low cost, and at the same time, resources can be reused. That is, according to the present invention, a fertilizer with high added value is provided while solving the problems of two aspects of environmental protection and securing of agricultural resources.

可視部波長領域の吸光度変化を示すチャート。The chart which shows the light absorbency change of visible part wavelength range.

本発明において、蛋白質加水分解物としては、蛋白質に存在する化学結合の一部をアルカリを用いて加水分解し、当該蛋白質を低分子化したものが挙げられる。
ここで、用いられる蛋白質材料は、動物源、植物源の何れものでもよく特に制限されないが、蛋白質廃棄物を用いるのが好ましい。当該蛋白質廃棄物としては、皮革産業におけるカット屑、シェーヴィング屑、廃棄車等のシート皮革等の皮革廃棄物、魚市場などから排出される魚類廃棄物、食肉加工工場から出される肉類廃棄物、動物や鶏などの毛廃棄物、洋服の縫製工場などから出される羊毛屑、布団などに利用されているフェザー、ダウンなどの羽毛屑等が挙げられ、このうち大量に焼却処分されている皮革廃棄物を用いるのがより好ましい。
In the present invention, examples of the protein hydrolyzate include a product obtained by hydrolyzing a part of a chemical bond existing in a protein using an alkali and reducing the molecular weight of the protein.
Here, the protein material to be used may be either an animal source or a plant source, and is not particularly limited, but it is preferable to use protein waste. Examples of the protein waste include leather waste such as cut waste, shaving waste, leather for seats such as scrap cars, fish waste discharged from the fish market, meat waste from meat processing plants, Examples include wool waste from animals and chickens, wool waste from clothes garment factories, feathers used for futons, feather waste from down, etc., of which leather waste is incinerated in large quantities. It is more preferable to use a product.

加水分解処理に当たり、蛋白質材料はそのまま用いることができるが、反応効率の点から、適度に粉砕されたものを用いるのが好ましい。   In the hydrolysis treatment, the protein material can be used as it is, but from the viewpoint of reaction efficiency, it is preferable to use an appropriately pulverized one.

アルカリによる加水分解処理は、蛋白質材料を、アルカリ水溶液中に加えることにより行われる。当該アルカリとしては、タンパク質やペプチドの加水分解に通常用いられるもの、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水酸化カルシウム等のアルカリ土類金属水酸化物、アンモニア等が挙げられ、対象のタンパク質原料の性質等によって適宜選択すればよいが、肥料成分としてそのまま使用できる水酸化カリウムを用いるのが好ましい。   The hydrolysis treatment with alkali is performed by adding the protein material to an aqueous alkali solution. Examples of the alkali include those usually used for hydrolysis of proteins and peptides, for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, ammonia and the like. Although it may be appropriately selected depending on the properties of the target protein raw material, etc., it is preferable to use potassium hydroxide which can be used as it is as a fertilizer component.

加水分解は、蛋白質材料を浴比1:1〜1:5のアルカリ溶液を用いて行うのが好ましく、浴比1:1〜1:2で行うのがより好ましい。
ここで、浴比とは、蛋白質材料の質量(g)とアルカリ溶液の液量(ml)の比である。すなわち、蛋白質材料100gとアルカリ溶液の液量100mlの場合は浴比が1:1であり、蛋白質材料の質量100gとアルカリ溶液の液量200mlでは1:2となる。
また、アルカリの濃度は、対象の蛋白質原料に適した条件を適宜選択すればよいが、5〜20%(w/v)の範囲が好ましく、10〜20%(w/v)とするのがより好ましい。
Hydrolysis is preferably performed using an alkaline solution having a protein ratio of 1: 1 to 1: 5, more preferably a ratio of 1: 1 to 1: 2 of the protein material.
Here, the bath ratio is the ratio of the mass (g) of the protein material to the liquid volume (ml) of the alkaline solution. That is, the bath ratio is 1: 1 for 100 g of protein material and 100 ml of alkaline solution, and 1: 2 for 100 g of protein material and 200 ml of alkaline solution.
In addition, the alkali concentration may be appropriately selected according to conditions suitable for the target protein raw material, but is preferably in the range of 5 to 20% (w / v), and is preferably 10 to 20% (w / v). More preferred.

加水分解処理は、上記のアルカリ溶液中で蛋白質原料を振とう又は攪拌することによって行われる。反応は、通常50〜80℃の範囲内で、1〜6時間処理するのが好ましく、60〜70℃で、3〜6時間処理するのがより好ましい。   The hydrolysis treatment is performed by shaking or stirring the protein raw material in the above alkaline solution. The reaction is usually preferably carried out within a range of 50 to 80 ° C. for 1 to 6 hours, more preferably at 60 to 70 ° C. for 3 to 6 hours.

斯くして調製される蛋白質の加水分解物は、排除限界クロマトグラフ法により測定した質量平均分子量が1,000〜50,000であるのが好ましく、3,000〜30,000であるのがより好ましい。   The protein hydrolyzate thus prepared preferably has a mass average molecular weight of 1,000 to 50,000, more preferably 3,000 to 30,000, as measured by exclusion limit chromatography. preferable.

加水分解反応終了後、硫酸等の酸を用いて中和処理を行った後、必要に応じて濾過等を行い加水分解物を単離してもよいが、引き続き処理溶液中で金属塩とキレート形成を行うことができ、特にアルカリとして水酸化カリウムを用いた場合には、加水分解、中和処理に引き続きキレート形成を行うのが好ましい。   After completion of the hydrolysis reaction, after neutralizing with an acid such as sulfuric acid, the hydrolyzate may be isolated by filtration, etc., if necessary. In particular, when potassium hydroxide is used as the alkali, it is preferable to perform chelate formation subsequent to hydrolysis and neutralization treatment.

金属塩とのキレート形成は、適当な溶媒中、上記蛋白質加水分解物に対して、金属塩を0.1〜2質量%濃度、好ましくは0.1〜1質量%濃度で添加し、pH6〜9、好ましくは7〜9で、5〜30分間、20〜40℃で撹拌することにより行うことができる。
金属塩としては、鉄、亜鉛、マンガン及び銅から選ばれる金属の、硫酸塩、硝酸塩、リン酸塩、酢酸塩、炭酸塩、ケイ酸塩、ホウ酸塩、塩化物等が挙げられ、これらの1種又は2種以上を用いることができる。
For chelate formation with a metal salt, the metal salt is added at a concentration of 0.1 to 2% by mass, preferably 0.1 to 1% by mass, in an appropriate solvent, with respect to the protein hydrolyzate, and pH 6 to 9, preferably 7 to 9, and can be carried out by stirring at 20 to 40 ° C. for 5 to 30 minutes.
Examples of metal salts include sulfates, nitrates, phosphates, acetates, carbonates, silicates, borates, and chlorides of metals selected from iron, zinc, manganese, and copper. 1 type (s) or 2 or more types can be used.

得られたペプチドキレート化合物は、そのままでも肥料又は肥料原料として使用可能であるが、目的に応じて、適宜、濾過、排除限界クロマトグラフ等の分離・精製手段を用いて単離し、使用することでもよい。   The obtained peptide chelate compound can be used as it is as a fertilizer or fertilizer raw material, but depending on the purpose, it can be isolated and used by separation and purification means such as filtration and exclusion limit chromatograph as appropriate. Good.

斯くして得られるペプチドキレート化合物は、後記実施例に示すように、安定性が高く土壌へ施用されて、作物中へ良好に吸収され、肥料効果を発揮し、その効果はアミノ酸キレート化合物よりも優れている。従って、ペプチドキレート化合物を含有する溶液は、そのもの単独で液体の肥料又は肥料原料とすることができ、また、スプレードライ機や凍結乾燥等による乾燥を行い粉体化すること、他の有機物、鉱物などへ配合・吸着させること、或いは粉末や固体へ配合する等して粉末若しくは成形した固形の肥料又は肥料原料となる。特に、水酸化カリウムを用いて蛋白質原料を加水分解した場合、中和処理に引き続きキレート形成を行うことにより、処理溶液をそのまま肥料又は肥料原料とすることができる。   The peptide chelate compound thus obtained, as shown in the examples below, is highly stable and applied to the soil, is well absorbed into crops and exerts a fertilizer effect, and its effect is higher than that of an amino acid chelate compound. Are better. Therefore, a solution containing a peptide chelate compound can be used alone as a liquid fertilizer or fertilizer raw material, and can also be pulverized by spray drying or freeze drying, or other organic matter or mineral. It becomes a solid fertilizer or fertilizer raw material that is powdered or molded by blending and adsorbing to, or the like, or blending into powder or solid. In particular, when a protein raw material is hydrolyzed using potassium hydroxide, the treatment solution can be used as it is as a fertilizer or a fertilizer raw material by performing chelate formation subsequent to the neutralization treatment.

また、斯かるペプチドキレート化合物に、更に窒素質肥料、リン酸質肥料、カリ質肥料、石灰質肥料、苦土質肥料、マンガン質肥料、ホウ素質肥料等の公知の肥料成分や各種担体、例えば糖分、有機酸、界面活性剤、分散剤、展着剤等を配合し、常法により任意の形態の肥料組成物とすることができる。
ここで、窒素質肥料としては、例えば、硝酸カリウム、硝酸ナトリウム、硝酸石灰、硝酸苦土等の硝酸態窒素含有肥料、硫酸アンモニウム、硝酸アンモニウム、硝酸アンモニウムナトリウム等のアンモニア態窒素含有肥料、尿素等の尿素態窒素含有肥料等を挙げることができる。
リン酸質肥料としては、例えば、リン酸第一アンモニウム、リン酸第二アンモニウム、リン酸第一カリウム、リン酸第二カリウム、過リン酸石灰、重過リン酸石灰、熔成リン肥、腐食酸リン肥、焼成リン肥、リン酸苦土、副産リン肥料等を挙げることができる。
カリ質肥料としては、例えば、硫酸カリウム、硫酸カリウム苦土、重炭酸カリウム、腐食酸カリウム肥料、粗製カリウム塩、被覆カリウム肥料、液体珪酸カリウム肥料、副産カリウム肥料、混合カリウム肥料等を挙げることができる。
石灰質肥料としては、例えば、生石灰、消石灰、硫酸カルシウム、炭酸カルシウム、硝酸カルシウム、リン酸カルシウム等を挙げることができる。
苦土質肥料としては、例えば、硫酸苦土、水酸化苦土、腐食酸苦土、酢酸苦土、加工苦土肥料、リグニン苦土肥料、混合苦土肥料、硝酸苦土、苦土石灰等を挙げることができる。また、リン酸質肥料として挙げた熔成リン肥等は苦土質肥料としても使用できる。
マンガン質肥料としては、例えば、硫酸マンガン等のマンガン化合物を主成分とするものを挙げることができる。
ホウ素質肥料としては、例えば、ホウ酸肥料、ホウ酸塩肥料等の水溶性ホウ素を含有する肥料等を挙げることができる。
In addition to such peptide chelate compounds, known fertilizer components and various carriers such as nitrogenous fertilizer, phosphate fertilizer, calcareous fertilizer, calcareous fertilizer, bitter soil fertilizer, manganese fertilizer, boron fertilizer, such as sugar, An organic acid, a surfactant, a dispersant, a spreading agent and the like can be blended to form a fertilizer composition of any form by a conventional method.
Here, as the nitrogenous fertilizer, for example, nitrate nitrogen-containing fertilizers such as potassium nitrate, sodium nitrate, lime nitrate, and nitric acid, ammonium nitrogen-containing fertilizers such as ammonium sulfate, ammonium nitrate, and sodium ammonium nitrate, and urea nitrogen such as urea A fertilizer containing etc. can be mentioned.
Examples of phosphate fertilizers include, for example, primary ammonium phosphate, secondary ammonium phosphate, primary potassium phosphate, secondary potassium phosphate, superphosphate lime, heavy superphosphate lime, molten phosphorus fertilizer, and corrosion Examples include acid phosphorus fertilizer, calcined phosphorus fertilizer, phosphoric acid bitter soil, and by-product phosphorus fertilizer.
Examples of potash fertilizers include, for example, potassium sulfate, potassium sulfate dough, potassium bicarbonate, corrosive potassium fertilizer, crude potassium salt, coated potassium fertilizer, liquid potassium silicate fertilizer, by-product potassium fertilizer, mixed potassium fertilizer, etc. Can do.
Examples of calcareous fertilizers include quick lime, slaked lime, calcium sulfate, calcium carbonate, calcium nitrate, and calcium phosphate.
Examples of mafic fertilizers include sulfuric acid moulding, hydroxylated moulding, corrosive acid moulding, acetic acid moulding, processed moulding fertilizer, lignin moulding fertilizer, mixed moulding manure, nitric acid moulding, moulding lime, etc. Can be mentioned. Moreover, the molten phosphorus fertilizer etc. which were mentioned as a phosphate fertilizer can be used also as a mafic fertilizer.
As a manganese fertilizer, what has a manganese compound, such as manganese sulfate, as a main component can be mentioned, for example.
Examples of the boron fertilizer include fertilizers containing water-soluble boron such as boric acid fertilizer and borate fertilizer.

肥料組成物の形態は、液体、水和剤、粒剤、粉剤等のいずれでもよい。
肥料組成物中のペプチドキレート化合物の含有量は、1〜5質量%とするのが好ましく、更に3〜5質量%とするのが好ましい。
The form of the fertilizer composition may be any of liquid, wettable powder, granule, powder and the like.
The content of the peptide chelate compound in the fertilizer composition is preferably 1 to 5% by mass, and more preferably 3 to 5% by mass.

本発明の肥料又は肥料組成物の植物への供給方法としては、色々な手段を使うことができる。例えば、原液又は希釈された水溶液を葉面、茎、果樹等直接植物に散布したり、土壌中に注入する方法や水耕栽培やロックウールのように根に接触している水耕液や供給水に希釈混合して供給する方法が挙げられる。   As a method for supplying the fertilizer or fertilizer composition of the present invention to a plant, various means can be used. For example, spraying the stock solution or diluted aqueous solution directly onto plants such as foliage, stems, fruit trees, or injecting it into the soil, hydroponics, or hydroponic fluid that is in contact with the roots such as rock wool A method of diluting and supplying to water is mentioned.

実施例1 皮革製造副産物を用いたペプチドキレート化合物の調製
(1)加水分解
皮革製造副産物を、浴比1:1〜1:30の範囲で水酸化カリウム溶液(濃度5%〜20%(w/v))中に投入し、反応温度を室温、60℃及び70℃に設定し、6時間加水分解を行った。
尚、皮革製造副産物は、メルクス株式会社より入手したものを使用した。
Example 1 Preparation of Peptide Chelate Compound Using Leather Manufacturing By-product (1) Hydrolysis A leather manufacturing by-product was mixed with a potassium hydroxide solution (concentration 5% to 20% (w / w) in a bath ratio range of 1: 1 to 1:30. v)), the reaction temperature was set to room temperature, 60 ° C and 70 ° C, and hydrolysis was performed for 6 hours.
In addition, what was obtained from Merck Co., Ltd. was used for the leather manufacture by-product.

(2)濃度10%(w/v)水酸化カリウム溶液、浴比1:1、70℃、6時間処理した場合の加水分解物の分子量を以下の方法により測定した。
1)測定方法
Shodex社PROTEIN KW-802.5 カラムを用いて、排除限界クロマトグラフ法にて測定を行った。又、分子量標準品としてオリエンタル酵母工業株式会社製の MW-MARKER PROTEINS(HPLC) を用いた。
2)結果
上記標準品の溶出時間より較正曲線を作成し、加水分解物の分子量を算出した結果、分子量は25000〜35000のペプチド残鎖であることが確認された。
(2) Concentration 10% (w / v) potassium hydroxide solution, bath ratio 1: 1, 70 ° C. The molecular weight of the hydrolyzate when treated for 6 hours was measured by the following method.
1) Measuring method
Measurement was performed by exclusion limit chromatography using a Shodex PROTEIN KW-802.5 column. Further, MW-MARKER PROTEINS (HPLC) manufactured by Oriental Yeast Co., Ltd. was used as a molecular weight standard product.
2) Results As a result of creating a calibration curve from the elution time of the standard product and calculating the molecular weight of the hydrolyzate, it was confirmed that the molecular weight was 25,000 to 35,000 peptide residues.

(3)キレートの形成
1)(1)で得られた加水分解溶液(浴比1:1、水酸化カリウム溶液(10%(w/v))、70℃、6時間処理)を5規定硫酸を用いてpHを7.5に調整した。
(3) Formation of chelate 1) The hydrolyzed solution obtained in (1) (bath ratio 1: 1, potassium hydroxide solution (10% (w / v)), treated at 70 ° C. for 6 hours) is treated with 5 N sulfuric acid. Was used to adjust the pH to 7.5.

2)中和処理後の加水分解溶液に、塩化亜鉛溶液(Znで0.2質量%)、および硫酸アンモニウム第二鉄溶液(Feで0.2質量%)を添加してキレート化合物を調製した。
比較として、塩化亜鉛溶液(Znで0.2質量%)、および硫酸アンモニウム第二鉄溶液(Feで0.2質量%)に1規定水酸化カリウム溶液を添加し、金属水酸化物の沈殿発生の有無を確認する定性試験を行った結果、塩化亜鉛溶液、および硫酸アンモニウム第二鉄溶液に水酸化カリ溶液を添加したものは金属水酸化物の沈殿が発生したが、皮革製造副産物の加水分解液に金属塩を添加し反応させたものには沈殿が見られなかった。このことにより蛋白質加水分解物が亜鉛および鉄とキレート結合を形成していることが確認された。
さらに、このペプチドキレート溶液の可視部(350nm〜500nm)の吸収スペクトルを測定した結果、可視部において鉄を添加したもので、顕著な吸光度の増加が認められた。このことにより分子内において構造的変化が起こったものと考えられた(図1)。
2) A chelate compound was prepared by adding a zinc chloride solution (0.2% by mass with Zn) and a ferric ammonium sulfate solution (0.2% by mass with Fe) to the hydrolyzed solution after the neutralization treatment.
As a comparison, a 1N potassium hydroxide solution was added to a zinc chloride solution (0.2% by mass with Zn) and a ferric ammonium sulfate solution (0.2% by mass with Fe), and precipitation of metal hydroxide was observed. As a result of a qualitative test to confirm the presence or absence, precipitation of metal hydroxide occurred when zinc chloride solution and ferric ammonium sulfate solution were added with potassium hydroxide solution. Precipitation was not observed in the metal salt added and reacted. This confirmed that the protein hydrolyzate formed chelate bonds with zinc and iron.
Furthermore, as a result of measuring the absorption spectrum of the visible portion (350 nm to 500 nm) of this peptide chelate solution, a remarkable increase in absorbance was observed when iron was added in the visible portion. This was considered to have caused structural changes within the molecule (FIG. 1).

3)マンガン及び銅について、以下の条件で、2)と同様な試験を実施したところ、安定な溶液を調製することができた。また、前述したキレート確認の定性試験も同様に行った結果、水酸化カリ溶液を添加しても金属水和物の沈殿が発生せず、ペプチドキレート形成が確認された。
a)加水分解:浴比1:1、水酸化カリウム溶液(10%(w/v))、70℃、6時間処理
b)キレート形成:硫酸マンガン(Mnで濃度0.5質量%)、硫酸銅(Cuで濃度0.2質量%)で25℃、30分間処理
3) When manganese and copper were subjected to the same test as in 2) under the following conditions, a stable solution could be prepared. Further, as a result of the qualitative test for chelate confirmation described above, the precipitation of metal hydrate did not occur even when a potassium hydroxide solution was added, and peptide chelate formation was confirmed.
a) Hydrolysis: bath ratio 1: 1, potassium hydroxide solution (10% (w / v)), treatment at 70 ° C. for 6 hours b) Chelate formation: manganese sulfate (Mn concentration 0.5 mass%), sulfuric acid Treated with copper (Cu with a concentration of 0.2% by mass) at 25 ° C for 30 minutes

(4)金属塩の濃度検討
(1)で得られた加水分解溶液を硫酸を用いて中和処理を行った。これに、金属亜鉛元素として、塩加亜鉛(0.2質量%、0.3質量%、0.4質量%)、硝酸亜鉛(0.2質量%、0.3質量%、0.4質量%)、硫酸亜鉛(0.2質量%、0.3質量%、0.4質量%)、鉄元素として硫酸第二鉄(0.05質量%、0.1質量%、0.2質量%、0.4質量%)、硫酸アンモニウム第二鉄(0.2質量%、0.3質量%、0.4質量%)、塩加第二鉄(0.2質量%、0.3質量%、0.4%重量)の濃度で攪拌添加し、25℃で30分の反応を行い、ペプチドキレート化合物を得た。
(4) Examination of metal salt concentration The hydrolyzed solution obtained in (1) was neutralized with sulfuric acid. In addition, zinc chloride (0.2 mass%, 0.3 mass%, 0.4 mass%), zinc nitrate (0.2 mass%, 0.3 mass%, 0.4 mass%) as metal zinc element %), Zinc sulfate (0.2 mass%, 0.3 mass%, 0.4 mass%), ferric sulfate as the iron element (0.05 mass%, 0.1 mass%, 0.2 mass%) 0.4 mass%), ferric ammonium sulfate (0.2 mass%, 0.3 mass%, 0.4 mass%), ferric chloride (0.2 mass%, 0.3 mass%, The peptide chelate compound was obtained by stirring and adding at a concentration of 0.4% by weight) and reacting at 25 ° C. for 30 minutes.

これらペプチドキレート金属類に1規定水酸化カリウム溶液を添加し、沈殿発生の程度と低温保存4℃での結晶の発生の程度を観察したところ、Fe、Cu、Zn、で0.2質量%、Mnで0.5質量%が最も好ましい濃度であった。   1N potassium hydroxide solution was added to these peptide chelate metals, and the degree of precipitation and the degree of crystal generation at low temperature storage of 4 ° C. were observed. As a result, 0.2% by mass of Fe, Cu, Zn, 0.5% by mass of Mn was the most preferable concentration.

実施例2 灌注による土壌からの吸収試験
(1)試験液の調製
皮革製造副産物100gを100mlの10%(w/v)水酸化カリ溶液と混合し、70℃で6時間振とう攪拌しで加水分解を行った。
反応後、硫酸を用いて中和処理を行い、硫酸第二鉄をFeで0.2質量%を加え25℃で30分攪拌しペプチドキレート鉄溶液を調製した。
Example 2 Absorption test from soil by irrigation (1) Preparation of test solution 100 g of leather production by-product was mixed with 100 ml of 10% (w / v) potassium hydroxide solution, and the mixture was hydrated by shaking at 70 ° C. for 6 hours. Decomposition was performed.
After the reaction, neutralization treatment was performed using sulfuric acid, and 0.2 mass% of ferric sulfate was added with Fe, and the mixture was stirred at 25 ° C. for 30 minutes to prepare a peptide chelate iron solution.

(2)供試作物の調製
1万分の1アールサイズのポットに栃木県採取の黒ボク土(最大容水量50g/100g・乾土)900gに肥料成分で窒素80mg、リン酸80mg、カリ80mgを混合・充填し、コマツナ(タキイ種苗・極楽天)を1ポットに3〜4粒播種し、最終的に間引いて1ポット当り3株とした。試験構成は試験区と対照区処理で各7連のポットを準備した。調製期間中の土壌水分は最大容水量の60%に調製し、コマツナを育成した。
(2) Preparation of prototype
Komatsuna (Takii) is mixed and filled with 90 mg of nitrogen, 80 mg of phosphoric acid and 80 mg of potassium as fertilizer ingredients in 900 g of black soil (maximum water volume 50 g / 100 g, dry soil) collected from Tochigi Prefecture in a 1 / 10,000 arel size pot. 3-4 seeds were sown in 1 pot and finally thinned to 3 strains per pot. Seven test pots were prepared for each of the test group and the control group. The soil moisture during the preparation period was adjusted to 60% of the maximum water capacity, and Komatsuna was grown.

(3)試験方法
調製したコマツナのポットに(1)で調製したペプチドキレート鉄液を水で300倍に希釈し、1ポットあたり100ccを灌注した(試験区)。対照区はイオン交換水を1ポットあたり100cc灌注した。灌注処理の回数は収穫調査までに3日おきに7回行った。生育調査項目として、葉色、茎葉長、地上部新鮮重、作物体中の鉄含量を測定した。
鉄含量の測定は、原子吸光光度法により行った。
また、葉色は、コニカミノルタセンシング(株)社製の葉緑素計SPAD−502を用い測定した。
(4)試験結果
表1より、ペプチドキレート鉄の灌注処理(試験区)によってコマツナの生育が促進され茎葉長、新鮮重量も対照区を上回り、旺盛な生育を示した。
また、表2に示したように、コマツナ体中の鉄含有量も増加しペプチドキレート鉄が作物に吸収されたことが確認できた。
以上より、本発明のペプチドキレート化合物は優れた肥料効果をもつことが確認された。
(3) Test Method The peptide chelate iron solution prepared in (1) was diluted 300 times with water to the prepared Komatsuna pot and 100 cc was irrigated per pot (test group). In the control group, 100 cc of ion-exchanged water was irrigated per pot. The number of irrigation treatments was carried out 7 times every 3 days until the harvest survey. As growth survey items, leaf color, stem length, fresh weight above ground, and iron content in crops were measured.
The iron content was measured by atomic absorption photometry.
The leaf color was measured using a chlorophyll meter SPAD-502 manufactured by Konica Minolta Sensing Co., Ltd.
(4) Test results From Table 1, the growth of Komatsuna was promoted by the irrigation treatment of peptide chelate iron (test group), and the leaf length and fresh weight were also higher than the control group, showing vigorous growth.
Moreover, as shown in Table 2, it was confirmed that the iron content in the Komatsuna body increased and the peptide chelated iron was absorbed by the crop.
From the above, it was confirmed that the peptide chelate compound of the present invention has an excellent fertilizer effect.

Figure 2010132524
Figure 2010132524

Figure 2010132524
Figure 2010132524

実施例3 ペプチドキレート鉄とアミノ酸キレート鉄との比較試験
(1)試験液の調製
ペプチドキレート鉄溶液を実施例2(1)と同様の方法で調製し、比較するアミノ酸キレート鉄としてアラニンキレート鉄溶液を調製して試験に供した。
アラニンキレート鉄溶液は、実施例2の溶液中の全窒素含量と同等の窒素を有するアラニン溶液を調製し、そこに塩化第二鉄をFeで0.2%重量%を加えて25℃で30分攪拌することにより調製した。
Example 3 Comparison test between peptide chelate iron and amino acid chelate iron (1) Preparation of test solution A peptide chelate iron solution was prepared in the same manner as in Example 2 (1), and alanine chelate iron solution as amino acid chelate iron to be compared Was prepared for testing.
As the alanine chelate iron solution, an alanine solution having nitrogen equivalent to the total nitrogen content in the solution of Example 2 was prepared, and 0.2% by weight of ferric chloride was added to Fe at 30% at 25 ° C. Prepared by stirring for minutes.

(2)供試作物の調製
小松菜の種をロックウールに播種し、発芽後に鉄を含まない水耕培養液で育苗して鉄欠乏状態の小松菜苗を各試験区4ポット、20株ずつ作製した。
(2) Preparation of a prototype The seeds of Komatsuna were sown on rock wool, and after germination, seedlings were grown in a hydroponic culture solution not containing iron, and Komatsuna seedlings in an iron-deficient state were produced in 4 pots in each test area, 20 strains .

(3)試験方法
(2)で作製した鉄欠乏状態の小松菜苗に(1)で調製した溶液を各100倍希釈したものを葉面散布した。コントロールとして、イオン交換水の散布を行った。初回散布から1日1度の葉面散布を計5回行い、小松菜の新鮮重量と葉の緑色強度を測定した。
(3) Test method The leaves prepared by diluting the solution prepared in (1) 100 times each to the iron-deficient Komatsuna seedlings prepared in (2) were sprayed. As a control, ion-exchanged water was sprayed. From the initial spraying, foliar spraying was performed once a day for a total of 5 times to measure the fresh weight of Komatsuna and the green strength of the leaves.

(4)試験結果
表3に示したように1ポットあたりの新鮮重量に変化は認められなかったが、コニカ・ミノルタ製の葉緑素計SPAD−502を用いて、試験終了時の葉の緑色強度(以下SPAD値とする)を測定した結果、SPAD値はペプチドキレート鉄>アラニンキレート鉄>イオン交換水の順で減少し、目視による判定でもSPAD値の減少に応じて葉色は薄くなることが確認された。
鉄は植物の葉色を鮮やかにし、光合成に必要な葉緑素の増加に必須である。以上より、その吸収は、アミノ酸キレート鉄よりもペプチドとキレート結合を形成した構造がより効果的であることが判明し、ペプチドキレート鉄をはじめとする本発明のペプチドキレート化合物は優れた肥料効果を発揮することが確認された。
(4) Test results As shown in Table 3, there was no change in the fresh weight per pot, but the green strength of the leaves at the end of the test (SPAD-502, manufactured by Konica Minolta) As a result of measurement, the SPAD value decreases in the order of peptide chelate iron> alanine chelate iron> ion exchanged water, and it is confirmed that the leaf color becomes lighter according to the decrease of SPAD value even by visual judgment. It was.
Iron is essential for increasing the leaf color of plants and increasing the amount of chlorophyll required for photosynthesis. From the above, it has been found that the absorption is more effective in the structure in which a chelate bond is formed with the peptide than the amino acid chelate iron, and the peptide chelate compound of the present invention including peptide chelate iron has an excellent fertilizer effect. It has been confirmed that it works.

Figure 2010132524
Figure 2010132524

Claims (8)

蛋白質加水分解物と、鉄、亜鉛、マンガン及び銅から選ばれる金属イオンから形成されるペプチドキレート化合物からなる肥料。   A fertilizer comprising a protein hydrolyzate and a peptide chelate compound formed from a metal ion selected from iron, zinc, manganese and copper. 蛋白質加水分解物が、蛋白質材料を5〜20%(w/v)濃度のアルカリ溶液を用いて、50〜80℃で1〜6時間処理して得られる請求項1記載の肥料。   The fertilizer according to claim 1, wherein the protein hydrolyzate is obtained by treating a protein material with an alkaline solution having a concentration of 5 to 20% (w / v) at 50 to 80 ° C for 1 to 6 hours. 蛋白質材料を浴比1:1〜1:5の水酸化カリウム溶液(5〜20%(w/v))を用いて処理する請求項2記載の肥料。   The fertilizer according to claim 2, wherein the protein material is treated with a potassium hydroxide solution (5 to 20% (w / v)) having a bath ratio of 1: 1 to 1: 5. 蛋白質加水分解物の質量平均分子量が1,000〜50,000である請求項1〜3の何れか1項記載の肥料。   The fertilizer according to any one of claims 1 to 3, wherein the protein hydrolyzate has a mass average molecular weight of 1,000 to 50,000. 蛋白質材料を浴比 1:1〜1:5の水酸化カリウム溶液(5〜20%(w/v))を用いて、50〜80℃で1〜6時間加水分解処理し、中和処理した後、鉄、亜鉛、マンガン及び銅から選ばれる金属の塩を添加することにより得られるペプチドキレート化合物含有肥料。   The protein material was hydrolyzed at 50 to 80 ° C. for 1 to 6 hours using a potassium hydroxide solution (5 to 20% (w / v)) having a bath ratio of 1: 1 to 1: 5, and neutralized. A peptide chelate compound-containing fertilizer obtained by adding a metal salt selected from iron, zinc, manganese and copper. 蛋白質材料が、蛋白廃棄物由来のものである請求項2〜5のいずれか1項記載の肥料。   The fertilizer according to any one of claims 2 to 5, wherein the protein material is derived from protein waste. 産業廃棄物が、皮革廃材又は皮革製造副産物である請求項6記載の肥料。   The fertilizer according to claim 6, wherein the industrial waste is a leather waste material or a leather manufacturing by-product. 請求項1〜7のいずれか1項記載の肥料を含有する肥料組成物。   The fertilizer composition containing the fertilizer of any one of Claims 1-7.
JP2009057624A 2008-11-06 2009-03-11 Peptide chelate-containing fertilizer Pending JP2010132524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009057624A JP2010132524A (en) 2008-11-06 2009-03-11 Peptide chelate-containing fertilizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008285821 2008-11-06
JP2009057624A JP2010132524A (en) 2008-11-06 2009-03-11 Peptide chelate-containing fertilizer

Publications (1)

Publication Number Publication Date
JP2010132524A true JP2010132524A (en) 2010-06-17

Family

ID=42344220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009057624A Pending JP2010132524A (en) 2008-11-06 2009-03-11 Peptide chelate-containing fertilizer

Country Status (1)

Country Link
JP (1) JP2010132524A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101279253B1 (en) 2013-03-05 2013-06-26 김영선 Process for preparing liquid fertilizer with dead animal
CN103274849A (en) * 2013-06-14 2013-09-04 柏玉兰 Plant vaccine
CN104829337A (en) * 2015-04-28 2015-08-12 深圳市润康植物营养技术有限公司 Water-soluble fertilizer containing casein phosphopeptide chelated medium/trace elements, preparation method, and applications thereof
CN107353054A (en) * 2017-06-21 2017-11-17 威海温喜生物科技有限公司 A kind of preparation method of the small-peptide chelated middle trace element water-soluble fertilizer of Fish protein
CN116655421A (en) * 2023-07-28 2023-08-29 四川大学 Method for preparing short peptide chelated fertilizer by using hydrolysate of chromium leather scraps through innocent treatment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959080A (en) * 1995-08-23 1997-03-04 Kondo Toshio Fertilizer and its production
JP2002034592A (en) * 2000-07-11 2002-02-05 Sung Kyu Ji Method for producing protein-zinc readily absorbable in body
JP2003012389A (en) * 2001-06-27 2003-01-15 Konica Zelatin Kk Liquid fertilizer containing peptides and amino acid and method of manufacturing the same
JP2004256333A (en) * 2003-02-25 2004-09-16 Nisshin Flour Milling Inc Method of producing organic fertilizer
JP2006265199A (en) * 2005-03-25 2006-10-05 Oita Univ Foliar-surface spraying agent and method for producing the same
JP2007500125A (en) * 2003-05-27 2007-01-11 ユニファイド エンバイラメンタル サービシーズ グループ, エルエルシー Recycling of organic matter by metal addition (see related application) This application relates to US provisional application No. 60 / 473,197 entitled “Recycling of organic matter by metal addition” and “Liquid fertilizer containing biosolids and high concentration ammonia”. Claiming priority to US Provisional Application No. 60 / 473,198 entitled "Invention", both of which are hereby incorporated by reference in their entirety.
JP2009269852A (en) * 2008-05-07 2009-11-19 Fukuei Hiryo Kk Quality improver for crop

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959080A (en) * 1995-08-23 1997-03-04 Kondo Toshio Fertilizer and its production
JP2002034592A (en) * 2000-07-11 2002-02-05 Sung Kyu Ji Method for producing protein-zinc readily absorbable in body
JP2003012389A (en) * 2001-06-27 2003-01-15 Konica Zelatin Kk Liquid fertilizer containing peptides and amino acid and method of manufacturing the same
JP2004256333A (en) * 2003-02-25 2004-09-16 Nisshin Flour Milling Inc Method of producing organic fertilizer
JP2007500125A (en) * 2003-05-27 2007-01-11 ユニファイド エンバイラメンタル サービシーズ グループ, エルエルシー Recycling of organic matter by metal addition (see related application) This application relates to US provisional application No. 60 / 473,197 entitled “Recycling of organic matter by metal addition” and “Liquid fertilizer containing biosolids and high concentration ammonia”. Claiming priority to US Provisional Application No. 60 / 473,198 entitled "Invention", both of which are hereby incorporated by reference in their entirety.
JP2006265199A (en) * 2005-03-25 2006-10-05 Oita Univ Foliar-surface spraying agent and method for producing the same
JP2009269852A (en) * 2008-05-07 2009-11-19 Fukuei Hiryo Kk Quality improver for crop

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101279253B1 (en) 2013-03-05 2013-06-26 김영선 Process for preparing liquid fertilizer with dead animal
CN103274849A (en) * 2013-06-14 2013-09-04 柏玉兰 Plant vaccine
CN104829337A (en) * 2015-04-28 2015-08-12 深圳市润康植物营养技术有限公司 Water-soluble fertilizer containing casein phosphopeptide chelated medium/trace elements, preparation method, and applications thereof
CN107353054A (en) * 2017-06-21 2017-11-17 威海温喜生物科技有限公司 A kind of preparation method of the small-peptide chelated middle trace element water-soluble fertilizer of Fish protein
CN116655421A (en) * 2023-07-28 2023-08-29 四川大学 Method for preparing short peptide chelated fertilizer by using hydrolysate of chromium leather scraps through innocent treatment
CN116655421B (en) * 2023-07-28 2023-10-31 四川大学 Method for preparing short peptide chelated fertilizer by using hydrolysate of chromium leather scraps through innocent treatment

Similar Documents

Publication Publication Date Title
AU2014101391A4 (en) Multifunctional organic agricultural fertilizer composition and process for preparation thereof
YAHAYA et al. Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: a review
EP1612200A2 (en) Fertilising composition and process for the obtainment thereof
EP2310342A1 (en) Process for the preparation of fertilizer and surfactant natural compositions for washing, reclamation and cultivation of contaminated soils and related compositions
JP2010132524A (en) Peptide chelate-containing fertilizer
WO2014185794A1 (en) A silicon formulation with plant growth stimulating properties, a method of the preparation of a silicon formulation with plant growth stimulating properties and its use
WO2013019933A2 (en) Plant fertilizers derived from organic nitrogen and phosphorus sources
CN108947633A (en) A kind of growth-promoting root liquid fertilizer and the preparation method and application thereof
JP2011105541A (en) Liquid fertilizer
CN1490282A (en) Activated humic acid composite fertilizer and its making method
EP3027017B1 (en) A titanium-containing formulation, a method of the preparation of a titanium-containing formulation, and use of the titanium-containing formulation in the cultivation of plants
JP2003012389A (en) Liquid fertilizer containing peptides and amino acid and method of manufacturing the same
WO2016092566A2 (en) Novel multi mineral soil supplement and carrier material
Sîrbu et al. Fertilizers with protein chelated structures with biostimulator role
CA3062628C (en) Formulations of metal and ascorbic acid complexes, their obtaining and use
CA2321328A1 (en) Deodorant for sulfur food and method for preparing the deodorant
JP2006131733A (en) Soil conditioner
JP6719733B2 (en) Soil modifier manufacturing method and soil modifier
JPH09263477A (en) Liquid calcium fertilizer
WO2014155388A1 (en) A composition for fertigation
PL214628B1 (en) Method for producing a fertilizer containing titanium, titanium-containing fertilizer and the fertilizer application
JP6900631B2 (en) Plant cultivation materials, their manufacturing methods and application methods of plant cultivation materials
KR20030078375A (en) Calcium manure from acid-hydrolysis of shells and preparation process thereof
JPH0470276B2 (en)
CZ2020555A3 (en) Foliar fertilizer for agricultural crops containing phosphorus, organic nitrogen, organic potassium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520