JP2004253796A - Electromagnetic wave shielding structure - Google Patents

Electromagnetic wave shielding structure Download PDF

Info

Publication number
JP2004253796A
JP2004253796A JP2004022044A JP2004022044A JP2004253796A JP 2004253796 A JP2004253796 A JP 2004253796A JP 2004022044 A JP2004022044 A JP 2004022044A JP 2004022044 A JP2004022044 A JP 2004022044A JP 2004253796 A JP2004253796 A JP 2004253796A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
conductive layer
fibers
ultrafine
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004022044A
Other languages
Japanese (ja)
Other versions
JP4471346B2 (en
Inventor
Masahito Sakai
将人 坂井
Hidemi Ito
秀己 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2004022044A priority Critical patent/JP4471346B2/en
Publication of JP2004253796A publication Critical patent/JP2004253796A/en
Application granted granted Critical
Publication of JP4471346B2 publication Critical patent/JP4471346B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic wave shielding structure that exhibits electromagnetic wave shielding performance even if an amount of ultra-fine fibers such as carbon nanotube contained in a conductive layer is decreased; in addition, an electromagnetic wave shield material having a conductive layer having improved transparency by reducing the thickness of the layer while maintaining the electromagnetic wave shielding performance. <P>SOLUTION: The electromagnetic wave shielding structure has a transparent conductive layer 2 containing ultra-fine conductive fibers 3 that is formed on at least one side of a base 1. The fibers 3 are dispersed and contacted with each together without aggregation, or in a separated condition for each fiber, or in a separated condition of bundles formed by gathering several fibers for each bundle, thereby the conductive layer has surface resistivity of ≤10<SP>5</SP>Ω/square. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、電磁波を発生する電気機器類のケーシングやその覗き窓等に使用される電磁波シールド体に関する。   TECHNICAL FIELD The present invention relates to an electromagnetic wave shield used for a casing of an electric device that generates an electromagnetic wave and a viewing window therefor.

従来の透明な電磁波シールド体の代表的なものは、透明な基材の表面にITO等の金属酸化物蒸着膜を形成したものがある。
また、被膜形成成分にカーボンナノチューブ及び/又はカーボンマイクロコイルを配合したコーティング組成物を、メタクリル樹脂の基材に塗布、硬化して、厚さが100μmで表面抵抗率が略3×10Ω/□のコーティング被膜を形成してなる電磁波シールド性能を備えたメタクリル樹脂板を形成することが知られている(特許文献1参照)。
特開2000−26760号公報
A typical example of a conventional transparent electromagnetic wave shielding body is one in which a metal oxide deposited film such as ITO is formed on a surface of a transparent base material.
Further, a coating composition in which a carbon nanotube and / or a carbon microcoil is blended as a film forming component is applied to a methacrylic resin base material and cured to have a thickness of 100 μm and a surface resistivity of about 3 × 10 3 Ω /. It is known to form a methacrylic resin plate having electromagnetic wave shielding performance by forming a coating film of □ (see Patent Document 1).
JP 2000-26760 A

しかしながら、上記金属酸化物蒸着膜を形成した電磁波シールド板は、金属酸化物蒸着膜の薄い黄色を呈するという問題があり、基板が金属蒸着時の熱に耐え難い熱可塑性樹脂板等である場合には、金属酸化物蒸着膜の形成が難しいという問題もあった。また、折り曲げや延伸などの加工により金属酸化物蒸着膜が割れて表面抵抗率が増加し、電磁波シールド性能を発揮しなくなるという問題もあった。一方、特許文献1の電磁波シールド性能を備えたメタクリル樹脂板は、コーティング被膜が厚く、該被膜に多量のカーボンナノチューブ等が含まれるため、コーティング被膜が暗色になって透明性が極端に低下し、透視性が要求される用途には使用し難いという問題があった。
この問題を解決しようとしてコーティング皮膜を薄くすると、該皮膜に含まれるカーボンナノチューブ量が減少して電磁波シールドに必要な表面抵抗率を得ることができなくなる、という問題も内在していた。
However, the electromagnetic wave shielding plate on which the metal oxide vapor-deposited film is formed has a problem that the metal oxide vapor-deposited film has a light yellow color, and when the substrate is a thermoplastic resin plate or the like that cannot withstand heat during metal vapor deposition. In addition, there is a problem that it is difficult to form a metal oxide deposited film. In addition, there is also a problem that the metal oxide deposited film is broken by processing such as bending or stretching, the surface resistivity increases, and the electromagnetic wave shielding performance is not exhibited. On the other hand, the methacrylic resin plate having the electromagnetic wave shielding performance of Patent Document 1 has a thick coating film and contains a large amount of carbon nanotubes and the like, so that the coating film becomes dark and the transparency is extremely reduced, There is a problem that it is difficult to use for applications requiring transparency.
If the thickness of the coating film is reduced to solve this problem, the amount of carbon nanotubes contained in the coating film is reduced, so that the surface resistivity required for electromagnetic wave shielding cannot be obtained.

本発明は上記の問題に対処すべくなされたもので、その目的とするところは、導電層に含ませるカーボンナノチューブなどの極細繊維の量を減少させても電磁波シールド性能を発揮する電磁波シールド体を提供することを解決課題とする。
また、導電層の厚みを薄くして、電磁波シールド性能を維持しつつ透明性を向上させた導電層を有する電磁波シールド体を提供することも解決課題としている。
さらに、コストが安く経済的で透明な導電層を有する電磁波シールド体を提供することも解決課題としている。
The present invention has been made to address the above-described problems, and an object of the present invention is to provide an electromagnetic wave shielding body that exhibits electromagnetic wave shielding performance even when the amount of ultrafine fibers such as carbon nanotubes contained in the conductive layer is reduced. The task is to provide.
Another object of the present invention is to provide an electromagnetic wave shield having a conductive layer in which the thickness of the conductive layer is reduced and the transparency is improved while maintaining the electromagnetic wave shielding performance.
Another object of the present invention is to provide an inexpensive and economical electromagnetic wave shield having a transparent conductive layer.

上記目的を達成するため、本発明の電磁波シールド体は、基材の少なくとも片面に、極細導電繊維を含んだ透明な導電層が形成された電磁波シールド体であって、上記極細導電繊維が凝集することなく分散して互いに接触し、上記導電層が10Ω/□以下の表面抵抗率を備えていることを特徴とするものである。
また、本発明の他の電磁波シールド体は、基材の少なくとも片面に、極細導電繊維を含んだ透明な導電層が形成された電磁波シールド体であって、上記極細導電繊維が1本づつ分離した状態で、もしくは、複数本集まって束になったものが1束づつ分離した状態で分散して互いに接触し、上記導電層が10Ω/□以下の表面抵抗率を備えていることを特徴とするものである。
In order to achieve the above object, the electromagnetic wave shield of the present invention is an electromagnetic wave shield in which a transparent conductive layer containing a fine conductive fiber is formed on at least one surface of a substrate, wherein the fine conductive fiber aggregates. The conductive layer has a surface resistivity of 10 5 Ω / □ or less.
Further, another electromagnetic wave shielding body of the present invention is an electromagnetic wave shielding body in which a transparent conductive layer containing a fine conductive fiber is formed on at least one surface of a substrate, and the fine conductive fibers are separated one by one. The conductive layer has a surface resistivity of 10 5 Ω / □ or less in a state where a plurality of bundles are collected and bundled and separated and contact each other in a separated state. It is assumed that.

上記の本発明において、極細導電繊維が炭素繊維であることを特徴とし、また極細導電繊維がカーボンナノチューブであることが好ましい。
更に、上記極細導電繊維が多層カーボンナノチューブであって1本づつ分離した状態で分散して互いに接触していること、或は上記極細導電繊維が単層カーボンナノチューブであって複数本が集まって束になったものが1束づつ分離した状態で分散して互いに接触していること、或は上記極細導電繊維が2〜3層カーボンナノチューブであり、複数本が集まって束になったものが1束づつ分離した状態で分散して互いに接触していることも、それぞれ好ましい。
更に、基材が透明樹脂で成形された透明な電磁波シールド体であり、その厚みが略2mmであるときの全光線透過率が75%以上、ヘーズが5%以下であることも好ましい。
また、導電層が極細繊維を30〜450mg/m含み、前記導電層の厚みが5〜500nmであることも好ましい。
In the above invention, the ultrafine conductive fibers are carbon fibers, and the ultrafine conductive fibers are preferably carbon nanotubes.
Further, the ultrafine conductive fibers are multi-walled carbon nanotubes and are separated from each other in a dispersed state and are in contact with each other. Alternatively, the ultrafine conductive fibers are single-walled carbon nanotubes and a plurality of carbon nanotubes are gathered and bundled. The fine conductive fibers are dispersed and in contact with each other in a bundle, or the ultrafine conductive fibers are 2-3 carbon nanotubes. It is also preferable that the bundles are separated from each other and in contact with each other.
Further, it is also preferable that the base material is a transparent electromagnetic wave shielding body formed of a transparent resin, and the total light transmittance when the thickness is approximately 2 mm is 75% or more and the haze is 5% or less.
It is also preferable that the conductive layer contains ultrafine fibers in an amount of 30 to 450 mg / m 2 and the thickness of the conductive layer is 5 to 500 nm.

また、本発明の更に他の電磁波シールド体は、透明な基材の少なくとも片面に、カーボンナノチューブを含んだ熱可塑性樹脂よりなる透明な導電層が形成された電磁波シールド体であって、上記カーボンナノチューブが1本づつ分離した状態で、もしくは、複数本集まって束になったものが1束づつ分離した状態で、上記導電層の熱可塑性樹脂中に分散して互いに接触し、上記導電層が10Ω/□以下の表面抵抗率を備えていることを特徴とするものである。 Further, still another electromagnetic wave shielding body of the present invention is an electromagnetic wave shielding body in which a transparent conductive layer made of a thermoplastic resin containing carbon nanotubes is formed on at least one surface of a transparent base material, In a state in which the conductive layers are separated one by one, or in a state in which a plurality of bundles are separated into bundles, the conductive layers are dispersed in the thermoplastic resin and come into contact with each other. It is characterized by having a surface resistivity of 4 Ω / □ or less.

上記の各本発明において、「凝集することなく」とは、導電層の表面を光学顕微鏡で観察し、平均径が0.5μm以上の塊がないことを意味する用語である。また、「接触」とは、極細導電繊維が現実に接触している場合と、極細導電繊維が導通可能な微小間隔をあけて近接している場合の双方を意味する用語である。   In each of the above-mentioned present inventions, “without aggregation” is a term meaning that there is no lump having an average diameter of 0.5 μm or more when the surface of the conductive layer is observed with an optical microscope. Further, the term “contact” is a term meaning both the case where the ultrafine conductive fibers are actually in contact with and the case where the ultrafine conductive fibers are close to each other with a small gap that allows conduction.

本発明の第一の電磁波シールド体は、導電層に含まれる極細導電繊維が凝集することなく分散して互いに接触しているので、該繊維が凝集していない分だけ、極細導電繊維が解けて相互の十分な導通を確保できるので良好な導電性を得ることができる。そのため、極細導電繊維量を少なくしても10Ω/□以下の表面抵抗率を得ることができ、電磁波シールド体とすることができる。 The first electromagnetic wave shielding body of the present invention is in contact with each other because the ultrafine conductive fibers contained in the conductive layer are dispersed without agglomeration. Since sufficient mutual conduction can be ensured, good conductivity can be obtained. Therefore, even if the amount of the ultrafine conductive fibers is reduced, a surface resistivity of 10 5 Ω / □ or less can be obtained, and an electromagnetic wave shield can be obtained.

そして、極細導電繊維の量が減少した分だけ透明性を向上させることができるし、導電層の厚みを薄くすることもできる。一方、極細導電繊維量を従来と同じにすると、極細導電繊維が解れて凝集がなくなった分だけ、導通に寄与する極細導電繊維の本数が増え、今まで以上に優れた導電性を得ることができ、優れた電磁波シールド体とすることができるのである。そして、極細導電繊維がカーボンナノチューブであると、該カーボンナノチューブが細くて長いので、これら相互の接触がさらに良好に確保でき、表面抵抗率を10Ω/□以下に容易にコントロールできるし、また高い透明性も確保でき、透明性を有する電磁波シールド体とすることが極めて容易になる。 Then, the transparency can be improved by the reduced amount of the ultrafine conductive fibers, and the thickness of the conductive layer can be reduced. On the other hand, when the amount of the fine conductive fibers is the same as the conventional amount, the number of the fine conductive fibers contributing to conduction increases as much as the fine conductive fibers are unraveled and the cohesion disappears, and it is possible to obtain better conductivity than ever. Thus, an excellent electromagnetic wave shielding body can be obtained. When the ultrafine conductive fibers are carbon nanotubes, the carbon nanotubes are thin and long, so that the mutual contact can be more preferably ensured, and the surface resistivity can be easily controlled to 10 5 Ω / □ or less. High transparency can be ensured, and it becomes extremely easy to provide an electromagnetic wave shield having transparency.

本発明の第二の電磁波シールド体は、極細導電繊維が1本づつ分離した状態で、もしくは、複数本集まって束になったものが1束づつ分離した状態で分散して互いに接触しているので、分散した1本若しくは1束の極細導電繊維相互の接触機会が多くなり、十分な導通を確保でき良好な導電性を得ることができる。そのため、極細導電繊維量を少なくしても10Ω/□以下の表面抵抗率を得ることができ、電磁波シールド体とすることができる。また、導電層の厚みを薄くしても10Ω/□以下の表面抵抗率を得ることができるので、その分透明性を良好にすることができ、例えば、シールド体の厚みが略2mmであるときには、全光線透過率を75%以上、ヘーズを5%以下にすることができる。一方、極細導電繊維量を従来と同じにすると、今まで以上に極細導電繊維の接触機会が多くなって優れた導電性を得ることができ、容易に10Ω/□以下の表面抵抗率を得ることができる。そして、極細導電繊維としてカーボンナノチューブを用いると、さらに上記の接触機会が増加し、高透明の電磁波シールド体とすることができる。 The second electromagnetic wave shield of the present invention is in a state where the ultrafine conductive fibers are separated one by one, or a plurality of bundles are collected and bundled and separated one by one and are in contact with each other. Therefore, the chance of contact between the dispersed one or one bundle of ultrafine conductive fibers is increased, and sufficient conductivity can be ensured, and good conductivity can be obtained. Therefore, even if the amount of the ultrafine conductive fibers is reduced, a surface resistivity of 10 5 Ω / □ or less can be obtained, and an electromagnetic wave shield can be obtained. In addition, since the surface resistivity of 10 5 Ω / □ or less can be obtained even if the thickness of the conductive layer is reduced, the transparency can be improved accordingly. For example, when the thickness of the shield body is approximately 2 mm, In some cases, the total light transmittance can be greater than 75% and the haze can be less than 5%. On the other hand, if the amount of the ultrafine conductive fiber is the same as the conventional one, the chance of contact of the ultrafine conductive fiber increases more than before, and excellent conductivity can be obtained, and the surface resistivity of 10 5 Ω / □ or less can be easily obtained. Obtainable. When carbon nanotubes are used as the ultrafine conductive fibers, the above-mentioned contact opportunities are further increased, and a highly transparent electromagnetic wave shield can be obtained.

以下、図面を参照して本発明の実施形態を詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の板状の電磁波シールド体の一実施形態を示す断面図、図2の(A)は導電層内部における極細導電繊維の分散状態を示す模式概略断面図、図2の(B)は導電層表面における極細導電繊維の分散状態を示す模式概略断面図、図3は導電層を平面から見た極細導電繊維の分散状態を示す模式概略平面図である。   FIG. 1 is a cross-sectional view showing one embodiment of a plate-shaped electromagnetic wave shield of the present invention, FIG. 2A is a schematic cross-sectional view showing a state of dispersion of ultrafine conductive fibers inside a conductive layer, and FIG. 3) is a schematic cross-sectional view showing the dispersion state of the ultrafine conductive fibers on the surface of the conductive layer, and FIG. 3 is a schematic plan view showing the dispersion state of the ultrafine conductive fibers when the conductive layer is viewed from a plane.

この電磁波シールド体Pは、合成樹脂やガラスやセラミックや無機材などよりなる基材1の片面に、極細導電繊維3を含んだ導電層2を積層形成したものである。導電層2は基材1の片面のみではなく、基材1の両面に形成してもよい。   This electromagnetic wave shield P is formed by laminating a conductive layer 2 containing ultrafine conductive fibers 3 on one surface of a base material 1 made of synthetic resin, glass, ceramic, inorganic material or the like. The conductive layer 2 may be formed not only on one side of the substrate 1 but also on both sides of the substrate 1.

基材1は、上記の如く熱可塑性樹脂、熱や紫外線や電子線や放射線などで硬化する硬化性樹脂、ガラス、セラミック、無機材などが使用される。これらの中でも、透明性を有するシールド体Pを得るためには、透明な熱可塑性樹脂や硬化性樹脂やガラスが好ましく使用される。前記透明熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレン、環状ポリオレフィン等のオレフィン系樹脂、ポリ塩化ビニル、ポリメチルメタクリレート、ポリスチレン等のビニル系樹脂、ニトロセルロース、トリアセチルセルロース等のセルロース系樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリジメチルシクロヘキサンテレフタレート、芳香族ポリエステル等のエステル系樹脂、ABS樹脂、これらの樹脂の共重合体樹脂、これらの樹脂の混合樹脂などが使用され、前記透明硬化性樹脂としては、例えばエポキシ樹脂、ポリイミド樹脂、アクリル樹脂などが使用される。
また、基材1は必ずしも平板状である必要はなく、異型形状のものでもよい。
As the substrate 1, a thermoplastic resin, a curable resin which is cured by heat, ultraviolet rays, an electron beam, radiation, or the like, glass, ceramic, an inorganic material, or the like is used as described above. Among these, a transparent thermoplastic resin, a curable resin, or glass is preferably used in order to obtain a shield body P having transparency. As the transparent thermoplastic resin, for example, polyethylene, polypropylene, olefinic resins such as cyclic polyolefins, polyvinyl chloride, polymethyl methacrylate, vinyl resins such as polystyrene, nitrocellulose, cellulose resins such as triacetyl cellulose, polycarbonate, Ester resins such as polyethylene terephthalate, polydimethylcyclohexane terephthalate, and aromatic polyester, ABS resins, copolymer resins of these resins, and mixed resins of these resins are used. As the transparent curable resin, for example, epoxy resin Resin, polyimide resin, acrylic resin and the like are used.
Further, the substrate 1 does not necessarily have to be flat, but may be of an irregular shape.

そして、基材1の厚さが2mmのときに、80%以上、好ましくは85%以上の全光線透過率と、4%以下のヘーズを有するようになされる樹脂が特に好ましく使用される。このような樹脂としては、環状ポリオレフィン、ポリ塩化ビニル、ポリメチルメタクリレート、ポリスチレン、トリアセチルセルロース、ポリカーボネート、ポリエチレンテレフタレート、ポリジメチルシクロヘキサンテレフタレートあるいはその共重合体樹脂、これらの混合樹脂、硬化型アクリル樹脂が用いられる。その他、ガラスも全光線透過率が95%以上と透明性が非常に良好であるので、透明性電磁波シールド体Pを得るうえで好ましく用いられる。このような樹脂やガラスを基材1に用いると、厚さが2mmのシールド体の全光線透過率を75%以上、ヘーズを5%以下とすることができる。   When the thickness of the substrate 1 is 2 mm, a resin having a total light transmittance of 80% or more, preferably 85% or more, and a haze of 4% or less is particularly preferably used. Examples of such a resin include a cyclic polyolefin, polyvinyl chloride, polymethyl methacrylate, polystyrene, triacetyl cellulose, polycarbonate, polyethylene terephthalate, polydimethylcyclohexane terephthalate or a copolymer resin thereof, a mixed resin thereof, and a curable acrylic resin. Used. In addition, glass has a very high total light transmittance of 95% or more in transparency, and is therefore preferably used for obtaining a transparent electromagnetic wave shield P. When such a resin or glass is used for the substrate 1, the total light transmittance of the shield having a thickness of 2 mm can be 75% or more and the haze can be 5% or less.

上記合成樹脂製基材1には可塑剤、安定剤、紫外線吸収剤等が適宜配合され、成形性、熱安定性、耐候性等が高められる。更に、これらの基材1に顔料や染料を添加して不透明にしたり、半透明にしたりしてもよく、この場合は不透明成形体或は半透明成形体となるが、導電層2が透明であるため、その色調を損なうことがない。
基材1の厚さは、用途に応じた厚さとすればよいが、通常は0.03〜10mm程度の厚さの基材1が使用される。
A plasticizer, a stabilizer, an ultraviolet absorber and the like are appropriately compounded in the synthetic resin base material 1 to improve moldability, heat stability, weather resistance, and the like. Furthermore, pigments or dyes may be added to these base materials 1 to make them opaque or translucent. In this case, an opaque molded product or a translucent molded product is obtained. Therefore, the color tone is not impaired.
The thickness of the substrate 1 may be a thickness according to the application, but usually, the substrate 1 having a thickness of about 0.03 to 10 mm is used.

この基材1の片面に形成された導電層2は、極細導電繊維を含んだ透明層であって、極細導電繊維が凝集することなく分散して互いに接触している。換言すれば、極細導電繊維が絡み合うことなく1本づつ分離した状態で、もしくは、複数本集まって束になったものが1束づつ分離した状態で、分散して互いに接触している。導電層2が主に極細導電繊維と透明なバインダーとで形成されていると、図2(A)に示すように、該極細導電繊維はバインダーの内部に上記の分散状態で分散し互いに接触しているか、或は図2(B)に示すように、極細繊維の一部がバインダー中に入り込み他の部分がバインダー表面から突出乃至露出して上記分散状態で分散し互いに接触しているか、或は極細導電繊維の一部は図2(A)のようにバインダーの内部に、他の極細導電繊維は図2(B)のように表面から突出乃至露出している状態で分散していることとなる。   The conductive layer 2 formed on one surface of the substrate 1 is a transparent layer containing ultrafine conductive fibers, and the ultrafine conductive fibers are dispersed without agglomeration and are in contact with each other. In other words, in a state where the ultrafine conductive fibers are separated one by one without being entangled, or in a state where a plurality of bundles are collected and separated one by one, they are in contact with each other in a dispersed manner. When the conductive layer 2 is mainly formed of ultrafine conductive fibers and a transparent binder, as shown in FIG. 2A, the ultrafine conductive fibers are dispersed in the binder in the above-described dispersion state and come into contact with each other. Or, as shown in FIG. 2 (B), a part of the ultrafine fibers enter the binder and the other part protrudes or is exposed from the binder surface and is dispersed in the above-mentioned dispersed state and is in contact with each other; Is that a part of the ultrafine conductive fiber is dispersed inside the binder as shown in FIG. 2 (A), and the other ultrafine conductive fiber is projected or exposed from the surface as shown in FIG. 2 (B). It becomes.

これらの極細導電繊維3の平面から見た分散状態を図3に模式概略的に示す。この図3から理解されるように、極細導電繊維3が多少曲がっているが1本づつ或は1束づつ分離し、互いに複雑に絡み合うことなく即ち凝集することなく、単純に交差した状態で導電層2の内部に或は表面に分散され、それぞれの交点で接触している。このように分散していると、凝集している場合に比べて、繊維が解れて広範囲に存在しているので、これら繊維同士の接触する機会が著しく増加し、その結果導通して導電性を著しく高めることができる。例えば、従来の特許文献1と同じ10Ω/□の導電性を得るためには、接触点(導通の密度)を従来のものと同じにすればよいのであるから、上記分散状態にすることで極細導電繊維の量を減少させても同じ接触機会を得ることができ、その分、極細導電繊維の量を少なくすることができるのである。その結果、透明性を阻害する極細導電繊維の量が少なくなった分だけ透明性が向上するし、また、導電層2を薄くすることもでき、一層透明性を向上させることができる。 FIG. 3 schematically shows the dispersion state of these ultrafine conductive fibers 3 as viewed from the plane. As can be understood from FIG. 3, the ultrafine conductive fibers 3 are slightly bent, but are separated one by one or one by one, and are not entangled with each other in a complicated manner. It is dispersed inside or on the surface of layer 2 and is in contact at each intersection. When dispersed in this way, the fibers are unraveled and present in a wide area as compared with the case where the fibers are aggregated, so that the chance of contact between these fibers is remarkably increased. Can be significantly increased. For example, in order to obtain the same conductivity of 10 3 Ω / □ as in the conventional patent document 1, it is only necessary to make the contact point (conduction density) the same as the conventional one. Thus, even if the amount of the ultrafine conductive fiber is reduced, the same contact opportunity can be obtained, and accordingly, the amount of the ultrafine conductive fiber can be reduced. As a result, the transparency is improved as much as the amount of the ultrafine conductive fibers that hinder the transparency is reduced, and the conductive layer 2 can be made thinner, so that the transparency can be further improved.

このような分散状態であると、シールド体Pを折り曲げても極細導電繊維の曲がった部分が伸びることができるので、該繊維が切断されることがなく、導通性を確保でき表面抵抗率を低下させることがない。
なお、極細導電繊維3は完全に1本づつ或は1束づつ分離し分散している必要はなく、一部に絡み合った小さな凝集塊があっても良いが、その大きさは平均径が0.5μm以上でないことが好ましい。
In such a dispersed state, even if the shield body P is bent, the bent portion of the ultrafine conductive fiber can be extended, so that the fiber is not cut, the conductivity can be secured, and the surface resistivity is lowered. I will not let you.
It is not necessary that the ultrafine conductive fibers 3 are completely separated and dispersed one by one or one bundle, and a small agglomerate may be partially entangled. It is preferably not more than 0.5 μm.

一方、従来と同じ量の極細導電繊維3を導電層2に含ませると、上記分散状態にすることで、従来より多くの繊維同士の接触機会を得ることができる。そのため、導電性を著しく向上させることができるので、10Ω/□以下、好ましくは10Ω/□以下の導電性を容易に得ることができ、良好な電磁波シールド性能を発揮し得るのである。
さらに、極細導電繊維3を導電層2に含ませて該導電層2の厚みを5〜500nmと薄くすると、厚み方向に分散していた極細導電繊維3が濃縮され、これら相互の接触する機会が増加するので、一層導電性を高めることが可能となる。従って、導電層2の厚みを上記の範囲で薄くすることが好ましく、更に好ましくは10〜400nmにすることが望ましい。
On the other hand, when the same amount of the ultrafine conductive fibers 3 as in the related art is included in the conductive layer 2, by making the dispersion state described above, it is possible to obtain more opportunities for contact between the fibers than in the related art. Therefore, the conductivity can be remarkably improved, so that conductivity of 10 5 Ω / □ or less, preferably 10 4 Ω / □ or less can be easily obtained, and good electromagnetic wave shielding performance can be exhibited. .
Further, when the ultrafine conductive fibers 3 are included in the conductive layer 2 and the thickness of the conductive layer 2 is reduced to 5 to 500 nm, the ultrafine conductive fibers 3 dispersed in the thickness direction are concentrated, and the chance of contact with each other is reduced. As the number increases, the conductivity can be further increased. Therefore, it is preferable to reduce the thickness of the conductive layer 2 within the above range, and it is more preferable that the thickness be 10 to 400 nm.

導電層2に使用される極細導電繊維3としては、カーボンナノチューブやカーボンナノホーン、カーボンナノワイヤ、カーボンナノファイバー、グラファイトフィブリルなどの極細長炭素繊維、白金、金、銀、ニッケル、シリコンなどの金属ナノチューブ、ナノワイヤなどの極細長金属繊維、酸化亜鉛などの金属酸化物ナノチューブ、ナノワイヤなどの極細長金属酸化物繊維などの、直径が0.3〜100nmで長さが0.1〜20μm、好ましくは長さが0.1〜10μmである極細導電繊維が好ましく用いられる。   Examples of the ultrafine conductive fibers 3 used for the conductive layer 2 include ultrafine carbon fibers such as carbon nanotubes, carbon nanohorns, carbon nanowires, carbon nanofibers, and graphite fibrils; metal nanotubes such as platinum, gold, silver, nickel, and silicon; Ultrafine metal fibers such as nanowires, metal oxide nanotubes such as zinc oxide, ultrafine metal oxide fibers such as nanowires, etc., having a diameter of 0.3 to 100 nm and a length of 0.1 to 20 μm, preferably a length Is preferably 0.1 to 10 μm.

これらの極細導電繊維3は、これが凝集することなく1本づつ或は1束づつ分散することにより、該導電層2の表面抵抗率が10〜10Ω/□である時にはその光線透過率が50%以上であるものが得られるし、表面抵抗率が10〜10Ω/□である時には光線透過率が75%以上のものが得られる。これらの極細導電繊維の中でも、カーボンナノチューブは、直径が極めて細く0.3〜80nmであるので、1本或は1束づつ分散することで該カーボンナノチューブが光透過を阻害することが少なくなり、光線透過率が75%以上の透明な導電層2を得るうえで特に好ましい。 These ultra fine conductive fibers 3, which by the one to one by or one bundle by one dispersed without aggregation, the light transmittance when the surface resistivity of the conductive layer 2 is 10 0 ~10 1 Ω / □ Is obtained when the surface resistivity is 10 2 to 10 5 Ω / □, and the light transmittance is 75% or more. Among these ultrafine conductive fibers, carbon nanotubes are extremely thin and have a diameter of 0.3 to 80 nm, so that the carbon nanotubes are less likely to hinder light transmission by being dispersed one by one or one bundle at a time, It is particularly preferable to obtain a transparent conductive layer 2 having a light transmittance of 75% or more.

これらの極細導電繊維3は、導電層2の内部に、或は表面に、凝集することなく、1本づつ、或は複数本が束になつた状態で分散し、互いに接触して導通性を確保している。そのため、該極細導電繊維を導電層2に30〜450mg/mの目付け量含ませることで、その表面抵抗率を10〜10Ω/□の範囲内で自由にコントロールすることができる。該目付け量は、導電層2の表面を電子顕微鏡で観察し、表面面積に占める極細導電繊維の面積割合を測定し、これに厚みと極細導電繊維の比重(極細導電繊維がカーボンナノチューブである場合は、グラファイトの文献値2.1〜2.3の平均値2.2を採用)を掛けることで計算した値である。 These ultrafine conductive fibers 3 are dispersed one by one or a plurality of bundles without being agglomerated inside or on the surface of the conductive layer 2, and contact with each other to provide conductivity. Have secured. Therefore, by including the basis weight of 30~450mg / m 2 to the conductive layer 2 the ultra Hososhirube conductive fibers, the surface resistivity can be freely controlled by 10 0 ~10 5 Ω / □ in the range of. The basis weight is determined by observing the surface of the conductive layer 2 with an electron microscope, measuring the area ratio of the fine conductive fibers to the surface area, and determining the thickness and the specific gravity of the fine conductive fibers (when the fine conductive fibers are carbon nanotubes). Is a value calculated by multiplying the average value of graphite literature values 2.1 to 2.3 by 2.2.

ここで、凝集をしていないとは、前記の如く、導電層を光学顕微鏡で観察し、凝集している塊があれば、その長径と短径とを測定し、その平均値が0.5μm以上の塊がないことを意味する用語である。   Here, as not being agglomerated, as described above, the conductive layer is observed with an optical microscope, and if there is an agglomerated mass, its major axis and minor axis are measured, and the average value is 0.5 μm This is a term meaning that there is no such lump.

上記カーボンナノチューブには、中心軸線の周りに直径が異なる複数の円筒状に閉じたカーボン壁を同心的に備えた多層カーボンナノチューブや、中心軸線の周りに単独の円筒状に閉じたカーボン壁を備えた単層カーボンナノチューブがある。   The carbon nanotube includes a multi-walled carbon nanotube concentrically provided with a plurality of cylindrically closed carbon walls having different diameters around the central axis, and a single cylindrically closed carbon wall around the central axis. Single-walled carbon nanotubes.

前者の多層カーボンナノチューブは、上記のように直径が異なる複数の円筒状に閉じたカーボン壁からなるチューブが中心軸線の周りに多層に重なって構成されており、このカーボン壁は、カーボンの六角網目構造にて形成されている。その他、上記カーボン壁が渦巻き状に多層に形成されているものもある。好ましい多層カーボンナノチューブは、このカーボン壁が2〜30層、より好ましくは2〜15層重なったものであり、この範囲の層の重なりであれば、カーボン壁が少なくて光線透過率やヘーズを更に良好にすることができる。該多層カーボンナノチューブは1本づつ分離した状態で分散しているものが殆どであるが、2〜3層カーボンナノチューブは、束になって分散している場合もある。   The former multi-walled carbon nanotube has a structure in which a plurality of tubes each formed of a plurality of cylindrically closed carbon walls having different diameters as described above are superposed in multiple layers around a central axis, and this carbon wall is formed of a carbon hexagonal mesh. It is formed with a structure. In addition, there is also a structure in which the carbon wall is formed in a spiral multilayer. A preferred multi-walled carbon nanotube has two to thirty carbon walls, more preferably two to fifteen layers, and if the layers overlap in this range, the number of carbon walls is small and the light transmittance and haze are further reduced. Can be good. Most of the multi-walled carbon nanotubes are dispersed in a state of being separated one by one, but the two- or three-walled carbon nanotubes may be dispersed in a bundle.

一方、後者の単層カーボンナノチューブは、上記のように中心軸線の周りに円筒状に閉じた単層のカーボン壁から構成されており、このカーボン壁もカーボンの六角網目構造にて形成されている。このような単層カーボンナノチューブは単独で存在することはなく、2本以上が束になった状態で存在し、その束が1束づつ分離して、束同士が複雑に絡み合うことなく、単純に交差した状態で導電層の内部若しくは表面に分散され、それぞれの交点で接触している。そして、好ましくは10〜50本の単層カーボンナノチューブが集まって束になったものが用いられる。   On the other hand, the latter single-walled carbon nanotube is composed of a single-walled carbon wall closed cylindrically around the central axis as described above, and this carbon wall is also formed by a hexagonal mesh structure of carbon. . Such single-walled carbon nanotubes do not exist alone, but exist in a state in which two or more bundles are bundled, and the bundles are separated one by one without being complicatedly entangled with each other. In an intersecting state, it is dispersed inside or on the surface of the conductive layer, and is in contact at each intersection. Preferably, a bundle of 10 to 50 single-walled carbon nanotubes collected and used is used.

上記のように、極細導電繊維3が絡み合うことなく凝集せずに導電層2中に分散してお互いに接触すると、導電層2の厚みを薄くしても、カーボンナノチューブ相互の十分な導通が確保されるため、極細導電繊維3の目付け量を30〜450mg/mとし、導電層2の厚みを5〜500nmと薄くしても、カーボンナノチューブが解れているので相互の十分な導通が確保され、表面抵抗率を10Ω/□以下にすることが容易であり、良好な導電性を発現でき、電磁波シールド性能を発揮する。そして、極細導電繊維が解れて凝集塊がなくなり光透過を阻害しないので透明性が良好になると共に、導電層2の厚みを薄くしてカーボンナノチューブの目付け量を少なくした分だけ透明性が向上するようになる。そのため、透明基材1の厚みが2mmであるときには、全光線透過率が75%以上、ヘーズが5%以下の透明シールド体とすることができる。より好ましい透明シールド体は、全光線透過率を80%以上、ヘーズを2%以下にしたものである。 As described above, when the ultrafine conductive fibers 3 are dispersed in the conductive layer 2 without being entangled without being entangled and are in contact with each other, sufficient conduction between the carbon nanotubes is ensured even when the thickness of the conductive layer 2 is reduced. Therefore, even if the basis weight of the ultrafine conductive fibers 3 is 30 to 450 mg / m 2 and the thickness of the conductive layer 2 is as thin as 5 to 500 nm, sufficient conduction between the carbon nanotubes is secured because the carbon nanotubes are loosened. In addition, it is easy to make the surface resistivity not more than 10 5 Ω / □, good conductivity can be exhibited, and electromagnetic wave shielding performance can be exhibited. Then, since the ultrafine conductive fibers are unwound and no agglomerates are formed and the light transmission is not hindered, the transparency is improved, and the transparency is improved by reducing the thickness of the conductive layer 2 and reducing the basis weight of the carbon nanotubes. Become like Therefore, when the thickness of the transparent substrate 1 is 2 mm, a transparent shield having a total light transmittance of 75% or more and a haze of 5% or less can be obtained. A more preferred transparent shield has a total light transmittance of 80% or more and a haze of 2% or less.

そして、カーボンナノチューブの目付け量を30〜250mg/m程度にすると、102〜10Ω/□の表面抵抗率である高透明(光線透過率が75〜88%)の導電層2を得ることができる。そのため、透明樹脂を基材1に使用すると、電磁波シールド可能な透明体とすることができる。例えば、透明ポリカーボネート樹脂を基材1に使用すると、基材1の厚みが2mmのときの全光線透過率が70%以上、ヘーズが4%以下の高透明電磁波シールドポリカーボーネト体となる。
一方、カーボンナノチューブの目付け量を増加して250〜450mg/m程度にすると、10〜10Ω/□の導電性能に優れたものとすることができるうえ、導電層2の透明性(光線透過率が50〜75%)も保持でき、基材1に透明樹脂を使用することで透明電磁波シールド体とすることができる。例えば、透明ポリカーボネート樹脂を基材1に使用すると、基材1の厚みが2mmのときの全光線透過率が45%以上、ヘーズが5%以下の透明電磁波シールドポリカーボネート体となる。
なお、導電層2の光線透過率は、測定に分光光度計を用い、波長が550nmにおけるシールド体の光線透過率を、基材1のみの光線透過率で補正することにより得ることができる。 また、全光線透過率及びヘーズは、ASTM D1003に準拠して測定した値である。
When the basis weight of the carbon nanotube is about 30 to 250 mg / m 2 , a highly transparent (light transmittance of 75 to 88%) conductive layer 2 having a surface resistivity of 10 2 to 10 5 Ω / □ is obtained. be able to. Therefore, when a transparent resin is used for the substrate 1, a transparent body capable of shielding electromagnetic waves can be obtained. For example, when a transparent polycarbonate resin is used for the substrate 1, a highly transparent electromagnetic shielding polycarbonate body having a total light transmittance of 70% or more and a haze of 4% or less when the thickness of the substrate 1 is 2 mm is obtained.
On the other hand, when the order of 250~450mg / m 2 by increasing the basis weight of the carbon nanotubes, 10 0 ~10 1 Ω / □ conductive performance on top that can be made excellent, conductive layer 2 of transparent ( (A light transmittance of 50 to 75%), and a transparent electromagnetic wave shield can be obtained by using a transparent resin for the substrate 1. For example, when a transparent polycarbonate resin is used for the substrate 1, a transparent electromagnetic wave shielding polycarbonate body having a total light transmittance of 45% or more and a haze of 5% or less when the thickness of the substrate 1 is 2 mm is obtained.
The light transmittance of the conductive layer 2 can be obtained by using a spectrophotometer for measurement and correcting the light transmittance of the shield at a wavelength of 550 nm with the light transmittance of only the substrate 1. Further, the total light transmittance and the haze are values measured in accordance with ASTM D1003.

極細導電繊維3を多量に導電層2内に含有し、より良好な電磁波シールド性能及び透明性を発現させるには、極細導電繊維3の分散性を高め、さらに作製した塗液の粘度を下げて塗液のレベリング性を向上させ、薄い導電層を形成することが重要であり、そのためには、分散剤を併用することが重要である。このような分散剤としては、酸性ポリマーのアルキルアンモニウム塩溶液や3級アミン修飾アクリル共重合物やポリオキシエチレン−ポリオキシプロピレン共重合物などの高分子系分散剤、カップリング剤などが好ましく用いられる。
なお、この導電層2には紫外線吸収剤、表面改質剤、安定剤等の添加剤を適宜加えて、耐候性その他の物性を向上させても良い。
In order to contain a large amount of the fine conductive fiber 3 in the conductive layer 2 and to exhibit better electromagnetic wave shielding performance and transparency, the dispersibility of the fine conductive fiber 3 is increased, and the viscosity of the prepared coating liquid is further reduced. It is important to improve the leveling property of the coating liquid and to form a thin conductive layer, and for that purpose, it is important to use a dispersant together. As such a dispersant, a polymer dispersant such as an alkylammonium salt solution of an acidic polymer, a tertiary amine-modified acrylic copolymer or a polyoxyethylene-polyoxypropylene copolymer, or a coupling agent is preferably used. Can be
In addition, additives such as an ultraviolet absorber, a surface modifier, and a stabilizer may be appropriately added to the conductive layer 2 to improve weather resistance and other physical properties.

導電層2に使用する透明なバインダーとしては、前述した基材1に使用する透明な熱可塑性樹脂、特にポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリメチルメタクリレート、ニトロセルロース、塩素化ポリエチレン、塩素化ポリプロピレン、弗化ビニリデンが、また熱や紫外線や電子線や放射線などで硬化する透明な硬化性樹脂、特にメラミンアクリレート、ウレタンアクリレート、エポキシ樹脂、ポリイミド樹脂、アクリル変性シリケートなどのシリコーン樹脂などが使用され、これらのバインダーと上記極細導電繊維とからなる導電層2が透明層となるようにされる。なお、これらのバインダーにはコロイダルシリカのような無機材を添加してもよい。   Examples of the transparent binder used for the conductive layer 2 include the transparent thermoplastic resin used for the above-described base material 1, particularly, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene. , Chlorinated polypropylene, vinylidene fluoride, and transparent curable resins that are cured by heat, ultraviolet rays, electron beams, radiation, etc., especially silicone resins such as melamine acrylate, urethane acrylate, epoxy resin, polyimide resin, and acrylic-modified silicate Is used so that the conductive layer 2 composed of these binders and the ultrafine conductive fibers becomes a transparent layer. In addition, an inorganic material such as colloidal silica may be added to these binders.

基材1が透明な熱可塑性樹脂で形成されていれば、これと同種の透明な熱可塑性樹脂、又は相溶性のある異種の透明な熱可塑性樹脂が、互いの積層性に優れ、透明電磁波シールド体を得るうえで好ましく使用される。また、バインダーとして硬化性樹脂やコロイダルシリカを含むバインダーを使用すると、耐磨耗性などに優れるシールド体Pを得ることができる。このように、導電層2は基材1の表面に形成されるものであるから、要求される耐候性、表面硬度、耐摩耗性などに適したバインダーを選択使用することが望ましい。   If the substrate 1 is formed of a transparent thermoplastic resin, the same type of transparent thermoplastic resin or a different kind of transparent thermoplastic resin having compatibility has excellent lamination properties with each other, and a transparent electromagnetic wave shield. It is preferably used for obtaining body. When a binder containing a curable resin or colloidal silica is used as the binder, a shield P excellent in abrasion resistance and the like can be obtained. As described above, since the conductive layer 2 is formed on the surface of the substrate 1, it is desirable to select and use a binder suitable for required weather resistance, surface hardness, wear resistance, and the like.

上述したように、導電層2における極細繊維の目付け量を30〜450mg/mとし、導電層2の厚みを5〜500nmと薄くして、極細導電繊維を凝集することなく1本づつ或は1束づつ分散させることで、表面抵抗率が10Ω/□以下、好ましくは10Ω/□以下の良好な導電性及び透明性が発現される。より好ましい極細繊維の目付け量は40〜400mg/m、導電層2の厚みは10〜400nmである。なお、カーボンナノチューブの他に導電性金属酸化物の粉末を30〜50質量%程度含有させてもよい。 As described above, the basis weight of the ultrafine fibers in the conductive layer 2 is 30 to 450 mg / m 2, and the thickness of the conductive layer 2 is reduced to 5 to 500 nm. By dispersing one bundle at a time, good conductivity and transparency having a surface resistivity of 10 5 Ω / □ or less, preferably 10 4 Ω / □ or less are exhibited. The more preferable weight of the ultrafine fiber is 40 to 400 mg / m 2 , and the thickness of the conductive layer 2 is 10 to 400 nm. In addition, a conductive metal oxide powder may be contained in an amount of about 30 to 50% by mass in addition to the carbon nanotubes.

以上のような電磁波シールド体は、例えば次の方法で効率良く量産することができる。一つの方法は、導電層形成用の前記バインダーを揮発性溶剤に溶解した溶液に極細導電繊維を均一に分散させて塗液を調製し、この塗液を基材1の片面に塗布、固化させて導電層2を形成することにより電磁波シールド体Pを製造する方法である。もう一つの方法は、基材1と同種の熱可塑性樹脂フィルム又は相溶性のある異種の熱可塑性樹脂フィルムの片面に、上記塗液を塗布、固化させて導電層2を形成した導電性フィルムを作製し、この導電性フィルムを基材1の片面に重ねて熱プレスやロールプレスで熱圧着することにより電磁波シールド体Pを製造する方法である。さらに他の方法は、ポリエチレンテレフタレートなどの剥離フィルムに上記塗料を塗布、固化させて導電層2を形成し、必要であればさらに接着層を形成して転写フィルムを作製し、この転写フィルムを基材1の片面に重ねて圧着して導電層2若しくは接着層と導電層2とを転写することにより電磁波シールド体Pを製造することができる。なお、その他の公知の製法によっても製造されることは言うまでもない。   The above-described electromagnetic wave shield can be efficiently mass-produced by, for example, the following method. One method is to uniformly disperse the ultrafine conductive fibers in a solution in which the binder for forming a conductive layer is dissolved in a volatile solvent to prepare a coating solution, and apply and solidify the coating solution on one surface of the substrate 1. This is a method for manufacturing the electromagnetic wave shield P by forming the conductive layer 2 by using the method. Another method is to apply a coating liquid on one surface of a thermoplastic resin film of the same kind as the base material 1 or a thermoplastic resin film of a different kind having compatibility, and solidify the conductive film in which the conductive layer 2 is formed. This is a method of manufacturing the electromagnetic wave shielding body P by forming the conductive film on one surface of the substrate 1 and thermocompression-bonding with a hot press or a roll press. Still another method is to apply the above coating material to a release film such as polyethylene terephthalate and solidify to form a conductive layer 2, and if necessary, further form an adhesive layer to prepare a transfer film. The electromagnetic wave shielding body P can be manufactured by transferring the conductive layer 2 or the adhesive layer and the conductive layer 2 by overlapping and pressing on one surface of the material 1. Needless to say, it is also manufactured by other known manufacturing methods.

第一の方法で電磁波シールド体Pを製造する場合は、最後に熱プレスすることによって導電層2を上下方向に圧縮し、導電層2中に分散する極細導電繊維の上下間隔を小さくして極細導電繊維相互の接触頻度を高めたり導通可能な微小間隔部分を縮小させることが好ましい。このようにすると、表面抵抗率が更に低下する利点がある。なお、後者のラミネート方法或は転写方法で製造する場合は、熱圧着時或は転写時に導電層が圧縮されるので、最後のプレスを省略することもできる。
また、導電層形成後に得られる導電性が目的に合致するものであれば、熱プレスは必ずしも必要ではない。
When manufacturing the electromagnetic wave shielding body P by the first method, the conductive layer 2 is vertically compressed by hot pressing at the end, and the vertical spacing of the fine conductive fibers dispersed in the conductive layer 2 is reduced to make the conductive layer 2 finer. It is preferable to increase the frequency of contact between the conductive fibers and to reduce the conductive minute gap. This has the advantage that the surface resistivity is further reduced. In the case of manufacturing by the latter laminating method or transfer method, since the conductive layer is compressed at the time of thermocompression bonding or transfer, the last press can be omitted.
Further, if the conductivity obtained after forming the conductive layer matches the purpose, hot pressing is not necessarily required.

次に、本発明の更に具体的な実施例を挙げる。   Next, more specific examples of the present invention will be described.

[実施例1]
溶媒としてのイソプロピルアルコール/水混合物(混合比3:1)中に単層カーボンナノチューブ(文献Chemical Physics Letters,323(2000)P580−585に基づき合成した物、直径1.3〜1.8nm)と分散剤としてのポリオキシエチレン-ポリオキシプロピレン共重合物を加えて均一に混合、分散させ、単層カーボンナノチューブを0.003質量%、分散剤を0.05質量%含む塗液を調整した。
この塗液を、市販の厚さ100μmのポリエチレンテレフタレートフィルム(全光線透過率94.5%、ヘーズ1.5%)の表面に塗布して乾燥後、更に、メチルイソブチルケトンで600分の1に希釈した熱硬化性のウレタンアクリレート溶液を塗布して乾燥することにより導電層を形成し、透明ポリエチレンテレフタレートフィルムを得た。
[Example 1]
Single-walled carbon nanotubes (synthesized based on Chemical Physics Letters, 323 (2000) P580-585, diameter 1.3 to 1.8 nm) in an isopropyl alcohol / water mixture (mixing ratio 3: 1) as a solvent. A polyoxyethylene-polyoxypropylene copolymer as a dispersant was added and uniformly mixed and dispersed to prepare a coating liquid containing 0.003% by mass of single-walled carbon nanotubes and 0.05% by mass of a dispersant.
This coating solution is applied to the surface of a commercially available 100 μm-thick polyethylene terephthalate film (total light transmittance 94.5%, haze 1.5%), dried, and further reduced to 1/600 with methyl isobutyl ketone. A conductive layer was formed by applying a diluted thermosetting urethane acrylate solution and drying to obtain a transparent polyethylene terephthalate film.

この透明ポリエチレンテレフタレートフィルムの表面抵抗率を三菱化学社製のロレスターで測定したところ、表1に示すように、表面抵抗率が約8.7×10Ω/□であつた。
また、このフィルムの全光線透過率とヘーズとを、ASTM D1003に準拠して、スガ試験機社製の直読ヘーズコンピューターHGM−2DPで測定したところ、表1に示すように、全光線透過率が44.9%、ヘーズが4.7%であった。
さらに、このフィルムの導電層の単層カーボンナノチューブの目付け量を測定したところ、274mg/mであった。
The surface resistivity of this transparent polyethylene terephthalate film was measured with a Lorester manufactured by Mitsubishi Chemical Corporation. As shown in Table 1, the surface resistivity was about 8.7 × 10 1 Ω / □.
Further, the total light transmittance and haze of this film were measured with a direct reading haze computer HGM-2DP manufactured by Suga Test Instruments Co., Ltd. in accordance with ASTM D1003. 44.9% and haze were 4.7%.
Further, the basis weight of the single-walled carbon nanotube in the conductive layer of this film was measured and found to be 274 mg / m 2 .

さらに、このフィルムの導電層を光学顕微鏡で観察したところ、0.5μ以上の凝集塊は存在しておらず、単層カーボンナノチューブの分散が十分に行われていた。そして、多数のカーボンナノチューブが1束ずつ分離した状態で均一に分散し、単純に交差した状態で接触していることがわかった。
また、電界シールド性能をKEC法(アンリツ(株)製MA8602B)にて測定し、その電界シールド性能の結果を電界シールド率として表1に記載すると共に、図4にグラフ化して示す。なお、電界シールド率は入射電界強度を1(100%)としたときの反射電界強度を%で表したものである。
Furthermore, when the conductive layer of this film was observed with an optical microscope, no aggregate of 0.5 μ or more was present, and the single-walled carbon nanotubes were sufficiently dispersed. And it turned out that many carbon nanotubes are uniformly disperse | distributed in the state isolate | separated by 1 bundle, and contacted in the state which intersected simply.
Further, the electric field shielding performance was measured by the KEC method (MA8602B, manufactured by Anritsu Corporation), and the results of the electric field shielding performance are shown in Table 1 as the electric field shielding ratio and are graphically shown in FIG. Note that the electric field shielding ratio is a value in which the reflected electric field intensity is represented by% when the incident electric field intensity is 1 (100%).

[実施例2]
実施例1で用いた塗液を、実施例1で使用したポリエチレンテレフタレートフィルムの表面に塗布して乾燥することにより導電層を形成し、該導電層中のカーボンナノチューブの目付け量が94mg/mである透明ポリエチレンテレフタレートフィルムを得た。
この透明ポリエチレンテレフタレートフィルムフィルムの表面抵抗率を、実施例1と同様にして測定したところ、表1に併記するように、表面抵抗率が約3.6×10Ω/□であつた。
また、このフィルムの全光線透過率とヘーズとを、実施例1と同様にして測定したところ、表1に併記するように、全光線透過率が78.4%、ヘーズが1.6%であった。
さらに、このフィルムの電界シールド性能を、実施例1と同様にして測定した結果を表1及び図4に併記する。
[Example 2]
The conductive layer was formed by applying the coating liquid used in Example 1 to the surface of the polyethylene terephthalate film used in Example 1 and drying the same, and the basis weight of carbon nanotubes in the conductive layer was 94 mg / m 2. Was obtained as a transparent polyethylene terephthalate film.
The surface resistivity of this transparent polyethylene terephthalate film was measured in the same manner as in Example 1. As shown in Table 1, the surface resistivity was about 3.6 × 10 2 Ω / □.
The total light transmittance and haze of this film were measured in the same manner as in Example 1. As shown in Table 1, the total light transmittance was 78.4% and the haze was 1.6%. there were.
Further, the results of measuring the electric field shielding performance of this film in the same manner as in Example 1 are also shown in Table 1 and FIG.

[実施例3]
実施例1で用いた塗液を、実施例1で使用したポリエチレンテレフタレートフィルムの表面に塗布して乾燥することにより導電層を形成し、該導電層中のカーボンナノチューブの目付け量が50mg/mである透明ポリエチレンテレフタレートフィルムを得た。
このフィルムの表面抵抗率、全光線透過率とヘーズ、更に電界シールド性能とを、実施例1と同様にして測定し、その結果を表1及び図4に併記した。
[Example 3]
The conductive layer was formed by applying the coating liquid used in Example 1 to the surface of the polyethylene terephthalate film used in Example 1 and drying it, and the basis weight of carbon nanotubes in the conductive layer was 50 mg / m 2. Was obtained as a transparent polyethylene terephthalate film.
The surface resistivity, total light transmittance, haze, and electric field shielding performance of this film were measured in the same manner as in Example 1, and the results are shown in Table 1 and FIG.

[実施例4]
溶剤としてのシクロヘキサノンに、熱可塑性樹脂として塩化ビニル樹脂の粉末を1.17質量%添加して溶解した。この溶液中に多層カーボンナノチューブ(ティンファ−ナファイン ナノ−パウダー コマーシャリゼーション エンジニアリング センター社製、直径0.7〜2nm)と分散剤としての酸性ポリマーのアルキルアンモニウム塩溶液を加えて均一に混合、分散させ、カーボンナノチューブを0.3質量%、分散剤を0.3質量%含む塗液を調整した。
この塗液を市販の厚さ100μmのアクリルフィルムの表面に塗布し、乾燥してラミネートフィルムを得た。このラミネートフィルムを、厚さ0.7mmの塩化ビニル樹脂板の表面に重ね合せ、温度170℃、圧力50kg/cmでプレスすることによって、塩化ビニル樹脂板を得た。
[Example 4]
1.17% by mass of vinyl chloride resin powder as a thermoplastic resin was added to and dissolved in cyclohexanone as a solvent. Into this solution, multi-walled carbon nanotubes (Tinfana Fine Nano-Powder Commercialization Engineering Center Co., Ltd., 0.7-2 nm in diameter) and an alkylammonium salt solution of an acidic polymer as a dispersant are added, and they are uniformly mixed and dispersed. A coating liquid containing 0.3% by mass of a carbon nanotube and 0.3% by mass of a dispersant was prepared.
This coating solution was applied to the surface of a commercially available acrylic film having a thickness of 100 μm and dried to obtain a laminate film. This laminate film was superimposed on the surface of a vinyl chloride resin plate having a thickness of 0.7 mm, and pressed at a temperature of 170 ° C. and a pressure of 50 kg / cm 2 to obtain a vinyl chloride resin plate.

この樹脂板の表面抵抗率、全光線透過率とヘーズ、更に電界シールド性能とを、実施例1と同様にして測定し、その結果を表1及び図4に併記した。   The surface resistivity, total light transmittance, haze, and electric field shielding performance of this resin plate were measured in the same manner as in Example 1, and the results are shown in Table 1 and FIG.

Figure 2004253796
Figure 2004253796

表1からわかるように、実施例1〜4の全ての表面抵抗率は10Ω/□以下の数値を示し、十分電磁波シールド性能を有する表面抵抗率を有していた。そして、実施例1〜3の表面抵抗率から、カーボンナノチューブの目付け量が多いほど、その表面抵抗率が低下することがわかる。 As can be seen from Table 1, all the surface resistivity of Examples 1 to 4 showed a numerical value of 10 5 Ω / □ or less, and had a surface resistivity having sufficient electromagnetic wave shielding performance. From the surface resistivity of Examples 1 to 3, it is understood that the larger the basis weight of the carbon nanotube, the lower the surface resistivity.

また、表1及び図3からわかるように、実施例1の表面抵抗率が約8.7×10Ω/□であるフィルムは、1〜100MHzで95%以上の電界シールド率を有し、100MHz〜1GHzでは75%以上の電界シールド率を有していることがわかる。また、実施例2の表面抵抗率が約4×10Ω/□であるフィルムは、1〜100MHzで80%以上の電界シールド率を有し、100MHz〜1GHzでは50%以上の電界シールド率を有しおり、更に、実施例3の表面抵抗率が約1×10Ω/□であるフィルムは、1〜100MHzで60%以上の電界シールド率を有し、また100MHz〜1GHzでは20%以上の電界シールド率を有していることがわかる。 Further, as can be seen from Table 1 and FIG. 3, the film having a surface resistivity of about 8.7 × 10 1 Ω / □ in Example 1 has an electric field shielding ratio of 95% or more at 1 to 100 MHz, From 100 MHz to 1 GHz, it can be seen that the electric field shielding ratio is 75% or more. The film having a surface resistivity of about 4 × 10 2 Ω / □ in Example 2 has an electric field shielding rate of 80% or more at 1 to 100 MHz, and an electric field shielding rate of 50% or more at 100 MHz to 1 GHz. Further, the film having a surface resistivity of about 1 × 10 3 Ω / □ in Example 3 has an electric field shielding rate of 60% or more at 1 to 100 MHz and 20% or more at 100 MHz to 1 GHz. It turns out that it has an electric field shielding rate.

これらのことより、本実施例1〜3の各フィルムは十分な電磁波シールド性能を有しており、特に表面抵抗率が5×10Ω/□以下である実施例1、2は十二分なシールド性能を有していた。そして、この表面抵抗率は導電層に含まれるカーボンナノチューブの目付け量に比例していることもわかるので、必要な電磁波シールド性能を得るためには上記目付け量を調整すればよいこともわかる。 From these facts, the films of Examples 1 to 3 have sufficient electromagnetic wave shielding performance, and Examples 1 and 2 having a surface resistivity of 5 × 10 2 Ω / □ or less are more than sufficient. Had good shielding performance. Since it is also understood that the surface resistivity is proportional to the basis weight of the carbon nanotubes contained in the conductive layer, it is understood that the basis weight may be adjusted in order to obtain the required electromagnetic wave shielding performance.

一方、表面抵抗率が約1×10Ω/□である実施例4の塩化ビニル樹脂板は、1〜10MHzで60%以上の電界シールド率を有し、10MHz〜1GHzでは20%以上の電界シールド率を有していることがわかる。該塩化ビニル樹脂板は透明性は劣るものの、電界シールド率を有していて、透明性をあまり必要としない用途には電磁波シールド板として使用可能であることがわかる。 On the other hand, the vinyl chloride resin plate of Example 4 having a surface resistivity of about 1 × 10 4 Ω / □ has an electric field shielding ratio of 60% or more at 1 to 10 MHz and an electric field shielding of 20% or more at 10 MHz to 1 GHz. It turns out that it has a shielding rate. Although the vinyl chloride resin plate is inferior in transparency, it has an electric field shielding ratio, and it can be seen that the vinyl chloride resin plate can be used as an electromagnetic wave shielding plate in applications that do not require much transparency.

以上の説明及び実施例から明らかなように、本発明の電磁波シールド体は、導電層におけるカーボンナノチューブの分散性が良好であるため、良好な電磁波シールド性能を発揮することができる。また、導電層の厚みを薄くしても、表面抵抗率が10Ω/□以下で電磁波シールド性能を有する電磁波シールド体とすることができる。 As is clear from the above description and Examples, the electromagnetic wave shielding body of the present invention can exhibit good electromagnetic wave shielding performance since the dispersibility of carbon nanotubes in the conductive layer is good. Further, even if the thickness of the conductive layer is reduced, an electromagnetic wave shielding body having a surface resistivity of 10 5 Ω / □ or less and having electromagnetic wave shielding performance can be obtained.

本発明に係る電磁波シールド体の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the electromagnetic wave shielding body which concerns on this invention. (A)は本発明の導電層内部での極細繊維の分散状態を示す模式概略断面図、(B)は本発明の導電層表面での極細繊維の分散状態を示す模式概略断面図である。(A) is a schematic cross-sectional view showing the state of dispersion of microfibers inside the conductive layer of the present invention, and (B) is a schematic cross-sectional view showing the state of dispersion of microfibers on the surface of the conductive layer of the present invention. 本発明の導電層を平面から見た極細繊維の分散状態を示す模式概略平面図であるFIG. 2 is a schematic plan view showing a dispersion state of microfibers when the conductive layer of the present invention is viewed from a plane. 本発明に係る電磁波シールド板の電界シールド特性を示すグラフである。4 is a graph showing electric field shielding characteristics of the electromagnetic wave shielding plate according to the present invention.

符号の説明Explanation of reference numerals

1 基材
2 導電層
3 多層カーボンナノチューブ
P 電磁波シールド体
DESCRIPTION OF SYMBOLS 1 Base material 2 Conductive layer 3 Multi-walled carbon nanotube P Electromagnetic wave shield

Claims (10)

基材の少なくとも片面に、極細導電繊維を含んだ透明な導電層が形成された電磁波シールド体であって、上記極細導電繊維が凝集することなく分散して互いに接触し、上記導電層が10Ω/□以下の表面抵抗率を備えていることを特徴とする電磁波シールド体。 On at least one surface of a substrate, a ultra fine conductive fibers laden transparent conductive layer electromagnetic shield formed, and dispersed without the ultra fine conductive fibers are agglomerated into contact with one another, the conductive layer is 10 5 An electromagnetic wave shield having a surface resistivity of Ω / □ or less. 基材の少なくとも片面に、極細導電繊維を含んだ透明な導電層が形成された電磁波シールド体であって、上記極細導電繊維が1本づつ分離した状態で、もしくは、複数本集まって束になったものが1束づつ分離した状態で分散して互いに接触し、上記導電層が10Ω/□以下の表面抵抗率を備えていることを特徴とする電磁波シールド体。 An electromagnetic wave shielding body in which a transparent conductive layer containing ultrafine conductive fibers is formed on at least one surface of a base material, wherein the ultrafine conductive fibers are separated from each other, or a plurality of the conductive fibers are bundled together. An electromagnetic wave shield, wherein the conductive layers have a surface resistivity of 10 5 Ω / □ or less, and the conductive layers have a surface resistivity of 10 5 Ω / □ or less. 極細導電繊維が極細炭素繊維であることを特徴とする請求項1又は請求項2に記載の電磁波シールド体。   3. The electromagnetic wave shield according to claim 1, wherein the ultrafine conductive fibers are ultrafine carbon fibers. 上記極細炭素繊維がカーボンナノチューブであることを特徴とする請求項3に記載の電磁波シールド体。   The electromagnetic wave shield according to claim 3, wherein the ultrafine carbon fibers are carbon nanotubes. 上記極細導電繊維が多層カーボンナノチューブであり、1本づつ分離した状態で分散して互いに接触していることを特徴とする請求項1〜4のいずれかに記載の電磁波シールド体。   The electromagnetic wave shield according to any one of claims 1 to 4, wherein the ultrafine conductive fibers are multi-walled carbon nanotubes, and the fibers are dispersed one by one and are in contact with each other. 上記極細導電繊維が単層カーボンナノチューブであり、複数本が集まって束になった状態で分散して互いに接触していることを特徴とする請求項1〜4のいずれかに記載の電磁波シールド体。   The electromagnetic wave shield according to any one of claims 1 to 4, wherein the ultrafine conductive fibers are single-walled carbon nanotubes, and a plurality of the fibers are dispersed and contacted with each other in a bundled state. . 上記極細導電繊維が2〜3層カーボンナノチューブであり、複数本が集まって束になった状態で分散して互いに接触していることを特徴とする請求項1〜4のいずれかに記載の電磁波シールド体。   The electromagnetic wave according to any one of claims 1 to 4, wherein the ultrafine conductive fibers are two to three-walled carbon nanotubes, and a plurality of the conductive fibers are dispersed in a bundled state and are in contact with each other. Shield body. 基材が透明樹脂で成形されてなる透明な電磁波シールド体であり、その厚みが略2mmであるときの全光線透過率が75%以上、ヘーズが5%以下である請求項1〜7のいずれかに記載の電磁波シールド体。   8. A transparent electromagnetic wave shielding body whose base material is formed of a transparent resin, wherein the total light transmittance when the thickness is approximately 2 mm is 75% or more and the haze is 5% or less. An electromagnetic wave shield according to any of the claims. 上記導電層が極細導電繊維を30〜450mg/m含み、上記導電層の厚みが5〜500nmである請求項1〜8のいずれかに記載の電磁波シールド体。 The conductive layer includes 30~450mg / m 2 The ultra fine conductive fibers, electromagnetic wave shielding body according to any one of claims 1 to 8 the thickness of the conductive layer is 5 to 500 nm. 透明な基材の少なくとも片面に、カーボンナノチューブを含んだ熱可塑性樹脂よりなる透明な導電層が形成された電磁波シールド体であって、上記カーボンナノチューブが1本づつ分離した状態で、もしくは、複数本集まって束になったものが1束づつ分離した状態で、上記導電層の熱可塑性樹脂中に分散して互いに接触し、上記導電層が10Ω/□以下の表面抵抗率を備えていることを特徴とする電磁波シールド体。 An electromagnetic wave shielding body having a transparent conductive layer made of a thermoplastic resin containing carbon nanotubes formed on at least one surface of a transparent base material, wherein the carbon nanotubes are separated one by one, or a plurality thereof. In a state in which the bundles gathered are separated one by one, they are dispersed in the thermoplastic resin of the conductive layer and come into contact with each other, and the conductive layer has a surface resistivity of 10 4 Ω / □ or less. An electromagnetic wave shield, characterized in that:
JP2004022044A 2003-01-31 2004-01-29 Electromagnetic shield Expired - Fee Related JP4471346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004022044A JP4471346B2 (en) 2003-01-31 2004-01-29 Electromagnetic shield

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003025063 2003-01-31
JP2004022044A JP4471346B2 (en) 2003-01-31 2004-01-29 Electromagnetic shield

Publications (2)

Publication Number Publication Date
JP2004253796A true JP2004253796A (en) 2004-09-09
JP4471346B2 JP4471346B2 (en) 2010-06-02

Family

ID=33032319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004022044A Expired - Fee Related JP4471346B2 (en) 2003-01-31 2004-01-29 Electromagnetic shield

Country Status (1)

Country Link
JP (1) JP4471346B2 (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006171336A (en) * 2004-12-15 2006-06-29 Takiron Co Ltd Transparent electrode member for image display, and the image display device
JP2006310353A (en) * 2005-04-26 2006-11-09 Takiron Co Ltd Radio wave absorber
WO2008093867A1 (en) 2007-02-02 2008-08-07 Du Pont-Toray Company, Ltd. Method of fiber pretreatment for plating and process for producing plated fiber
JP2009146898A (en) * 2007-12-12 2009-07-02 Qinghua Univ Electron element
JP2010516018A (en) * 2006-12-22 2010-05-13 日東電工株式会社 Transparent conductive hard coat substrate and method for producing the same
US7727578B2 (en) 2007-12-27 2010-06-01 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
JP2010257494A (en) * 2007-12-12 2010-11-11 Beijing Funate Innovation Technology Co Ltd Touch panel and display device using the same
US7960027B2 (en) 2008-01-28 2011-06-14 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
JP2011524323A (en) * 2008-05-07 2011-09-01 ナノコンプ テクノロジーズ インコーポレイテッド Nanostructured composite sheet and method of use thereof
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8105126B2 (en) 2008-07-04 2012-01-31 Tsinghua University Method for fabricating touch panel
US8111245B2 (en) 2007-12-21 2012-02-07 Tsinghua University Touch panel and display device using the same
US8115742B2 (en) 2007-12-12 2012-02-14 Tsinghua University Touch panel and display device using the same
US8125878B2 (en) 2007-12-27 2012-02-28 Tsinghua University Touch panel and display device using the same
US8199119B2 (en) 2007-12-12 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8237668B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch control device
US8237675B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237669B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237670B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237674B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237671B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237672B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237673B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8243030B2 (en) 2007-12-21 2012-08-14 Tsinghua University Touch panel and display device using the same
US8243029B2 (en) 2007-12-14 2012-08-14 Tsinghua University Touch panel and display device using the same
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248378B2 (en) 2007-12-21 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248377B2 (en) 2007-10-23 2012-08-21 Tsinghua University Touch panel
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8563875B2 (en) 2007-12-21 2013-10-22 Tsinghua University Electromagnetic shielding layer and method for making the same
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
JP2013248893A (en) * 2008-08-22 2013-12-12 Hitachi Chemical Co Ltd Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
US9198232B2 (en) 2008-05-07 2015-11-24 Nanocomp Technologies, Inc. Nanostructure-based heating devices and methods of use
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
JP2017056579A (en) * 2015-09-15 2017-03-23 日本ゼオン株式会社 Method for producing carbon nano-tube laminate sheet
WO2017110615A1 (en) * 2015-12-25 2017-06-29 国立研究開発法人産業技術総合研究所 Electromagnetic shielding carbon nanotube/polymer composite material, electromagnetic shielding material, and method for producing electromagnetic shielding carbon nanotube/polymer composite material
US9718691B2 (en) 2013-06-17 2017-08-01 Nanocomp Technologies, Inc. Exfoliating-dispersing agents for nanotubes, bundles and fibers
US11434581B2 (en) 2015-02-03 2022-09-06 Nanocomp Technologies, Inc. Carbon nanotube structures and methods for production thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002515847A (en) * 1997-05-29 2002-05-28 ウィリアム・マーシュ・ライス・ユニバーシティ Carbon fibers formed from single-walled carbon nanotubes
JP2002188031A (en) * 2000-12-19 2002-07-05 Dainippon Printing Co Ltd Ink composition for absorbing electromagnetic wave and absorber for electromagnetic wave
JP2002266170A (en) * 2000-12-20 2002-09-18 Showa Denko Kk Branched vapor grown carbon fiber, transparent electrically conductive composition and use thereof
WO2004069736A2 (en) * 2003-01-30 2004-08-19 Eikos, Inc. Articles with protruding conductive coatings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002515847A (en) * 1997-05-29 2002-05-28 ウィリアム・マーシュ・ライス・ユニバーシティ Carbon fibers formed from single-walled carbon nanotubes
JP2002188031A (en) * 2000-12-19 2002-07-05 Dainippon Printing Co Ltd Ink composition for absorbing electromagnetic wave and absorber for electromagnetic wave
JP2002266170A (en) * 2000-12-20 2002-09-18 Showa Denko Kk Branched vapor grown carbon fiber, transparent electrically conductive composition and use thereof
WO2004069736A2 (en) * 2003-01-30 2004-08-19 Eikos, Inc. Articles with protruding conductive coatings
JP2004230690A (en) * 2003-01-30 2004-08-19 Takiron Co Ltd Antistatic transparent resin sheet

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006171336A (en) * 2004-12-15 2006-06-29 Takiron Co Ltd Transparent electrode member for image display, and the image display device
JP2006310353A (en) * 2005-04-26 2006-11-09 Takiron Co Ltd Radio wave absorber
JP2020017528A (en) * 2005-08-12 2020-01-30 カンブリオス フィルム ソリューションズ コーポレーション Nanowires-based transparent conductors
US8618531B2 (en) 2005-08-12 2013-12-31 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8865027B2 (en) 2005-08-12 2014-10-21 Cambrios Technologies Corporation Nanowires-based transparent conductors
JP7032362B2 (en) 2005-08-12 2022-03-08 カンブリオス フィルム ソリューションズ コーポレーション Transparent conductor based on nanowires
US9899123B2 (en) 2005-08-12 2018-02-20 Jonathan S. Alden Nanowires-based transparent conductors
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8174667B2 (en) 2006-10-12 2012-05-08 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8760606B2 (en) 2006-10-12 2014-06-24 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US10749048B2 (en) 2006-10-12 2020-08-18 Cambrios Film Solutions Corporation Nanowire-based transparent conductors and applications thereof
JP2010516018A (en) * 2006-12-22 2010-05-13 日東電工株式会社 Transparent conductive hard coat substrate and method for producing the same
WO2008093867A1 (en) 2007-02-02 2008-08-07 Du Pont-Toray Company, Ltd. Method of fiber pretreatment for plating and process for producing plated fiber
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
US8248377B2 (en) 2007-10-23 2012-08-21 Tsinghua University Touch panel
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8237674B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8199119B2 (en) 2007-12-12 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
JP2009146898A (en) * 2007-12-12 2009-07-02 Qinghua Univ Electron element
US8115742B2 (en) 2007-12-12 2012-02-14 Tsinghua University Touch panel and display device using the same
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
JP2010257494A (en) * 2007-12-12 2010-11-11 Beijing Funate Innovation Technology Co Ltd Touch panel and display device using the same
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8237670B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
JP4648451B2 (en) * 2007-12-12 2011-03-09 ツィンファ ユニバーシティ Electronic element
US8237671B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8237673B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237672B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8243029B2 (en) 2007-12-14 2012-08-14 Tsinghua University Touch panel and display device using the same
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
US8248378B2 (en) 2007-12-21 2012-08-21 Tsinghua University Touch panel and display device using the same
US8111245B2 (en) 2007-12-21 2012-02-07 Tsinghua University Touch panel and display device using the same
US8243030B2 (en) 2007-12-21 2012-08-14 Tsinghua University Touch panel and display device using the same
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8563875B2 (en) 2007-12-21 2013-10-22 Tsinghua University Electromagnetic shielding layer and method for making the same
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US8237669B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237675B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237668B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch control device
US7727578B2 (en) 2007-12-27 2010-06-01 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
US8125878B2 (en) 2007-12-27 2012-02-28 Tsinghua University Touch panel and display device using the same
US7960027B2 (en) 2008-01-28 2011-06-14 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
US9396829B2 (en) 2008-05-07 2016-07-19 Nanocomp Technologies, Inc. Carbon nanotube-based coaxial electrical cables and wiring harness
US9198232B2 (en) 2008-05-07 2015-11-24 Nanocomp Technologies, Inc. Nanostructure-based heating devices and methods of use
JP2011524323A (en) * 2008-05-07 2011-09-01 ナノコンプ テクノロジーズ インコーポレイテッド Nanostructured composite sheet and method of use thereof
US8847074B2 (en) 2008-05-07 2014-09-30 Nanocomp Technologies Carbon nanotube-based coaxial electrical cables and wiring harness
US8237679B2 (en) 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US8228308B2 (en) 2008-07-04 2012-07-24 Tsinghua University Method for making liquid crystal display adopting touch panel
US8105126B2 (en) 2008-07-04 2012-01-31 Tsinghua University Method for fabricating touch panel
US8199123B2 (en) 2008-07-04 2012-06-12 Tsinghua University Method for making liquid crystal display screen
US8411052B2 (en) 2008-07-09 2013-04-02 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411051B2 (en) 2008-07-09 2013-04-02 Tsinghua University Liquid crystal display screen
JP2015179678A (en) * 2008-08-22 2015-10-08 日立化成株式会社 Conductive film substrate
US9161442B2 (en) 2008-08-22 2015-10-13 Hitachi Chemical Company, Ltd. Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate
JP2013248893A (en) * 2008-08-22 2013-12-12 Hitachi Chemical Co Ltd Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
US9718691B2 (en) 2013-06-17 2017-08-01 Nanocomp Technologies, Inc. Exfoliating-dispersing agents for nanotubes, bundles and fibers
US11434581B2 (en) 2015-02-03 2022-09-06 Nanocomp Technologies, Inc. Carbon nanotube structures and methods for production thereof
JP2017056579A (en) * 2015-09-15 2017-03-23 日本ゼオン株式会社 Method for producing carbon nano-tube laminate sheet
WO2017110615A1 (en) * 2015-12-25 2017-06-29 国立研究開発法人産業技術総合研究所 Electromagnetic shielding carbon nanotube/polymer composite material, electromagnetic shielding material, and method for producing electromagnetic shielding carbon nanotube/polymer composite material
JPWO2017110615A1 (en) * 2015-12-25 2018-10-18 国立研究開発法人産業技術総合研究所 Electromagnetic wave shielding carbon nanotube polymer composite material, electromagnetic wave shielding material, and method for producing electromagnetic wave shielding carbon nanotube polymer composite material

Also Published As

Publication number Publication date
JP4471346B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP2004253796A (en) Electromagnetic wave shielding structure
JP2006517485A (en) Molded body having dispersed conductive layer
US20060257638A1 (en) Articles with dispersed conductive coatings
JP2007112133A (en) Electroconductive shaped article
JP2006049843A (en) Antistatic molding for image display apparatus
US20080029292A1 (en) Transparent Conductive Formed Article for a Touch Panel and Touch Panel
Cao et al. Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding
JP2005311330A (en) Radio wave absorber
JP4541752B2 (en) Electromagnetic shielding light diffusion sheet
JP2005277405A (en) Optically transparent antinoise formed body for image display device
TWI487125B (en) Composite transparent conductors and methods of forming the same
TWI537984B (en) A flexible transparent thermal conductive film
WO2014034451A1 (en) Transparent conductor, input device and electronic equipment
JP2005255985A (en) Carbon nanotube-containing coating film
JP2006335995A (en) Electrically-conductive ink for inkjet, electrically-conductive pattern, and electrically-conductive material
US20100040869A1 (en) Transparent conductive film and method for manufacturing the same
JP6580431B2 (en) Transparent conductive film
JP6580432B2 (en) Transparent conductive film
JP4454426B2 (en) Conductive film for in-mold molding
JP2007130950A (en) Antistatic molded resin body
JP2007153401A (en) Container
JP2006039422A (en) Image display device
JPH11353947A (en) Antistatic resin molding and secondary molding thereof
TWM513119U (en) Anti-electromagnetic wave film
JP2017157537A (en) Transparent conductive film and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4471346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees