JP2007130950A - Antistatic molded resin body - Google Patents

Antistatic molded resin body Download PDF

Info

Publication number
JP2007130950A
JP2007130950A JP2005328276A JP2005328276A JP2007130950A JP 2007130950 A JP2007130950 A JP 2007130950A JP 2005328276 A JP2005328276 A JP 2005328276A JP 2005328276 A JP2005328276 A JP 2005328276A JP 2007130950 A JP2007130950 A JP 2007130950A
Authority
JP
Japan
Prior art keywords
resin
antistatic
layer
antistatic layer
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005328276A
Other languages
Japanese (ja)
Other versions
JP4795780B2 (en
Inventor
Masahito Sakai
将人 坂井
Chieko Shirota
千栄子 代田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2005328276A priority Critical patent/JP4795780B2/en
Publication of JP2007130950A publication Critical patent/JP2007130950A/en
Application granted granted Critical
Publication of JP4795780B2 publication Critical patent/JP4795780B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antistatic molded resin body excellent in resistance to wiping with alcohols and capable of approximately retaining initial surface resistivity, optical properties and electric properties if it is wiped with alcohols. <P>SOLUTION: The antistatic molded resin body A1 is constituted by laminating an antistatic layer 3 containing an extrafine conductive fiber 31 on the one side of a synthetic resin main body 1 and further a resin layer 4 on the outer surface of the antistatic layer 3. It is preferable to involve a small amount of a conductive material such as the extrafine conductive fiber 31 in the resin layer 4. Since resistance to wiping with a wiping cloth containing isopropyl alcohol and the like is improved with the resin layer 4, and the extrafine conductive fiber 31 is not wiped off to fall away, the molded body can be excellent in surface resistivity, saturated charge and half-life period. The conductive material contained in the resin layer 4 enables an voltage decay to be instant. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、制電性樹脂成形体表面における摩擦堅牢度特性に優れ、且つ帯電減衰特性も良好である制電性樹脂成形体に関する。   The present invention relates to an antistatic resin molded article having excellent friction fastness characteristics on the surface of the antistatic resin molded article and excellent charge attenuation characteristics.

従来より、クリーンルームのパーティション、半導体・液晶製造に用いるキャリアーボックス、製造装置の外板のような塵埃を嫌う用途には、静電気を逃がして塵埃の付着を防止する制電性樹脂板が使用されている。また、クリーンルームのクリーン度を一定レベル以上に確保するために、クリーンルームの施工後若しくはクリーンルーム内の定期的なメンテナンスの際などには付着した塵楳などを除去する作業が不可欠であり、上記パーティションなどの制電性樹脂板をアルコール類等を含ませたワイピングクロス等で拭き取り洗浄する作業が行われている。   Conventionally, antistatic resin plates that release static electricity and prevent dust adhesion have been used for clean room partitions, carrier boxes used in semiconductor / liquid crystal manufacturing, and outer panels of manufacturing equipment. Yes. Also, in order to ensure the cleanliness of the clean room above a certain level, it is indispensable to remove the adhering dust etc. after construction of the clean room or during regular maintenance in the clean room. The antistatic resin plate is wiped and cleaned with a wiping cloth containing alcohol or the like.

かかる制電性樹脂板として、本出願人は、熱可塑性樹脂基材と導電性長繊維を含む制電性樹脂層とから成る熱成形可能な制電性樹脂成形品を提案した(特許文献1)。さらに、透明な熱可塑性樹脂よりなる基板にカーボンナノチューブが1本ずつ分離しお互いに接触している制電層が形成された制電性透明樹脂板も提案した(特許文献2)。
特開平10‐226007号公報 特開2004‐2306901号公報
As such an antistatic resin plate, the present applicant has proposed a thermoformable antistatic resin molded article comprising a thermoplastic resin base material and an antistatic resin layer containing conductive long fibers (Patent Document 1). ). Furthermore, an antistatic transparent resin plate was proposed in which an antistatic layer was formed in which carbon nanotubes were separated from each other on a substrate made of a transparent thermoplastic resin and in contact with each other (Patent Document 2).
JP-A-10-226007 JP 2004-2306901 A

特許文献1に記載の制電性樹脂成形品は、制電性樹脂層に含まれている導電性長繊維が曲がりくねって且つ互いに接触して分散しているので、この成形品を2次加工しても曲がりくねっている長繊維が伸びてお互いの接触が絶たれることがなく、2次加工できるという長所を有している。また、特許文献2に記載の制電性透明樹脂板は、制電層に含まれているカーボンナノチューブ1本ずつ分離しているので、分散性が良好で、少ないカーボンナノチューブであってもお互いの接触が保たれて、透明性をよくすることができた。
しかしながら、これらの特許文献1、2に記載の制電合成樹脂板であると、長繊維又はカーボンナノチューブが含まれる制電層が最表面にあるため、表面の摩擦堅牢度特性に劣り、イソプロピルアルコール(IPA)などのアルコール類等で制電層表面の拭き洗浄を行なう用途に使用されると、長繊維又はカーボンナノチューブが脱落して表面抵抗率が低下し、長期に亘って満足する制電性能を維持することができない、という問題を内在していた。
In the antistatic resin molded article described in Patent Document 1, since the conductive long fibers contained in the antistatic resin layer are twisted and dispersed in contact with each other, the molded article is subjected to secondary processing. However, it has the advantage that the long fibers that are tortuous are stretched and contact with each other is not cut off, so that secondary processing can be performed. Moreover, since the antistatic transparent resin plate described in Patent Document 2 is separated from each other by the carbon nanotubes contained in the antistatic layer, the dispersibility is good, and even if there are few carbon nanotubes, The contact was maintained and the transparency could be improved.
However, in the antistatic synthetic resin plates described in Patent Documents 1 and 2, since the antistatic layer containing long fibers or carbon nanotubes is on the outermost surface, the surface is inferior in friction fastness characteristics, and isopropyl alcohol When used in applications where the surface of the antistatic layer is wiped and cleaned with alcohols such as (IPA), the long-term fibers or carbon nanotubes fall off and the surface resistivity decreases, and the antistatic performance is satisfactory over a long period of time. The problem of being unable to maintain was inherent.

本発明は上記の問題に対処するためになされたもので、摩擦堅牢度特性に富み、アルコール類などを含んだワイピングクロス等で制電性樹脂板表面の拭き取り洗浄を繰り返しても、表面抵抗率が高くなることが抑えられ、実用上十分な制電性能を維持できる制電性樹脂成形体を提供することを目的としている。   The present invention has been made to address the above problems, and has excellent friction fastness characteristics. Even if the surface of the antistatic resin plate is wiped and washed repeatedly with a wiping cloth containing alcohols, etc., the surface resistivity is improved. An object of the present invention is to provide an antistatic resin molded product that can suppress an increase in the resistance and can maintain a practically sufficient antistatic performance.

上記の課題を解決するため、本発明の制電性樹脂成形体は、樹脂本体の少なくとも片面に制電層を積層した樹脂成形体であって、前記制電層が極細導電繊維を含んでいると共に、この制電層の外表面に樹脂層が積層されていることを特徴とするものである。   In order to solve the above problems, the antistatic resin molded body of the present invention is a resin molded body in which an antistatic layer is laminated on at least one surface of a resin main body, and the antistatic layer includes ultrafine conductive fibers. In addition, a resin layer is laminated on the outer surface of the antistatic layer.

この制電性樹脂成形体においては、樹脂層が導電材を含んでいることが好ましく、特に、該樹脂層が極細導電繊維の導電材を含んでいて、その含有量が制電層のそれよりも少なく、0.005〜5質量%であることが好ましい。また、制電層が接着層を介して樹脂本体に積層されていることも好ましい。   In this antistatic resin molding, it is preferable that the resin layer contains a conductive material, and in particular, the resin layer contains a conductive material of ultrafine conductive fiber, and the content thereof is that of the antistatic layer. However, it is preferably 0.005 to 5% by mass. Moreover, it is also preferable that the antistatic layer is laminated | stacked on the resin main body through the contact bonding layer.

本発明の他の制電性樹脂成形体は、樹脂本体の少なくとも片面に制電層を積層した樹脂成形体であって、前記制電層が極細導電繊維を含み、制電層の外表面側の極細導電繊維の含有量が制電層の内部側よりも少ないことを特徴とするものである。   Another antistatic resin molded body of the present invention is a resin molded body in which an antistatic layer is laminated on at least one surface of a resin main body, the antistatic layer including ultrafine conductive fibers, and the outer surface side of the antistatic layer. The content of the ultrafine conductive fiber is smaller than that of the inner side of the antistatic layer.

この制電性樹脂成形体においては、制電層の外表面側の極細導電繊維の含有量が0〜5質量%であることが好ましい。   In this antistatic resin molded product, the content of the ultrafine conductive fibers on the outer surface side of the antistatic layer is preferably 0 to 5% by mass.

これらの各発明の制電性樹脂成形体に使用する極細導電繊維は、カーボンナノチューブであることが好ましい。   The ultrafine conductive fibers used in the antistatic resin moldings of these inventions are preferably carbon nanotubes.

本発明の制電性樹脂成形体のように、樹脂本体に積層された制電層が極細導電繊維を含んでいると共に該制電層の外表面に樹脂層が積層されていると、表面の樹脂層により摩擦堅牢度特性が向上し、アルコール類などを含むワイピングクロス等で制電性樹脂成形体表面の拭き取り洗浄を繰り返しても、表面抵抗率が高くなることがなく、長期に亘り制電性能を維持することができる。   Like the antistatic resin molding of the present invention, when the antistatic layer laminated on the resin main body contains ultrafine conductive fibers and the resin layer is laminated on the outer surface of the antistatic layer, The resin layer improves friction fastness characteristics. Even if the surface of the antistatic resin molding is repeatedly wiped and washed with a wiping cloth containing alcohol, etc., the surface resistivity does not increase and the antistatic property is maintained over a long period of time. The performance can be maintained.

この制電性樹脂成形体の樹脂層が極細導電繊維などの導電材を含んでいると、樹脂層による摩擦堅牢度特性が向上することに加えて、樹脂層にも導電路が形成されて、表面に帯電した静電気が当該導電路を通して制電層にまで流れて端部で放電されるので、帯電減衰が瞬時に行なわれる。この樹脂層に含まれる導電材である極細導電繊維の含有量が制電層のそれよりも少なくすることにより、制電性樹脂成形体表面の堅牢度が維持されると共に、該極細導電繊維が細くて長いので樹脂層における導電路の形成が確実になされ帯電減衰も瞬時に行なわれることとなる。特に、この樹脂層に含有される極細導電繊維の含有量が0.005〜5質量%であると、導電路の形成がより確実になされて帯電減衰が瞬時に行い得るし、摩擦堅牢度特性も十分実用性のあるものとすることができる。そして、制電層が接着層を介して樹脂本体に積層されていると、制電層が樹脂本体に密着積層し剥離することがなく、制電性能を長期間に亘り発揮させることができる。   When the resin layer of this antistatic resin molded body contains a conductive material such as ultrafine conductive fibers, in addition to improving the fastness to friction by the resin layer, a conductive path is also formed in the resin layer, Since static electricity charged on the surface flows to the antistatic layer through the conductive path and is discharged at the end, charging attenuation is instantaneously performed. The content of the ultrafine conductive fiber, which is a conductive material contained in the resin layer, is less than that of the antistatic layer, so that the fastness of the antistatic resin molded body surface is maintained, and the ultrafine conductive fiber is Since it is thin and long, the conductive path is surely formed in the resin layer, and charging attenuation is instantaneously performed. In particular, when the content of the ultrafine conductive fiber contained in the resin layer is 0.005 to 5% by mass, the conductive path can be more reliably formed, and the charge decay can be instantaneously performed. Can be sufficiently practical. And when the antistatic layer is laminated | stacked on the resin main body through the contact bonding layer, an antistatic layer does not adhere | attach and laminate | stack on a resin main body, but it can exhibit antistatic performance over a long period of time.

また、本発明の他の制電性樹脂成形体が、樹脂本体に積層された制電層が極細導電繊維を含み、その含有量は制電層の内部側よりも外表面側が少ないと、均一に分散された極細導電繊維を含む制電層に比べて、外表面側の樹脂分が多くなって塗膜強度が増すため、表面の摩擦堅牢度特性が向上する。そのため、アルコール類を含むワイピングクロス等で該表面を拭き取り洗浄しても表面抵抗率が高く名なることが抑制される。さらに、制電層の外表面側にも極細導電繊維が含有されているので、外表面側と内部側とに通じる導通路は確保されて、制電性能が十分に発揮されると同時に、帯電減衰も瞬時で行なわれる。この外表面側の極細導電繊維の含有量が0〜5質量%であると、上記の摩擦堅牢度特性と制電性能と帯電減衰特性が良好に発揮されて、長期に亘りこれらの機能を有する制電性樹脂成形体とすることが可能となる。   Further, in another antistatic resin molded body of the present invention, the antistatic layer laminated on the resin main body includes ultrafine conductive fibers, and the content is uniform when the outer surface side is less than the inner side of the antistatic layer. Compared with the antistatic layer containing ultrafine conductive fibers dispersed in the resin, the resin content on the outer surface side increases and the coating strength increases, so that the surface fastness to friction is improved. Therefore, even if the surface is wiped and washed with a wiping cloth containing alcohols, it is suppressed that the surface resistivity becomes high. Furthermore, since the outer surface side of the antistatic layer contains ultrafine conductive fibers, a conduction path leading to the outer surface side and the inner side is ensured, and the antistatic performance is fully exhibited and at the same time charged. Attenuation is also instantaneous. When the content of the ultrafine conductive fiber on the outer surface side is 0 to 5% by mass, the above-mentioned friction fastness characteristics, antistatic performance and charging attenuation characteristics are satisfactorily exhibited, and these functions are provided over a long period of time. It becomes possible to set it as the antistatic resin molding.

これらの制電性樹脂成形体に使用される極細導電繊維がカーボンナノチューブであると、該カーボンナノチューブは非常に細くて長いので、含有量をさらに少なくしてもカーボンナノチューブ相互の接触を確保できるため、十分な制電性を発揮できる。そのために、制電層を透明にすることができるし、カーボンナノチューブを含む樹脂層も透明にできるので、透明制電性樹脂成形体にすることが可能となる。   If the ultrafine conductive fibers used in these antistatic resin moldings are carbon nanotubes, the carbon nanotubes are very thin and long, so that contact between the carbon nanotubes can be secured even if the content is further reduced. Can exhibit sufficient antistatic properties. Therefore, since the antistatic layer can be made transparent and the resin layer containing carbon nanotubes can be made transparent, a transparent antistatic resin molded product can be obtained.

以下、図面を参照して本発明の具体的な実施形態を詳述する。しかし、本発明はこれらに限定されるものではない。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to these.

図1は本発明の一実施形態に係る制電性樹脂成形体を一部拡大して示す断面図である。   FIG. 1 is a partially enlarged cross-sectional view of an antistatic resin molded body according to an embodiment of the present invention.

この実施形態は透明な板状の制電性樹脂成形体A1を示したもので、透明な板状の樹脂本体1と、その片側の表面に積層された接着層2と、制電層3と、樹脂層4とで構成されている。なお、樹脂本体1の両表面に接着層2、制電層3、樹脂層4を積層させてもよい。   This embodiment shows a transparent plate-like antistatic resin molding A1, a transparent plate-like resin body 1, an adhesive layer 2 laminated on the surface of one side thereof, an antistatic layer 3, And the resin layer 4. Note that the adhesive layer 2, the antistatic layer 3, and the resin layer 4 may be laminated on both surfaces of the resin body 1.

この樹脂本体1は、透明な熱可塑性樹脂や熱や紫外線や電子線や放射線などで硬化する透明な硬化性樹脂を板状に成形したものであって、熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレン、環状ポリオレフィン等のオレフィン系樹脂、ポリ塩化ビニル、ポリメチルメタクリレート、ポリスチレン等のビニル系樹脂、ニトロセルロース、トリアセチルセルロース等のセルロース系樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリジメチルシクロヘキサンテレフタレート、芳香族ポリエステル等のエステル系樹脂、ABS樹脂、これらの樹脂の共重合体樹脂、これらの樹脂の混合樹脂などが使用され、また、硬化性樹脂としては、例えばエポキシ樹脂、ポリイミド樹脂、アクリル樹脂などの熱硬化性樹脂や紫外線硬化性樹脂などが使用される。これらの樹脂のなかで、ポリ塩化ビニルは耐薬品性が良く、2次加工性も良好で、洗浄液などの薬品を使用し、種々の部品を必要とする半導体製造部材、液晶製造部材、薬品製造部材などの板状或は異形形状に加工される樹脂として好ましく用いられる。
この樹脂本体1は、前記樹脂に可塑剤、安定剤、抗酸化剤等が適宜配合され、成形性、熱安定性、耐候性等が高められている。この樹脂本体1の厚さは用途に応じて適宜変更されるが、通常、0.03〜10mm程度の厚さで用いられる。
The resin body 1 is formed by forming a transparent thermoplastic resin or a transparent curable resin that is cured by heat, ultraviolet rays, electron beams, radiation, or the like into a plate shape. Examples of the thermoplastic resin include polyethylene and polypropylene. Olefin resins such as cyclic polyolefin, vinyl resins such as polyvinyl chloride, polymethyl methacrylate, polystyrene, cellulose resins such as nitrocellulose and triacetyl cellulose, polycarbonate, polyethylene terephthalate, polydimethylcyclohexane terephthalate, aromatic polyester, etc. Ester resins, ABS resins, copolymer resins of these resins, mixed resins of these resins, etc. are used, and as curable resins, for example, thermosetting such as epoxy resins, polyimide resins, acrylic resins, etc. Resin and UV curable Such as fat is used. Among these resins, polyvinyl chloride has good chemical resistance and good secondary workability, and uses chemicals such as cleaning liquids, which require various parts, semiconductor manufacturing parts, liquid crystal manufacturing parts, chemical manufacturing It is preferably used as a resin that is processed into a plate-like or irregular shape such as a member.
In the resin main body 1, a plasticizer, a stabilizer, an antioxidant, and the like are appropriately blended with the resin, so that moldability, thermal stability, weather resistance, and the like are enhanced. Although the thickness of this resin main body 1 is suitably changed according to a use, it is normally used by the thickness of about 0.03-10 mm.

この実施形態では、樹脂本体1を透明な板状体に成形しているが、それ以外の異型形状に成形してもよく、或は板状体を容器などの異形形状に2次加工成形してもよい。また、フィラーや着色剤を配合して不透明にしてもよい。   In this embodiment, the resin main body 1 is formed into a transparent plate-like body, but it may be formed into other irregular shapes, or the plate-like body is secondarily molded into an irregular shape such as a container. May be. Moreover, you may mix | blend a filler and a coloring agent and you may make it opaque.

接着層2は、接着機能を有する熱可塑性樹脂よりなるものであり、上述した樹脂本体1と同種もくしは相溶性のある熱可塑性樹脂が好ましく使用される。代表的な接着性樹脂としては、多くの樹脂に優れた接着性を有し透明性を有するアクリル系樹脂が用いられ、また、樹脂本体1に塩化ビニル樹脂が用いられればアクリル系樹脂以外にも塩化ビニル樹脂、塩化ビニル−酢酸ビニル共重合樹脂などの塩化ビニル系樹脂が好ましく用いられる。なお、接着層2は必ずしも用いる必要はなく、制電層3が樹脂本体1と良好に積層される場合は省略することもできる。   The adhesive layer 2 is made of a thermoplastic resin having an adhesive function, and a thermoplastic resin that is the same type or compatible with the resin main body 1 described above is preferably used. As a typical adhesive resin, an acrylic resin having excellent adhesiveness and transparency to many resins is used, and if a vinyl chloride resin is used for the resin body 1, other than the acrylic resin Vinyl chloride resins such as vinyl chloride resins and vinyl chloride-vinyl acetate copolymer resins are preferably used. Note that the adhesive layer 2 is not necessarily used, and may be omitted when the antistatic layer 3 is satisfactorily laminated with the resin body 1.

接着層2の厚さは、0.5〜300μm程度にすればよく、0.5μmより薄いと接着性能に劣り、300μmより厚くなっても接着性能が向上しない。このような厚さの接着層2は、これをフィルムに成形した接着層用フィルムを使用して形成する場合は50〜300μm程度の厚さに、接着性樹脂を溶液に溶解した塗液を直接塗布して形成する場合は30〜200μm程度の厚さに、接着性樹脂を剥離フィルムに塗布して転写フィルムとする場合は0.5〜100μm、より好ましくは0.5〜30μmとすることが望ましい。   The thickness of the adhesive layer 2 may be about 0.5 to 300 μm, and if it is thinner than 0.5 μm, the adhesive performance is inferior, and even if it is thicker than 300 μm, the adhesive performance is not improved. When the adhesive layer 2 having such a thickness is formed using an adhesive layer film obtained by forming the adhesive layer 2 into a film, a coating solution obtained by dissolving an adhesive resin in a solution is directly applied to a thickness of about 50 to 300 μm. When formed by coating, the thickness is about 30 to 200 μm. When the adhesive resin is applied to a release film to form a transfer film, the thickness is set to 0.5 to 100 μm, more preferably 0.5 to 30 μm. desirable.

制電層3は、極細導電繊維31とバインダー樹脂32とからなる透明な層であって、極細導電繊維31が均一に分散されて含有されている。この極細導電繊維31の含有量は、制電性樹脂成形体A1に10〜1011Ω/□の表面抵抗率を与え、実用上十分な制電性能を発現させる必要から、2〜90質量%を含有させることが好ましく、更に好ましくは8〜50質量%の範囲で含有させることである。2質量%より少ないと、成形体A1に制電性能を付与させることが困難となるし、一方、90質量%より多くなっても、制電性能の更なる向上はみられないので材料の無駄使いとなる。特に本制電性樹脂成形体A1は制電層3の外表面に樹脂層4を積層されているので、制電層3の表面抵抗率ではなくて、制電性樹脂成形体A1の表面抵抗率を考慮して含有させる必要がある。しかし、表面抵抗率は電圧を印加して測定されるため、制電層3自体の表面抵抗率も10〜1011Ω/□とすればよい。 The antistatic layer 3 is a transparent layer composed of the ultrafine conductive fibers 31 and the binder resin 32, and the ultrafine conductive fibers 31 are uniformly dispersed therein. The content of the ultrafine conductive fiber 31 is 2 to 90 mass because it is necessary to give the antistatic resin molded body A1 a surface resistivity of 10 5 to 10 11 Ω / □ and to exhibit practically sufficient antistatic performance. %, And more preferably 8 to 50% by mass. If it is less than 2% by mass, it will be difficult to impart antistatic performance to the molded product A1, while if it exceeds 90% by mass, no further improvement in antistatic performance will be seen, so material waste. It becomes use. In particular, since the antistatic resin molding A1 has the resin layer 4 laminated on the outer surface of the antistatic layer 3, not the surface resistivity of the antistatic layer 3, but the surface resistance of the antistatic resin molding A1. It is necessary to contain it in consideration of the rate. However, since the surface resistivity is measured by applying a voltage, the surface resistivity of the antistatic layer 3 itself may be 10 5 to 10 11 Ω / □.

この制電層3の厚みは、50〜500nmとすることが好ましく、50nmより薄いと極細導電繊維31同士の接触の機会が少なくなって制電性能を発揮できなくなる。一方、500μmより厚くなると、透明性が低下するので好ましくなく、また表面抵抗率が低くなり過ぎるために、スパーク等を生じる懸念があり好ましくない。   The thickness of the antistatic layer 3 is preferably 50 to 500 nm. If the thickness is less than 50 nm, the chance of contact between the ultrafine conductive fibers 31 is reduced and the antistatic performance cannot be exhibited. On the other hand, if it is thicker than 500 μm, it is not preferable because the transparency is lowered, and the surface resistivity is too low.

この極細導電繊維31は、制電性を発現できる量を制電層3に含有させればよいが、透明な制電性樹脂成形体A1を得るためには、制電層3も透明にする必要がある。そのためには、極細導電繊維31をできるだけ少なく含有させることが好ましく、この少ない含有量で上記表面抵抗率を与えるには、極細導電繊維31が1本ずつ分離した状態で、もしくは、複数本集まって束になったものが1束ずつ分離した状態で、凝集することなく分散して互いに接触させることが好ましい。即ち、極細導電繊維31は多少曲がっているが1本ずつ或は1束ずつ分離し、互いに複雑に絡み合うことなく、即ち凝集することなく、単純に交差した状態で制電層3のバインダー樹脂32の内部で分散し、それぞれの交点で接触させることが好ましいのである。
なお、ここで「接触」とは、極細導電繊維が現実に接触している場合と、極細導電繊維が導通可能な微小間隔をあけて近接している場合の双方を意味する用語として使用している。
The ultrafine conductive fiber 31 may be contained in the antistatic layer 3 in an amount capable of developing antistatic properties, but in order to obtain a transparent antistatic resin molded body A1, the antistatic layer 3 is also transparent. There is a need. For that purpose, it is preferable to contain the ultrafine conductive fiber 31 as little as possible. In order to provide the surface resistivity with this small content, the ultrafine conductive fibers 31 are separated one by one or a plurality of the fine conductive fibers 31 are gathered. In a state where the bundles are separated one by one, it is preferable to disperse them without agglomeration and bring them into contact with each other. That is, the fine conductive fibers 31 are slightly bent but separated one by one or one bundle, and the binder resin 32 of the antistatic layer 3 is simply crossed without being intricately entangled with each other, that is, without agglomerating. It is preferable to disperse in the interior of the glass and contact at each intersection.
Here, the term “contact” is used as a term meaning both the case where the fine conductive fibers are actually in contact and the case where the fine conductive fibers are close to each other with a small gap that allows conduction. Yes.

このように分散していると、凝集している場合に比べて、極細導電繊維31が解れて広範囲に存在し、極細導電繊維31同士の接触する機会が著しく増加するため、極細導電繊維31の含有量を少なくしても、制電層3は低抵抗率を示し、樹脂成形体A1に満足な制電性を付与できるようになる。従って、極細導電繊維31の量が少なくなった分だけ透明性が向上し、また、制電層3を薄くすることもできるので一層透明性を向上させることができる。更に、上記のような分散状態であると、制電性樹脂成形体A1を曲げ加工した場合でも、極細導電繊維31の曲がった部分が伸びたり、交差接触している接触点がずれたり、或は接触状態が一旦外れても他の極細導電繊維と再び接触するので、極細導電繊維31同士の接触が少なくなることはなくて、表面抵抗率が高くなることはない。   When dispersed in this way, compared to the case where they are agglomerated, the ultrafine conductive fibers 31 are present in a wide range and the chances of contact between the ultrafine conductive fibers 31 are significantly increased. Even if the content is reduced, the antistatic layer 3 exhibits a low resistivity, and can provide satisfactory antistatic properties to the resin molded body A1. Accordingly, the transparency is improved by the amount of the ultrafine conductive fiber 31 and the antistatic layer 3 can be made thinner, so that the transparency can be further improved. Further, when the antistatic resin molded body A1 is bent, the bent portion of the ultrafine conductive fiber 31 extends, the contact point that is in cross contact, or the contact point is shifted when the antistatic resin molding A1 is bent. Is once again in contact with other ultrafine conductive fibers even if the contact state is removed, the contact between the ultrafine conductive fibers 31 is not reduced, and the surface resistivity is not increased.

このような分散は、極細導電繊維31が完全に1本ずつ或は1束ずつ分離し分散している必要はなく、一部に絡み合った小さな凝集塊があってもよいが、その大きさは平均径が0.5μm以下であることが好ましい。   Such dispersion does not require the fine conductive fibers 31 to be separated and dispersed completely one by one or one bundle, and there may be small agglomerates that are intertwined in part. The average diameter is preferably 0.5 μm or less.

極細導電繊維31としては、カーボンナノチューブやカーボンナノホーン、カーボンナノワイヤ、カーボンナノファイバー、グラファイトフィブリルなどの極細長炭素繊維、或いは、白金、金、銀、ニッケル、シリコンなどの金属ナノチューブ、ナノワイヤなどの極細長金属繊維、或いは、酸化亜鉛などの金属酸化物ナノチューブ、ナノワイヤなどの極細長金属酸化物繊維などの、直径が0.3〜100nmで長さが0.1〜20μm、好ましくは長さが0.1〜10μmである極細導電繊維が好ましく用いられる。   As the ultrafine conductive fiber 31, ultrafine carbon fibers such as carbon nanotubes, carbon nanohorns, carbon nanowires, carbon nanofibers, and graphite fibrils, or metal nanotubes such as platinum, gold, silver, nickel, and silicon, and ultrafine lengths such as nanowires. Metal fibers, metal oxide nanotubes such as zinc oxide, and ultrafine metal oxide fibers such as nanowires have a diameter of 0.3 to 100 nm and a length of 0.1 to 20 μm, preferably a length of 0.1. Ultrafine conductive fibers having a size of 1 to 10 μm are preferably used.

これらの極細導電繊維31の中では、カーボンナノチューブが最も好ましく使用される。このカーボンナノチューブには、中心軸線の周りに直径が異なる複数の円筒状に閉じたカーボン壁を同心的に備えた多層カーボンナノチューブや、中心軸線の周りに単独の円筒状に閉じたカーボン壁を備えた単層カーボンナノチューブがあるが、いずれも好ましく使用される。多層カーボンナノチューブは1本ずつ分離した状態で分散するものが殆どであるが、2〜3層カーボンナノチューブは、束になって分散する場合もある。一方、単層カーボンナノチューブは単独で分散することがなく、2本以上が束になった状態で存在し、その束が1束ずつ分離した状態で分散する。   Among these ultrafine conductive fibers 31, carbon nanotubes are most preferably used. This carbon nanotube has a multi-walled carbon nanotube concentrically provided with a plurality of cylindrically closed carbon walls having different diameters around the central axis, and a single cylindrically closed carbon wall around the central axis. There are single-walled carbon nanotubes, both of which are preferably used. Most of the multi-walled carbon nanotubes are dispersed in a state of being separated one by one, but the two- to three-walled carbon nanotubes may be dispersed in a bundle. On the other hand, single-walled carbon nanotubes do not disperse alone, but exist in a bundle of two or more, and the bundles are dispersed in a state of being separated one by one.

制電層3を形成するバインダー樹脂32としては、接着層2と同種又は相溶性のある樹脂が使用される。従って、接着層2がアクリル樹脂であれば、これと接着可能なアクリル系樹脂、或は、塩化ビニル樹脂、塩化ビニル−酢酸ビニル共重合樹脂(特に、酢酸ビニルの占める割合が20質量%以下のもの)、塩化ビニル樹脂と酢酸ビニル樹脂との混合樹脂(特に、酢酸ビニル樹脂の占める割合が20質量%以下のもの)などの塩化ビニル系樹脂等の樹脂が好ましく使用される。これらのバインダー樹脂32を使用すると、接着層2に対する制電層3の接合強度や密着性が向上して制電層3の剥離を防止することができる。上記のバインダー樹脂32のなかでも、樹脂本体1が上記の如く塩化ビニル樹脂が好ましく用いられるので、これと同系の樹脂である塩化ビニル系樹脂が好ましく用いられる。   As the binder resin 32 forming the antistatic layer 3, a resin that is the same type or compatible with the adhesive layer 2 is used. Therefore, if the adhesive layer 2 is an acrylic resin, an acrylic resin that can be bonded to the adhesive layer, or a vinyl chloride resin, a vinyl chloride-vinyl acetate copolymer resin (particularly, the proportion of vinyl acetate is 20% by mass or less). Resin) such as a vinyl chloride resin, and a mixed resin of vinyl chloride resin and vinyl acetate resin (particularly, those having a vinyl acetate resin ratio of 20% by mass or less) are preferably used. When these binder resins 32 are used, the bonding strength and adhesion of the antistatic layer 3 to the adhesive layer 2 are improved, and peeling of the antistatic layer 3 can be prevented. Among the binder resins 32 described above, since the vinyl resin is preferably used for the resin body 1 as described above, a vinyl chloride resin which is a resin similar to this is preferably used.

制電層3内の極細導電繊維31の分散性を高めるためには、分散剤を配合することが望ましい。かかる分散剤としては、酸性ポリマーのアルキルアンモニウム塩溶液や3級アミン修飾アクリル共重合物やポリオキシエチレン−ポリオキシプロピレン共重合物などの高分子系分散剤、カップリング剤などが使用される。なお、この制電層3には紫外線吸収剤、表面改質剤、安定剤等の添加剤を適宜加えて、耐候性その他の物性を向上させても良い。   In order to improve the dispersibility of the ultrafine conductive fibers 31 in the antistatic layer 3, it is desirable to add a dispersant. As such a dispersant, a polymer dispersant such as an alkyl ammonium salt solution of an acidic polymer, a tertiary amine-modified acrylic copolymer, a polyoxyethylene-polyoxypropylene copolymer, a coupling agent, or the like is used. The antistatic layer 3 may be appropriately added with additives such as an ultraviolet absorber, a surface modifier, and a stabilizer to improve weather resistance and other physical properties.

樹脂層4は、制電層3の外表面に合成樹脂で形成された層である。この樹脂としては、いかなる合成樹脂を用いてもよいが、樹脂成形体A1の表面の摩擦堅牢度特性を向上させ、表面のアルコール類等を含んだワイピングクロス等による拭取り洗浄性を向上させるためには、塩化ビニル樹脂、塩化ビニル−酢酸ビニル共重合樹脂、塩化ビニル樹脂と酢酸ビニル樹脂との混合樹脂などの塩化ビニル系樹脂等の樹脂、或はポリエチレンテレフタレート、ポリジメチルシクロヘキサンテレフタレート、芳香族ポリエステル等のエステル系樹脂、ウレタン系樹脂等が好ましく使用される。特に、前記塩化ビニル系樹脂は耐薬性に優れているので、この樹脂で形成された樹脂層4の表面(成形体A1の表面)をイソプロピルアルコール等のアルコール類を含んだワイピングクロス等で拭き取り洗浄しても、或は樹脂層4に薬品がかかったり、薬品雰囲気に晒されたりしても、該塩化ビニル系樹脂層4でアルコール類や薬品が遮断されるので、制電層3に悪影響が及ぶことがなくなる。また、ウレタン系樹脂、ポリエステル系樹脂、これらの共重合樹脂、これらの樹脂の混合樹脂などの合成樹脂であると、この樹脂層4に導電材を含有させなくても、表面に帯電した静電気を短時間に帯電減衰させることができるので好ましい。   The resin layer 4 is a layer formed of a synthetic resin on the outer surface of the antistatic layer 3. As this resin, any synthetic resin may be used. However, in order to improve the surface fastness property of the resin molded body A1 and improve the wiping detergency with a wiping cloth containing alcohol on the surface. Resin such as vinyl chloride resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride resin such as mixed resin of vinyl chloride resin and vinyl acetate resin, or polyethylene terephthalate, polydimethylcyclohexane terephthalate, aromatic polyester Such ester resins and urethane resins are preferably used. In particular, since the vinyl chloride resin is excellent in chemical resistance, the surface of the resin layer 4 formed with this resin (the surface of the molded body A1) is wiped and cleaned with a wiping cloth containing alcohols such as isopropyl alcohol. Even if the resin layer 4 is exposed to chemicals or exposed to a chemical atmosphere, the vinyl chloride resin layer 4 blocks alcohols and chemicals. It will not reach. In addition, if the resin is a synthetic resin such as a urethane resin, a polyester resin, a copolymer resin thereof, or a mixed resin of these resins, static electricity charged on the surface can be generated without including a conductive material in the resin layer 4. This is preferable because charging can be attenuated in a short time.

この樹脂層4は、その厚さが50〜1000nm、好ましくは100〜600nmにすることが好ましい。50nmより薄いと、アルコール類により表面を拭き取る際に該樹脂層4が溶けて制電層3に含有されている極細導電繊維31が拭き取られて脱落し表面抵抗率が高くなる恐れがある。一方、1000nmより厚くなると、該樹脂層4により制電層3の低抵抗が遮断されて制電性が発揮されなくなる恐れがある。   The resin layer 4 has a thickness of 50 to 1000 nm, preferably 100 to 600 nm. If the thickness is less than 50 nm, when the surface is wiped with alcohol, the resin layer 4 is melted, and the ultrafine conductive fibers 31 contained in the antistatic layer 3 are wiped off and fall off, which may increase the surface resistivity. On the other hand, when it becomes thicker than 1000 nm, the low resistance of the antistatic layer 3 is cut off by the resin layer 4 and the antistatic property may not be exhibited.

この樹脂層4により制電層3の表面が被覆されているが、成形体A1の表面抵抗率は制電層3の抵抗率が略そのまま発揮される。その理由は定かではないが、表面抵抗率は電圧を印加して測定するために、印加電圧が内部の制電層3にまで及び、その抵抗率を測定しているためと思われる。そのため、樹脂層4の厚さを上記の範囲で薄くすることが望ましく、さらに静電気の帯電減衰を短時間で行わせるためにはポリエステル系樹脂、ウレタン系樹脂、これらの共重合樹脂、これらの混合樹脂等からなる樹脂層4が望ましいのである。
なお、この樹脂層4を形成する樹脂には、当該樹脂を成形するために一般に使用されている可塑剤、安定剤、紫外線吸収剤、加工助剤等が適宜配合され、成形性、熱安定性、耐候性等が高められている。
Although the surface of the antistatic layer 3 is covered with the resin layer 4, the surface resistivity of the molded body A1 is substantially the same as that of the antistatic layer 3. Although the reason is not certain, it is considered that the surface resistivity is measured by applying a voltage so that the applied voltage reaches the internal antistatic layer 3 and the resistivity is measured. Therefore, it is desirable to reduce the thickness of the resin layer 4 within the above range. Furthermore, in order to perform static charge decay in a short time, a polyester resin, a urethane resin, a copolymer resin thereof, and a mixture thereof. A resin layer 4 made of resin or the like is desirable.
The resin that forms the resin layer 4 is appropriately mixed with plasticizers, stabilizers, ultraviolet absorbers, processing aids, and the like that are generally used for molding the resin, so that moldability and thermal stability are appropriately blended. The weather resistance is improved.

上記構成の制電性樹脂成形体A1は、例えば次の方法で製造される。
一つの製法は、樹脂本体1の表面に、接着機能を有する樹脂を溶剤に溶解した接着塗料を塗布、乾燥して接着層2を形成し、次にバインダー樹脂32を溶剤に溶解し更に極細導電繊維31を均一に分散させた制電塗料を塗布、乾燥して制電層3を形成し、最後に、合成樹脂を溶剤に溶解した樹脂塗料を塗布、乾燥して樹脂層4を形成することにより、樹脂本体1と接着層2と制電層3と樹脂層4とがこの順で積層された制電性樹脂成形体A1を製造することができる。
The antistatic resin molded body A1 having the above configuration is manufactured, for example, by the following method.
One manufacturing method is to apply an adhesive paint in which a resin having an adhesive function is dissolved in a solvent on the surface of the resin body 1 and dry it to form the adhesive layer 2, and then dissolve the binder resin 32 in the solvent to further reduce the fine conductivity. Applying antistatic coating in which the fibers 31 are uniformly dispersed and drying to form the antistatic layer 3, and finally applying and drying a resin coating in which a synthetic resin is dissolved in a solvent to form the resin layer 4. Thus, the antistatic resin molded body A1 in which the resin main body 1, the adhesive layer 2, the antistatic layer 3, and the resin layer 4 are laminated in this order can be manufactured.

他の製法は、まず、接着機能を有する合成樹脂から成る接着層用フィルムの表面に、前記制電塗料を塗布、乾燥して制電層3を形成し、さらに前記樹脂塗料を塗布、乾燥して樹脂層4を形成することにより、制電性ラミネートフィルムを作製する。次いで、この制電性ラミネートフィルムを熱圧着、押出ラミネート、などの手段で樹脂本体1の表面にラミネートすることにより、樹脂本体1と接着層2(接着層用フィルム)と制電層3と樹脂層4とがこの順で積層された制電性樹脂成形体A1を製造することができる。   In another manufacturing method, first, the antistatic coating is applied to the surface of the adhesive layer film made of a synthetic resin having an adhesive function and dried to form the antistatic layer 3, and further, the resin coating is applied and dried. By forming the resin layer 4, an antistatic laminate film is produced. Next, the antistatic laminate film is laminated on the surface of the resin main body 1 by means of thermocompression bonding, extrusion lamination, or the like, whereby the resin main body 1, the adhesive layer 2 (adhesive layer film), the antistatic layer 3 and the resin are laminated. The antistatic resin molding A1 in which the layer 4 is laminated in this order can be manufactured.

更に他の製法は、ポリエチレンテレフタレートなどの剥離フィルムの表面に、前記樹脂塗料を塗布、乾燥させて樹脂層4を形成し、さらに前記制電塗料を塗布、乾燥して制電層3を形成し、さらに前記接着塗料を塗布、乾燥して接着層2を形成してなる制電性転写フィルムを作製する。次いで、この制電性転写フィルムの接着層2を樹脂本体1側となるように重ねて熱圧着して、接着層2と制電層3と樹脂層4とを転写することで、樹脂本体1と接着層2と制電層3と樹脂層4とがこの順で積層された制電性樹脂成形体A1を製造することができる。   In still another production method, the resin coating is applied to the surface of a release film such as polyethylene terephthalate and dried to form the resin layer 4, and the antistatic coating is applied and dried to form the antistatic layer 3. Further, an antistatic transfer film formed by applying the adhesive paint and drying to form the adhesive layer 2 is prepared. Next, the adhesive layer 2 of the antistatic transfer film is overlapped and thermocompression bonded so as to be on the resin main body 1 side, and the adhesive layer 2, the antistatic layer 3 and the resin layer 4 are transferred, whereby the resin main body 1 The antistatic resin molded body A1 in which the adhesive layer 2, the antistatic layer 3, and the resin layer 4 are laminated in this order can be manufactured.

このようにして製造された制電性樹脂成形体A1は、樹脂本体1の表面に接着層2と制電層3と樹脂層4とが積層されたものであり、この制電層3は接着層2により樹脂本体1に密着積層して剥離することがない。そして、該制電層3は樹脂層4で覆われているので、該樹脂層4にてイソプロピルアルコール等のアルコール類や薬品が遮断されて制電層3まで浸透することがなく、制電性能を維持することができる。そのため、制電性樹脂成形体A1の耐アルコール拭き取り性が向上し、表面をイソプロピルアルコール等を含んだワイピングクロス等で繰り返し拭き取り洗浄をしても、表面抵抗率が高くなることを抑制することができ、当初の実用上十分な制電性能を維持することができる。   The antistatic resin molding A1 manufactured in this way is obtained by laminating the adhesive layer 2, the antistatic layer 3 and the resin layer 4 on the surface of the resin body 1, and the antistatic layer 3 is bonded. The layer 2 does not adhere to the resin body 1 and peel off. Since the antistatic layer 3 is covered with the resin layer 4, the alcohol and chemicals such as isopropyl alcohol are not blocked by the resin layer 4 and do not penetrate into the antistatic layer 3. Can be maintained. Therefore, the alcohol-resistant wiping property of the antistatic resin molding A1 is improved, and even if the surface is repeatedly wiped and cleaned with a wiping cloth containing isopropyl alcohol or the like, it is possible to suppress an increase in surface resistivity. The initial practically sufficient antistatic performance can be maintained.

さらに、この制電性樹脂成形体A1は、表面が樹脂層4で覆われているので、樹脂自体の摩擦堅牢特性を発揮させることができ、該成形体A1表面を前記ワイピングクロス等で繰り返し拭き取り洗浄をしても表面が侵されることはないし、表面状態を維持できて全光線透過率やヘーズなどの光学特性も維持できる。   Further, since the surface of the antistatic resin molded body A1 is covered with the resin layer 4, it is possible to exhibit the friction fastness of the resin itself, and the surface of the molded body A1 is repeatedly wiped with the wiping cloth or the like. Even after washing, the surface is not affected, the surface state can be maintained, and optical characteristics such as total light transmittance and haze can be maintained.

一方、制電層3は樹脂層4にて覆われていても、成形体A1の制電性能を発現するに必要に極細導電繊維31を含有しているので、成形体A1の表面抵抗率を10〜1011Ω/□にすることができて、塵媒の付着を防止できる。しかも、該制電層4に含有される極細導電繊維31が1本ずつ分離した状態で、又は、複数本集まって束になったものが1束ずつ分離した状態で、凝集することなく分散して互いに接触しているので、この制電性樹脂成形体A1は、極細導電繊維31の含有量を少なくしても極細導電繊維相互の接触を確保して十分な制電性を発現することができ、極細導電繊維31を減量した分だけ透明性を向上させて透明な制電性樹脂成形体A1を得ることができる。 On the other hand, even if the antistatic layer 3 is covered with the resin layer 4, it contains the ultrafine conductive fibers 31 necessary to develop the antistatic performance of the molded body A1, so the surface resistivity of the molded body A1 is reduced. 10 5 to 10 11 Ω / □, and adhesion of dust medium can be prevented. Moreover, in a state where the ultrafine conductive fibers 31 contained in the antistatic layer 4 are separated one by one or in a state where a plurality of bundles are bundled and separated one by one, they are dispersed without agglomeration. Therefore, even if the content of the ultrafine conductive fiber 31 is reduced, the antistatic resin molded product A1 can secure the contact between the ultrafine conductive fibers and exhibit sufficient antistatic properties. In addition, the transparency can be improved by the amount of the ultrafine conductive fiber 31 reduced, and the transparent antistatic resin molded body A1 can be obtained.

図2は本発明の他の実施形態に係る制電性樹脂成形体を一部拡大して示す断面図である。   FIG. 2 is a cross-sectional view showing a partially enlarged antistatic resin molded body according to another embodiment of the present invention.

この制電性樹脂成形体A2は、透明な板状の樹脂本体1と、その片側の表面に積層された接着層2と、制電層3と、導電材が含有された樹脂層40(導電材含有樹脂層40)とで構成されている。なお、樹脂本体1の両表面に接着層2、制電層3、導電材含有樹脂層40を積層させてもよい。
この制電性樹脂成形体A2において、樹脂本体1と、接着層2と、制電層3とは、前記制電性樹脂成形体A1の樹脂本体1、接着層2と、制電層3と同じであるので、同一符号を付して説明を省略する。
This antistatic resin molding A2 includes a transparent plate-shaped resin body 1, an adhesive layer 2 laminated on the surface of one side thereof, an antistatic layer 3, and a resin layer 40 containing conductive material (conductive). Material-containing resin layer 40). Note that the adhesive layer 2, the antistatic layer 3, and the conductive material-containing resin layer 40 may be laminated on both surfaces of the resin body 1.
In the antistatic resin molded body A2, the resin main body 1, the adhesive layer 2, and the antistatic layer 3 are the resin main body 1, the adhesive layer 2, and the antistatic layer 3 of the antistatic resin molded body A1. Since they are the same, the same reference numerals are given and description thereof is omitted.

導電材含有樹脂層40は、前記実施形態の樹脂層4に用いられた樹脂と同様の樹脂が用いられ、この樹脂に酸化錫、アンチモンドープ酸化錫、導電性酸化チタン、導電性カーボン、カーボンナノチューブなどの上記極細導電繊維などの導電材を含有させて形成された層である。このなかで、酸化錫、アンチモンドープ酸化錫、カーボンナノチューブなどの極細導電繊維の導電材は、当該導電材含有樹脂層40を透明にすることができるので、透明な制電性樹脂成形体A2を得る場合には好ましく用いられる。
これらの導電材のうちで、アンチモンドープ酸化錫は20〜70質量%含有させ、カーボンナノチューブなどの極細導電繊維は0.005〜5.0質量%、より好ましくは0.01〜2質量%含有させることが望ましい。
For the conductive material-containing resin layer 40, the same resin as that used for the resin layer 4 of the above embodiment is used, and this resin is tin oxide, antimony-doped tin oxide, conductive titanium oxide, conductive carbon, carbon nanotube. It is a layer formed by containing a conductive material such as the above-mentioned ultrafine conductive fiber. Among these, the conductive material of ultrafine conductive fibers such as tin oxide, antimony-doped tin oxide, and carbon nanotube can make the conductive material-containing resin layer 40 transparent, so that the transparent antistatic resin molded body A2 is formed. When obtaining, it is preferably used.
Of these conductive materials, antimony-doped tin oxide is contained in an amount of 20 to 70% by mass, and ultrafine conductive fibers such as carbon nanotubes are contained in an amount of 0.005 to 5.0% by mass, more preferably 0.01 to 2% by mass. It is desirable to make it.

このような導電材を上記含有量で導電材含有樹脂層40に含ませても、当該導電材含有樹脂層40自体の表面抵抗率は1016Ω/□以上となって、制電性能を有することはない。しかし、その内部にある制電層3により導電材含有樹脂層表面(樹脂成形体A2の表面)の表面抵抗率は10〜1011Ω/□を示して、樹脂成形体A2が制電性能を有することは前述したとおりである。また、導電材含有樹脂層40に含有されている導電材により、樹脂成形体A2の表面と制電層3とに通じる導電路が導電材含有樹脂層40に形成されるために、帯電した静電気が当該導通路を通じて制電層3に流れて、制電層3の端部まで導通して当該端部で放電して静電気を消滅させることができ、帯電減衰を瞬時に(1秒以内に)行なわせることができる。 Even if such a conductive material is included in the conductive material-containing resin layer 40 with the above content, the surface resistivity of the conductive material-containing resin layer 40 itself is 10 16 Ω / □ or more, and has antistatic performance. There is nothing. However, the surface resistivity of the conductive material-containing resin layer surface (the surface of the resin molding A2) is 10 5 to 10 11 Ω / □ due to the antistatic layer 3 inside the resin molding A2, and the resin molding A2 has the antistatic performance. As described above. In addition, since the conductive material contained in the conductive material-containing resin layer 40 forms a conductive path in the conductive material-containing resin layer 40 through the surface of the resin molded body A2 and the antistatic layer 3, the charged static electricity Can flow to the antistatic layer 3 through the conduction path, conduct to the end of the antistatic layer 3, and discharge at the end to extinguish static electricity, and charge decay is instantaneous (within 1 second). Can be done.

即ち、導電材含有樹脂層40に含有させる導電材は、該層40の内部に導通路を形成するために添加されるのであり、制電性能を発揮させる必要はないのである。そのため、上記のように、その表面抵抗率が1016Ω/□以上と高表面抵抗率であってもよく、制電層3に含有させる量よりも少ない含有量にすることができるのである。この導電路は、繊維径が小さくて繊維長が長いカーボンナノチューブであると、お互いのカーボンナノチューブが接触し易いので、少ない含有量で導電路を形成できて、当該導電材含有樹脂層40の摩擦堅牢度特性が良好に発揮できるし、樹脂自体の性能を発揮できる。 That is, the conductive material contained in the conductive material-containing resin layer 40 is added to form a conduction path inside the layer 40, and it is not necessary to exhibit the antistatic performance. Therefore, as described above, the surface resistivity may be as high as 10 16 Ω / □ or higher, and the content can be made smaller than the amount contained in the antistatic layer 3. If the conductive path is a carbon nanotube having a small fiber diameter and a long fiber length, the carbon nanotubes can easily come into contact with each other. Therefore, the conductive path can be formed with a small content, and the friction of the conductive material-containing resin layer 40 can be formed. The fastness characteristic can be exhibited well, and the performance of the resin itself can be exhibited.

この導電材含有樹脂層40に含まれる導電材は上記のように少ないので、該導電材含有樹脂層40は樹脂の性質を維持して、溶剤やイソプロピルアルコール等のアルコール類に対する耐性を有して摩擦堅牢度特性を維持している。そのため、この制電性樹脂成形体A2の表面を、アルコール類等を含むワイピングクロス等で拭き取り洗浄を行なっても、表面の耐アルコール拭き取り性を有する導電材含有樹脂層40を拭くことになり、制電層3内の極細導電繊維31が脱落することがないので、制電層3により発揮されている表面抵抗率が高くなることはない。   Since the conductive material contained in the conductive material-containing resin layer 40 is small as described above, the conductive material-containing resin layer 40 maintains the properties of the resin and has resistance to alcohols such as a solvent and isopropyl alcohol. Maintains friction fastness characteristics. Therefore, even if the surface of the antistatic resin molding A2 is wiped and cleaned with a wiping cloth containing alcohols or the like, the conductive material-containing resin layer 40 having alcohol wiping resistance on the surface is wiped. Since the ultrafine conductive fiber 31 in the antistatic layer 3 does not fall off, the surface resistivity exhibited by the antistatic layer 3 does not increase.

また、導電材含有樹脂層40は導電材の含有も少ないので、該導電材が脱落する恐れも極めて小さい。加えて、導電材は導電路を形成するだけでよいので、万一一部の導電材が脱落しても他の導電材により導電路を確保することができ、帯電減衰を瞬時に行なわせることができる。また、導電材含有樹脂層40を形成する樹脂が塩化ビニル系樹脂であると、該樹脂が耐薬品性を有しているので、薬品が触れる用塗や薬品蒸気の発生する用途に使用しても、表面が侵されることは殆どない。そして、導電材含有樹脂層40で薬品や薬品蒸気が遮断されて内部の制電層3にまで浸透することがないので、制電性を維持することができる。   Further, since the conductive material-containing resin layer 40 contains little conductive material, there is very little risk of the conductive material falling off. In addition, since the conductive material only needs to form a conductive path, even if a part of the conductive material is dropped, the conductive path can be secured by another conductive material, and charging decay can be instantaneously performed. Can do. In addition, if the resin forming the conductive material-containing resin layer 40 is a vinyl chloride resin, the resin has chemical resistance. However, the surface is hardly affected. And since the chemical | medical agent and chemical | medical agent vapor | steam are interrupted | blocked by the electrically conductive material containing resin layer 40, and it does not osmose | permeate to the internal antistatic layer 3, antistaticity can be maintained.

上記構成の制電性樹脂成形体A2は、例えば次の方法で製造される。
1つの製法は、樹脂本体1の表面に、前記制電性樹脂成形体A1に使用した接着塗料と制電塗料を塗布、乾燥させて接着層2と制電層3を形成し、さらに、制電塗料に含有される極細導電繊維31よりも少ない量の極細導電繊維31と樹脂とを溶剤に溶解・分散した導電材含有樹脂塗料を塗布、乾燥して導電材含有樹脂層40を形成することにより、樹脂本体1と接着層2と制電層3と導電材含有樹脂層40とがこの順で積層された制電性樹脂成形体A2を製造することができる。
The antistatic resin molding A2 having the above-described configuration is manufactured, for example, by the following method.
In one manufacturing method, the adhesive coating and the antistatic coating used for the antistatic resin molding A1 are applied to the surface of the resin main body 1 and dried to form the adhesive layer 2 and the antistatic layer 3. The conductive material-containing resin layer 40 is formed by applying and drying a conductive material-containing resin paint obtained by dissolving and dispersing in a solvent a smaller amount of the fine conductive fibers 31 and the resin than the fine conductive fibers 31 contained in the electropaint. Thus, the antistatic resin molded body A2 in which the resin main body 1, the adhesive layer 2, the antistatic layer 3, and the conductive material-containing resin layer 40 are laminated in this order can be manufactured.

また、前記実施形態の如く、前記接着層用フィルムの表面に前記制電塗料により制電層3を形成し、さらに前記導電材含有樹脂塗料により導電材含有樹脂層40を形成することにより、制電性ラミネートフィルムを作製する。次いで、この制電性ラミネートフィルムを熱圧着、押出ラミネートなどの手段で樹脂本体1の表面にラミネートすることで、樹脂本体1と接着層2(接着層用フィルム)と制電層3と導電材含有樹脂層40とがこの順で積層された制電性樹脂成形体A2を製造することができる。   Further, as in the above embodiment, the antistatic layer 3 is formed by the antistatic paint on the surface of the adhesive layer film, and the conductive material-containing resin layer 40 is further formed by the conductive material-containing resin paint. An electric laminate film is produced. Next, the antistatic laminate film is laminated on the surface of the resin main body 1 by means of thermocompression bonding, extrusion lamination, etc., so that the resin main body 1, the adhesive layer 2 (adhesive layer film), the antistatic layer 3, and the conductive material are obtained. The antistatic resin molding A2 in which the containing resin layer 40 is laminated in this order can be manufactured.

更に、前記実施形態の剥離フィルムの表面に、前記導電材含有樹脂塗料により導電材含有樹脂層40を、さらに前記制電塗料により制電層3を、さらに前記接着塗料により接着層2をそれぞれ形成して、制電性転写フィルムを作製する。次いで、この制電性転写フィルムの接着層2を樹脂本体1の表面に重ねて熱圧着して、接着層2と制電層3と導電材含有樹脂層40とを転写することで、樹脂本体1と接着層2と制電層3と導電材含有樹脂層40とがこの順で積層された制電性樹脂成形体A2を製造することができる。   Furthermore, the conductive material-containing resin layer 40 is formed by the conductive material-containing resin paint, the antistatic layer 3 is formed by the antistatic paint, and the adhesive layer 2 is formed by the adhesive paint on the surface of the release film of the embodiment. Thus, an antistatic transfer film is produced. Next, the adhesive layer 2 of the antistatic transfer film is superposed on the surface of the resin body 1 and thermocompression bonded to transfer the adhesive layer 2, the antistatic layer 3, and the conductive material-containing resin layer 40. The antistatic resin molding A2 in which the 1, the adhesive layer 2, the antistatic layer 3, and the conductive material-containing resin layer 40 are laminated in this order can be manufactured.

図3は本発明の更に他の実施形態に係る制電性樹脂成形体A3を一部拡大して示す断面図である。   FIG. 3 is a cross-sectional view showing a partially enlarged antistatic resin molded body A3 according to still another embodiment of the present invention.

この制電性樹脂成形体A3は、透明な板状の樹脂本体1と、その片側の表面に接着層2と、極細導電繊維31の含有量が外表面側で少なくなって傾斜濃度となった制電層30(傾斜制電層30)とを積層一体化したものである。なお、樹脂本体1の両表面に接着層2、傾斜制電層30を積層一体化させてもよい。
この制電性樹脂成形体A3において、樹脂本体1と、接着層2とは、前記実施形態の樹脂本体1、接着層2と同じであるので、同一符号を付して説明を省略する。
This antistatic resin molded body A3 has a transparent plate-like resin main body 1, the content of the adhesive layer 2 and the ultrafine conductive fiber 31 on the surface of one side thereof, and the gradient concentration is reduced on the outer surface side. The antistatic layer 30 (gradient antistatic layer 30) is laminated and integrated. Note that the adhesive layer 2 and the gradient antistatic layer 30 may be laminated and integrated on both surfaces of the resin body 1.
In the antistatic resin molded body A3, the resin main body 1 and the adhesive layer 2 are the same as the resin main body 1 and the adhesive layer 2 of the above-described embodiment, and thus the same reference numerals are given and description thereof is omitted.

傾斜制電層30は、前記制電性樹脂成形体A1の制電層3に用いられた樹脂と同じ樹脂が用いられ、これに前記カーボンナノチューブなどの極細導電繊維31が傾斜制電層30の外表面側(制電性樹脂成形体A3の表面側)で最も少ない含有量となるように含有されている。即ち、傾斜制電層30の外表面側の極細導電繊維31の含有量が内部よりも少なくなるようになされている。図3に示す傾斜制電層30においては、含有量が外表面側から内部に向かって漸増しているが、これに限定されるものではなく、例えば、含有量が段階的に増加それていてもよい。   The inclined antistatic layer 30 is made of the same resin as that used for the antistatic layer 3 of the antistatic resin molding A1, and ultrafine conductive fibers 31 such as carbon nanotubes are formed on the inclined antistatic layer 30. It is contained so as to have the smallest content on the outer surface side (the surface side of the antistatic resin molding A3). That is, the content of the ultrafine conductive fiber 31 on the outer surface side of the gradient antistatic layer 30 is made smaller than that inside. In the gradient antistatic layer 30 shown in FIG. 3, the content gradually increases from the outer surface side toward the inside, but is not limited to this. For example, the content gradually increases. Also good.

この傾斜制電層30に含ませる極細導電繊維は、全体としては8〜90質量%、好ましくは10〜50質量%含有させることで、該層30は制電性能を発揮することができる。このような含有量であっても、該傾斜制電層30には極細導電繊維31が分散して含有しているので、お互いの繊維が接触して10〜1011Ω/□の表面抵抗率とすることができ、制電性能を発揮させることができる。そして、該傾斜制電層30の外表面側の含有量を少なくしても帯電した静電気を流すだけの導電路は形成されるので、帯電した静電気は傾斜制電層30の導電路を通して外部に放電させることができる。 The ultrafine conductive fiber included in the gradient antistatic layer 30 is 8 to 90 mass% as a whole, and preferably 10 to 50 mass%, so that the layer 30 can exhibit antistatic performance. Even in such a content, since the ultrafine conductive fibers 31 are dispersed and contained in the gradient antistatic layer 30, the surface resistance of 10 5 to 10 11 Ω / □ is brought into contact with each other's fibers. Rate, and antistatic performance can be exhibited. Then, even if the content on the outer surface side of the gradient antistatic layer 30 is reduced, a conductive path is formed so that the charged static electricity can flow, so that the charged static electricity is exposed to the outside through the conductive path of the gradient antistatic layer 30. It can be discharged.

極細導電繊維31の含有量の少ない外表面側には、これを0〜5質量%含有させることが好ましい。外表面側の含有量が0%であっても、表面抵抗率は前記実施形態の成形体A1と同様に10〜1011Ω/□とすることができるので、制電性能を発揮させることができる。含有量が増えれば表面抵抗率は低くなるが、耐アルコール拭き取り性や摩擦堅牢度特性が悪くなるので、5質量%までに抑えることが好ましい。さらに、この傾斜制電層30を形成する樹脂としてポリエステル系樹脂、ウレタン系樹脂、これらの共重合樹脂、これらの混合樹脂等の樹脂を使用すれば、0質量%であっても、静電気の帯電減衰を短時間で行わせることができる。 It is preferable to contain 0-5 mass% of this on the outer surface side where the content of the ultrafine conductive fiber 31 is small. Even if the content on the outer surface side is 0%, the surface resistivity can be set to 10 5 to 10 11 Ω / □ similarly to the molded body A1 of the above embodiment, so that the antistatic performance is exhibited. Can do. If the content increases, the surface resistivity decreases, but the alcohol wiping resistance and friction fastness properties deteriorate, so it is preferable to suppress the content to 5% by mass. Further, if a resin such as a polyester resin, a urethane resin, a copolymer resin thereof, or a mixed resin thereof is used as a resin for forming the gradient antistatic layer 30, even if it is 0% by mass, electrostatic charging is performed. Attenuation can be performed in a short time.

しかし、さらに好ましい外表面側の含有量は0.005〜5質量%とすることである。このように少なくとも5質量%を含有させると、帯電した静電気を流すに必要な導電路が形成されて電荷が移動するので、極細導電繊維31を多く含む内部にまで達して傾斜制電層30の内部を流れて放電し、帯電減衰を瞬時に行なわせることができる。そのために、塩化ビニル系樹脂などであっても帯電減衰を瞬時に行わせることができ、耐アルコール拭き取り性や摩擦堅牢度特性が良好な傾斜制電層30とすることができるのである。   However, the more preferable content on the outer surface side is 0.005 to 5% by mass. When at least 5% by mass is contained in this way, a conductive path necessary for flowing charged static electricity is formed and the electric charge moves, so that the inside of the gradient antistatic layer 30 reaches the inside containing a large amount of the fine conductive fibers 31. It is possible to cause charging to be instantaneously performed by flowing inside and discharging. Therefore, even if it is a vinyl chloride type resin etc., charging attenuation can be performed instantaneously, and it can be set as the gradient antistatic layer 30 with favorable alcohol wiping-proof property and friction fastness characteristic.

この制電性樹脂成形体A3の傾斜制電層30に用いる樹脂と極細導電繊維31は前記の制電層3に用いたものと同じものが用いられるので、説明を省略する。   Since the resin and the ultrafine conductive fiber 31 used for the gradient antistatic layer 30 of the antistatic resin molding A3 are the same as those used for the antistatic layer 3, description thereof is omitted.

このような制電性樹脂成形体A3であっても、傾斜制電層30に含まれる極細導電繊維31の含有量が外表面側で少なくなっているので、該傾斜制電層30の外表面は樹脂の性質を維持して、溶剤やイソプロピルアルコール等のアルコール類に対する耐性を有して摩擦堅牢度特性が維持している。そのため、この制電性樹脂成形体A3の表面をアルコール類等を含んだワイピングクロス等で拭き取り洗浄を行なっても、表面抵抗率が高くなることがない。そして、この外表面の極細導電繊維31の含有量が少ないので、該極細導電繊維31が脱落する恐れも殆どなく、万一一部の極細導電繊維31が脱落しても他の極細導電繊維31により導電路を確保することができ、帯電減衰を瞬時に行なわせることができる。また、傾斜制電層30を形成する樹脂が塩化ビニル系樹脂であると、該樹脂が耐薬品性を有しているので、薬品が触れる用途や薬品蒸気の発生する用途に使用しても、表面が侵されることは殆どない。   Even in such an antistatic resin molded body A3, the content of the ultrafine conductive fiber 31 contained in the inclined antistatic layer 30 is reduced on the outer surface side. Maintains the properties of the resin, has resistance to solvents and alcohols such as isopropyl alcohol, and maintains friction fastness characteristics. Therefore, even if the surface of the antistatic resin molded product A3 is wiped and cleaned with a wiping cloth containing alcohol or the like, the surface resistivity does not increase. And since there is little content of the ultrafine conductive fiber 31 of this outer surface, there is almost no possibility that this ultrafine conductive fiber 31 will fall off, and even if some ultrafine conductive fibers 31 fall off, other ultrafine conductive fibers 31 As a result, a conductive path can be secured and charging attenuation can be instantaneously performed. In addition, if the resin forming the gradient antistatic layer 30 is a vinyl chloride resin, the resin has chemical resistance, so even if it is used for applications where chemicals come in contact or chemical vapors are generated, The surface is hardly attacked.

上記構成の制電性樹脂成形体A3は、例えば次の方法で製造される。
1つの製法は、樹脂本体1の表面に、前記の接着塗料を塗布、乾燥させて接着層2を形成する。そして、極細導電繊維31の含有量を変化させた数種類の導電繊維含有樹脂塗料を作製し、含有量の多い塗料から順に接着層2の表面に前の導電繊維含有樹脂塗料が乾燥しないうちに続けて塗布して、各塗料の界面を混合させることで外表面側になるほど含有量が少なくなった傾斜制電層30を形成することにより、樹脂本体1と接着層2と外表面側の極細導電繊維含有量が少なくなった傾斜制電層30とがこの順で積層された制電性樹脂成形体A3を製造することができる。
The antistatic resin molding A3 having the above-described configuration is manufactured, for example, by the following method.
In one manufacturing method, the adhesive coating 2 is formed on the surface of the resin body 1 by applying and drying the adhesive paint. Then, several kinds of conductive fiber-containing resin paints with different contents of the fine conductive fibers 31 are prepared, and the conductive fiber-containing resin paints are successively dried on the surface of the adhesive layer 2 in order from the paint having the highest content. By applying the coating and mixing the interfaces of the paints to form the gradient antistatic layer 30 whose content decreases toward the outer surface side, the resin body 1, the adhesive layer 2, and the ultrafine conductivity on the outer surface side are formed. An antistatic resin molded body A3 in which the gradient antistatic layer 30 having a reduced fiber content is laminated in this order can be manufactured.

また、前記実施形態の如く、前記接着層用フィルムの表面に、前記複数の導電繊維含有樹脂塗料の含有量の多い塗料から順に制電層3の表面に前の導電繊維含有樹脂塗料が乾燥しないうちに続けて塗布して、各塗料の界面を混合させることで外表面側になるほど含有量が少なくなった傾斜制電層30を形成することで、制電性ラミネートフィルムを作製する。次いで、この制電性ラミネートフィルムを熱圧着、押出ラミネートなどの手段で樹脂本体1の表面にラミネートすることにより、樹脂本体1と接着層2(接着層用フィルム)と外表面側の極細導電繊維の含有量が少なくなった傾斜制電層30とがこの順で積層された制電性樹脂成形体A3を製造することができる。   Further, as in the above-described embodiment, the conductive fiber-containing resin paint is not dried on the surface of the antistatic layer 3 in order from the paint having the higher content of the plurality of conductive fiber-containing resin paints on the surface of the adhesive layer film. The antistatic laminate film is produced by forming the gradient antistatic layer 30 whose content decreases toward the outer surface side by continuously applying and mixing the interfaces of the respective paints. Next, this antistatic laminate film is laminated on the surface of the resin main body 1 by means of thermocompression bonding, extrusion lamination, etc., so that the resin main body 1, the adhesive layer 2 (adhesive layer film), and the ultrafine conductive fiber on the outer surface side It is possible to manufacture the antistatic resin molded body A3 in which the gradient antistatic layer 30 in which the content of is reduced is laminated in this order.

また、前記実施形態の剥離フィルムの表面に、前記複数の導電繊維含有樹脂塗料の含有量の少ない塗料から順に剥離フィルムの表面に前の導電繊維含有樹脂塗料が乾燥しないうちに続けて塗布して、各塗料の界面を混合させることで剥離フィルム側になるほど含有量が少なくなった傾斜制電層30を形成し、続いて、前記接着塗料により接着層2を形成することにより、制電性転写フィルムを作製する。次いで、この制電性転写フィルムの接着層2が樹脂本体1側となるように樹脂本体1に重ねて熱圧着して、接着層2と傾斜制電層30とを転写することにより、樹脂本体1と接着層2と外表面側の極細導電繊維の含有量が少なくなった傾斜制電層3とがこの順で積層された制電性樹脂成形体A3を製造することができる。   Moreover, it is continuously applied to the surface of the release film of the embodiment before the conductive fiber-containing resin paint is dried on the surface of the release film in order from the paint having a low content of the plurality of conductive fiber-containing resin paints. By forming the gradient antistatic layer 30 with the content decreasing toward the release film side by mixing the interfaces of the respective paints, and subsequently forming the adhesive layer 2 with the adhesive paint, the antistatic transfer Make a film. Next, the adhesive body 2 of the antistatic transfer film is laminated on the resin body 1 so that the adhesive layer 2 is on the resin body 1 side, and is thermocompression-bonded, thereby transferring the adhesive layer 2 and the gradient antistatic layer 30 to the resin body. 1, an antistatic resin molded body A3 in which the adhesive layer 2 and the gradient antistatic layer 3 in which the content of the ultrafine conductive fibers on the outer surface side is reduced can be laminated in this order.

これらの上記各製法では、導電繊維含有樹脂塗料の含有量の異なる複数の塗料を用いて、それらの界面を混合させることで外表面から内側になるほど含有量が漸増した制電層を有する制電性樹脂成形体を製造しているが、各塗料を塗布、乾燥させた後に次の塗料を塗布するようにすれば、極細導電繊維が界面で混合することがなく、その含有量が段階的に変化する傾斜制電層を有する制電性樹脂成形体を製造することができる。   In each of these manufacturing methods, a plurality of paints having different contents of the conductive fiber-containing resin paint are used, and by mixing their interfaces, the antistatic layer having an antistatic layer whose content gradually increases from the outer surface to the inner side. If the next paint is applied after applying and drying each paint, the ultrafine conductive fibers will not mix at the interface, and the content will be stepwise. An antistatic resin molded body having a varying gradient antistatic layer can be produced.

次に、本発明に係る制電性樹脂成形体の更に具体的な実施例を説明する。   Next, more specific examples of the antistatic resin molded body according to the present invention will be described.

[実施例1]
接着層用フィルムとして、厚さ100μm、全光線透過率94%、ヘーズ0.6%のポリメチルメタクリレートフィルム(PMMAフィルム)を使用した。
[Example 1]
A polymethyl methacrylate film (PMMA film) having a thickness of 100 μm, a total light transmittance of 94%, and a haze of 0.6% was used as the adhesive layer film.

また、溶媒(シクロヘキサノン)中に、バインダー樹脂として塩化ビニル−酢酸ビニル共重合体を溶解して樹脂溶液とすると共に、単層カーボンナノチューブ[文献Chemical Physics Letters,323(2000),P580−585に基づいて合成したもの、直径1.3〜1.8nm]と、分散剤としての酸性ポリマーのアルキルアンモニウム塩溶液を加えて均一に混合、分散させ、単層カーボンナノチューブを0.3質量%、上記分散剤を0.1質量%、上記バインダー樹脂を2.0質量%含む塗液(以下、CNT塗液Aと記す)を調製した。   In addition, a vinyl chloride-vinyl acetate copolymer is dissolved as a binder resin in a solvent (cyclohexanone) to obtain a resin solution, and based on single-walled carbon nanotubes [Document Chemical Physics Letters, 323 (2000), P580-585. And a solution of alkyl ammonium salt of acidic polymer as a dispersing agent, and uniformly mixed and dispersed to obtain 0.3% by mass of single-walled carbon nanotubes. A coating liquid containing 0.1% by mass of the agent and 2.0% by mass of the binder resin (hereinafter referred to as CNT coating liquid A) was prepared.

さらに、上記塩化ビニル−酢酸ビニル共重合樹脂の樹脂溶液に、前記単層カーボンナノチューブと前記分散剤とを加えて均一に混合、分散させ、単層カーボンナノチューブを0.02質量%、上記分散剤を0.01質量%、上記共重合樹脂を6.0質量%含む塗液(CNT含有樹脂塗液X)を調製した。   Further, the single-walled carbon nanotubes and the dispersant are added to the resin solution of the vinyl chloride-vinyl acetate copolymer resin and mixed and dispersed uniformly. The single-walled carbon nanotubes are 0.02% by mass, and the dispersant is added. A coating liquid (CNT-containing resin coating liquid X) containing 0.01% by mass and 6.0% by mass of the copolymer resin was prepared.

そして、上記接着層用フィルムの表面に、上記調製したCNT塗液Aを制電塗膜の厚みが200nmとなるように塗布、乾燥して制電層を形成し、続いて、この制電層の上に上記調整したCNT含有樹脂塗液Xを厚み270nmになるように塗布してCNT含有樹脂層を形成して、接着層用フィルムに制電層とCNT含有樹脂層とが形成された制電性ラミネートフィルムを作製した。そして、この制電性ラミネートフィルムを、厚さ5.0mmのポリカーボネート樹脂板(全光線透過率89.5%、ヘーズ0.2%)の表面に、接着層用フィルムがポリカーボネート樹脂板側となるように重ねて熱圧着することにより、透明な制電性樹脂板を製造した。   Then, the antistatic layer is formed by applying and drying the prepared CNT coating liquid A on the surface of the adhesive layer film so that the antistatic coating film has a thickness of 200 nm. Subsequently, the antistatic layer is formed. A CNT-containing resin layer is formed by applying the adjusted CNT-containing resin coating solution X so as to have a thickness of 270 nm on the adhesive film, and the antistatic layer and the CNT-containing resin layer are formed on the adhesive layer film. An electrically conductive laminate film was produced. Then, this antistatic laminate film is placed on the surface of a 5.0 mm thick polycarbonate resin plate (total light transmittance 89.5%, haze 0.2%), and the adhesive layer film is on the polycarbonate resin plate side. Thus, a transparent antistatic resin plate was manufactured by thermocompression bonding.

この制電性樹脂板について、表面抵抗率、全光線透過率、ヘーズを測定した結果を下記の表1に示す。また、この制電性樹脂板の表面(制電層表面)を、イソプロピルアルコールを含ませたワイピングクロスで拭き取る作業を繰り返し、100回、200回、300回後の表面抵抗率、全光線透過率、ヘーズを測定し、その結果を下記の表1に記載した。さらに、この制電性樹脂板の飽和帯電圧及びこの電圧が半減する時間(半減期)を測定し、その結果を表1に記載した。   Table 1 below shows the results of measuring the surface resistivity, total light transmittance, and haze of this antistatic resin plate. Further, the surface of the antistatic resin plate (surface of the antistatic layer) was repeatedly wiped with a wiping cloth containing isopropyl alcohol, and the surface resistivity and total light transmittance after 100, 200 and 300 times were repeated. The haze was measured, and the results are shown in Table 1 below. Further, the saturation voltage of this antistatic resin plate and the time (half-life) during which this voltage is halved were measured, and the results are shown in Table 1.

尚、表面抵抗率は(株)ダイアインスツルメンツ製のハイレスタUPで測定した値であり、全光線透過率とヘーズはASTM D1003に準拠してスガ試験機(株)製の直読ヘーズコンピューターHGM−2DPで測定した値であり、飽和帯電圧と半減期はJIS L 1094に準拠してシシド静電気(株)製のスタチックオネストメーターH−0110で測定した値である。   The surface resistivity is a value measured by Hiresta UP manufactured by Dia Instruments Co., Ltd., and the total light transmittance and haze are measured by a direct reading haze computer HGM-2DP manufactured by Suga Test Instruments Co., Ltd. according to ASTM D1003. The saturation voltage and the half-life are values measured with a Static Honest Meter H-0110 manufactured by Sicid Electrostatic Co., Ltd. according to JIS L 1094.

[実施例2]
CNT含有樹脂塗液に含まれる単層カーボンナノチューブを0.06質量%、上記分散剤を0.03質量%、上記共重合樹脂を6.0質量%に変更した塗液(CNT含有樹脂塗液Y)を使用した以外は、実施例1と同様にして、透明な制電性樹脂板を製造した。
[Example 2]
A coating solution (CNT-containing resin coating solution) in which the single-walled carbon nanotubes contained in the CNT-containing resin coating solution are changed to 0.06 mass%, the dispersant is 0.03% by mass, and the copolymer resin is 6.0 mass%. A transparent antistatic resin plate was produced in the same manner as in Example 1 except that Y) was used.

この制電性樹脂板について、実施例1と同様に表面抵抗率、全光線透過率、ヘーズを測定すると共に、イソプロピルアルコールを含ませたワイピングクロスで拭き取る作業を100回、200回、300回繰り返した後の表面抵抗率、全光線透過率、ヘーズを測定して、その結果を下記の表1に併記した。さらに、この制電性樹脂板の飽和帯電圧及びこの電圧が半減する時間(半減期)を測定し、その結果を表1に併記する。   For this antistatic resin plate, the surface resistivity, total light transmittance, and haze were measured in the same manner as in Example 1 and the operation of wiping with a wiping cloth containing isopropyl alcohol was repeated 100 times, 200 times, and 300 times. Thereafter, the surface resistivity, the total light transmittance, and the haze were measured, and the results are also shown in Table 1 below. Further, the saturation voltage of this antistatic resin plate and the time (half-life) during which this voltage is halved are measured, and the results are also shown in Table 1.

[実施例3]
溶媒(シクロヘキサノン)中に、バインダー樹脂として塩化ビニル−酢酸ビニル共重合体を溶解すると共に、実施例1で使用した単層カーボンナノチューブと、実施例1で使用した分散剤を加えて均一に混合、分散させ、実施例1で調整したCNT塗液Aの他に、単層カーボンナノチューブを0.6質量%、分散剤を0.2質量%、バインダー樹脂を2.0質量%含む塗液(CNT塗液B)、及び、上記単層カーボンナノチューブを0.15質量%、上記分散剤を0.06質量%、上記バインダー樹脂を2.0質量%含む塗液(CNT塗液C)をそれぞれ調製した。
[Example 3]
In the solvent (cyclohexanone), the vinyl chloride-vinyl acetate copolymer is dissolved as a binder resin, and the single-walled carbon nanotubes used in Example 1 and the dispersant used in Example 1 are added and mixed uniformly. In addition to the CNT coating liquid A which was dispersed and prepared in Example 1, the coating liquid (CNT containing 0.6% by mass of the single-walled carbon nanotubes, 0.2% by mass of the dispersant, and 2.0% by mass of the binder resin) Coating solution B) and a coating solution (CNT coating solution C) containing 0.15% by mass of the single-walled carbon nanotube, 0.06% by mass of the dispersant, and 2.0% by mass of the binder resin were prepared. did.

実施例1で使用した接着層用フィルムの表面に、上記調製した三種類のCNT塗液を、CNT塗液B、A、Cの順に前記フィルム上に各制電塗膜の厚みが各々100nmとなるように塗布、乾燥して制電層を形成することにより、接着層用フィルムに単層カーボンナノチューブの含有量が異なる3種類の制電塗膜からなる傾斜制電層とが形成された制電性ラミネートフィルムを作製した。そして、この制電性ラミネートフィルムを、厚さ5.0mmのポリカーボネート樹脂板(全光線透過率89.5%、ヘーズ0.2%)の表面に、接着層用フィルム側がポリカーボネート樹脂板側となるように重ねて熱圧着することにより、傾斜制電層の外表面側の単層カーボンナノチューブの含有量が内部より少ない透明な制電性樹脂板を製造した。   On the surface of the adhesive layer film used in Example 1, the above-prepared three types of CNT coating liquids, each of the antistatic coatings having a thickness of 100 nm on the film in the order of CNT coating liquids B, A, and C The antistatic layer is formed by coating and drying as described above, whereby the antistatic layer formed of three types of antistatic coating films having different single-walled carbon nanotube contents is formed on the adhesive layer film. An electrically conductive laminate film was produced. The antistatic laminate film is placed on the surface of a 5.0 mm thick polycarbonate resin plate (total light transmittance 89.5%, haze 0.2%), and the adhesive layer film side is the polycarbonate resin plate side. Thus, a transparent antistatic resin plate in which the content of single-walled carbon nanotubes on the outer surface side of the gradient antistatic layer was smaller than that in the interior was manufactured by thermocompression bonding.

この制電性樹脂板について、実施例1と同様に表面抵抗率、全光線透過率、ヘーズを測定すると共に、イソプロピルアルコールを含ませたワイピングクロスで拭き取る作業を100回、200、300回繰り返した後の表面抵抗率、全光線透過率、ヘーズを測定して、その結果を下記の表1に併記した。さらに、この制電性樹脂板の飽和帯電圧及びこの電圧が半減する時間(半減期)を測定し、その結果を表1に併記する。   For this antistatic resin plate, the surface resistivity, total light transmittance, and haze were measured in the same manner as in Example 1 and the operation of wiping with a wiping cloth containing isopropyl alcohol was repeated 100 times, 200 times, and 300 times. The subsequent surface resistivity, total light transmittance, and haze were measured, and the results are also shown in Table 1 below. Further, the saturation voltage of this antistatic resin plate and the time (half-life) during which this voltage is halved are measured, and the results are also shown in Table 1.

[実施例4]
ポリエステル系樹脂を溶剤に溶解した樹脂塗液を調製した。 そして、実施例1で使用した接着層用フィルムの表面に、実施例1で使用したCNT塗液Aを制電塗膜の厚みが200nmとなるように塗布、乾燥して制電層を形成し、続いて、この制電層の上に上記樹脂塗液を厚み270nmになるように塗布して樹脂層を形成して、接着層用フィルムに制電層と樹脂層とが形成された制電性ラミネートフィルムを作製した。そして、この制電性ラミネートフィルムを、厚さ5.0mmのポリカーボネート樹脂板(全光線透過率89.5%、ヘーズ0.2%)の表面に、接着層用フィルムがポリカーボネート樹脂板側となるように重ねて熱圧着することにより、透明な制電性樹脂板を製造した。
[Example 4]
A resin coating solution in which a polyester resin was dissolved in a solvent was prepared. Then, on the surface of the adhesive layer film used in Example 1, the antistatic layer was formed by applying and drying the CNT coating liquid A used in Example 1 so that the antistatic coating thickness was 200 nm. Subsequently, the resin coating liquid is applied on the antistatic layer to a thickness of 270 nm to form a resin layer, and the antistatic layer and the resin layer are formed on the adhesive layer film. An adhesive laminate film was produced. Then, this antistatic laminate film is placed on the surface of a 5.0 mm thick polycarbonate resin plate (total light transmittance 89.5%, haze 0.2%), and the adhesive layer film is on the polycarbonate resin plate side. Thus, a transparent antistatic resin plate was manufactured by thermocompression bonding.

この制電性樹脂板について、実施例1と同様に表面抵抗率、全光線透過率、ヘーズを測定すると共に、イソプロピルアルコールを含ませたワイピングクロスで拭き取る作業を100回、200、300回繰り返した後の表面抵抗率、全光線透過率、ヘーズを測定して、その結果を下記の表1に併記した。さらに、この制電性樹脂板の飽和帯電圧及びこの電圧が半減する時間(半減期)を測定し、その結果を表1に併記する。   For this antistatic resin plate, the surface resistivity, total light transmittance, and haze were measured in the same manner as in Example 1 and the operation of wiping with a wiping cloth containing isopropyl alcohol was repeated 100 times, 200 times, and 300 times. The subsequent surface resistivity, total light transmittance, and haze were measured, and the results are also shown in Table 1 below. Further, the saturation voltage of this antistatic resin plate and the time (half-life) during which this voltage is halved are measured, and the results are also shown in Table 1.

[比較例1]
実施例1で使用した接着層用フィルムにCNT塗液Aを塗布乾燥しただけの制電性ラミネートフィルムを作製し、実施例1と同様にラミネートして、ポリカーボネート樹脂板に接着層(接着層用フィルム)を介して制電層が積層された、透明な制電性樹脂板を製造した。なお、制電層の厚みは200nmであった。そして、この制電性樹脂板について、実施例1と同様に表面抵抗率、全光線透過率、ヘーズを測定すると共に、イソプロピルアルコールを含ませたワイピングクロスで拭き取る作業を100回、200回、300回繰り返した後の表面抵抗率、全光線透過率、ヘーズを測定して、その結果を下記の表1に併記した。さらに、この制電性樹脂板の飽和帯電圧及びこの電圧が半減する時間(半減期)を測定し、その結果を表1に併記する。
[Comparative Example 1]
An antistatic laminate film was prepared by simply applying and drying the CNT coating liquid A on the adhesive layer film used in Example 1, and laminating in the same manner as in Example 1, and then adhering the adhesive layer (for the adhesive layer) to the polycarbonate resin plate. A transparent antistatic resin plate in which an antistatic layer was laminated via a film) was produced. The thickness of the antistatic layer was 200 nm. And about this antistatic resin board, while measuring surface resistivity, a total light transmittance, and haze similarly to Example 1, the operation | work wiped off with the wiping cloth containing isopropyl alcohol is performed 100 times, 200 times, 300 times. The surface resistivity, the total light transmittance, and the haze after repeated times were measured, and the results are also shown in Table 1 below. Further, the saturation voltage of this antistatic resin plate and the time (half-life) during which this voltage is halved are measured, and the results are also shown in Table 1.

Figure 2007130950
Figure 2007130950

この表1から分かるように、各実施例1、2、3も比較例1も、初期の表面抵抗率は10〜10Ω/□と略同じである。しかし、各実施例はイソプロピルアルコールを含ませたワイピングクロスで拭き取る作業の回数が多くなっても略同じ表面抵抗率を維持しているのに対して、比較例1は表面抵抗率が急激に高くなって制電性能を有さなくなっていることがわかる。これは、表面の制電層に含まれている単層カーボンナノチューブがワイピングクロスにより拭き取られて脱落したためと思われる。
また、表面に単層カーボンナノチューブを含有していない樹脂層を設けた実施例4は、単層カーボンナノチューブを含有させた樹脂層を設けた実施例1、2、3の表面抵抗率よりも高くなっているが、10Ω/□の表面抵抗率を有して十分制電性能を発揮できることがわかる。
As can be seen from Table 1, in each of Examples 1, 2, 3 and Comparative Example 1, the initial surface resistivity is substantially the same as 10 6 to 10 7 Ω / □. However, each example maintains substantially the same surface resistivity even when the number of times of wiping with wiping cloth containing isopropyl alcohol is increased, whereas Comparative Example 1 has a rapidly increased surface resistivity. It turns out that it has no antistatic performance. This is presumably because the single-walled carbon nanotubes contained in the surface antistatic layer were wiped off by the wiping cloth and dropped off.
Further, Example 4 in which a resin layer not containing single-walled carbon nanotubes was provided on the surface was higher than the surface resistivity of Examples 1, 2, and 3 in which a resin layer containing single-walled carbon nanotubes was provided. However, it can be seen that it has a surface resistivity of 10 7 Ω / □ and can sufficiently exhibit antistatic performance.

また、光学特性においては、各実施例1、2、3と比較例1とは、初期の全光線透過率が80〜83%、ヘーズが3〜4.5%の範囲内で略同じである。しかし、拭き取り回数を増やすと、比較例1のみが全光線透過率もヘーズも悪くなっていることがわかる。これは表面の制電層に含まれている単層カーボンナノチューブが拭き取られた結果、制電層表面が粗くなったためと思われる。   Further, in the optical characteristics, Examples 1, 2, and 3 and Comparative Example 1 are substantially the same within a range where the initial total light transmittance is 80 to 83% and the haze is 3 to 4.5%. . However, when the number of times of wiping is increased, it can be seen that only the comparative example 1 is deteriorated in total light transmittance and haze. This is probably because the surface of the antistatic layer became rough as a result of wiping off the single-walled carbon nanotubes contained in the antistatic layer on the surface.

さらに、電気特性においては、各実施例1、2、3と比較例1とは、初期の飽和帯電圧が10V以下で、半減期が1秒以内と同じである。しかし、拭き取り回数を増やすと、各実施例は同じ値を示すが、比較例1は飽和帯電圧が700V、3200V、3400Vと増加し、半減期も74秒、120秒以上となって、長時間にわたり帯電し、減衰しにくい若しくは減衰しないことがわかる。このような比較例4の電気特性であると、帯電した静電気が電子部品の静電破壊を引き起こす恐れがあり、半導体や液晶などの製造、間仕切りなどに用いる成形体としては好ましくない。   Further, in terms of electrical characteristics, each of Examples 1, 2, and 3 and Comparative Example 1 have an initial saturation band voltage of 10 V or less and a half-life of less than 1 second. However, when the number of wiping operations is increased, each example shows the same value, but in Comparative Example 1, the saturation band voltage increases to 700 V, 3200 V, 3400 V, and the half-life becomes 74 seconds, 120 seconds or more, which is a long time. It can be seen that it is charged over a period of time and hardly attenuates or does not attenuate. With such electrical characteristics of Comparative Example 4, the charged static electricity may cause electrostatic breakdown of the electronic component, which is not preferable as a molded body used for manufacturing semiconductors, liquid crystals, and partitioning.

本発明の一実施形態に係る制電性樹脂成形体を一部拡大して示す断面図である。It is sectional drawing which partially enlarges and shows the antistatic resin molding which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る制電性樹脂成形体を一部拡大して示す断面図である。It is sectional drawing which partially enlarges and shows the antistatic resin molding which concerns on other embodiment of this invention. 本発明の更に他の実施形態に係る制電性樹脂成形体を一部拡大して示す断面図である。It is sectional drawing which partially enlarges and shows the antistatic resin molding which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1 樹脂本体
2 接着層
3 制電層
30 傾斜制電層
31 極細導電繊維
32 バインダー樹脂
4 樹脂層
40 導電材含有樹脂層
DESCRIPTION OF SYMBOLS 1 Resin body 2 Adhesion layer 3 Antistatic layer 30 Inclined antistatic layer 31 Extra fine conductive fiber 32 Binder resin 4 Resin layer 40 Conductive material containing resin layer

Claims (8)

樹脂本体の少なくとも片面に制電層を積層した樹脂成形体であって、前記制電層が極細導電繊維を含んでいると共に、この制電層の外表面に樹脂層が積層されていることを特徴とする制電性樹脂成形体。   A resin molded body in which an antistatic layer is laminated on at least one surface of a resin body, the antistatic layer containing ultrafine conductive fibers, and a resin layer laminated on the outer surface of the antistatic layer. Characteristic antistatic resin molded product. 樹脂層が導電材を含んでいることを特徴とする請求項1に記載の制電性樹脂成形体。   The antistatic resin molded article according to claim 1, wherein the resin layer contains a conductive material. 樹脂層が極細導電繊維の導電材を含んでいて、その含有量が制電層のそれよりも少ないことを特徴とする請求項1に記載の制電性樹脂成形体。   The antistatic resin molded article according to claim 1, wherein the resin layer contains a conductive material of ultrafine conductive fibers, and the content thereof is smaller than that of the antistatic layer. 樹脂層に含まれる極細導電繊維の含有量が0.005〜5質量%であることを特徴とする請求項2又は請求項3に記載の制電性樹脂成形体。   The antistatic resin molded article according to claim 2 or 3, wherein the content of the ultrafine conductive fibers contained in the resin layer is 0.005 to 5 mass%. 制電層が接着層を介して樹脂本体に積層されていることを特徴とする請求項1ないし請求項4のいずれかに記載の制電性樹脂成形体。   The antistatic resin molded article according to any one of claims 1 to 4, wherein the antistatic layer is laminated on the resin main body via an adhesive layer. 樹脂本体の少なくとも片面に制電層を積層した樹脂成形体であって、前記制電層が極細導電繊維を含み、制電層の外表面側の極細導電繊維の含有量が制電層の内部側よりも少ないことを特徴とする制電性樹脂成形体。   A resin molded body in which an antistatic layer is laminated on at least one surface of a resin main body, the antistatic layer including ultrafine conductive fibers, and the content of the ultrafine conductive fibers on the outer surface side of the antistatic layer is within the antistatic layer. An antistatic resin molded product characterized by being less than the side. 制電層の外表面側の極細導電繊維の含有量が0〜5質量%であることを特徴とする請求項6に記載の制電性樹脂成形体。   The antistatic resin molded article according to claim 6, wherein the content of the ultrafine conductive fibers on the outer surface side of the antistatic layer is 0 to 5 mass%. 極細導電繊維がカーボンナノチューブであることを特徴とする請求項1ないし請求項7のいずれかに記載の制電性樹脂成形体。   The antistatic resin molded article according to any one of claims 1 to 7, wherein the ultrafine conductive fiber is a carbon nanotube.
JP2005328276A 2005-11-14 2005-11-14 Antistatic resin molding Expired - Fee Related JP4795780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005328276A JP4795780B2 (en) 2005-11-14 2005-11-14 Antistatic resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005328276A JP4795780B2 (en) 2005-11-14 2005-11-14 Antistatic resin molding

Publications (2)

Publication Number Publication Date
JP2007130950A true JP2007130950A (en) 2007-05-31
JP4795780B2 JP4795780B2 (en) 2011-10-19

Family

ID=38152998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005328276A Expired - Fee Related JP4795780B2 (en) 2005-11-14 2005-11-14 Antistatic resin molding

Country Status (1)

Country Link
JP (1) JP4795780B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043237A (en) * 2008-08-14 2010-02-25 Korea Electrotechnology Research Inst Carbon nanotube-coated transparent conductive polycarbonate film and touch panel using the same
JP2010155930A (en) * 2008-12-26 2010-07-15 Asahi Kasei Chemicals Corp Composite material composition and molded product using the same
WO2011140971A1 (en) * 2010-05-11 2011-11-17 Esd Technology Consulting & Licensing Co., Ltd Electrostatic discharge transparent sheeting
KR101128291B1 (en) 2009-04-23 2012-03-23 (주)탑나노시스 Carbon nanotube conductive layer and the method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226007A (en) * 1996-12-10 1998-08-25 Takiron Co Ltd Moldable antistatic resin molding
JP2004306281A (en) * 2003-04-02 2004-11-04 Toyobo Co Ltd Electroconductive sheet, electroconductive member and packaging film using them
JP2005014332A (en) * 2003-06-25 2005-01-20 Toray Ind Inc Laminate and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226007A (en) * 1996-12-10 1998-08-25 Takiron Co Ltd Moldable antistatic resin molding
JP2004306281A (en) * 2003-04-02 2004-11-04 Toyobo Co Ltd Electroconductive sheet, electroconductive member and packaging film using them
JP2005014332A (en) * 2003-06-25 2005-01-20 Toray Ind Inc Laminate and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043237A (en) * 2008-08-14 2010-02-25 Korea Electrotechnology Research Inst Carbon nanotube-coated transparent conductive polycarbonate film and touch panel using the same
JP2010155930A (en) * 2008-12-26 2010-07-15 Asahi Kasei Chemicals Corp Composite material composition and molded product using the same
KR101128291B1 (en) 2009-04-23 2012-03-23 (주)탑나노시스 Carbon nanotube conductive layer and the method for manufacturing the same
WO2011140971A1 (en) * 2010-05-11 2011-11-17 Esd Technology Consulting & Licensing Co., Ltd Electrostatic discharge transparent sheeting

Also Published As

Publication number Publication date
JP4795780B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP2006035771A (en) Conductive layer transfer sheet
JP2007229989A (en) Conductive molded body and its manufacturing method
CN102250506B (en) Nanowires-based transparent conductors
KR102031611B1 (en) Electromagnetic wave absorption film and method for manufacturing same
CN1745302A (en) Articles with dispersed conductive coatings
US20060257638A1 (en) Articles with dispersed conductive coatings
US20080029292A1 (en) Transparent Conductive Formed Article for a Touch Panel and Touch Panel
JP2006049843A (en) Antistatic molding for image display apparatus
JP2006035773A (en) Self-adhesive conductive molding
JP2007112133A (en) Electroconductive shaped article
JP4795780B2 (en) Antistatic resin molding
CN107210091B (en) Transparent and electrically conductive film
JP7076484B2 (en) Composite material and semiconductor container using it
JP2008126469A (en) Conductive resin molding and its manufacturing method
JP6580431B2 (en) Transparent conductive film
JP3398587B2 (en) Moldable antistatic resin molded product
JP4488826B2 (en) Antistatic resin molding
JP6580432B2 (en) Transparent conductive film
JP4488825B2 (en) Antistatic resin molding
JP5002778B2 (en) Method for producing transparent conductive film substrate and method for producing transparent laminate
JP2007308158A (en) Cover tape for electronic component package
JP2006035775A (en) Antistatic resin molded product
WO2022030106A1 (en) Multilayer body and secondary molded article
JP2010047262A (en) Cover tape for electronic component packaging
JP2009220565A (en) Antistatic resin molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees