JP2010047262A - Cover tape for electronic component packaging - Google Patents

Cover tape for electronic component packaging Download PDF

Info

Publication number
JP2010047262A
JP2010047262A JP2008211459A JP2008211459A JP2010047262A JP 2010047262 A JP2010047262 A JP 2010047262A JP 2008211459 A JP2008211459 A JP 2008211459A JP 2008211459 A JP2008211459 A JP 2008211459A JP 2010047262 A JP2010047262 A JP 2010047262A
Authority
JP
Japan
Prior art keywords
layer
carbon nanofiber
cover tape
particulate conductive
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008211459A
Other languages
Japanese (ja)
Inventor
Shogo Nakano
尚吾 中野
Masaru Ota
賢 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2008211459A priority Critical patent/JP2010047262A/en
Publication of JP2010047262A publication Critical patent/JP2010047262A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Packages (AREA)
  • Wrappers (AREA)
  • Packaging Frangible Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cover tape for electronic component packaging, which is reduced in cost by reducing the use of an expensive conductive material and is clean by preventing fall of the conductive material. <P>SOLUTION: The cover tape for electronic component packaging is composed of three layers, which are a base material layer, an intermediate layer, and a sealant layer. In this cover tape, the base material layer has at least one layer of biaxial oriented film. The sealant layer is formed on the intermediate layer by sequentially or simultaneously applying and drying a coating liquid in which a carbon nano fiber material containing a ferromagnetic substance, particles of conductive substance, and a solvent are disposed in thermoplastic resin, or a coating liquid in which a carbon nano fiber material containing a ferromagnetic substance and a solvent are dispersed in thermoplastic resin, and a coating liquid in which particles of conductive substance and a solvent are dispersed in thermoplastic resin. In the sealant layer, the carbon nano fiber material and the particles of conductive material have contacts. The carbon nano fiber material and the particles of conductive substance are formed in two layers, having a density inclination in the direction of the thickness, or they have an inclination function. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子部品の保管、輸送、装着に際し、電子部品を汚染から保護し、電子回路基板に実装する為に整列させ、取り出せる機能を有する包装体のうち、収納ポケットを形成したプラスチック製キャリアテープに熱シールされる電子部品包装用カバーテープに関するものである。   The present invention relates to a plastic carrier in which a storage pocket is formed out of a package having functions of protecting electronic components from contamination and arranging and taking them out for mounting on an electronic circuit board when storing, transporting, and mounting the electronic components. The present invention relates to a cover tape for packaging electronic parts that is heat-sealed to the tape.

近年、各種電子部品、精密機器部品などの表面実装部品の収納、搬送に、それぞれの部品形状に合わせてエンボス部が設けられたキャリアテープと、このエンボス部に部品を収納後、部品の脱落防止、保護のため蓋材として熱シールまたは粘着剤を用いてシールされるカバーテープが包装材として用いられる(特許文献1参照)。このカバーテープは、実装時に剥離されて部品が取り出され、基板に取り付けられる。   In recent years, for storing and transporting surface mount parts such as various electronic parts and precision equipment parts, carrier tape with embossed parts according to the shape of each part, and preventing parts from falling off after storing the parts in this embossed part For protection, a cover tape sealed with a heat seal or an adhesive is used as a lid material (see Patent Document 1). The cover tape is peeled off at the time of mounting, and the components are taken out and attached to the board.

現在、上市されているカバーテープは、基材と中間層及びキャリアテープに接着する為の接着剤から構成されており、静電気対策が必要なものに対しては、基材表面または接着剤表面に、帯電防止剤または導電剤を塗布、あるいは基材および接着剤に帯電防止剤及び導電剤が練り込まれている。
また、上記のようにカバーテープに導電性を付与するために、シーラント樹脂に導電粉末を分散する手法も取られてきた。
The cover tape currently on the market is composed of an adhesive for bonding to the base material, the intermediate layer and the carrier tape. The antistatic agent or the conductive agent is applied, or the antistatic agent and the conductive agent are kneaded into the base material and the adhesive.
In addition, in order to impart conductivity to the cover tape as described above, a method of dispersing conductive powder in a sealant resin has been taken.

しかしながら、導電性粒子では、多用されているカーボンブラックの場合、均一に分散しても十分な導電性を得るためには一定以上の添加量が必要であり、透明性を阻害する原因でもあった。特許文献1では、酸化錫、酸化亜鉛、酸化チタンのいずれか又はこれらの組合せから成る導電性微粉末が用いられているが、透明性において必ずしも満足できるものではなかった。また、近年ナノテクノロジーによってカーボンナノ材料の量産化が可能になり、テーピング後の部品確認のための透明性を得るために導電性物質としてカーボンナノ材料を導電性ポリマー(π電子共役系導電性高分子)と共に使用することも提案されている(特許文献2参照)。   However, in the case of carbon black, which is frequently used for conductive particles, an addition amount of a certain amount or more is necessary to obtain sufficient conductivity even when uniformly dispersed, which is also a cause of hindering transparency. . In Patent Document 1, a conductive fine powder made of any one of tin oxide, zinc oxide, titanium oxide, or a combination thereof is used, but the transparency is not always satisfactory. In recent years, nanotechnology has enabled mass production of carbon nanomaterials. In order to obtain transparency for confirming parts after taping, carbon nanomaterials can be used as conductive substances (conducting polymers (π-electron conjugated conductive materials)). It has also been proposed to be used together with molecules) (see Patent Document 2).

また、それら導電性粒子からなるカバーテープはキャリアテープからの剥離時に微細なクラックを生じること等により導電性粒子同士の接点が減少し、剥離後の静電気防止機能が低下する問題点がある。   Moreover, the cover tape which consists of these electroconductive particles has the problem that the contact point between electroconductive particles reduces by producing a fine crack at the time of peeling from a carrier tape, and the antistatic function after peeling falls.

さらに、導電性粒子としてフラーレン、カーボンナノファーバー及びカーボンナノチューブといったカーボンナノ材料を使用して、分散液として塗布または樹脂中に練り込むことも提案されている(特許文献3参照)。しかし、カーボンナノ材料は価格が非常に高いためコストがかる、また配合された導電性繊維がシーラント層から脱落して半導体パッケージ及びパッケージ内部の電子部品を汚染する問題点がある。   Furthermore, it has also been proposed to use carbon nanomaterials such as fullerene, carbon nanofiber and carbon nanotube as conductive particles, and apply or knead into a resin as a dispersion (see Patent Document 3). However, carbon nanomaterials are expensive because they are very expensive, and there are problems that the blended conductive fibers fall off the sealant layer and contaminate the semiconductor package and the electronic components inside the package.

特公平7−067774号公報Japanese Patent Publication No. 7-067774 特開2005−081766号公報Japanese Patent Laying-Open No. 2005-081766 特開2007−45513号公報JP 2007-45513 A

本発明は、電子部品収納用の凹部が複数個連設されているキャリアテープの上面を封止するためのカバーテープであって、透明性が良く、内容物たる部品の視認性に優れ、画像処理が可能であり、かつキャリアテープからの剥離後も導電性の低下が起こらずに十分な静電気防止性能を発揮することに加えて、高価な材料の使用量を低減して低コスト化した、また導電性繊維の脱落のほとんどないクリーンな電子部品包装用カバーテープを供給することを課題とする。   The present invention is a cover tape for sealing the upper surface of a carrier tape in which a plurality of recesses for storing electronic components are continuously provided, and has good transparency and excellent visibility of components as contents. In addition to being able to process and exhibiting sufficient antistatic performance without causing a decrease in conductivity even after peeling from the carrier tape, the amount of expensive materials used has been reduced and the cost has been reduced. It is another object of the present invention to provide a clean cover tape for packaging electronic parts in which conductive fibers are hardly dropped off.

本発明は、以下の通りである。
(1)基材層、中間層、シーラント層の三層構成のカバーテープにおいて、前記基材層が少なくとも1層の2軸延伸フィルムを有し、前記シーラント層が、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、ポリウレタン、アクリル、塩化ビニル− 酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン− 酢酸ビニル共重合体の群から選ばれた少なくとも1種の熱可塑性樹脂に、強磁性体を含有するカーボンナノ繊維材料及び粒子状導電物質と溶媒とを分散した塗液を塗布乾燥する、もしくは前記熱可塑性樹脂に強磁性体を含有するカーボンナノ繊維材料と溶媒とを分散した塗液、及び前記熱可塑性樹脂に粒子状導電物質と溶媒とを分散した塗液、各々の塗液を順番にあるいは同時に塗布乾燥して、中間層上に形成されたものであって、シーラント層においてカーボンナノ繊維材料及び粒子状導電物質が接点を有し、カーボンナノ繊維材料及び粒子状導電物質が厚み方向に濃度勾配を持ってニ層化もしくは傾斜機能化していることを特徴とする電子部品包装用カバーテープ。
(2)カーボンナノ繊維材料及び粒子状導電物質の濃度勾配を持たせる方法として、電場もしくは磁場を使用することを特徴とする(1)記載の電子部品包装用カバーテープ。
(3)カーボンナノ繊維材料及び粒子状導電物質の濃度勾配が、シーラント層を厚み方向の上下2層に分けた場合の上層におけるカーボンナノ繊維材料及び粒子状導電物質の濃度をそれぞれA1重量%、B1重量%とし、下層におけるカーボンナノ繊維材料及び粒子状導電物質の濃度をそれぞれA2重量%、B2重量%とした場合に、A1/A2又はA2/A1が1.5以上であり、且つB1/B2又はB2/B1が1.5以上である(1)又は(2)記載の電子部品包装用カバーテープ。
The present invention is as follows.
(1) In a cover tape having a three-layer structure of a base material layer, an intermediate layer, and a sealant layer, the base material layer has at least one biaxially stretched film, and the sealant layer is a polyolefin resin or a polystyrene resin. Polyester resin, polyurethane, acrylic, vinyl chloride-vinyl acetate copolymer, ethylene-acrylic acid copolymer, at least one thermoplastic resin selected from the group of ethylene-vinyl acetate copolymer, ferromagnetic A carbon nanofiber material containing a body and a coating liquid in which a particulate conductive substance and a solvent are dispersed are applied and dried, or a coating liquid in which a carbon nanofiber material containing a ferromagnetic substance and a solvent are dispersed in the thermoplastic resin. And a coating liquid in which a particulate conductive material and a solvent are dispersed in the thermoplastic resin, and each coating liquid is applied and dried in order or simultaneously to form on the intermediate layer. In the sealant layer, the carbon nanofiber material and the particulate conductive material have a contact point, and the carbon nanofiber material and the particulate conductive material are made into a two-layered or gradient functionalized with a concentration gradient in the thickness direction. A cover tape for packaging electronic parts.
(2) The electronic component packaging cover tape according to (1), wherein an electric field or a magnetic field is used as a method of providing a concentration gradient of the carbon nanofiber material and the particulate conductive material.
(3) The concentration gradient of the carbon nanofiber material and the particulate conductive material is such that the concentration of the carbon nanofiber material and the particulate conductive material in the upper layer when the sealant layer is divided into two upper and lower layers in the thickness direction is A1% by weight, A1 / A2 or A2 / A1 is 1.5 or more when B1% by weight, and the concentrations of the carbon nanofiber material and the particulate conductive material in the lower layer are A2% by weight and B2% by weight, respectively, and B1 / The cover tape for packaging electronic parts according to (1) or (2), wherein B2 or B2 / B1 is 1.5 or more.

本発明は、シーラント層のカーボンナノ繊維材料と粒子状導電物質の濃度を厚み方向に濃度勾配を持たせてニ層化もしくは傾斜機能化することにより、材料の使用量を低減し低コスト化を可能とする。また、剥離後の導電性の低下を防止する効果が得られ、さらに導電繊維の脱落のほとんどないクリーンなカバーテープの作成を可能とする。   In the present invention, the concentration of the carbon nanofiber material and the particulate conductive material in the sealant layer is made to have a concentration gradient in the thickness direction to form a double layer or a gradient function, thereby reducing the amount of material used and reducing the cost. Make it possible. Moreover, the effect which prevents the electroconductive fall after peeling is acquired, and also the preparation of the clean cover tape with almost no omission of a conductive fiber is attained.

カバーテープの基材層としては、ポリエステル、ポリプロピレン、ポリエチレン、ナイロンから選ばれ、好ましくは2軸延伸フィルムであるが、ポリエステル/ポリエチレン/ポリエステルと三層構造となるものや、ポリエステル/ポリエステル等のポリエステルの積層体を使用することもできる。ポリエステル/ポリエステルの積層体としては、ポリエチレンテレフタレート/ポリブチレンテレフタレートのほかに、ポリエチレンテレフタレート/ポリエチレンテレフタレートのように同材質からなる2層構造にしてもよい。この場合ポリエチレンテレフタレートを長手方向に延伸させたものと、幅方向に延伸したものを用いることで積層体の強度を向上できる。基材層の厚さは、9μmから50μm、好ましくは12〜25μmが良い。下限値未満では積層プラスチックフィルムの強度が不足し、上限値を超えると熱接着が困難になる。
カバーテープには、中間層を形成する。中間層としては、ポリエチレン、ポリエチレン−ビニルアセテート共重合体、エチレン−アクリル共重合体、ポリウレタンが挙げられ、その厚さは、10〜50μmが好ましく、10μm未満では引き裂き強度に劣り、50μmを超えると接着性に問題が生じる。
The base layer of the cover tape is selected from polyester, polypropylene, polyethylene, and nylon, and is preferably a biaxially stretched film, but has a three-layer structure with polyester / polyethylene / polyester or polyester such as polyester / polyester. It is also possible to use a laminated body. As the polyester / polyester laminate, in addition to polyethylene terephthalate / polybutylene terephthalate, a two-layer structure made of the same material such as polyethylene terephthalate / polyethylene terephthalate may be used. In this case, the strength of the laminate can be improved by using polyethylene terephthalate stretched in the longitudinal direction and one stretched in the width direction. The thickness of the base material layer is 9 μm to 50 μm, preferably 12 to 25 μm. If it is less than the lower limit, the strength of the laminated plastic film is insufficient, and if it exceeds the upper limit, thermal bonding becomes difficult.
An intermediate layer is formed on the cover tape. Examples of the intermediate layer include polyethylene, polyethylene-vinyl acetate copolymer, ethylene-acrylic copolymer, and polyurethane. The thickness is preferably 10 to 50 μm, and when it is less than 10 μm, the tear strength is inferior, and when it exceeds 50 μm. Problems arise in adhesion.

基材+中間層の加工方法としては、ドライラミネート、押し出しラミネートのいずれでもよく、好ましくは押し出しラミネートが基材の柔軟性が得られるため適している。
カバーテープのシーラント層は、基材に中間層を介して、形成される。シーラント層は、熱可塑性樹脂に導電性物質を分散して形成される。シーラント層を構成する熱可塑性樹脂としては、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、ポリウレタン、アクリル、塩化ビニル−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−酢酸ビニル共重合体の群から選ばれた少なくとも1種の熱可塑性樹脂が挙げられる。ここで、ポリオレフィン系樹脂には、ポリエチレンやポリプロピレン、エチレンαオレフィン共重合体等が含まれ、ポリスチレン系樹脂には、スチレン、スチレン・ブタジエン・スチレンブロック共重合体(SBS)、スチレン・エチレン・ブチレン・スチレンブロック共重合体(SEBS)、スチレン・イソプレン・スチレンブロック共重合体(SIS)、スチレン・エチレン・プロピレン・スチレンブロック共重合体(SEPS)、水素添加型スチレン・ブタジエンランダム共重合体(HSBR)等が含まれ、ポリエステル系樹脂には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等が含まれる。
As a processing method of the base material + intermediate layer, either dry lamination or extrusion lamination may be used. Preferably, extrusion lamination is suitable because the flexibility of the base material is obtained.
The sealant layer of the cover tape is formed on the substrate via an intermediate layer. The sealant layer is formed by dispersing a conductive substance in a thermoplastic resin. The thermoplastic resin constituting the sealant layer includes polyolefin resin, polystyrene resin, polyester resin, polyurethane, acrylic, vinyl chloride-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-vinyl acetate copolymer. There may be mentioned at least one thermoplastic resin selected from the group of coalescence. Here, the polyolefin resin includes polyethylene, polypropylene, ethylene α-olefin copolymer, and the like. The polystyrene resin includes styrene, styrene / butadiene / styrene block copolymer (SBS), styrene / ethylene / butylene.・ Styrene block copolymer (SEBS), styrene / isoprene / styrene block copolymer (SIS), styrene / ethylene / propylene / styrene block copolymer (SEPS), hydrogenated styrene / butadiene random copolymer (HSBR) And the like, and the polyester-based resin includes polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and the like.

シーラント層を中間層上に形成するには、熱可塑性樹脂と導電性物質として強磁性体を含有するカーボンナノ繊維材料及び粒子状導電物質と溶媒とを分散した塗液を塗布してカーボンナノ繊維材料及び粒子状導電物質の厚み方向の濃度勾配を持たせて二層化もしくは傾斜機能化する。二層化もしくは傾斜機能化されたシーラント層中の導電物質の状態は、例えば図1から5のような模式図の構造をとり、いずれの場合も有効である。図1では粒子状導電物質とカーボンナノ繊維材料が膜中央付近で接触する場合である。図2では粒子状導電物質とカーボンナノ繊維材料が膜中央付近で重なりながら多くの接触点で接触する場合である。図3では粒子状導電物質とカーボンナノ繊維材料の粒径が膜厚に対して大きく、それぞれ単層もしくは数層の薄い厚さで構成される場合である。図4では膜界面に粒子状導電物質が薄い厚さで濃縮し、反対側からカーボンナノ繊維材料が接触する場合である。図5では膜界面に カーボンナノ繊維材料が薄い厚さで濃縮し、反対側から粒子状導電物質が接触する場合である。また、特にカーボンナノ繊維材料が濃縮された側に中間層を積層した場合、カーボンナノ繊維材料のシーラント層表面からの脱落、突出を防止し、パッケージの汚染を防ぐことができる。中間層は上記模式図の上下どちらの界面にある状態でも良い。
本発明において、シーラント層において、カーボンナノ繊維材料及び粒子状導電物質が濃度勾配を持たせてニ層化もしくは傾斜機能化していることが必要である。カーボンナノ繊維材料及び粒子状導電物質の濃度勾配は、シーラント層を厚み方向の上下2層に分けた場合の上層におけるカーボンナノ繊維材料及び粒子状導電物質の濃度をそれぞれA1重量%、B1重量%とし、下層におけるカーボンナノ繊維材料及び粒子状導電物質の濃度をそれぞれA2重量%、B2重量%とした場合に、A1/A2又はA2/A1が1.5以上であり、且つB1/B2又はB2/B1が1.5以上であることが好ましい。
尚、層中で強磁性体を含有するカーボンナノ繊維材料と粒子状導電物質が接触することが必要であり、図6のように粒子状導電物質とカーボンナノ繊維材料の接点がなく、完全に二層化する場合は帯電防止機能を発現しにくく適さない。
In order to form the sealant layer on the intermediate layer, a carbon nanofiber material containing a thermoplastic resin and a ferromagnetic material as a conductive material, and a coating liquid in which a particulate conductive material and a solvent are dispersed are applied to the carbon nanofiber. The material and the particulate conductive material are provided with a concentration gradient in the thickness direction to form a two-layer or gradient function. The state of the conductive material in the double-layered or gradient-functionalized sealant layer has a schematic structure as shown in FIGS. 1 to 5, for example, and is effective in any case. In FIG. 1, the particulate conductive material and the carbon nanofiber material are in contact near the center of the film. In FIG. 2, the particulate conductive material and the carbon nanofiber material are in contact at many contact points while overlapping in the vicinity of the center of the film. FIG. 3 shows a case where the particle size of the particulate conductive material and the carbon nanofiber material is larger than the film thickness, and each is composed of a single layer or several thin layers. FIG. 4 shows a case where the particulate conductive material is concentrated to a thin film interface at the membrane interface, and the carbon nanofiber material contacts from the opposite side. FIG. 5 shows a case where the carbon nanofiber material is concentrated to a thin film thickness at the membrane interface, and the particulate conductive material contacts from the opposite side. In particular, when the intermediate layer is laminated on the side on which the carbon nanofiber material is concentrated, the carbon nanofiber material can be prevented from falling off and protruding from the surface of the sealant layer, and contamination of the package can be prevented. The intermediate layer may be at the upper or lower interface in the schematic diagram.
In the present invention, in the sealant layer, it is necessary that the carbon nanofiber material and the particulate conductive material have a two-layered or gradient function with a concentration gradient. The concentration gradient of the carbon nanofiber material and the particulate conductive material is such that the concentration of the carbon nanofiber material and the particulate conductive material in the upper layer when the sealant layer is divided into two upper and lower layers in the thickness direction is A1 wt% and B1 wt%, respectively. When the concentration of the carbon nanofiber material and the particulate conductive material in the lower layer is A2 wt% and B2 wt%, respectively, A1 / A2 or A2 / A1 is 1.5 or more, and B1 / B2 or B2 / B1 is preferably 1.5 or more.
In addition, it is necessary for the carbon nanofiber material containing the ferromagnetic material and the particulate conductive material to contact in the layer, and there is no contact between the particulate conductive material and the carbon nanofiber material as shown in FIG. In the case of two layers, the antistatic function is not easily exhibited and is not suitable.

二層化もしくは傾斜機能化は、熱可塑性樹脂に強磁性体を含有するカーボンナノ繊維材料と溶媒とを分散した塗液、及び熱可塑性樹脂に粒子状導電物質と溶媒とを分散した塗液の各々の塗液を用意して順番にあるいは同時に塗布する、もしくは熱可塑性樹脂に強磁性体を含有するカーボンナノ繊維材料及び粒子状導電物質と溶媒とを分散した塗液を塗布後、電場もしくは磁場を使用して強磁性体を上層もしくは下層に濃縮するという手法を用いても良い。その場合、電場は電圧1〜20V、電界1V/cm以上の直流電流か、電圧1〜200V、周波数0.1Hz〜10MHzの交流電流を用いるのが望ましく、磁場は0.1〜30Tのネオジム磁石、フェライト磁石、アルニコ磁石、サマリウムコバルト磁石といった永久磁石や電磁石、超伝導磁石を用いるのが望ましい。電場もしくは磁場はシーラント層の表面側、基材側のどちら側から作用させても良いし、両面から作用させても良い。尚、電場を用いた場合は粒子状導電物質もカーボンナノ繊維材料も動く可能性があるが、磁場を用いた場合は強磁性体を含有することを特徴とするカーボンナノ繊維材料のみが磁力線に沿って動き、磁石のある方に濃縮される。 The two-layered or gradient functionalization is a coating liquid in which a carbon nanofiber material containing a ferromagnetic material and a solvent are dispersed in a thermoplastic resin, and a coating liquid in which a particulate conductive material and a solvent are dispersed in a thermoplastic resin. Prepare each coating solution in order or at the same time, or apply a coating solution in which a carbon nanofiber material containing a ferromagnetic material and a particulate conductive material and a solvent are dispersed in a thermoplastic resin, and then apply an electric or magnetic field. A method of concentrating the ferromagnetic material in the upper layer or the lower layer using the above may be used. In that case, it is desirable to use a DC current having a voltage of 1 to 20 V and an electric field of 1 V / cm or more, or an AC current having a voltage of 1 to 200 V and a frequency of 0.1 Hz to 10 MHz, and a magnetic field of 0.1 to 30 T neodymium magnet. It is desirable to use permanent magnets such as ferrite magnets, alnico magnets, and samarium cobalt magnets, electromagnets, and superconducting magnets. The electric field or magnetic field may be applied from either the surface side or the base material side of the sealant layer, or may be applied from both sides. When an electric field is used, both the particulate conductive material and the carbon nanofiber material may move. However, when a magnetic field is used, only the carbon nanofiber material, which contains a ferromagnetic material, is used as a magnetic field line. It moves along and concentrates on the one with the magnet.

シーラント層を構成する導電性物質の添加量は、カーボンナノ繊維材料は熱可塑性樹脂100重量部に対して0.1〜30重量部添加するものであることが好ましく、粒子状導電物質は前記熱可塑性樹脂100重量部に対して0.01〜300重量部添加するものであることが好ましい。各々、下限値未満では表面抵抗値が1010オームを超えてしまい十分な導電性が得られない。上限値を超える場合には、ヘイズが20%を超えてしまう。
カバーテープのヘイズは、20%以下であることが好ましい。ヘイズ(曇り価)は、(散乱光線透過率/全光線透過率)×100で定義される。
The amount of the conductive material constituting the sealant layer is preferably such that the carbon nanofiber material is added in an amount of 0.1 to 30 parts by weight with respect to 100 parts by weight of the thermoplastic resin. It is preferable to add 0.01 to 300 parts by weight with respect to 100 parts by weight of the plastic resin. In each case, if it is less than the lower limit value, the surface resistance value exceeds 10 10 ohms, and sufficient conductivity cannot be obtained. If the upper limit is exceeded, the haze will exceed 20%.
The haze of the cover tape is preferably 20% or less. The haze (cloudiness value) is defined by (scattered light transmittance / total light transmittance) × 100.

シーラント層を構成する導電性物質としては、強磁性体を含有するカーボンナノ繊維材料及び、粒子状導電物質を使用する。粒子状導電物質としては酸化錫、酸化亜鉛、酸化チタン、カーボンブラック、金属被覆粒子、Si系有機化合物、フラーレンが挙げられる。これらの粒子状導電物質は単体で使用するか、又は組合せて使用しても良い。粒子状導電物質の粒径は5〜2000nmが望ましい。5nm未満だと粒子状導電物質の分散液の製造が困難となり、また得られる透明導電膜の抵抗値が高くなる。2000nmを超えると粒子状導電物質分散液が沈降し易く取扱いが容易でなくなると同時に、透過率と抵抗値を同時に達成することが困難となる。   As the conductive material constituting the sealant layer, a carbon nanofiber material containing a ferromagnetic material and a particulate conductive material are used. Examples of the particulate conductive material include tin oxide, zinc oxide, titanium oxide, carbon black, metal-coated particles, Si-based organic compounds, and fullerene. These particulate conductive materials may be used alone or in combination. The particle size of the particulate conductive material is preferably 5 to 2000 nm. When the thickness is less than 5 nm, it is difficult to produce a dispersion liquid of the particulate conductive material, and the resistance value of the transparent conductive film obtained is increased. If it exceeds 2000 nm, the particulate conductive material dispersion liquid tends to settle and handling becomes difficult, and at the same time, it becomes difficult to simultaneously achieve the transmittance and the resistance value.

本発明で使用する強磁性体を含有するカーボンナノ繊維材料について説明する。ここでいう強磁性体とは、カーボンナノ繊維材料合成時に使用した残留触媒、もしくは無電解メッキでカーボンナノ繊維材料表面にコーティング処理したもの、またそれらの組合せによるものである。強磁性体としては鉄(Fe)、ニッケル(Ni)、コバルト(Co)の他にネオジム(Nd)、サマリウム(Sm)、ガドリニウム(Ga)といった希土類元素、またこれらを含む化合物、合金が挙げられる。強磁性体の含有量はカーボンナノ繊維材料100重量部に対して0.1〜50重量部であることが望ましい。下限値未満では、電場もしくは磁場による繊維の移動が起こりにくくなる。上限値を超えると導電性が低下し、十分な機能が得られない。   The carbon nanofiber material containing a ferromagnetic material used in the present invention will be described. The term “ferromagnetic material” as used herein refers to a residual catalyst used when synthesizing the carbon nanofiber material, a material obtained by coating the surface of the carbon nanofiber material by electroless plating, or a combination thereof. Ferromagnetic materials include rare earth elements such as neodymium (Nd), samarium (Sm), and gadolinium (Ga) in addition to iron (Fe), nickel (Ni), and cobalt (Co), and compounds and alloys containing these. . The content of the ferromagnetic material is desirably 0.1 to 50 parts by weight with respect to 100 parts by weight of the carbon nanofiber material. If it is less than the lower limit, the movement of fibers due to an electric field or a magnetic field is less likely to occur. When the upper limit is exceeded, the conductivity is lowered and a sufficient function cannot be obtained.

カーボンナノ繊維材料はその径や形態により、カーボンナノチューブ(CNT)やカーボンナノファイバー(CNF)などと呼称されるが、本発明ではそれらはカーボンナノ繊維材料の一形態として含まれると認識する。また、一般にカーボンナノチューブには、そのカイラリティーにより金属性を示すもの、半導体性を示すものが知られているが、良好な導電性を示す金属性のカーボンナノチューブの含有量が多い方がより望ましい。カーボンナノ繊維材料の製造方法は特に限定しないが、炭化水素を原料とし、気相で熱分解させ、触媒粒子から繊維を成長させる気相成長法、アーク放電法、レーザー蒸発法、電子線照射法、溶融紡糸法の他、基板上から繊維を成長させる基板法、スーパーグロース法などが挙げられる。カーボンナノ繊維材料は絡み合いが多く、さらに比表面積が大きく凝集力も大きいため分散が困難であるが、そのために少量でネットワークを形成できるという特徴を有する。カーボンナノ繊維材料は外径が10〜200nm、アスペクト比が20〜50000であることが望ましい。   The carbon nanofiber materials are called carbon nanotubes (CNT) or carbon nanofibers (CNF) depending on their diameters and forms, but the present invention recognizes that they are included as one form of carbon nanofiber materials. In general, carbon nanotubes are known that exhibit metallic properties due to their chirality, and those that exhibit semiconducting properties, but it is more desirable that the content of metallic carbon nanotubes exhibiting good conductivity is large. . The method for producing the carbon nanofiber material is not particularly limited, but a vapor phase growth method, an arc discharge method, a laser evaporation method, an electron beam irradiation method in which a hydrocarbon is used as a raw material, thermally decomposed in a gas phase, and fibers are grown from catalyst particles. In addition to the melt spinning method, a substrate method in which fibers are grown on a substrate, a super-growth method, and the like can be given. The carbon nanofiber material has many entanglements and is difficult to disperse because of its large specific surface area and large cohesive force. For this reason, it has a feature that a network can be formed with a small amount. The carbon nanofiber material preferably has an outer diameter of 10 to 200 nm and an aspect ratio of 20 to 50000.

前述の通り、従来の粒子状導電物質のみを配合したカバーテープでは、キャリアテープからの剥離後に導電性が低下していた。本発明によるカバーテープは、カーボンナノ繊維材料と粒子状導電物質を二層化もしくは傾斜機能化する構造により、剥離前に静電気防止に十分な導電性を発揮するだけでなく、剥離後にクラック等によって粒子状導電物質同士の接点が減少しても、粒子状導電物質−カーボンナノ繊維材料間、カーボンナノ繊維材料−カーボンナノ繊維材料間の接点が途切れることがないため静電気防止機能を十分に発揮することができる。   As described above, in the cover tape containing only the conventional particulate conductive material, the conductivity decreased after peeling from the carrier tape. The cover tape according to the present invention has a structure in which the carbon nanofiber material and the particulate conductive material are made into a two-layered or functionalized gradient, and not only exhibits sufficient conductivity for preventing static electricity before peeling, but also due to cracks after peeling. Even if the contact between the particulate conductive materials decreases, the contact between the particulate conductive material and the carbon nanofiber material, and the contact between the carbon nanofiber material and the carbon nanofiber material is not interrupted. be able to.

本発明の実施例及び比較例を以下に示すが、これらの実施例によって本発明は何ら限定されるものではない。尚、実施例で使用したCNTは磁力により引き寄せられることを確認済みである。   Examples and Comparative Examples of the present invention are shown below, but the present invention is not limited to these Examples. It has been confirmed that the CNTs used in the examples are attracted by magnetic force.

<実施例1>
基材層としてPET(ポリエチレンテレフタレート)を形成し、その層の片側面に中間層としてLDPE(低密度ポリエチレン)をラミネートした。その後、配合1(配合については表1参照)の導電性物質の分散塗液を乾燥後に厚み1μmになるように塗布し、0.4Tのネオジム磁石を用いて塗布層表面にカーボンナノ繊維材料の濃縮を行った。得られた塗膜を乾燥してカバーテープ試作品を得た。得られたカバーテープを5.5mm幅にスリットした後、8mm幅のPVC製キャリアテープとヒートシールを行った。カバーテープのシーラント層の断面を観察すると図2に近い構造であった。
<Example 1>
PET (polyethylene terephthalate) was formed as a base material layer, and LDPE (low density polyethylene) was laminated as an intermediate layer on one side of the layer. Thereafter, the conductive material dispersion coating solution of Formulation 1 (see Table 1 for the formulation) is applied to a thickness of 1 μm after drying, and the carbon nanofiber material is coated on the surface of the coating layer using a 0.4 T neodymium magnet. Concentration was performed. The obtained coating film was dried to obtain a cover tape prototype. The obtained cover tape was slit to a width of 5.5 mm, and then heat-sealed with a carrier tape made of PVC having a width of 8 mm. When the cross section of the sealant layer of the cover tape was observed, it was a structure close to FIG.

<実施例2>
基材層としてPET(ポリエチレンテレフタレート)を形成し、その層の片側面に中間層としてLDPE(低密度ポリエチレン)をラミネートした。中間層に配合1の導電性物質の分散塗液を乾燥後に厚み0.5μmになるように塗布し、その上に配合2の分散塗液を乾燥後に厚み0.5μmになるように塗布した。得られた塗膜を乾燥し、カバーテープ試作品を得た。ヒートシールは実施例1と同様に行った。カバーテープのシーラント層の断面を観察すると図3に近い構造であった。
<Example 2>
PET (polyethylene terephthalate) was formed as a base material layer, and LDPE (low density polyethylene) was laminated as an intermediate layer on one side of the layer. A dispersion coating solution of the conductive material of Formulation 1 was applied to the intermediate layer so as to have a thickness of 0.5 μm after drying, and a dispersion coating solution of Formulation 2 was applied thereon so as to have a thickness of 0.5 μm after drying. The obtained coating film was dried to obtain a cover tape prototype. Heat sealing was performed in the same manner as in Example 1. When the cross section of the sealant layer of the cover tape was observed, it was a structure close to FIG.

<比較例1>
基材層としてPET(ポリエチレンテレフタレート)を形成し、その層の片側面に中間層としてLDPE(低密度ポリエチレン)をラミネートした。中間層に配合2の導電性物質の分散塗布液を乾燥後に厚み1μmになるように塗布した。得られた塗膜を乾燥し、カバーテープ試作品を得た。ヒートシールは実施例1と同様に行った。
<Comparative Example 1>
PET (polyethylene terephthalate) was formed as a base material layer, and LDPE (low density polyethylene) was laminated as an intermediate layer on one side of the layer. A conductive material dispersion coating solution of Formulation 2 was applied to the intermediate layer so as to have a thickness of 1 μm after drying. The obtained coating film was dried to obtain a cover tape prototype. Heat sealing was performed in the same manner as in Example 1.

上記方法で作成したカバーテープの剥離前と300mm/minで剥離後のシーラント層の表面抵抗値を測定した。又、カバーテープ試作品の全光線透過率及びヘイズの測定を行った。それらの特性評価結果を表2に示した。尚、表面抵抗値はJIS K6911により、全光線透過率、ヘイズはJIS K7105に従って測定した。 The surface resistance value of the sealant layer before peeling of the cover tape prepared by the above method and after peeling at 300 mm / min was measured. Moreover, the total light transmittance and haze of the cover tape prototype were measured. The characteristic evaluation results are shown in Table 2. The surface resistance value was measured according to JIS K6911, and the total light transmittance and haze were measured according to JIS K7105.

Figure 2010047262
Figure 2010047262

Figure 2010047262
Figure 2010047262

表1及び表2中の記号は以下の通りである。
PET:ポリエチレンテレフタレート
LDPE:低密度ポリエチレン
PMMA−BMA:ポリメタクリレート−ブチルメタクリレート共重合体(分子量4,000〜12,000)
ATO:アンチモン含有酸化錫(平均粒径50nm)
CNT:カーボンナノチューブ(直径30nm、繊維長2μm、ジェムコ(株)製)
The symbols in Table 1 and Table 2 are as follows.
PET: Polyethylene terephthalate LDPE: Low-density polyethylene PMMA-BMA: Polymethacrylate-butyl methacrylate copolymer (molecular weight 4,000 to 12,000)
ATO: antimony-containing tin oxide (average particle size 50 nm)
CNT: carbon nanotube (diameter 30 nm, fiber length 2 μm, manufactured by Gemco)

本発明のカバーテープのシーラント層の一実施例の断面の模式図 円形状のものが粒子状導電物質、糸状のものがカーボンナノ繊維材料である。The schematic diagram of the cross section of one Example of the sealant layer of the cover tape of this invention A circular thing is a particulate conductive material, and a thread-like thing is a carbon nanofiber material. 本発明のカバーテープのシーラント層の一実施例の断面の模式図The schematic diagram of the cross section of one Example of the sealant layer of the cover tape of this invention 本発明のカバーテープのシーラント層の一実施例の断面の模式図The schematic diagram of the cross section of one Example of the sealant layer of the cover tape of this invention 本発明のカバーテープのシーラント層の一実施例の断面の模式図The schematic diagram of the cross section of one Example of the sealant layer of the cover tape of this invention 本発明のカバーテープのシーラント層の一実施例の断面の模式図The schematic diagram of the cross section of one Example of the sealant layer of the cover tape of this invention 本発明に適さないカバーテープのシーラント層の例の断面の模式図Schematic diagram of a cross section of an example of a sealant layer of a cover tape not suitable for the present invention

Claims (3)

基材層、中間層、シーラント層の三層構成のカバーテープにおいて、前記基材層が少なくとも1層の2軸延伸フィルムを有し、前記シーラント層が、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、ポリウレタン、アクリル、塩化ビニル− 酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン− 酢酸ビニル共重合体の群から選ばれた少なくとも1種の熱可塑性樹脂に、強磁性体を含有するカーボンナノ繊維材料及び粒子状導電物質と溶媒とを分散した塗液を塗布乾燥する、もしくは前記熱可塑性樹脂に強磁性体を含有するカーボンナノ繊維材料と溶媒とを分散した塗液、及び前記熱可塑性樹脂に粒子状導電物質と溶媒とを分散した塗液、各々の塗液を順番にあるいは同時に塗布乾燥して、中間層上に形成されたものであって、シーラント層においてカーボンナノ繊維材料及び粒子状導電物質が接点を有し、カーボンナノ繊維材料及び粒子状導電物質が厚み方向に濃度勾配を持ってニ層化もしくは傾斜機能化していることを特徴とする電子部品包装用カバーテープ。   In a cover tape having a three-layer structure of a base material layer, an intermediate layer, and a sealant layer, the base material layer has at least one biaxially stretched film, and the sealant layer is a polyolefin resin, a polystyrene resin, or a polyester resin. A ferromagnetic material is contained in at least one thermoplastic resin selected from the group consisting of resin, polyurethane, acrylic, vinyl chloride-vinyl acetate copolymer, ethylene-acrylic acid copolymer, and ethylene-vinyl acetate copolymer. A coating liquid in which a carbon nanofiber material and a particulate conductive substance and a solvent are dispersed is applied and dried, or a coating liquid in which a carbon nanofiber material containing a ferromagnetic substance in the thermoplastic resin and a solvent is dispersed, and the above A coating liquid in which a particulate conductive material and a solvent are dispersed in a thermoplastic resin, and each coating liquid is applied or dried in order or simultaneously to form on the intermediate layer. In the sealant layer, the carbon nanofiber material and the particulate conductive material have contact points, and the carbon nanofiber material and the particulate conductive material have a two-layered or gradient function with a concentration gradient in the thickness direction. Cover tape for packaging electronic parts. カーボンナノ繊維材料及び粒子状導電物質の濃度勾配を持たせる方法として、電場もしくは磁場を使用することを特徴とする請求項1記載の電子部品包装用カバーテープ。   2. The cover tape for packaging electronic parts according to claim 1, wherein an electric field or a magnetic field is used as a method of providing a concentration gradient of the carbon nanofiber material and the particulate conductive material. カーボンナノ繊維材料及び粒子状導電物質の濃度勾配が、シーラント層を厚み方向の上下2層に分けた場合の上層におけるカーボンナノ繊維材料及び粒子状導電物質の濃度をそれぞれA1重量%、B1重量%とし、下層におけるカーボンナノ繊維材料及び粒子状導電物質の濃度をそれぞれA2重量%、B2重量%とした場合に、A1/A2又はA2/A1が1.5以上であり、且つB1/B2又はB2/B1が1.5以上である請求項1又は2記載の電子部品包装用カバーテープ。   When the concentration gradient of the carbon nanofiber material and the particulate conductive substance is divided into two upper and lower layers in the thickness direction, the concentration of the carbon nanofiber material and the particulate conductive substance in the upper layer is A1 wt% and B1 wt%, respectively. When the concentration of the carbon nanofiber material and the particulate conductive material in the lower layer is A2 wt% and B2 wt%, respectively, A1 / A2 or A2 / A1 is 1.5 or more, and B1 / B2 or B2 The cover tape for packaging electronic parts according to claim 1 or 2, wherein / B1 is 1.5 or more.
JP2008211459A 2008-08-20 2008-08-20 Cover tape for electronic component packaging Pending JP2010047262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211459A JP2010047262A (en) 2008-08-20 2008-08-20 Cover tape for electronic component packaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211459A JP2010047262A (en) 2008-08-20 2008-08-20 Cover tape for electronic component packaging

Publications (1)

Publication Number Publication Date
JP2010047262A true JP2010047262A (en) 2010-03-04

Family

ID=42064716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211459A Pending JP2010047262A (en) 2008-08-20 2008-08-20 Cover tape for electronic component packaging

Country Status (1)

Country Link
JP (1) JP2010047262A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511582A (en) * 2018-05-07 2018-09-07 华南理工大学 A kind of LED coatings of multilayer encapsulation quantum dot and preparation method thereof
CN108948840A (en) * 2018-07-20 2018-12-07 张家港市山牧新材料技术开发有限公司 A kind of formula of heat resistant type conductive coating
JP2021123419A (en) * 2020-01-31 2021-08-30 住友ベークライト株式会社 Cover tape for packaging electronic component, electronic component packaging body, and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511582A (en) * 2018-05-07 2018-09-07 华南理工大学 A kind of LED coatings of multilayer encapsulation quantum dot and preparation method thereof
CN108948840A (en) * 2018-07-20 2018-12-07 张家港市山牧新材料技术开发有限公司 A kind of formula of heat resistant type conductive coating
JP2021123419A (en) * 2020-01-31 2021-08-30 住友ベークライト株式会社 Cover tape for packaging electronic component, electronic component packaging body, and method for producing the same

Similar Documents

Publication Publication Date Title
Ghaleb et al. Properties of graphene nanopowder and multi-walled carbon nanotube-filled epoxy thin-film nanocomposites for electronic applications: The effect of sonication time and filler loading
JP5993850B2 (en) Cover film
JP6449559B2 (en) Nanostructure dispersion and transparent conductor
US20140272172A1 (en) Method for producing conducting and transparent films from combined graphene and conductive nano filaments
JP5814350B2 (en) Cover film
KR101742850B1 (en) Cover film
KR20170017946A (en) Layered product and process for producing same
JP5208648B2 (en) Cover tape
JP2022059023A (en) Transparent electrically-conductive cover tape
JP5819088B2 (en) Dust-free packaging bag with excellent automatic packaging
JP2010047262A (en) Cover tape for electronic component packaging
Chang et al. Air-stable gelatin composite memory devices on a paper substrate
Yamamoto et al. An electroless plating method for conducting microbeads using gold nanoparticles
CN109906489A (en) Flexible electrode and its manufacturing method
JP2012216411A (en) Method of manufacturing nanoparticle-containing layer and device of manufacturing the same, method of manufacturing conductive structure and device of manufacturing the same
JP2007308158A (en) Cover tape for electronic component package
Huang et al. The effect of extended polymer chains on the properties of transparent multi-walled carbon nanotubes/poly (methyl methacrylate/acrylic acid) film
JP2007045513A (en) Cover tape for packaging electronic component
Gholipour et al. Deposition of a conductive nanocomposite layer on cotton fibers by injecting nanomaterial colloid into an atmospheric pressure plasma jet
JP2004186102A (en) Carbon nanotube aggregate having layered structure and product using the same
JP2007130950A (en) Antistatic molded resin body
JP2004247220A (en) Layered product, electrode, and image display device
WO2015008867A1 (en) Sheet-like stacked body, production method for sheet-like stacked body, and sheet-like composite body
JP2004026299A (en) Cover tape for carrier tape
TW200849283A (en) Flaky compound