JP2006035775A - Antistatic resin molded product - Google Patents

Antistatic resin molded product Download PDF

Info

Publication number
JP2006035775A
JP2006035775A JP2004222453A JP2004222453A JP2006035775A JP 2006035775 A JP2006035775 A JP 2006035775A JP 2004222453 A JP2004222453 A JP 2004222453A JP 2004222453 A JP2004222453 A JP 2004222453A JP 2006035775 A JP2006035775 A JP 2006035775A
Authority
JP
Japan
Prior art keywords
antistatic
resin
layer
antistatic layer
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004222453A
Other languages
Japanese (ja)
Inventor
Masahito Sakai
将人 坂井
Chieko Uchiyama
千栄子 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2004222453A priority Critical patent/JP2006035775A/en
Publication of JP2006035775A publication Critical patent/JP2006035775A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antistatic resin molded product rich in alcohols wiping-off resistance, reduced in the rise of surface resistivity even if the wiping-off washing of a surface is repeated using wiping cloth or the like containing alcohols and capable of keeping a practically sufficient antistatic capacity. <P>SOLUTION: The antistatic resin molded product is obtained by laminating an antistatic layer 2b at least on one side of a resin molded product 1 through an adhesive layer 2a and the antistatic layer 2b is composed of a binder resin 2c and extremely fine conductive fibers 3 while a curing agent 4 is added to the binder resin 2c. Since the antistatic layer 2b is reinforced by the reaction of the binder resin 2c with the curing agent 4 or the curing agent 4 itself and hardly attacked by alcohols, the peeling of the antistatic layer 2b is sharply suppressed even if wiping-off washing of the surface of the antistatic layer 2b is repeated using alcohols, and the rise in the surface resistivity accompanied by the peeling of the antistatic layer 2b becomes slight and a practically sufficient initial antistatic capacity is kept. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アルコール類、特にイソプロピルアルコール(以下、IPAと記す)でワイピングクロス等による表面の拭き取り洗浄を繰り返しても、表面抵抗率の上昇が少ない制電性樹脂成形体に関する。   The present invention relates to an antistatic resin molded article with little increase in surface resistivity even after repeated wiping and cleaning of the surface with a wiping cloth or the like with alcohols, particularly isopropyl alcohol (hereinafter referred to as IPA).

従来より、クリーンルームのパーティション、半導体・液晶製造に用いるキャリアーボックス、製造装置の外板のごとき塵埃を嫌う用途には、静電気を逃がして塵埃の付着を防止する制電性樹脂板が使用されている。また、クリーンルームのクリーン度を一定レベル以上に確保するために、クリーンルームの施工後若しくはクリーンルームの定期的なメンテナンスの際などには汚染分子を除去する作業が不可欠であり、パーティション(制電性樹脂板)をアルコール類等を含ませたワイピングクロス等で拭き取る作業が行われている。   Conventionally, antistatic resin plates that release static electricity and prevent dust adhesion have been used in applications that hate dust, such as clean room partitions, carrier boxes used in semiconductor and liquid crystal manufacturing, and outer panels of manufacturing equipment. . Also, in order to ensure the cleanliness of a clean room above a certain level, it is indispensable to remove contaminating molecules after construction of the cleanroom or during regular maintenance of the cleanroom. ) Is wiped off with a wiping cloth containing alcohol or the like.

かかる制電性樹脂板として、本出願人は、透明な熱可塑性樹脂基板の表面に、曲がりくねって絡み合う極細の長炭素繊維を含んだ透明な熱可塑性樹脂の制電層を形成してなる制電性樹脂板を提案した(特許文献1)。
特開2001−62952号公報
As such an antistatic resin plate, the present applicant has formed an antistatic layer made of a transparent thermoplastic resin containing an ultrafine long carbon fiber that is twisted and intertwined on the surface of a transparent thermoplastic resin substrate. A functional resin plate was proposed (Patent Document 1).
JP 2001-62952 A

特許文献1に記載の制電性樹脂板は、表面抵抗率のバラツキが少なく、適度な制電性を有し、透明性も良好であるなど、多くの長所を有するものであったが、IPA等のアルコール類を含んだワイピングクロスで制電性樹脂板表面の拭き取り洗浄を繰り返すと、表面抵抗率が大幅に上昇して満足な制電性能(帯電防止性能)を発現し難くなる。この原因は、表面の制電層と基材との界面がアルコール類に侵されて劣化が促進され、基材から制電層が少しずつ剥離するためであると考えられる。   The antistatic resin plate described in Patent Document 1 has many advantages such as little variation in surface resistivity, moderate antistatic properties, and good transparency. Repeated wiping and cleaning of the surface of the antistatic resin plate with a wiping cloth containing alcohols such as the above results in a significant increase in surface resistivity, making it difficult to achieve satisfactory antistatic performance (antistatic performance). This is thought to be because the interface between the antistatic layer on the surface and the base material is attacked by alcohols, the deterioration is accelerated, and the antistatic layer peels off from the base material little by little.

本発明は上記の問題に対処するためになされたもので、耐アルコール類拭き取り性に富み、アルコール類を含んだワイピングクロス等で表面の拭き取り洗浄を繰り返しても表面抵抗率の上昇が少なく、実用上十分な制電性能を維持できる制電性樹脂成形体を提供することを解決課題としている。   The present invention has been made to address the above problems, and has excellent resistance to wiping off alcohols. Even if the surface is wiped and cleaned repeatedly with a wiping cloth containing alcohols, the surface resistivity does not increase and is practically used. An object of the present invention is to provide an antistatic resin molded product that can maintain sufficient antistatic performance.

上記の課題を解決するため、本発明の制電性樹脂成形体は、樹脂成形体の少なくとも片面に接着層を介して制電層を積層した制電性樹脂成形体であって、上記制電層がバインダー樹脂と極細導電繊維とからなり、且つ、バインダー樹脂中に硬化剤が含有されていることを特徴とするものである。   In order to solve the above problems, the antistatic resin molded article of the present invention is an antistatic resin molded article in which an antistatic layer is laminated on at least one surface of a resin molded article via an adhesive layer, The layer is composed of a binder resin and ultrafine conductive fibers, and the binder resin contains a curing agent.

本発明の制電性樹脂成形体においては、硬化剤がバインダー樹脂中に2〜20質量%含有されていることが望ましい。また、バインダー樹脂が塩化ビニル系樹脂であり、硬化剤がポリイソシアネートであることも望ましい。更に、制電層の極細導電繊維が1本ずつ分離した状態で、若しくは、複数本集まって束になったものが1束ずつ分離した状態で、凝集することなく分散して互いに接触していることが望ましく、特に、極細導電繊維がカーボンナノチューブであることが望ましい。なお、本発明において「接触」とは、極細導電繊維が現実に接触している場合と、極細導電繊維が導通可能な微小間隔をあけて近接している場合の双方を意味する用語である。   In the antistatic resin molded article of the present invention, it is desirable that the curing agent is contained in the binder resin in an amount of 2 to 20% by mass. It is also desirable that the binder resin is a vinyl chloride resin and the curing agent is a polyisocyanate. Further, in a state where the ultrafine conductive fibers of the antistatic layer are separated one by one, or in a state where a plurality of bundles are bundled and separated one by one, they are dispersed and contacted with each other without agglomeration. In particular, it is desirable that the ultrafine conductive fiber is a carbon nanotube. In the present invention, the term “contact” is a term meaning both the case where the ultrafine conductive fibers are actually in contact and the case where the ultrafine conductive fibers are close to each other with a minute gap that allows conduction.

本発明の制電性樹脂成形体のように、制電層のバインダー樹脂中に硬化剤が含有されていると、バインダー樹脂と硬化剤との反応や硬化剤それ自体により制電層が強化されてアルコール類で侵され難くなるため、IPA等のアルコール類で表面の拭き取り洗浄を繰り返しても、接着層までアルコール類が浸透して接着層の劣化により制電層が剥離することは大幅に抑制される。従って、制電層の剥離に伴う表面抵抗率の上昇は僅かになり、実用上十分な当初の制電性能が維持される。このような作用効果は、制電層のバインダー樹脂中に硬化剤が2〜20質量%含有されている制電性樹脂成形体において顕著である。   When the curing agent is contained in the binder resin of the antistatic layer as in the antistatic resin molded body of the present invention, the antistatic layer is reinforced by the reaction between the binder resin and the curing agent or the curing agent itself. Therefore, even if the surface is wiped and washed repeatedly with alcohols such as IPA, the penetration of alcohol into the adhesive layer and the antistatic layer peeling off due to deterioration of the adhesive layer is greatly suppressed. Is done. Therefore, the increase in the surface resistivity accompanying the peeling of the antistatic layer is slight, and the practically sufficient initial antistatic performance is maintained. Such an effect is remarkable in the antistatic resin molding in which 2 to 20% by mass of the curing agent is contained in the binder resin of the antistatic layer.

そして、制電層のバインダー樹脂が塩化ビニル系樹脂であり、硬化剤がポリイソシアネートである制電性樹脂成形体では、ポリイソシアネートが塩化ビニル系樹脂に起因する水酸基とウレタン結合して網目構造が形成されることによりバインダー樹脂部分がかなり強化されるため、IPA等のアルコール類による拭き取り洗浄を繰り返しても、制電層の剥離に伴う表面抵抗率の上昇を十分抑えることができる。   In the antistatic resin molded product in which the binder resin of the antistatic layer is a vinyl chloride resin and the curing agent is a polyisocyanate, the polyisocyanate is urethane-bonded to the hydroxyl group derived from the vinyl chloride resin, and the network structure is formed. Since the binder resin portion is considerably strengthened by the formation, even if wiping and washing with alcohol such as IPA is repeated, an increase in surface resistivity due to peeling of the antistatic layer can be sufficiently suppressed.

また、制電層の極細導電繊維が1本ずつ分離した状態で、若しくは、複数本集まって束になったものが1束ずつ分離した状態で、凝集することなく分散して互いに接触している制電性樹脂成形体は、極細導電繊維の含有量を少なくしても極細導電繊維が相互に接触して十分な制電性能を発揮できるため、透明な制電性樹脂成形体を得る場合に有利であり、特に、極細導電繊維がカーボンナノチューブである場合は、該カーボンナノチューブが細くて長いため、相互に接触して充分な制電性を維持しながら含有量をさらに少なくして透明性を向上させる上で極めて有利である。   Further, in a state where the ultrafine conductive fibers of the antistatic layer are separated one by one, or in a state where a plurality of bundles are bundled and separated one by one, they are dispersed without contacting each other and are in contact with each other Antistatic resin moldings can be used to obtain transparent antistatic resin moldings because the ultrafine conductive fibers can contact each other and exhibit sufficient antistatic performance even if the content of ultrafine conductive fibers is reduced. In particular, when the ultrafine conductive fiber is a carbon nanotube, since the carbon nanotube is thin and long, the content can be further reduced while maintaining sufficient antistatic properties by contacting with each other to improve transparency. It is extremely advantageous for improvement.

以下、図面を参照して本発明の具体的な実施形態を詳述する。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の一実施形態に係る制電性樹脂成形体を一部拡大して示す模式断面図である。   FIG. 1 is a schematic cross-sectional view showing a partially enlarged antistatic resin molded body according to an embodiment of the present invention.

この実施形態は透明な板状の制電性樹脂成形体を示したもので、基本的には、透明な板状の樹脂成形体1と、その表面に積層された接着層2aと制電層2bとで構成されている。   This embodiment shows a transparent plate-shaped antistatic resin molded body. Basically, a transparent plate-shaped resin molded body 1, an adhesive layer 2a laminated on the surface thereof, and an antistatic layer. 2b.

樹脂成形体1は透明な熱可塑性樹脂や、熱、紫外線、電子線、放射線などで硬化する硬化性樹脂を板状に成形したものであって、熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレン、環状ポリオレフィン等のオレフィン系樹脂、ポリ塩化ビニル、ポリメチルメタクリレート、ポリスチレン等のビニル系樹脂、ニトロセルロース、トリアセチルセルロース等のセルロース系樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリジメチルシクロヘキサンテレフタレート、芳香族ポリエステル等のエステル系樹脂、ABS樹脂、これらの樹脂の共重合体樹脂、これらの樹脂の混合樹脂などが使用され、また、硬化性樹脂としては、例えばエポキシ樹脂、ポリイミド樹脂、アクリル樹脂などが使用される。この樹脂成形体1には可塑剤、安定剤、紫外線吸収剤等が適宜配合され、成形性、熱安定性、耐候性等が高められる。この樹脂成形体1は用途に応じた厚さとすればよく、例えばフィルム並びにプレートの通常の厚さである0.03〜10mm程度とするのがよい。   The resin molded body 1 is obtained by molding a transparent thermoplastic resin or a curable resin that is cured by heat, ultraviolet rays, electron beams, radiation, or the like into a plate shape. Examples of the thermoplastic resin include polyethylene, polypropylene, and cyclic resin. Olefins such as polyolefin, vinyl resins such as polyvinyl chloride, polymethyl methacrylate and polystyrene, cellulose resins such as nitrocellulose and triacetyl cellulose, esters such as polycarbonate, polyethylene terephthalate, polydimethylcyclohexane terephthalate and aromatic polyester System resins, ABS resins, copolymer resins of these resins, mixed resins of these resins, and the like are used, and as curable resins, for example, epoxy resins, polyimide resins, acrylic resins, and the like are used. A plasticizer, a stabilizer, an ultraviolet absorber, and the like are appropriately added to the resin molded body 1 to improve moldability, thermal stability, weather resistance, and the like. The resin molded body 1 may have a thickness according to the application, and for example, it may be about 0.03 to 10 mm which is a normal thickness of a film and a plate.

この実施形態では、樹脂成形体1を透明な板状体に成形しているが、それ以外の異型形状に成形してもよく、また、フィラーや着色剤を配合して不透明にしてもよい。   In this embodiment, although the resin molding 1 is shape | molded in the transparent plate-shaped body, you may shape | mold to other unusual shapes, and may mix | blend a filler and a coloring agent and may make it opaque.

この樹脂成形体1の表面に積層された接着層2aと制電層2bは、本実施形態では、これらが積層一体化された制電性フィルム2として提供され、ラミネートなどの方法で積層されたものである。つまり、接着性樹脂のフィルムの表面に制電層を設けた制電性フィルム2を樹脂成形体1の表面に積層することにより、該接着性樹脂のフィルムを接着層2aとしたものである。   In this embodiment, the adhesive layer 2a and the antistatic layer 2b laminated on the surface of the resin molded body 1 are provided as an antistatic film 2 in which these are laminated and integrated, and are laminated by a method such as laminating. Is. That is, by laminating the antistatic film 2 provided with the antistatic layer on the surface of the adhesive resin film on the surface of the resin molded body 1, the adhesive resin film is used as the adhesive layer 2a.

上記のように、接着層2aは接着性樹脂のフィルムからなるものであり、このようなフィルムとしては、上述した樹脂成形体1と同種もくしは相溶性のある熱可塑性樹脂からなる透明なフィルムが好ましく、その代表的なものとしては、接着性に優れるアクリル系樹脂、塩化ビニル樹脂、塩化ビニル−酢酸ビニル共重合樹脂のいずれか単独又はこれらの混合樹脂からなるフィルムが挙げられる。このように、接着層2aとして接着性樹脂のフィルムを使用すると、その上に制電層2bを積層した制電性フィルム2を、例えば、熱圧着や押出ラミネートや転写等の手段によって樹脂成形体1の表面に容易かつ強固にラミネートすることが可能となり、それによって制電層2bを樹脂成形体1の表面に接着層2aを介して大きい接着強度で積層一体化できるようになる。この場合、接着層2aの厚さは特に限定されないが、制電性フィルム2のベースフィルムとしての強度を有する50〜250μm程度の厚さの接着層フィルム2aを使用することが好ましい。   As described above, the adhesive layer 2a is made of an adhesive resin film, and as such a film, a transparent film made of a thermoplastic resin that is compatible with the above-mentioned resin molded body 1 or the same type. A typical example is a film made of any one of an acrylic resin, a vinyl chloride resin, and a vinyl chloride-vinyl acetate copolymer resin excellent in adhesiveness, or a mixed resin thereof. As described above, when an adhesive resin film is used as the adhesive layer 2a, the antistatic film 2 having the antistatic layer 2b laminated thereon is formed into a resin molded body by means of, for example, thermocompression bonding, extrusion lamination, or transfer. Thus, the antistatic layer 2b can be laminated and integrated with the surface of the resin molded body 1 with high adhesive strength via the adhesive layer 2a. In this case, the thickness of the adhesive layer 2a is not particularly limited, but it is preferable to use an adhesive layer film 2a having a thickness of about 50 to 250 μm having strength as a base film of the antistatic film 2.

接着層3の上に積層された制電層2bは、接着層2aとの相溶性があるバインダー樹脂2cと極細導電繊維3とからなる透明な層であって、このバインダー樹脂2cには硬化剤4が含有されている。そして、極細導電繊維3は1本ずつ分離した状態で、もしくは、複数本集まって束になったものが1束ずつ分離した状態で、凝集することなく分散して互いに接触している。すなわち、図2(A)に示すように、極細導電繊維3はバインダー樹脂2cの内部に埋没して上記の分散状態で分散して互いに接触しているか、或は、図2(B)に示すように、極細導電繊維3の一部がバインダー樹脂2cに入り込み、他の部分がバインダー樹脂2cの表面から突出ないし露出して、上記の分散状態で分散して互いに接触しているか、或は、一部の極細導電繊維3が図2(A)のようにバインダー樹脂2cの内部に埋没し、他の極細導電繊維3は図2(B)のようにバインダー樹脂2cの表面から突出ないし露出した状態で分散して互いに接触している。   The antistatic layer 2b laminated on the adhesive layer 3 is a transparent layer composed of a binder resin 2c compatible with the adhesive layer 2a and the ultrafine conductive fiber 3, and the binder resin 2c includes a curing agent. 4 is contained. Then, in a state where the ultrafine conductive fibers 3 are separated one by one, or in a state where a bundle of a plurality of bundles are separated one by one, they are dispersed without being aggregated and in contact with each other. That is, as shown in FIG. 2 (A), the ultrafine conductive fibers 3 are buried in the binder resin 2c and dispersed in the above dispersed state and are in contact with each other, or as shown in FIG. 2 (B). As described above, a part of the ultrafine conductive fiber 3 enters the binder resin 2c, and the other part protrudes or is exposed from the surface of the binder resin 2c, and is dispersed in the dispersed state and in contact with each other, or Some ultrafine conductive fibers 3 are buried in the binder resin 2c as shown in FIG. 2A, and other ultrafine conductive fibers 3 protrude or are exposed from the surface of the binder resin 2c as shown in FIG. 2B. They are dispersed in contact with each other.

この極細導電繊維3の平面的な分散状態を模式的に示したものが図3である。この図3から理解できるように、極細導電繊維3は多少曲がっているが1本ずつ或は1束ずつ分離し、互いに複雑に絡み合うことなく、即ち凝集することなく、単純に交差した状態で制電層2bのバインダー樹脂2cの内部又は表面に分散し、それぞれの交点で接触している。このように分散していると、凝集している場合に比べて、極細導電繊維3が解れて広範囲に存在し、極細導電繊維同士の接触する機会が著しく増加するため、極細導電繊維3の含有量を少なくしても、制電層2bが実用上十分な制電性を発揮できるようになる。従って、極細導電繊維3の量が少なくなった分だけ透明性が向上し、また、制電層2bを薄くすることもできるので一層透明性を向上させることができる。更に、上記のような分散状態であると、制電性樹脂成形体を曲げ加工した場合でも、極細導電繊維3の曲がった部分が伸びたり、たとえ接触点が外れても他の極細導電繊維3と再接触するので、極細導電繊維3同士の接触がなくなり表面抵抗率が低下する心配もない。なお、図3では硬化剤4が図示されていない。   FIG. 3 schematically shows a planar dispersion state of the ultrafine conductive fibers 3. As can be understood from FIG. 3, the ultrafine conductive fibers 3 are slightly bent but separated one by one or one bundle, and are controlled in a state where they are simply crossed without being intricately entangled with each other, that is, without agglomeration. It is dispersed inside or on the surface of the binder resin 2c of the electric layer 2b and is in contact at each intersection. When dispersed in this manner, the ultrafine conductive fibers 3 are present in a wide range as compared with the case where they are aggregated, and the chance of contact between the fine conductive fibers is significantly increased. Even if the amount is reduced, the antistatic layer 2b can exhibit practically sufficient antistatic properties. Accordingly, the transparency is improved by the amount of the ultrafine conductive fiber 3 reduced, and the antistatic layer 2b can be thinned, so that the transparency can be further improved. Furthermore, when the antistatic resin molded body is bent as described above, even if the antistatic resin molded body is bent, even if the bent portion of the ultrafine conductive fiber 3 extends or the contact point is removed, the other ultrafine conductive fiber 3 Since there is no contact between the ultrafine conductive fibers 3, there is no concern that the surface resistivity will decrease. In FIG. 3, the curing agent 4 is not shown.

上記の極細導電繊維3は完全に1本ずつ或は1束ずつ分離し分散している必要はなく、一部に絡み合った小さな凝集塊があってもよいが、その大きさは制電層2bを光学顕微鏡で観察し、凝集している塊があれば、その長径と短径とを測定し、その平均値が0.5μm以下であることが好ましい。   The above-mentioned ultrafine conductive fibers 3 do not have to be separated and dispersed completely one by one or one bundle, and there may be small agglomerates that are intertwined with each other, but the size is the antistatic layer 2b. Is observed with an optical microscope, and if there are aggregated lumps, the major axis and minor axis are measured, and the average value is preferably 0.5 μm or less.

制電層2bの厚みは30〜500nmと薄くすることが好ましく、このように薄く形成しても極細導電繊維3の接触が実用上十分な制電性を発揮できる程度に十分に保たれるうえに、透明性も高められることになる。制電層2bの更に好ましい厚みは50〜300nmである。   The thickness of the antistatic layer 2b is preferably as thin as 30 to 500 nm. Even if the antistatic layer 2b is formed as thin as described above, the contact with the ultrafine conductive fiber 3 is sufficiently maintained to provide a practically sufficient antistatic property. In addition, transparency will be improved. A more preferable thickness of the antistatic layer 2b is 50 to 300 nm.

極細導電繊維3としては、カーボンナノチューブやカーボンナノホーン、カーボンナノワイヤ、カーボンナノファイバー、グラファイトフィブリルなどの極細長炭素繊維、或いは、白金、金、銀、ニッケル、シリコンなどの金属ナノチューブ、ナノワイヤなどの極細長金属繊維、或いは、酸化亜鉛などの金属酸化物ナノチューブ、ナノワイヤなどの極細長金属酸化物繊維など、直径が0.3〜100nmで長さが0.1〜20μm、好ましくは長さが0.1〜10μmである極細導電繊維が好ましく用いられる。   As the ultrafine conductive fiber 3, ultrafine carbon fibers such as carbon nanotubes, carbon nanohorns, carbon nanowires, carbon nanofibers, and graphite fibrils, or metal nanotubes such as platinum, gold, silver, nickel, and silicon, and ultrafine lengths such as nanowires are used. Metal fibers, metal oxide nanotubes such as zinc oxide, and ultrafine metal oxide fibers such as nanowires are 0.3 to 100 nm in diameter and 0.1 to 20 μm in length, preferably 0.1 in length. An ultrafine conductive fiber having a thickness of 10 μm to 10 μm is preferably used.

これらの極細導電繊維の中では、カーボンナノチューブが最も好ましく使用される。このカーボンナノチューブには、中心軸線の周りに直径が異なる複数の円筒状に閉じたカーボン壁を同心的に備えた多層カーボンナノチューブや、中心軸線の周りに単独の円筒状に閉じたカーボン壁を備えた単層カーボンナノチューブがあるが、いずれも好ましく使用される。多層カーボンナノチューブは1本ずつ分離した状態で分散するものが殆どであるが、2〜3層カーボンナノチューブは、束になって分散する場合もある。一方、単層カーボンナノチューブは単独で存在することがなく、2本以上が束になった状態で存在し、その束が1束ずつ分離した状態で分散する。   Among these ultrafine conductive fibers, carbon nanotubes are most preferably used. This carbon nanotube has a multi-walled carbon nanotube concentrically provided with a plurality of cylindrically closed carbon walls having different diameters around the central axis, and a single cylindrically closed carbon wall around the central axis. There are single-walled carbon nanotubes, both of which are preferably used. Most of the multi-walled carbon nanotubes are dispersed in a state where they are separated one by one, but the two- to three-walled carbon nanotubes may be dispersed in a bundle. On the other hand, single-walled carbon nanotubes do not exist alone, but two or more are present in a bundle, and the bundle is dispersed in a state of being separated one by one.

制電層2b中の極細導電繊維3の含有量は、制電性能を得るために2〜90質量%とする必要があり、より好ましい含有量は4〜30質量%の範囲である。極細導電繊維3の含有量を2質量%より少なくした場合、制電層の厚みを500nmとしても、表面抵抗率が10Ω/□〜1011Ω/□の実用上十分な制電性を有する樹脂成形体を得ることが難しくなるので好ましくない。他方、極細導電繊維3の含有量を90質量%より多くした場合は、極細導電繊維を十分に分散させることが困難になり、又は塗液の分散安定性が極度に低下するので好ましくない。また、制電層2bの厚みは20〜500nmとする必要があり、より好ましい厚みは50〜300nmの範囲である。制電層2bの厚みが20nmより小さいと、制電層2bが均一に層を形成せず実用上十分な制電性を発現しないので好ましくない。 The content of the ultrafine conductive fiber 3 in the antistatic layer 2b needs to be 2 to 90% by mass in order to obtain antistatic performance, and a more preferable content is in the range of 4 to 30% by mass. When the content of the ultrafine conductive fiber 3 is less than 2% by mass, a practically sufficient antistatic property with a surface resistivity of 10 5 Ω / □ to 10 11 Ω / □ is obtained even when the thickness of the antistatic layer is 500 nm. Since it becomes difficult to obtain the resin molding which has, it is not preferable. On the other hand, when the content of the ultrafine conductive fiber 3 is more than 90% by mass, it is difficult to sufficiently disperse the ultrafine conductive fiber, or the dispersion stability of the coating liquid is extremely lowered, which is not preferable. Moreover, the thickness of the antistatic layer 2b needs to be 20 to 500 nm, and a more preferable thickness is in the range of 50 to 300 nm. If the thickness of the antistatic layer 2b is smaller than 20 nm, the antistatic layer 2b does not form a uniform layer and does not exhibit practically sufficient antistatic properties, which is not preferable.

制電層2bのバインダー樹脂2cとしては、接着層2aと同種又は相溶性のある樹脂が使用される。従って、接着層2aが前述の塩化ビニル系樹脂層やアクリル系樹脂である場合は、塩化ビニル樹脂、塩化ビニル−酢酸ビニル共重合樹脂(酢酸ビニルの占める割合が20質量%以下のもの)、塩化ビニル樹脂と酢酸ビニル樹脂との混合樹脂(酢酸ビニル樹脂の占める割合が20質量%以下のもの)などの塩化ビニル系樹脂等の樹脂が好ましく使用される。   As the binder resin 2c of the antistatic layer 2b, a resin having the same type or compatibility with the adhesive layer 2a is used. Therefore, when the adhesive layer 2a is the aforementioned vinyl chloride resin layer or acrylic resin, vinyl chloride resin, vinyl chloride-vinyl acetate copolymer resin (with vinyl acetate occupying a ratio of 20% by mass or less), chloride A resin such as a vinyl chloride resin such as a mixed resin of vinyl resin and vinyl acetate resin (vinyl acetate resin occupying a ratio of 20% by mass or less) is preferably used.

制電層2bのバインダー樹脂2c中に含有される硬化剤4は、制電層2bを強化して耐アルコール類拭き取り性を向上させる役目を果たすものであり、例えばバインダー樹脂2cと反応して架橋する硬化剤や、硬化性の樹脂などが使用される。   The curing agent 4 contained in the binder resin 2c of the antistatic layer 2b serves to reinforce the antistatic layer 2b and improve the resistance to wiping off alcohols. For example, it reacts with the binder resin 2c to crosslink. A curing agent or a curable resin is used.

バインダー樹脂2cが前述した塩化ビニル系樹脂である場合、これと反応する硬化剤4としてはポリイソシアネート、例えば、2,4―トリレンジイソシアネートとその異性体又は異性体の混合物等のジイソシアネート類が好ましく使用される。かかるイソシアネート化合物を含有させると、該イソシアネート化合物が塩化ビニル系樹脂に起因する水酸基とウレタン結合して網目構造が形成されることにより、バインダー樹脂部分が強化されて制電層2bがアルコール類で侵され難くなるため、IPA等のアルコール類で表面の拭き取り洗浄を繰り返しても、接着層2aまでアルコール類が浸透して接着層2aの劣化により制電層2bが剥離することは大幅に抑制され、制電層の剥離に伴う表面抵抗率の上昇が僅かになって、実用上十分な当初の制電性能が維持される。   When the binder resin 2c is the vinyl chloride resin described above, the curing agent 4 that reacts with the resin is preferably a polyisocyanate, for example, a diisocyanate such as 2,4-tolylene diisocyanate and its isomer or a mixture of isomers. used. When such an isocyanate compound is contained, the isocyanate compound is urethane-bonded with a hydroxyl group derived from the vinyl chloride resin to form a network structure, whereby the binder resin portion is strengthened and the antistatic layer 2b is affected by alcohols. Therefore, even if the surface wiping and washing is repeated with alcohol such as IPA, the penetration of the alcohol to the adhesive layer 2a and the peeling of the antistatic layer 2b due to deterioration of the adhesive layer 2a are greatly suppressed. The increase in surface resistivity accompanying the peeling of the antistatic layer is slight, and the practically sufficient initial antistatic performance is maintained.

また、制電層2bのバインダー樹脂2cに硬化剤4として含有させる硬化性樹脂としては、自然硬化型、光硬化型、紫外線硬化型、電子線硬化型、熱硬化型などのいずれの樹脂も使用可能であり、これらの硬化性樹脂をバインダー樹脂中に均等に含有させて強化すると、上記の反応型の硬化剤と同様に、IPA等のアルコール類による制電層2bの劣化、浸透が抑制されて表面抵抗率の上昇が少なくなる。具体的な硬化性樹脂としては、フェノール樹脂、メラミン樹脂、ジアリルフタレート樹脂、熱硬化ポリエステル樹脂、ユリア樹脂、エポキシ樹脂、ポリイミド樹脂、熱硬化アクリル樹脂等が好ましく使用される。   Further, as the curable resin to be contained as the curing agent 4 in the binder resin 2c of the antistatic layer 2b, any resin such as a natural curable type, a photo curable type, an ultraviolet curable type, an electron beam curable type, and a thermosetting type is used. When these curable resins are uniformly contained in the binder resin and strengthened, the deterioration and penetration of the antistatic layer 2b by alcohols such as IPA are suppressed as in the case of the above-described reaction type curing agent. Therefore, the increase in surface resistivity is reduced. As specific curable resins, phenol resins, melamine resins, diallyl phthalate resins, thermosetting polyester resins, urea resins, epoxy resins, polyimide resins, thermosetting acrylic resins and the like are preferably used.

上記硬化剤4の含有量は、制電層2bのバインダー樹脂2cに対して2〜20質量%とすることが好ましい。2質量%未満では、制電層強化によるアルコール類の浸透抑制作用が不十分で表面抵抗率の上昇抑制効果が殆ど見られなくなり、一方、20質量%を越えると、バインダー樹脂2cに起因する反応基以上の含有量となつたり、硬化性樹脂による強化が見られず材料の無駄遣いとなる。   The content of the curing agent 4 is preferably 2 to 20% by mass with respect to the binder resin 2c of the antistatic layer 2b. If it is less than 2% by mass, the effect of suppressing the penetration of alcohols by strengthening the antistatic layer is insufficient and the effect of suppressing the increase in surface resistivity is hardly observed. On the other hand, if it exceeds 20% by mass, the reaction is caused by the binder resin 2c. The content becomes more than the group, and the reinforcement by the curable resin is not seen, and the material is wasted.

制電層2bの形成は、上記のバインダー樹脂を揮発性溶剤に上記の極細導電繊維を均一に分散させ更に上記の硬化剤を加えて塗液を調製し、この塗液を接着層2a(接着性樹脂のフィルム)の表面に塗布して乾燥固化させることが望ましい。その場合、制電性に優れた制電層2bを形成するには、極細導電繊維を非常に細かく均一に分散させた塗液を調製する必要があるので、高速インぺラー、サンドミル、アトライター、三本ロール、その他公知の方法・装置で十分に混合、分散させることが大切である。   The antistatic layer 2b is formed by uniformly dispersing the above-mentioned ultrafine conductive fibers in a volatile solvent and adding the above-mentioned curing agent to prepare a coating solution, which is then applied to the adhesive layer 2a (adhesive layer). It is desirable to apply it to the surface of a film of a conductive resin) and dry and solidify it. In that case, in order to form the antistatic layer 2b having excellent antistatic properties, it is necessary to prepare a coating liquid in which very fine conductive fibers are dispersed very finely and uniformly. Therefore, a high-speed impeller, sand mill, attritor It is important to thoroughly mix and disperse with three rolls and other known methods and devices.

また、制電層2b中の極細導電繊維3の分散性を高めるためには、分散剤を配合することが望ましい。かかる分散剤としては、酸性ポリマーのアルキルアンモニウム塩溶液や3級アミン修飾アクリル共重合物やポリオキシエチレン−ポリオキシプロピレン共重合物などの高分子系分散剤、カップリング剤などが使用される。なお、この制電層2cには紫外線吸収剤、表面改質剤、安定剤等の添加剤を適宜加えて、耐候性その他の物性を向上させてもよい。   Moreover, in order to improve the dispersibility of the ultrafine conductive fiber 3 in the antistatic layer 2b, it is desirable to add a dispersant. As such a dispersant, a polymer dispersant such as an alkyl ammonium salt solution of an acidic polymer, a tertiary amine-modified acrylic copolymer, a polyoxyethylene-polyoxypropylene copolymer, a coupling agent, or the like is used. In addition, an additive such as an ultraviolet absorber, a surface modifier, and a stabilizer may be appropriately added to the antistatic layer 2c to improve weather resistance and other physical properties.

上記構成の制電性樹脂成形体は、例えば次の方法で製造される。まず、接着性樹脂から作製されたフィルム(接着層2aとなるフィルム)の表面に、極細導電繊維をバインダー樹脂溶液に分散させ更に硬化剤を加えて調製した塗液を塗布、乾燥して制電層2bを形成することにより、制電性フィルム2を作製する。そして、この制電性フィルム2を熱圧着、押出ラミネート、接着などの手段で樹脂成形体1の表面にラミネートして、制電性樹脂成形体を製造する。   The antistatic resin molded body having the above configuration is manufactured, for example, by the following method. First, a coating solution prepared by dispersing ultrafine conductive fibers in a binder resin solution and adding a curing agent on the surface of a film made of an adhesive resin (the film that becomes the adhesive layer 2a) is coated and dried to control electricity. The antistatic film 2 is produced by forming the layer 2b. Then, the antistatic film 2 is manufactured by laminating the antistatic film 2 on the surface of the resin molded body 1 by means such as thermocompression bonding, extrusion lamination, and adhesion.

もう一つの方法は、剥離フィルムの上に、極細導電繊維をバインダー樹脂溶液に分散させ更に硬化剤を加えて調製した塗液を塗布、乾燥して制電層2bを形成し、その上に接着性樹脂からなる樹脂溶液を塗布、乾燥して接着層2aを形成することにより、転写フィルムを形成する。そして、樹脂成形体1の表面に転写フィルムをその接着層2aが樹脂成形体側となるように重ねて熱圧着、転写することにより制電性樹脂成形体を製造する方法である。   Another method is to apply a coating solution prepared by dispersing ultrafine conductive fibers in a binder resin solution and further adding a curing agent on a release film, and drying to form an antistatic layer 2b. A transfer film is formed by applying and drying a resin solution made of an adhesive resin to form the adhesive layer 2a. And it is the method of manufacturing an antistatic resin molding by superimposing the transfer film on the surface of the resin molding 1 so that the adhesive layer 2a is on the resin molding side, and thermocompression-bonding and transferring.

このようにして製造される制電性樹脂成形体は、樹脂成形体1の表面に接着層2aを介して積層された制電層2bが、そのバインダー樹脂2cに含有された硬化剤4により強化されてアルコール類に侵され難いため、IPA等のアルコール類で表面の拭き取り洗浄を繰り返しても、接着層2aまでアルコール類が浸透して接着層2aの劣化により制電層2bが剥離することは大幅に抑制される。そのため、耐アルコール類拭き取り性が向上して、制電層2bの剥離に伴う表面抵抗率の上昇は僅かになり、実用上十分な当初の制電性能を維持することができる。しかも、制電層2bの極細導電繊維3が1本ずつ分離した状態で、又は、複数本集まって束になったものが1束ずつ分離した状態で、凝集することなく分散して互いに接触しているため、この制電性樹脂成形体は、極細導電繊維3の含有量を少なくしても極細導電繊維相互の接触を確保して充分な制電性を発現することができ、極細導電繊維3を減量できる分だけ透明性を向上させることができる。   In the antistatic resin molded body manufactured in this way, the antistatic layer 2b laminated on the surface of the resin molded body 1 via the adhesive layer 2a is reinforced by the curing agent 4 contained in the binder resin 2c. Therefore, even if the surface is wiped and washed repeatedly with alcohol such as IPA, the alcohol penetrates to the adhesive layer 2a and the antistatic layer 2b is peeled off due to deterioration of the adhesive layer 2a. It is greatly suppressed. As a result, the resistance to wiping off alcohols is improved, the increase in surface resistivity accompanying the peeling of the antistatic layer 2b is slight, and the practically sufficient initial antistatic performance can be maintained. In addition, in a state where the ultrafine conductive fibers 3 of the antistatic layer 2b are separated one by one, or in a state where a bundle of a plurality of bundles is separated one by one, they are dispersed without agglomeration and contact each other. Therefore, this antistatic resin molded article can secure sufficient antistatic properties by ensuring the contact between the ultrafine conductive fibers even if the content of the ultrafine conductive fibers 3 is reduced. Transparency can be improved by the amount that 3 can be reduced.

なお、本実施形態の制電性樹脂成形体は、樹脂成形体1の表面に接着層2aと制電層2bを積層したものであるが、さらに制電層2bの上に薄い樹脂のトップコート層を形成してもよい。かかるトップコート層を形成しても制電層2bによる制電性能が発現されて、制電性を有する成形体とすることができる。   The antistatic resin molded body of the present embodiment is obtained by laminating the adhesive layer 2a and the antistatic layer 2b on the surface of the resin molded body 1. Further, a thin resin topcoat is formed on the antistatic layer 2b. A layer may be formed. Even if such a topcoat layer is formed, the antistatic performance of the antistatic layer 2b is exhibited, and a molded body having antistatic properties can be obtained.

次に、本発明に係る制電性樹脂成形体の更に具体的な実施例を説明する。   Next, more specific examples of the antistatic resin molded body according to the present invention will be described.

[実施例1]
溶媒(シクロヘキサノン)中に、バインダー樹脂として塩化ビニル−酢酸ビニル共重合体(酢酸ビニルの占める割合が10質量%のもの)を溶解すると共に、単層カーボンナノチューブ[文献Chemical Physics Letters,323(2000),P580−585に基づいて合成したもの、直径1.3〜1.8nm]と、分散剤として酸性ポリマーのアルキルアンモニウム塩溶液を加えて均一に混合、分散させ、更にジイソシアネート類硬化剤としてXOX80ハードナー(大日本インキ化学工業株式会社製)を配合して、単層カーボンナノチューブを0.3質量%、分散剤を0.1質量%、バインダー樹脂を2.0質量%、ジイソシアネート類硬化剤を0.1質量%含む塗液(以下、硬化剤含有CNT塗液と記す)を調製した。
[Example 1]
In a solvent (cyclohexanone), a vinyl chloride-vinyl acetate copolymer (with a vinyl acetate ratio of 10% by mass) is dissolved as a binder resin, and single-walled carbon nanotubes [literary chemical physics letters, 323 (2000)]. , Synthesized based on P580-585, diameter 1.3 to 1.8 nm], and an alkylammonium salt solution of an acidic polymer as a dispersing agent is added, mixed and dispersed uniformly, and further a XOX80 hardener as a diisocyanate curing agent. (Manufactured by Dainippon Ink & Chemicals, Inc.), 0.3% by mass of single-walled carbon nanotubes, 0.1% by mass of a dispersant, 2.0% by mass of a binder resin, and 0% of a diisocyanate curing agent. A coating liquid containing 1% by mass (hereinafter referred to as a curing agent-containing CNT coating liquid) It was manufactured.

そして、接着層となるフィルムとして厚み100μm、全光線透過率94%、ヘーズ0.6%のポリメチルメタクリレートフィルム(PMMAフィルム)を使用し、その表面に上記の硬化剤含有CNT塗液を塗布して50℃で60分加熱しながら硬化剤をバインダー樹脂と反応させることにより,厚み240nmの制電層(バインダー樹脂に対する硬化剤の含有率は5質量%)を形成して、制電性フィルムを作製した。   Then, a polymethyl methacrylate film (PMMA film) having a thickness of 100 μm, a total light transmittance of 94%, and a haze of 0.6% is used as a film to be an adhesive layer, and the above curing agent-containing CNT coating liquid is applied to the surface. By reacting the curing agent with the binder resin while heating at 50 ° C. for 60 minutes, an antistatic layer having a thickness of 240 nm (the content of the curing agent with respect to the binder resin is 5% by mass) is formed. Produced.

この制電性フィルムを、厚み5.0mmのポリカーボネート樹脂板(全光線透過率89.5%、ヘーズ0.2%)の表面に重ねて熱圧着することにより、制電層のバインダー樹脂中に硬化剤を5質量%含む透明な制電性樹脂板を製造した。   This antistatic film is laminated on the surface of a 5.0 mm thick polycarbonate resin plate (total light transmittance: 89.5%, haze: 0.2%) and thermocompression bonded into the binder resin of the antistatic layer. A transparent antistatic resin plate containing 5% by mass of a curing agent was produced.

上記の制電性樹脂板について、表面抵抗率、全光線透過率、ヘーズを測定した結果を下記の表1に示す。また、この制電性樹脂板の表面(制電層表面)をIPAを含ませたワイピングクロスで拭き取る作業を繰り返し、100回、200回、300回後の表面抵抗率、全光線透過率、ヘーズを測定して、その結果を下記の表1に併記する。   Table 1 below shows the results of measuring the surface resistivity, total light transmittance, and haze of the antistatic resin plate. In addition, the operation of wiping the surface of the antistatic resin plate (surface of the antistatic layer) with a wiping cloth containing IPA was repeated, and the surface resistivity, total light transmittance, haze after 100, 200, and 300 times were repeated. The results are also shown in Table 1 below.

尚、表面抵抗率は三菱化学(株)製のハイレスタで測定した値であり、全光線透過率とヘーズはASTM D1003に準拠してスガ試験機(株)製の直読ヘーズコンピューターHGM−2DPで測定した値である。   The surface resistivity is a value measured with a Hiresta manufactured by Mitsubishi Chemical Corporation, and the total light transmittance and haze are measured with a direct reading haze computer HGM-2DP manufactured by Suga Test Instruments Co., Ltd. according to ASTM D1003. It is the value.

[実施例2]
実施例1の硬化剤含有CNT塗液のジイソシアネート類硬化剤の配合量を0.1質量%から0.2質量%に変更した以外は実施例1と同じ組成の硬化剤含有CNT塗液を調製し、実施例1と同様にして、制電層のバインダー樹脂中に硬化剤を10質量%含む制電性樹脂板を製造した。そして、この制電性樹脂板について、実施例1と同様に表面抵抗率、全光線透過率、ヘーズを測定すると共に、IPAを含ませたワイピングクロスで拭き取る作業を100回、200回、300回繰り返した後の表面抵抗率、全光線透過率、ヘーズを測定して、その結果を下記の表1に併記した。
[Example 2]
A curing agent-containing CNT coating liquid having the same composition as in Example 1 was prepared, except that the amount of the diisocyanate curing agent in the curing agent-containing CNT coating liquid of Example 1 was changed from 0.1% by mass to 0.2% by mass. In the same manner as in Example 1, an antistatic resin plate containing 10% by mass of the curing agent in the binder resin of the antistatic layer was produced. For this antistatic resin plate, the surface resistivity, total light transmittance, and haze were measured in the same manner as in Example 1, and the operation of wiping with a wiping cloth containing IPA was performed 100 times, 200 times, and 300 times. The surface resistivity, total light transmittance, and haze after the measurement were repeated, and the results are also shown in Table 1 below.

実施例1の硬化剤含有CNT塗液のジイソシアネート類硬化剤の配合量を0.1質量%から0.3質量%に変更した以外は実施例1と同じ組成の硬化剤含有CNT塗液を調製し、実施例1と同様にして、制電層のバインダー樹脂中に硬化剤を15質量%含む制電性樹脂板を製造した。そして、この制電性樹脂板について、実施例1と同様に表面抵抗率、全光線透過率、ヘーズを測定すると共に、IPAを含ませたワイピングクロスで拭き取る作業を100回、200回、300回繰り返した後の表面抵抗率、全光線透過率、ヘーズを測定して、その結果を下記の表1に併記した。   A curing agent-containing CNT coating liquid having the same composition as in Example 1 was prepared, except that the amount of the diisocyanate curing agent in the curing agent-containing CNT coating liquid of Example 1 was changed from 0.1% by mass to 0.3% by mass. In the same manner as in Example 1, an antistatic resin plate containing 15% by mass of a curing agent in the binder resin of the antistatic layer was produced. For this antistatic resin plate, the surface resistivity, total light transmittance, and haze were measured in the same manner as in Example 1, and the operation of wiping with a wiping cloth containing IPA was performed 100 times, 200 times, and 300 times. The surface resistivity, total light transmittance, and haze after the measurement were repeated, and the results are also shown in Table 1 below.

[比較例1]
ジイソシアネート類硬化剤を含まない点を除いて実施例1と同じ組成のCNT塗液を調製し、実施例1と同様にして、制電層のバインダー樹脂中に硬化剤を含まない制電性樹脂板を製造した。そして、この制電性樹脂板について、実施例1と同様に表面抵抗率、全光線透過率、ヘーズを測定すると共に、IPAを含ませたワイピングクロスで拭き取る作業を100回、200回、300回繰り返した後の表面抵抗率、全光線透過率、ヘーズを測定して、その結果を下記の表1に併記した。
[Comparative Example 1]
A CNT coating liquid having the same composition as in Example 1 was prepared except that it did not contain a diisocyanate curing agent. Similarly to Example 1, an antistatic resin containing no curing agent in the binder resin of the antistatic layer. A board was produced. For this antistatic resin plate, the surface resistivity, total light transmittance, and haze were measured in the same manner as in Example 1, and the operation of wiping with a wiping cloth containing IPA was performed 100 times, 200 times, and 300 times. The surface resistivity, total light transmittance, and haze after the measurement were repeated, and the results are also shown in Table 1 below.

Figure 2006035775
Figure 2006035775

表1から、制電層のバインダー樹脂中にジイソシアネート類硬化剤を含まない比較例1の制電性樹脂板は、当初の表面抵抗率が10Ω/□オーダーで実施例1〜3の制電性樹脂板のそれと大差ないにも拘わらず、IPAを含浸させたワイピングクロスを用いた拭き取り回数が多くなるに従って表面抵抗率が急増し、300回の拭き取り作業を行ったときには、表面抵抗率が1014Ω/□以上にまで上昇して、制電性能を発揮できないことが分かる。 From Table 1, the antistatic resin plate of Comparative Example 1 which does not contain a diisocyanate curing agent in the binder resin of the antistatic layer has an initial surface resistivity of 10 8 Ω / □ order and that of Examples 1-3. Despite the fact that it is not much different from that of an electric resin plate, the surface resistivity rapidly increases as the number of wiping operations using a wiping cloth impregnated with IPA increases. It turns out that it rises to 10 14 Ω / □ or more and the antistatic performance cannot be exhibited.

これに対し、制電層のバインダー樹脂中にジイソシアネート類硬化剤をそれぞれ5質量%、10質量%、15質量%含んだ実施例1〜3の制電性樹脂板は、拭き取り回数が多くなるに従って表面抵抗率が増加するというものの、その増加は緩やかであり、300回の拭き取り作業を行っても表面抵抗率が10Ω/□〜1011Ω/□オーダーの範囲にあって、実用上十分な制電性能を発揮できることが分かる。特に、ジイソシアネート類硬化剤を10質量%含んだ実施例2の制電性樹脂板は表面抵抗率の増加が緩やかで、300回の拭き取り作業を行っても表面抵抗率が10Ω/□オーダーであり、耐アルコール類拭き取り性が顕著である。 In contrast, the antistatic resin plates of Examples 1 to 3 containing 5% by mass, 10% by mass, and 15% by mass of the diisocyanate curing agent in the binder resin of the antistatic layer, respectively, as the number of wiping increases. Although the surface resistivity increases, the increase is slow, and even after 300 wiping operations, the surface resistivity is in the range of 10 9 Ω / □ to 10 11 Ω / □, which is practically sufficient. It can be seen that the anti-static performance can be demonstrated. In particular, the antistatic resin plate of Example 2 containing 10% by mass of a diisocyanate curing agent has a moderate increase in surface resistivity, and the surface resistivity is on the order of 10 9 Ω / □ even after 300 wiping operations. And the resistance to wiping off alcohols is remarkable.

以上のことから、ジイソシアネート類硬化剤を制電層のバインダー樹脂中に含有させることは、制電層の耐アルコール類拭き取り性を高め、表面抵抗率の上昇を抑えるのに有効であり、特に硬化剤を10質量%前後の含有率で含有させると優れた耐アルコール類拭き取り性を発揮することが分かる。   From the above, the inclusion of a diisocyanate curing agent in the binder resin of the antistatic layer is effective in improving the anti-alcohol wiping property of the antistatic layer and suppressing an increase in surface resistivity. It can be seen that when the agent is contained at a content of about 10% by mass, excellent alcohol wiping resistance is exhibited.

また、実施例1〜3の制電性樹脂板及び比較例1の制電性樹脂板はいずれも、当初の全光線透過率が82.5%以上、当初のヘーズが6.5%以下であり、CNTを含んだ制電層を形成しているにも拘わらず透明性が良好である。これは、CNTが十分に分散して接触導通する結果、CNTの含有量を減らすことができたからである。   The antistatic resin plates of Examples 1 to 3 and the antistatic resin plate of Comparative Example 1 both had an initial total light transmittance of 82.5% or more and an initial haze of 6.5% or less. In addition, although the antistatic layer containing CNT is formed, the transparency is good. This is because the content of CNTs can be reduced as a result of sufficient dispersion and contact conduction of CNTs.

さらに、制電層のバインダー樹脂中にジイソシアネート類硬化剤を含有させた実施例1〜3の制電性樹脂板は、該硬化剤を含まない比較例1の制電性樹脂板に比べてヘーズが低くなっており、このことから、硬化剤を含有させることは、ヘーズを低下させて透明性を高める上でも有利であることがわかる。   Furthermore, the antistatic resin plates of Examples 1 to 3 containing a diisocyanate curing agent in the binder resin of the antistatic layer are more haze than the antistatic resin plate of Comparative Example 1 that does not contain the curing agent. From this fact, it can be seen that the inclusion of a curing agent is advantageous in reducing haze and increasing transparency.

本発明の一実施形態に係る制電性樹脂成形体を一部拡大して示す模式断面図である。It is a schematic cross section which expands and shows the antistatic resin molding which concerns on one Embodiment of this invention partially. (A)は制電層内部における極細導電繊維の分散状態を示す模式断面図であり、(B)は制電層表面における極細導電繊維の分散状態を示す模式断面図である。(A) is a schematic cross-sectional view showing a dispersion state of ultrafine conductive fibers inside the antistatic layer, and (B) is a schematic cross sectional view showing a dispersion state of ultrafine conductive fibers on the surface of the antistatic layer. 制電層における極細導電繊維の平面的な分散状態を示す模式平面図である。It is a schematic plan view which shows the planar dispersion | distribution state of the ultrafine conductive fiber in an antistatic layer.

符号の説明Explanation of symbols

1 樹脂成形体
2 制電性フィルム
2a 接着層
2b 制電層
2c バインダー樹脂
3 極細導電繊維
4 硬化剤
DESCRIPTION OF SYMBOLS 1 Resin molded object 2 Antistatic film 2a Adhesive layer 2b Antistatic layer 2c Binder resin 3 Extra fine conductive fiber 4 Hardener

Claims (5)

樹脂成形体の少なくとも片面に接着層を介して制電層を積層した制電性樹脂成形体であって、上記制電層がバインダー樹脂と極細導電繊維とからなり、且つ、バインダー樹脂中に硬化剤が含有されていることを特徴とする制電性樹脂成形体。   An antistatic resin molded body in which an antistatic layer is laminated on at least one surface of the resin molded body via an adhesive layer, and the antistatic layer is composed of a binder resin and ultrafine conductive fibers, and is cured in the binder resin. An antistatic resin molded product containing an agent. 硬化剤がバインダー樹脂中に2〜20質量%含有されていることを特徴とする請求項1に記載の制電性樹脂成形体。   The antistatic resin molded article according to claim 1, wherein the curing agent is contained in the binder resin in an amount of 2 to 20% by mass. バインダー樹脂が塩化ビニル系樹脂であり、硬化剤がポリイソシアネートであることを特徴とする請求項1又は請求項2に記載の制電性樹脂成形体。   The antistatic resin molded article according to claim 1 or 2, wherein the binder resin is a vinyl chloride resin and the curing agent is polyisocyanate. 制電層の極細導電繊維が1本ずつ分離した状態で、若しくは、複数本集まって束になったものが1束ずつ分離した状態で、凝集することなく分散して互いに接触していることを特徴とする請求項1ないし請求項3のいずれかに記載の制電性樹脂成形体。   In a state where the ultrafine conductive fibers of the antistatic layer are separated one by one, or in a state where a plurality of bundles are bundled and separated one by one, they are dispersed without agglomeration and are in contact with each other The antistatic resin molded product according to any one of claims 1 to 3, wherein 極細導電繊維がカーボンナノチューブであることを特徴とする請求項1ないし
請求項4のいずれかに記載の制電性樹脂成形体。
The antistatic resin molded article according to any one of claims 1 to 4, wherein the ultrafine conductive fiber is a carbon nanotube.
JP2004222453A 2004-07-29 2004-07-29 Antistatic resin molded product Pending JP2006035775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222453A JP2006035775A (en) 2004-07-29 2004-07-29 Antistatic resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222453A JP2006035775A (en) 2004-07-29 2004-07-29 Antistatic resin molded product

Publications (1)

Publication Number Publication Date
JP2006035775A true JP2006035775A (en) 2006-02-09

Family

ID=35901259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222453A Pending JP2006035775A (en) 2004-07-29 2004-07-29 Antistatic resin molded product

Country Status (1)

Country Link
JP (1) JP2006035775A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200613A (en) * 2007-02-20 2008-09-04 Toray Ind Inc Carbon nanotube coating film and method of manufacturing the same
US20110267679A1 (en) * 2008-11-28 2011-11-03 Hamamatsu Photonics K.K. Light modulating device and laser processing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226007A (en) * 1996-12-10 1998-08-25 Takiron Co Ltd Moldable antistatic resin molding
JP2001011344A (en) * 1999-06-30 2001-01-16 Nec Corp Coating and film formed using the same and their production
JP2001229737A (en) * 2000-02-10 2001-08-24 Fuji Photo Film Co Ltd Transparent conductive film and its grounding method
JP2003191656A (en) * 2001-12-26 2003-07-09 Dainippon Printing Co Ltd Intermediate transfer recording medium and card production method
JP2004196912A (en) * 2002-12-17 2004-07-15 Toyobo Co Ltd Conductive coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226007A (en) * 1996-12-10 1998-08-25 Takiron Co Ltd Moldable antistatic resin molding
JP2001011344A (en) * 1999-06-30 2001-01-16 Nec Corp Coating and film formed using the same and their production
JP2001229737A (en) * 2000-02-10 2001-08-24 Fuji Photo Film Co Ltd Transparent conductive film and its grounding method
JP2003191656A (en) * 2001-12-26 2003-07-09 Dainippon Printing Co Ltd Intermediate transfer recording medium and card production method
JP2004196912A (en) * 2002-12-17 2004-07-15 Toyobo Co Ltd Conductive coating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200613A (en) * 2007-02-20 2008-09-04 Toray Ind Inc Carbon nanotube coating film and method of manufacturing the same
US20110267679A1 (en) * 2008-11-28 2011-11-03 Hamamatsu Photonics K.K. Light modulating device and laser processing device
US9285579B2 (en) * 2008-11-28 2016-03-15 Hamamatsu Photonics K.K. Light modulating device and laser processing device

Similar Documents

Publication Publication Date Title
JP2007229989A (en) Conductive molded body and its manufacturing method
CN1745301A (en) Articles with projected conductive coatings
JP5431960B2 (en) Method for producing carbon nanotube-containing conductor
Lan et al. Axial alignment of carbon nanotubes on fibers to enable highly conductive fabrics for electromagnetic interference shielding
JP5473148B2 (en) Transparent conductive film with improved conductivity and method for producing the same
CN101292362A (en) Nanowires-based transparent conductors
US10022947B2 (en) Laminated structure manufacturing method, laminated structure, and electronic apparatus
US20060257638A1 (en) Articles with dispersed conductive coatings
JP2006035771A (en) Conductive layer transfer sheet
JP5320564B2 (en) Method for forming fine carbon monomolecular film, surface coating method, and coated body
JP2007112133A (en) Electroconductive shaped article
CN105121339A (en) Composite material and molded article
JP4488826B2 (en) Antistatic resin molding
JP2006049843A (en) Antistatic molding for image display apparatus
JP2008126469A (en) Conductive resin molding and its manufacturing method
JP2011082165A (en) Method of manufacturing electrode substrate
JP4488825B2 (en) Antistatic resin molding
JP4795780B2 (en) Antistatic resin molding
JP2006035775A (en) Antistatic resin molded product
JP5519497B2 (en) Touch panel
JP4454426B2 (en) Conductive film for in-mold molding
JP2008204872A (en) Transparent conductive film material and transparent laminate
US20190177911A1 (en) Heat insulator
JP2009220565A (en) Antistatic resin molding
US11773233B2 (en) Carbon composite material and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100324