JP2006035771A - Conductive layer transfer sheet - Google Patents

Conductive layer transfer sheet Download PDF

Info

Publication number
JP2006035771A
JP2006035771A JP2004222448A JP2004222448A JP2006035771A JP 2006035771 A JP2006035771 A JP 2006035771A JP 2004222448 A JP2004222448 A JP 2004222448A JP 2004222448 A JP2004222448 A JP 2004222448A JP 2006035771 A JP2006035771 A JP 2006035771A
Authority
JP
Japan
Prior art keywords
conductive layer
conductive
transfer sheet
ultrafine
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004222448A
Other languages
Japanese (ja)
Inventor
Hidemi Ito
秀己 伊藤
Masahito Sakai
将人 坂井
Kiyokazu Yamaguchi
清和 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2004222448A priority Critical patent/JP2006035771A/en
Publication of JP2006035771A publication Critical patent/JP2006035771A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive layer transfer sheet capable of transferring a conductive layer having transparency to a molded product. <P>SOLUTION: The conductive layer 2 containing extremely fine conductive fibers 2a and an adhesive layer 3 are formed on a peelable base material 1 in this order and the extremely fine conductive fibers 2a are added to the conductive layer 2 to obtain the conductive layer transfer sheet having transparency and good surface resistivity. The conductive layer 2 is characterized in that the extremely fine conductive fibers 2a are dispersed without being flocculated to come into contact with each other or dispersed in a state separated one by one or in a state that bundles each of which is formed by bundling a plurality of the extremely fine conductive fibers are separated one by one to come into contact with each other and, since the extremely fine conductive fibers are separated to well keep mutual electric continuity, necessary conductivity can be obtained by a small amount of the extremely fine conductive fibers and the conductive layer 2 can be made thin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、極細導電繊維を含んだ導電層を有する導電層転写シートに関する。   The present invention relates to a conductive layer transfer sheet having a conductive layer containing ultrafine conductive fibers.

従来より、クリーンルームのパーティション、半導体・液晶製造に用いるキャリアーボックス、製造装置の外板、製造装置の覗き窓のように塵埃を嫌う用途には、静電気を逃がして塵埃の付着を防止する制電性樹脂板が使用されていて、本出願人も透明な熱可塑性樹脂基板の表面に、曲がりくねって絡み合う極細の長炭素繊維を含んだ透明な熱可塑性樹脂の制電層を形成してなる制電性透明樹脂板を提案した(特許文献1)。
一方、導電層を熱転写する方法も知られており、ニッケルやカーボンブラックなどの導電性粉末を含有する熱溶融性インキ層とマット層とをベースフィルムに設けた感熱転写フィルム(特許文献2)や、加熱により接着性が低減する粘着層と導電層を含む転写膜とを有する導電層転写シート(特許文献3)などがある。
特許第3398587号公報 特許第2598895号公報 特許第3015788号公報
Conventionally, for applications that do not like dust, such as clean room partitions, carrier boxes used in semiconductor and liquid crystal manufacturing, outer panels of manufacturing equipment, and viewing windows of manufacturing equipment, anti-static properties that release static electricity and prevent dust adhesion The resin plate is used, and the present applicant also forms an antistatic property made of a transparent thermoplastic resin containing ultrafine long carbon fibers that are twisted and intertwined on the surface of the transparent thermoplastic resin substrate. A transparent resin plate was proposed (Patent Document 1).
On the other hand, a method of thermally transferring a conductive layer is also known. A thermal transfer film (Patent Document 2) in which a heat-meltable ink layer containing a conductive powder such as nickel or carbon black and a mat layer are provided on a base film. There is a conductive layer transfer sheet (Patent Document 3) having a pressure-sensitive adhesive layer whose adhesiveness is reduced by heating and a transfer film including a conductive layer.
Japanese Patent No. 3398587 Japanese Patent No. 2598895 Japanese Patent No. 3015788

しかしながら、上記特許文献1の制電性透明樹脂板は、長炭素繊維を含む塗料を透明樹脂板の表面に直接塗布しており、生産性が悪く、また長尺樹脂板も得難かった。また、長炭素繊維は毛玉状に集合した状態で分散されており、必要な表面抵抗率を得るためにはかなり多量に含有させる必要があった。
また、特許文献2の感熱転写シートは、その導電層は導電性粉末を含有させたものであるから、これら導電性粉末同士の接触が悪く、多くの導電性粉末を含有させることが必要であるし、透明性も得難いものであった。
更に、特許文献3の導電層転写シートにおいても、導電層はニッケルや金などの金属を真空蒸着法或は無電解メッキ法にて形成してなるものであり、生産性が悪い上に、連続性もなく、さらに屈曲性にも劣っていた。
However, the antistatic transparent resin plate of the above-mentioned Patent Document 1 has a coating containing long carbon fibers directly applied to the surface of the transparent resin plate, so that the productivity is poor and it is difficult to obtain a long resin plate. Further, the long carbon fibers are dispersed in a flocculated state, and it has been necessary to contain a considerably large amount in order to obtain the required surface resistivity.
Moreover, since the conductive layer of the thermal transfer sheet of Patent Document 2 contains conductive powder, the contact between these conductive powders is poor, and it is necessary to contain a lot of conductive powder. However, it was difficult to obtain transparency.
Furthermore, in the conductive layer transfer sheet of Patent Document 3, the conductive layer is formed by forming a metal such as nickel or gold by a vacuum evaporation method or an electroless plating method. It was not good, and it was inferior in flexibility.

本発明は上記の問題に対処するためになされたもので、導電層に極細導電繊維を含ませることで、透明性を有する導電層を成形体に転写することができる導電層転写シートを提供することを解決課題としている。   The present invention has been made to cope with the above-described problems, and provides a conductive layer transfer sheet that can transfer a transparent conductive layer to a molded body by including ultrafine conductive fibers in the conductive layer. This is a solution issue.

上記目的を達成するため、本発明の導電層転写シートは、剥離性基材に極細導電繊維を含んだ導電層と接着層とがこの順で形成されていることを特徴とするものである。   In order to achieve the above object, the conductive layer transfer sheet of the present invention is characterized in that a conductive layer containing ultrafine conductive fibers and an adhesive layer are formed in this order on a peelable substrate.

本発明において、導電層に含まれる極細導電繊維は凝集することなく分散して互いに接触しているか、或は1本ずつ分離した状態で若しくは複数本集まって束になったものが1束ずつ分離した状態で分散して互いに接触していることが好ましく、この極細導電繊維としてはカーボンナノチューブであることが望ましい。また、導電層はその550nm波長の光線透過率が50%以上の透明性を有していることが好ましい。そして、接着層がアクリル系接着樹脂又はポリウレタン系接着樹脂で形成されていることも好ましい。   In the present invention, the ultrafine conductive fibers contained in the conductive layer are dispersed without contacting each other and are in contact with each other, or are separated one by one or separated in bundles. In this state, it is preferable to disperse and contact each other, and the ultrafine conductive fibers are preferably carbon nanotubes. Moreover, it is preferable that the conductive layer has transparency with a light transmittance of 550 nm wavelength of 50% or more. And it is also preferable that the contact bonding layer is formed with acrylic adhesive resin or polyurethane adhesive resin.

なお、本発明で「凝集することなく」とは、導電層を光学顕微鏡で観察し、平均径が0.5μm以上の凝集塊がないことを意味する用語である。また、「接触」とは、極細導電繊維が現実に接触している場合と、極細導電繊維が導通可能な微小間隔をあけて近接している場合の双方を意味する用語である。さらに、「導電性」とはJIS K 7194(ASTM D 991)(抵抗が10Ω以下)あるいはJIS K 6911(ASTM D 257)(抵抗が10Ω以上)で測定し、表面抵抗率が10〜1011Ω/□の範囲であることを意味する。 In the present invention, “without agglomeration” is a term that means that the conductive layer is observed with an optical microscope and there is no aggregate having an average diameter of 0.5 μm or more. The term “contact” is a term that means both the case where the ultrafine conductive fibers are actually in contact with each other and the case where the ultrafine conductive fibers are close to each other with a small gap that allows conduction. Further, “conductivity” is measured by JIS K 7194 (ASTM D 991) (resistance is 10 6 Ω or less) or JIS K 6911 (ASTM D 257) (resistance is 10 6 Ω or more), and the surface resistivity is 10 It means a range of 0 to 10 11 Ω / □.

本発明の導電層転写シートは、導電層に極細導電繊維を含んでいるので、当該極細導電繊維が相互に接触して導通し、繊維の量を少なくしても導通性を確保して、表面抵抗率を10〜1011Ω/□の範囲で容易にコントロールでき、また高い透明性の導電層とすることもできる。そのため、極細導電繊維量を少なくしても必要な導電性を確保でき、極細導電繊維量が減少した分だけ透明性を向上させることができるし、導電層の厚みを薄くすることもできる。特に、極細導電繊維がカーボンナノチューブであると、該カーボンナノチューブが細くて長いので、これら相互の接触がさらに良好に確保でき、優れた導電性と透明性とを兼備した導電層転写シートとすることができる。そして、本発明の導電層転写シートを用いれば、成形体に転写するだけ導電性成形体或は制電性成形体とすることができる。 Since the conductive layer transfer sheet of the present invention contains ultra-fine conductive fibers in the conductive layer, the ultra-fine conductive fibers are in contact with each other and conducted, and even if the amount of fibers is reduced, the conductivity is ensured and the surface The resistivity can be easily controlled in the range of 10 0 to 10 11 Ω / □, and a highly transparent conductive layer can be obtained. Therefore, necessary conductivity can be ensured even if the amount of ultrafine conductive fibers is reduced, transparency can be improved by the amount of decrease in the amount of ultrafine conductive fibers, and the thickness of the conductive layer can be reduced. In particular, if the ultrafine conductive fibers are carbon nanotubes, the carbon nanotubes are thin and long, so that the mutual contact can be ensured better, and a conductive layer transfer sheet having both excellent conductivity and transparency can be obtained. Can do. And if the conductive layer transfer sheet of this invention is used, it can be set as an electroconductive molded object or an antistatic molded object only by transcribe | transferring to a molded object.

そして、導電層の550nm波長の光線透過率が50%以上であると、透明性に優ぐれた導電層転写シートとすることができ、透明成形体に転写することで透明導電性成形体或は透明制電性成形体とすることが容易にできて、透明性が特に要求される表示装置の前面体などにも使用可能となる。   When the light transmittance at a wavelength of 550 nm of the conductive layer is 50% or more, a conductive layer transfer sheet excellent in transparency can be obtained. By transferring the transparent layer to the transparent molded body, the transparent conductive molded body or It can be easily formed into a transparent antistatic molded body, and can be used for a front body of a display device in which transparency is particularly required.

また、導電層に含まれる極細導電繊維が凝集することなく分散して互いに接触していると、該繊維が凝集していない分だけ、極細導電繊維が解けて相互の十分な導通を確保できるので良好な導電性有する導電層転写シートを得ることができる。また、導電層の極細導電繊維が1本ずつ分離した状態で、もしくは、複数本集まって束になったものが1束ずつ分離した状態で分散して互いに接触していると、分散した1本若しくは1束の極細導電繊維相互の接触機会が多くなり、十分な導通を確保でき、良好な導電性の導電層転写シートを得ることができる。
さらに、接着層がアクリル系接着樹脂又はポリウレタン系接着樹脂で形成されていると、当該接着層の透明性も良好であるので、これを転写された成形体の透明性も良くすることができる。
In addition, if the fine conductive fibers contained in the conductive layer are dispersed without being agglomerated and are in contact with each other, the fine conductive fibers are undissolved and sufficient mutual conduction can be ensured as much as the fibers are not agglomerated. A conductive layer transfer sheet having good conductivity can be obtained. In addition, when the ultrafine conductive fibers of the conductive layer are separated one by one, or when a bundle of multiple bundles is separated and bundled one by one and dispersed and in contact with each other, the dispersed one Alternatively, the chances of contact between a bundle of ultrafine conductive fibers increases, and sufficient conduction can be secured, and a conductive layer transfer sheet having good conductivity can be obtained.
Furthermore, if the adhesive layer is formed of an acrylic adhesive resin or a polyurethane adhesive resin, the adhesive layer also has good transparency. Therefore, the transparency of the molded product to which the adhesive layer has been transferred can be improved.

以下、図面を参照して本発明の代表的な実施形態を詳述するが、本発明はこれに限定されるものではない。   Hereinafter, representative embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.

図1は本発明の導電層転写シートの一実施形態を示す断面図、図2(A)は導電層内部における極細導電繊維の分散状態を示す概略断面図、図2(B)は導電層表面における極細導電繊維の他の分散状態を示す概略断面図、図3は導電層を平面から見た極細導電繊維の分散状態を示す概略平面図である。   FIG. 1 is a cross-sectional view showing an embodiment of the conductive layer transfer sheet of the present invention, FIG. 2A is a schematic cross-sectional view showing a dispersion state of ultrafine conductive fibers inside the conductive layer, and FIG. FIG. 3 is a schematic cross-sectional view showing another dispersion state of the ultrafine conductive fiber in FIG. 3, and FIG. 3 is a schematic plan view showing the dispersion state of the ultrafine conductive fiber when the conductive layer is seen from the plane.

この導電層転写シートは、薄い基材1の片面(上面)に極細導電繊維を含んだ透明な導電層2を積層し、さらに当該導電層2の上面に接着層3を積層形成したものである。   This conductive layer transfer sheet is obtained by laminating a transparent conductive layer 2 containing ultrafine conductive fibers on one surface (upper surface) of a thin substrate 1 and further laminating an adhesive layer 3 on the upper surface of the conductive layer 2. .

基材1としては、転写の際の剥離性と強度とが要求されるので、この剥離性と強度とを有するフィルムであれば限定されるものではないが、ポリエステル、ポリプロピレン、ポリエチレン、ポリカーボネート、ポリアミド、ポリイミド、ポリ塩化ビニル、アクリルなどの樹脂類、または金属箔などが適宜用いられる。この中で、特に2軸延伸したポリエチレンテレフタレートが最も好ましく使用される。
そして、剥離性を向上させるために、基材1の表面にフッ素系、シリコン系、アルキド系などの剥離剤で表面処理などを行うことができる。この基材1の厚さは30〜500μmとしてあり、紙管等に巻回できるようにしている。
The substrate 1 is required to have releasability and strength at the time of transfer, and is not limited as long as it is a film having this releasability and strength, but polyester, polypropylene, polyethylene, polycarbonate, polyamide Resins such as polyimide, polyvinyl chloride, and acrylic, or metal foils are appropriately used. Among these, in particular, biaxially stretched polyethylene terephthalate is most preferably used.
And in order to improve peelability, the surface treatment etc. can be performed to the surface of the base material 1 with release agents, such as a fluorine type, a silicon type, an alkyd type. The substrate 1 has a thickness of 30 to 500 μm and can be wound around a paper tube or the like.

この基材1の片面に形成された導電層2には、極細導電繊維2aが分散して含有されている透明層である。この極細導電繊維2aは凝集することなく分散して互いに接触しているか、或は、極細導電繊維2aが絡み合うことなく1本ずつ分離した状態で、もしくは、複数本集まって束になったものが1束ずつ分離した状態で、分散して互いに接触しているか、或は、これらの分散状態が混在した状態で接触している。導電層2が主に極細導電繊維2aと透明な樹脂バインダー2bとで形成されていると、図2の(A)に示すように、該極細導電繊維2aは樹脂バインダー2bの内部に上記の分散状態で分散し互いに接触しているか、或は図2の(B)に示すように、極細導電繊維2aの一部が樹脂バインダー2bの内部に入り込み、他の部分が樹脂バインダー2bの表面から突出乃至露出して接着層3の内部にまで入り込んで上記分散状態で分散し互いに接触しているか、或は極細導電繊維2aの一部は図2の(A)のように樹脂バインダー2bの内部に、他の極細導電繊維2aは図2の(B)のように一部が表面から突出乃至露出して接着層3内部に入り込んだ状態で分散し互いに接触していることとなる。   The conductive layer 2 formed on one surface of the substrate 1 is a transparent layer containing the ultrafine conductive fibers 2a dispersed therein. The ultrafine conductive fibers 2a are dispersed without contacting each other and are in contact with each other, or the ultrafine conductive fibers 2a are separated one by one without being entangled, or a plurality of bundles are bundled together. In a state where the bundles are separated, they are dispersed and in contact with each other, or these dispersed states are in contact with each other. When the conductive layer 2 is mainly formed of ultrafine conductive fibers 2a and a transparent resin binder 2b, the ultrafine conductive fibers 2a are dispersed within the resin binder 2b as shown in FIG. 2 are dispersed in contact with each other, or as shown in FIG. 2B, a part of the ultrafine conductive fiber 2a enters the inside of the resin binder 2b, and the other part protrudes from the surface of the resin binder 2b. Or exposed to the inside of the adhesive layer 3 and dispersed in the dispersed state and in contact with each other, or a part of the ultrafine conductive fiber 2a is placed inside the resin binder 2b as shown in FIG. The other ultrafine conductive fibers 2a are dispersed and are in contact with each other in a state in which a part protrudes or is exposed from the surface and enters the adhesive layer 3 as shown in FIG.

これらの極細導電繊維2aの平面から見た分散状態を図3に概略的に示す。この図3から理解されるように、極細導電繊維2aは多少曲がっているが1本ずつ或は1束ずつ分離し、互いに複雑に絡み合うことなく即ち凝集することなく、単純に交差した状態で導電層2の内部に或は表面に分散され、それぞれの交点で接触している。このように分散していると、凝集している場合に比べて、繊維が解れて広範囲に存在しているので、これら繊維同士の接触する機会が著しく増加し、その結果導通して導電性を著しく高めることができる。   The dispersion state seen from the plane of these ultrafine conductive fibers 2a is schematically shown in FIG. As can be seen from FIG. 3, the ultra-fine conductive fibers 2a are slightly bent but separated one by one or one bundle, and do not intricately entangle each other, that is, do not agglomerate. It is dispersed inside or on the surface of the layer 2 and is in contact at each intersection. When dispersed in this way, the fibers are present in a wider range than when they are agglomerated, so the chance of contact between these fibers increases significantly, resulting in conduction and conductivity. Can be significantly increased.

極細導電繊維2aが解れずに分散されているとお互いの接触機会が少なくなり、10〜1011Ω/□の導電性を得るためには多量に含有させる必要があり、その結果導電層2の透明性が悪くなる。しかし、極細導電繊維2aを上記分散状態にすることで極細導電繊維2aの量を減少させても同じ接触機会を得ることができ、その分、極細導電繊維2a量を少なくすることができるのである。その結果、透明性を阻害する極細導電繊維2aの量が少なくなった分だけ透明性が向上するし、また、導電層2を薄くすることもでき、一層透明性を向上させることができる。 When the ultrafine conductive fibers 2a are dispersed without being unwound, the chances of mutual contact are reduced, and in order to obtain a conductivity of 10 0 to 10 11 Ω / □, it is necessary to contain a large amount. As a result, the conductive layer 2 Transparency is worse. However, the same contact opportunity can be obtained even if the amount of the ultrafine conductive fiber 2a is reduced by making the ultrafine conductive fiber 2a in the dispersed state, and the amount of the ultrafine conductive fiber 2a can be reduced accordingly. . As a result, the transparency is improved by the amount of the ultrafine conductive fiber 2a that hinders the transparency, and the conductive layer 2 can be made thinner, thereby further improving the transparency.

なお、極細導電繊維2aは完全に1本ずつ或は1束ずつ分離し分散している必要はなく、一部に絡み合った小さな凝集塊があっても良い。このような1本ずつ或は1束ずつ分離し分散しているか否かは、導電層2を光学顕微鏡で観察し、凝集している塊があれば、その長径と短径とを測定し、その平均値が0.5μm以下である場合を分散しているという。   The ultrafine conductive fibers 2a do not have to be separated and dispersed completely one by one or one bundle at a time, and there may be small aggregates intertwined in part. Whether such a single piece or a single bundle is separated and dispersed is determined by observing the conductive layer 2 with an optical microscope, and measuring the major and minor diameters of any agglomerated mass, The case where the average value is 0.5 μm or less is said to be dispersed.

一方、凝集して分散した場合と同じ量の極細導電繊維2aを導電層2に含ませると、上記分散状態にすることで、多くの繊維相互の接触機会を得ることができるので、導電性を著しく向上させることができ、10Ω/□以下とすることができる。
さらに、極細導電繊維2aを導電層2に含ませて該導電層2の厚みを5〜500nmと薄くしても、導電性を高めることが可能となる。従って、導電層2の厚みを上記の範囲で薄くすることが好ましく、更に好ましくは5〜200nmにすることが望ましい。
On the other hand, if the conductive layer 2 contains the same amount of ultrafine conductive fibers 2a as when agglomerated and dispersed, by making the dispersion state, many contact opportunities between the fibers can be obtained. It can be remarkably improved and can be 10 5 Ω / □ or less.
Furthermore, even if the ultrafine conductive fiber 2a is included in the conductive layer 2 and the thickness of the conductive layer 2 is reduced to 5 to 500 nm, the conductivity can be improved. Therefore, the thickness of the conductive layer 2 is preferably reduced within the above range, and more preferably 5 to 200 nm.

導電層2に使用される極細導電繊維2aとしては、カーボンナノチューブやカーボンナノホーン、カーボンナノワイヤ、カーボンナノファイバー、グラファイトフィブリルなどの極細長炭素繊維、白金、金、銀、ニッケル、シリコンなどの金属ナノチューブ、ナノワイヤなどの極細長金属繊維、酸化亜鉛などの金属酸化物ナノチューブ、ナノワイヤなどの極細長金属酸化物繊維などの、直径が0.3〜100nmで長さが0.1〜20μm、好ましくは長さが0.1〜10μmである導電性極細繊維が好ましく用いられる。これらの極細導電繊維2aは、これが凝集することなく1本ずつ或は1束ずつ分散することにより、該導電層2の表面抵抗率が10〜10Ω/□である時には導電層2の光線透過率が50%以上であるものが得られるし、表面抵抗率が10〜10Ω/□である時には光線透過率が75%以上のものが得られるし、表面抵抗率が10〜10Ω/□である時には光線透過率が85%以上のものが得られるし、表面抵抗率が10〜1011Ω/□である時には光線透過率が93%以上のものが得られる。なお、上記光線透過率は分光光度計による550nmの波長の光の透過率を示す。 As the ultrafine conductive fibers 2a used for the conductive layer 2, ultrafine carbon fibers such as carbon nanotubes, carbon nanohorns, carbon nanowires, carbon nanofibers, graphite fibrils, metal nanotubes such as platinum, gold, silver, nickel, and silicon, Ultrafine metal fibers such as nanowires, metal oxide nanotubes such as zinc oxide, and ultrafine metal oxide fibers such as nanowires are 0.3 to 100 nm in diameter and 0.1 to 20 μm in length, preferably length. Conductive ultrafine fibers having a thickness of 0.1 to 10 μm are preferably used. These ultrafine conductive fibers 2a are dispersed one by one or one bundle without agglomeration so that when the surface resistivity of the conductive layer 2 is 10 0 to 10 1 Ω / □, A light transmittance of 50% or more is obtained, and when the surface resistivity is 10 2 to 10 3 Ω / □, a light transmittance of 75% or more is obtained, and the surface resistivity is 10 4. When it is -10 6 Ω / □, a light transmittance of 85% or more is obtained, and when the surface resistivity is 10 7 to 10 11 Ω / □, a light transmittance of 93% or more is obtained. . In addition, the said light transmittance shows the transmittance | permeability of the light of the wavelength of 550 nm by a spectrophotometer.

これらの極細導電繊維2aの中で、カーボンナノチューブは直径が0.3〜80nmと極めて細いので、1本ずつ或は1束ずつ分散することで該カーボンナノチューブが光透過を阻害することが少なくなり、光線透過率が50%以上の透明な導電層2を得るうえで特に好ましいのである。これらの極細導電繊維2aは、導電層2の内部に或は表面に、凝集することなく、1本ずつ或は1束ずつ分散し、互いに接触して導通性を確保している。そのため、該極細導電繊維2aを導電層2に1.0〜450mg/mの目付け量に相当する量を含ませることで、その表面抵抗率を10〜1011Ω/□の範囲内で自由にコントロールすることができる。 Among these ultrafine conductive fibers 2a, the carbon nanotubes are extremely thin with a diameter of 0.3 to 80 nm. Therefore, when the carbon nanotubes are dispersed one by one or one bundle, the carbon nanotubes are less likely to inhibit light transmission. It is particularly preferable for obtaining a transparent conductive layer 2 having a light transmittance of 50% or more. These ultrafine conductive fibers 2a are dispersed one by one or one bundle without agglomeration inside or on the surface of the conductive layer 2 and contact with each other to ensure conductivity. Therefore, the surface resistivity is within the range of 10 0 to 10 11 Ω / □ by including the ultrafine conductive fiber 2a in the conductive layer 2 in an amount corresponding to the basis weight of 1.0 to 450 mg / m 2. It can be controlled freely.

該目付け量は、導電層2を電子顕微鏡で観察し、その平面面積に占める極細導電繊維の面積割合を測定し、これに電子顕微鏡で観察した厚みと極細導電繊維の比重(極細導電繊維がカーボンナノチューブである場合は、グラフィトの文献値2.1〜2.3の平均値2.2を採用)を掛けることで計算した値である。   The weight per unit area is determined by observing the conductive layer 2 with an electron microscope, measuring the area ratio of the ultrafine conductive fiber in the plane area, and measuring the thickness of the conductive layer 2 and the specific gravity of the ultrafine conductive fiber (the ultrafine conductive fiber is carbon In the case of a nanotube, it is a value calculated by multiplying by an average value 2.2 of the literature values 2.1 to 2.3 of the graph.

上記カーボンナノチューブには、中心軸線の周りに直径が異なる複数の円筒状に閉じたカーボン壁を同心的に備えた多層カーボンナノチューブや、中心軸線の周りに単独の円筒状に閉じたカーボン壁を備えた単層カーボンナノチューブがある。   The carbon nanotube includes a multi-walled carbon nanotube concentrically provided with a plurality of cylindrically closed carbon walls having different diameters around the central axis, and a single cylindrically closed carbon wall around the central axis. Single-walled carbon nanotubes.

前者の多層カーボンナノチューブは、上記のように直径が異なる複数の円筒状に閉じたカーボン壁からなるチューブが中心軸線の周りに多層になって構成されており、カーボン壁は、カーボンの六角網目構造にて形成されている。その他、上記カーボン壁が渦巻き状に多層に形成されているものもある。好ましい多層カーボンナノチューブは、このカーボン壁が2〜30層重なったものであり、そのような多層カーボンナノチューブを上記の如き分散状態で分散させると、光線透過率を良好にすることができる。より好ましくはカーボン壁が2〜15層重なったものが用いられる。該多層カーボンナノチューブは1本ずつ分離した状態で分散しているものが殆どであるが、2〜3層カーボンナノチューブは、束になって分散している場合もある。   The former multi-walled carbon nanotube is composed of a plurality of cylindrically closed carbon walls with different diameters as described above, and the tube is made of multi-layers around the central axis, and the carbon wall has a carbon hexagonal network structure. It is formed by. In other cases, the carbon walls are spirally formed in multiple layers. Preferred multi-walled carbon nanotubes are those in which 2 to 30 layers of carbon walls are overlapped. When such multi-walled carbon nanotubes are dispersed in the dispersed state as described above, the light transmittance can be improved. More preferably, carbon walls having 2 to 15 layers are used. Most of the multi-walled carbon nanotubes are dispersed in a state of being separated one by one, but the two- to three-walled carbon nanotubes may be dispersed in a bundle.

一方、後者の単層カーボンナノチューブは、上記のように中心軸線の周りに円筒状に閉じた単独のカーボン壁から構成されており、カーボン壁はカーボンの六角網目構造にて形成されている。このような単層カーボンナノチューブは1本ずつ分離した状態では分散されにくく、2本以上集まって束になり、それが1束ずつ分離して、束同士が複雑に絡み合うことなく凝集せずに、単純に交差した状態で導電層の内部若しくは表面に分散され、それぞれの交点で接触している。好ましくは、10〜50本の単層カーボンナノチューブが集まって束になったものが用いられる。
なお、単層カーボンナノチューブが1本ずつ分散している状態を除外するものではない。
On the other hand, the latter single-walled carbon nanotube is composed of a single carbon wall closed in a cylindrical shape around the central axis as described above, and the carbon wall is formed of a carbon hexagonal network structure. Such single-walled carbon nanotubes are difficult to disperse in a state where they are separated one by one, and two or more are gathered into a bundle, which separates one bundle at a time, and the bundles do not agglomerate without complicated entanglement, It is dispersed in the interior or surface of the conductive layer in a simply intersected state, and is in contact at each intersection. Preferably, a bundle of 10 to 50 single-walled carbon nanotubes is used.
This does not exclude the state where single-walled carbon nanotubes are dispersed one by one.

上記のように極細導電繊維2aが絡み合うことなく凝集せずに分散してお互いに接触している導電層2は、極細導電繊維2aの目付け量を1〜450mg/mとすると、導電層2の厚みを5〜500nmと薄くしても、極細導電繊維2aが解れているので相互の十分な導通が確保され、表面抵抗率が10〜1011Ω/□の範囲となって良好な導電性を発現できるようになる。そして、極細導電繊維2aが解れて凝集塊がないので光透過を阻害せず透明性が良好になると共に、導電層2の厚みを薄くして極細導電繊維2aの目付け量を少なくした分だけ透明性が向上するようになる。 As described above, the conductive layer 2 in which the fine conductive fibers 2a are dispersed without contacting each other without being entangled with each other, and the basis weight of the fine conductive fibers 2a is 1 to 450 mg / m 2 , the conductive layer 2 Even if the thickness of the fiber is reduced to 5 to 500 nm, the ultrafine conductive fiber 2a is unraveled so that sufficient mutual conduction is ensured, and the surface resistivity is in the range of 10 0 to 10 11 Ω / □ and good conductivity is obtained. It becomes possible to express sex. And since the ultrafine conductive fiber 2a is unwound and there is no agglomerate, the light transmission is not hindered and the transparency is good, and the conductive layer 2 is thinned so that the basis weight of the ultrafine conductive fiber 2a is reduced. Will be improved.

そして、極細導電繊維2aの目付け量を1〜30mg/mと少なくしても、10〜1011Ω/□の表面抵抗率を得ることができるうえに、高透明(光線透過率が85%以上)の導電層2とすることができる。
また、極細導電繊維2aの目付け量を30〜250mg/m程度に増加すると、10〜10Ω/□の表面抵抗率を得ることができ、透明(光線透過率が75%以上)の導電層2を得ることができる。
更に極細導電繊維2aの目付け量を250〜450mg/m程度に増加すると、10〜10Ω/□の導電性能に優れたものとすることができるうえ、導電層2の透明性(光線透過率が50%以上)も維持できる。
なお、導電層2の光線透過率は、測定に分光光度計を用い、導電層2のみを形成し接着層3を形成していない基材の550nmにおける光線透過率を、基材1を透過する光線透過率で補正することにより得ることができる。
また、全光線透過率及びヘーズはASTM D1003に準拠して測定した値である。
Even if the basis weight of the ultrafine conductive fiber 2a is reduced to 1 to 30 mg / m 2 , a surface resistivity of 10 4 to 10 11 Ω / □ can be obtained, and high transparency (light transmittance is 85). % Or more of the conductive layer 2.
Further, when the basis weight of the ultrafine conductive fiber 2a is increased to about 30 to 250 mg / m 2 , a surface resistivity of 10 2 to 10 3 Ω / □ can be obtained, and transparent (light transmittance is 75% or more). The conductive layer 2 can be obtained.
Further, when the basis weight of the ultrafine conductive fiber 2a is increased to about 250 to 450 mg / m 2 , the conductive performance of 10 0 to 10 1 Ω / □ can be improved, and the transparency of the conductive layer 2 (light ray) (The transmittance is 50% or more).
The light transmittance of the conductive layer 2 is measured using a spectrophotometer, and the light transmittance at 550 nm of the base material in which only the conductive layer 2 is formed and the adhesive layer 3 is not formed is transmitted through the base material 1. It can be obtained by correcting with the light transmittance.
The total light transmittance and haze are values measured according to ASTM D1003.

極細導電繊維2aを多量に導電層2中に含ませ、より良好な導電性及び透明性を発現させるためには、極細導電繊維2aの分散性を高め、さらに作製した塗液の粘度を下げて作業性を向上させて、薄い導電層2を形成することが大切であり、そのためには、分散剤を併用して分散性を向上することが重要である。このような分散剤としては、酸性ポリマーのアルキルアンモニウム塩溶液や3級アミン修飾アクリル共重合物やポリオキシエチレン-ポリオキシプロピレン共重合物などの高分子系分散剤、カップリング剤等が好ましく使用される。
なお、この導電層2には紫外線吸収剤、表面改質剤、安定剤等の添加剤を適宜加えて、耐候性その他の物性を向上させても良い。
In order to include a large amount of ultrafine conductive fibers 2a in the conductive layer 2 and to develop better conductivity and transparency, the dispersibility of the ultrafine conductive fibers 2a is increased, and the viscosity of the prepared coating liquid is decreased. It is important to improve workability and form the thin conductive layer 2, and for that purpose, it is important to improve dispersibility by using a dispersant together. As such a dispersant, a polymer dispersant such as an alkyl ammonium salt solution of an acidic polymer, a tertiary amine-modified acrylic copolymer or a polyoxyethylene-polyoxypropylene copolymer, a coupling agent, etc. are preferably used. Is done.
In addition, an additive such as an ultraviolet absorber, a surface modifier, and a stabilizer may be appropriately added to the conductive layer 2 to improve weather resistance and other physical properties.

導電層2に使用する樹脂バインダー2bとしては、透明な熱可塑性樹脂、特にポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリメチルメタクリレート、ニトロセルロース、塩素化ポリエチレン、塩素化ポリプロピレン、弗化ビニリデンが、また熱や紫外線や電子線や放射線などで硬化する透明な硬化性樹脂、特にメラミンアクリレート、ウレタンアクリレート、エポキシ樹脂、ポリイミド樹脂、アクリル変性シリケートなどのシリコーン樹脂などの透明性樹脂が使用され、これらの透明な樹脂バインダー2bと上記極細導電繊維2aとからなる導電層2が透明層となるようになされている。なお、これらの樹脂バインダーにはコロイダルシリカのような無機材が添加されてもよい。   The resin binder 2b used for the conductive layer 2 is a transparent thermoplastic resin, particularly polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorinated polypropylene, vinylidene fluoride. However, transparent resins such as silicone resins such as melamine acrylate, urethane acrylate, epoxy resin, polyimide resin, and acrylic modified silicate are used. The conductive layer 2 composed of the transparent resin binder 2b and the ultrafine conductive fiber 2a is a transparent layer. In addition, an inorganic material such as colloidal silica may be added to these resin binders.

上述したように、導電層2における極細導電繊維2aの目付け量を1〜450mg/mとし、導電層2の厚みを5〜500nmと薄くして、極細導電繊維2aを凝集することなく1本ずつ或は1束ずつ分散させることで、表面抵抗率が10〜1011Ω/□の良好な導電性及び透明性が発現される。より好ましい極細導電繊維2aの目付け量は1〜200mg/m、導電層2の厚みは5〜200nmである。なお、極細導電繊維の他に導電性金属酸化物の粉末を30〜50質量%程度含有させてもよい。 As mentioned above, the basis weight of the ultra fine conductive fibers 2a in the conductive layer 2 and 1~450mg / m 2, the thickness of the conductive layer 2 as thin as 5 to 500 nm, 1 present without aggregation of the ultra fine conductive fibers 2a By dispersing one or one bundle at a time, good conductivity and transparency with a surface resistivity of 10 0 to 10 11 Ω / □ are exhibited. More preferably, the basis weight of the ultrafine conductive fiber 2a is 1 to 200 mg / m 2 , and the thickness of the conductive layer 2 is 5 to 200 nm. In addition to the ultrafine conductive fiber, a conductive metal oxide powder may be contained in an amount of about 30 to 50% by mass.

導電層2の上側に設けた接着層3は、感熱接着層、感圧接着層のいずれかからなる接着層である。感熱接着層であれば、転写時に熱を加えることで成形体に転写することができるし、感圧接着層であれば圧力を加えることで転写することができる。   The adhesive layer 3 provided on the upper side of the conductive layer 2 is an adhesive layer made of either a heat-sensitive adhesive layer or a pressure-sensitive adhesive layer. If it is a heat-sensitive adhesive layer, it can be transferred to the molded body by applying heat during transfer, and if it is a pressure-sensitive adhesive layer, it can be transferred by applying pressure.

上記接着層3に使用する接着樹脂としては、公知のアクリル系、ポリウレタン系、酢酸ビニル系、ポリオレフィン系、ポリエステル系、塩化ビニル系などの樹脂が全て使用できるが、特に透明性に優れるアクリル系、ポリウレタン系の接着樹脂が好ましく使用される。
さらに具体的には、上記感熱接着剤としては、例えばエチレン−(メタ)アクリル酸エステル−無水マレイン酸共重合体、エチレン−酢酸ビニル共重合体、エチレン−酢酸ビニル共重合体の部分鹸化物、エチレン−アクリル酸エステル共重合体、低融点の共重合ナイロンなどの接着性樹脂の中から適宜選択して使用できる。また、上記感圧接着剤としては、例えばアクリル系エマルジョン、天然ゴムラテックス、合成ゴムラテックス、シリコーン系、放射線硬化性のアクリル系感圧接着剤などの中から適宜選択して使用できる。
この接着層3は、厚みを0.1〜200μmとなるように、塗布などの方法で導電層2の上面に積層形成される。より好ましい厚さは0.1〜50μm、最も好ましい厚さは1〜10μmである。
As the adhesive resin used for the adhesive layer 3, known acrylic resins, polyurethane resins, vinyl acetate resins, polyolefin resins, polyester resins, vinyl chloride resins and the like can be used, but acrylic resins having particularly excellent transparency, A polyurethane-based adhesive resin is preferably used.
More specifically, examples of the heat-sensitive adhesive include ethylene- (meth) acrylic acid ester-maleic anhydride copolymer, ethylene-vinyl acetate copolymer, partially saponified product of ethylene-vinyl acetate copolymer, It can be appropriately selected from adhesive resins such as ethylene-acrylic acid ester copolymer and low melting point copolymer nylon. The pressure-sensitive adhesive can be appropriately selected from, for example, acrylic emulsion, natural rubber latex, synthetic rubber latex, silicone-based, radiation-curable acrylic pressure-sensitive adhesive, and the like.
The adhesive layer 3 is laminated on the upper surface of the conductive layer 2 by a method such as coating so that the thickness becomes 0.1 to 200 μm. A more preferable thickness is 0.1 to 50 μm, and a most preferable thickness is 1 to 10 μm.

以上のような導電層転写シートは、次の方法で効率良く量産することができる。例えば、導電層形成用の前記樹脂バインダー2bを揮発性溶剤に溶解した溶液に極細導電繊維2aを均一に分散させて導電塗液を調製し、この導電塗液をポリエチレンテレフタレートなどの剥離性を有する基材1の上面に塗布、固化させて導電層2を形成し、さらに当該導電層2の上面に上記接着樹脂からなる接着塗液を塗布、固化させて接着層3を形成することにより、基材1と導電層2と接着層3とがこの順で積層された導電層転写シートを製造することができる。なお、接着層3の上面にさらにシリコンなどで処理した保護フィルムを設けることもでき、特に感圧接着層3を用いた場合は上記保護フィルムを設けることが好ましい。   The conductive layer transfer sheet as described above can be mass-produced efficiently by the following method. For example, a conductive coating liquid is prepared by uniformly dispersing ultrafine conductive fibers 2a in a solution obtained by dissolving the resin binder 2b for forming a conductive layer in a volatile solvent, and the conductive coating liquid has a peelability such as polyethylene terephthalate. By applying and solidifying the upper surface of the substrate 1 to form the conductive layer 2, and further applying and solidifying the adhesive coating liquid made of the adhesive resin to the upper surface of the conductive layer 2 to form the adhesive layer 3, A conductive layer transfer sheet in which the material 1, the conductive layer 2, and the adhesive layer 3 are laminated in this order can be manufactured. A protective film treated with silicon or the like can be further provided on the upper surface of the adhesive layer 3, and in particular, when the pressure-sensitive adhesive layer 3 is used, the protective film is preferably provided.

このようにして得られた導電層転写シートは、例えば、押出し成形されている合成樹脂板の片面若しくは両面に、当該転写フィルムを重ね合せてロールにて熱又は/及び圧力を加え、接着層2と導電層1とを樹脂板に転写することで導電性樹脂板とするために使用される。また、合成樹脂板の上に導電層転写シートを重ね合せた後、熱或は圧力を加えて、接着層2と導電層1とを樹脂板に転写することで導電性樹脂板とするために使用される。   The conductive layer transfer sheet thus obtained is obtained by, for example, superimposing the transfer film on one or both sides of an extruded synthetic resin plate and applying heat or / and pressure with a roll to form an adhesive layer 2. And the conductive layer 1 are transferred to a resin plate to form a conductive resin plate. In order to make a conductive resin plate by superimposing a conductive layer transfer sheet on a synthetic resin plate and then applying heat or pressure to transfer the adhesive layer 2 and the conductive layer 1 to the resin plate. used.

次に、本発明の更に具体的な実施例を挙げる。   Next, more specific examples of the present invention will be given.

[実施例1]
溶媒としてのイソプロピルアルコール/水混合物(混合比3:1)中に単層カーボンナノチューブ(文献Chemical Physics Letters,323(2000)P580−585に基づき合成した物、直径1.3〜1.8nm)と分散剤としてのポリオキシエチレン-ポリオキシプロピレン共重合物を加えて均一に混合、分散させ、単層カーボンナノチューブを0.003質量%、分散剤を0.05質量%含む塗液を調整した。
[Example 1]
Single-walled carbon nanotubes (synthesized based on the literature Chemical Physics Letters, 323 (2000) P580-585, diameter 1.3-1.8 nm) in isopropyl alcohol / water mixture (mixing ratio 3: 1) as solvent A polyoxyethylene-polyoxypropylene copolymer as a dispersant was added and mixed and dispersed uniformly to prepare a coating solution containing 0.003% by mass of single-walled carbon nanotubes and 0.05% by mass of a dispersant.

この塗液を、市販の厚さ50μmのポリエチレンテレフタレート(PET)フィルム(全光線透過率90.9%、ヘーズ0.5%)の片側の表面に塗布して乾燥後、更に、メチルイソブチルケトンで600分の1に希釈した熱硬化性のウレタンアクリレート溶液を塗布して乾燥することにより導電層を形成した。
この導電層形成PETフィルムと、元のPETフィルムの波長550nmにおける光線透過率を、島津製作所製島津自記分光光度計UV−3100PCを用いてそれぞれ測定し、それらの差を導電層の550nm波長の光線透過率とした。その結果、550nm波長の導電層の光線透過率は、60.5%であった。
This coating solution was applied to the surface of one side of a commercially available polyethylene terephthalate (PET) film having a thickness of 50 μm (total light transmittance of 90.9%, haze of 0.5%), dried, and further, methyl isobutyl ketone. A conductive layer was formed by applying and drying a thermosetting urethane acrylate solution diluted to 1/600.
The light transmittance at a wavelength of 550 nm of this conductive layer-formed PET film and the original PET film was measured using a Shimadzu Shimadzu spectrophotometer UV-3100PC manufactured by Shimadzu Corporation, and the difference between the light transmittances was 550 nm wavelength of the conductive layer. It was set as the transmittance. As a result, the light transmittance of the conductive layer having a wavelength of 550 nm was 60.5%.

さらに、この導電層の表面にアクリル系接着剤を塗布して、厚さ2.5μmの接着層を形成し、実施例1の導電層転写シートを得た。   Further, an acrylic adhesive was applied to the surface of the conductive layer to form an adhesive layer having a thickness of 2.5 μm, and the conductive layer transfer sheet of Example 1 was obtained.

この導電層転写フィルムの接着層側の表面抵抗率を三菱化学社製のロレスタ−EPで測定したところ、表面抵抗率が8.7×10Ω/□であった。
また、この導電層転写シートの全光線透過率とヘーズとを、ASTM D1003に準拠して、スガ試験機社製の直読ヘーズコンピューターHGM−2DPで測定したところ、全光線透過率が55.2%、ヘーズが4.5%であった。
When the surface resistivity on the adhesive layer side of this conductive layer transfer film was measured with Loresta EP manufactured by Mitsubishi Chemical Corporation, the surface resistivity was 8.7 × 10 1 Ω / □.
Further, when the total light transmittance and haze of this conductive layer transfer sheet were measured with a direct reading haze computer HGM-2DP manufactured by Suga Test Instruments Co., Ltd. according to ASTM D1003, the total light transmittance was 55.2%. The haze was 4.5%.

さらに、この導電層転写シートの導電層を光学顕微鏡で観察したところ、0.5μm以上の凝集塊は存在しておらず、単層カーボンナノチューブの分散が十分に行われていた。そこで、このシートの導電層を走査電子顕微鏡で観察したところ、単層カーボンナノチューブの分散が十分に行われていて、この電子顕微鏡観察においても凝集塊は存在していなかった。そして、多数のカーボンナノチューブが1束ずつ分離した状態で均一に分散し、単純に交差した状態で接触していることがわかった。
そして、単層カーボンナノチューブの目付け量を測定したところ、265mg/mであった。
Furthermore, when the conductive layer of this conductive layer transfer sheet was observed with an optical microscope, there was no aggregate of 0.5 μm or more, and the single-walled carbon nanotubes were sufficiently dispersed. Therefore, when the conductive layer of this sheet was observed with a scanning electron microscope, the single-walled carbon nanotubes were sufficiently dispersed, and no agglomerates existed even in this electron microscope observation. Then, it was found that a large number of carbon nanotubes were uniformly dispersed in a state where they were separated one by one, and simply contacted in a crossed state.
The measured amount of single-walled carbon nanotubes was 265 mg / m 2 .

さらに、この導電層転写シートを、その接着層が押出し成形中の厚さ5mmのポリカーボネート樹脂板の表面側となるように重ね合せ、ポリシングロールで圧着させた後、ポリエチレンテレフタレートフィルムのみを剥離した。そして、導電性ポリカーボネート樹脂板の表面抵抗率を測定したところ、1.32×10Ω/□の表面抵抗率を有していて、導電層転写シートの導電層が転写されていることがわかった。
この導電性ポリカーボネート樹脂板の全光線透過率は53.5%、ヘーズは5.3%であった。
Furthermore, this conductive layer transfer sheet was overlaid so that the adhesive layer was on the surface side of a polycarbonate resin plate having a thickness of 5 mm during extrusion molding, and was pressure-bonded with a polishing roll, and then only the polyethylene terephthalate film was peeled off. And when the surface resistivity of the conductive polycarbonate resin plate was measured, it was found that it had a surface resistivity of 1.32 × 10 2 Ω / □ and the conductive layer of the conductive layer transfer sheet was transferred. It was.
This conductive polycarbonate resin plate had a total light transmittance of 53.5% and a haze of 5.3%.

[実施例2]
溶剤としてのシクロヘキサノンに、熱可塑性樹脂として塩化ビニル樹脂の粉末を1.7質量%添加して溶解した。この溶液中に単層カーボンナノチューブ(カーボンナノテクノロジーズ社製、直径0.7〜2nm)と分散剤としての酸性ポリマーのアルキルアンモニウム塩溶液を加えて均一に混合、分散させ、カーボンナノチューブを0.3質量%、分散剤を0.18質量%含む塗液を調整した。この塗液を実施例1で用いたのと同じ市販の厚さ50μmのポリエチレンテレフタレート(PET)フィルムの片側の表面に塗布して乾燥することにより導電層を形成した。
[Example 2]
To cyclohexanone as a solvent, 1.7% by mass of vinyl chloride resin powder as a thermoplastic resin was added and dissolved. In this solution, a single-walled carbon nanotube (carbon nanotechnology, diameter 0.7-2 nm) and an alkyl ammonium salt solution of an acidic polymer as a dispersing agent are added and mixed and dispersed uniformly. A coating solution containing 0.18% by mass of a dispersant and 0.18% by mass of a dispersant was prepared. This coating solution was applied to the surface of one side of the same commercially available 50 μm thick polyethylene terephthalate (PET) film as used in Example 1 and dried to form a conductive layer.

この導電層形成PETフィルムの導電層の550nm波長の光線透過率を、実施例1と同様にして測定したところ、95.5%であった。   When the light transmittance at a wavelength of 550 nm of the conductive layer of this conductive layer-formed PET film was measured in the same manner as in Example 1, it was 95.5%.

さらに、この導電層の表面にポリエステルウレタン接着剤を塗布して、厚さ1.5μmの接着層を形成し、実施例2の導電層転写シートを得た。   Furthermore, a polyester urethane adhesive was applied to the surface of the conductive layer to form an adhesive layer having a thickness of 1.5 μm, and the conductive layer transfer sheet of Example 2 was obtained.

この導電層転写シートの表面抵抗率を三菱化学社製のハイレスタ−UPで測定したところ、表面抵抗率が6.3×10Ω/□であった。
また、この導電層転写シートの全光線透過率は87.2%、ヘーズは0.7%であった。
さらに、この導電層転写シートの導電層には0.5μ以上の凝集塊は存在しておらず、導電層の単層カーボンナノチューブの目付け量は17mg/mであった。
When the surface resistivity of this conductive layer transfer sheet was measured with a Hiresta UP manufactured by Mitsubishi Chemical Corporation, the surface resistivity was 6.3 × 10 8 Ω / □.
The conductive layer transfer sheet had a total light transmittance of 87.2% and a haze of 0.7%.
Further, no aggregate of 0.5 μm or more was present in the conductive layer of this conductive layer transfer sheet, and the basis weight of the single-walled carbon nanotubes of the conductive layer was 17 mg / m 2 .

さらに、この導電層転写シートを、その接着層が押出し成形中の厚さ5mmのポリカーボネート樹脂板の表面側となるように重ね合せ、ポリシングロールで圧着させた後、ポリエチレンテレフタレートフィルムのみを剥離した。そして、導電性ポリカーボネート樹脂板の表面抵抗率を測定したところ、2.2×10Ω/□の表面抵抗率を有していて、転写シートの導電層が転写されていることがわかった。この導電性ポリカーボネート樹脂板の全光線透過率は83.1%、ヘーズは1.2%であった。 Furthermore, this conductive layer transfer sheet was overlaid so that the adhesive layer was on the surface side of a polycarbonate resin plate having a thickness of 5 mm during extrusion molding, and was pressure-bonded with a polishing roll, and then only the polyethylene terephthalate film was peeled off. And when the surface resistivity of the conductive polycarbonate resin plate was measured, it was found that it had a surface resistivity of 2.2 × 10 7 Ω / □ and the conductive layer of the transfer sheet was transferred. This conductive polycarbonate resin plate had a total light transmittance of 83.1% and a haze of 1.2%.

また、この導電層転写シートを、その接着層が押出し成形中の厚さ5mmの非晶質ポリエステル樹脂板の表面側となるように重ね合せ、ポリシングロールで圧着させた後、ポリエチレンテレフタレートフィルムのみを剥離した。そして、導電性非晶質ポリエステル樹脂板の表面抵抗率を測定したところ、1.6×10Ω/□の表面抵抗率を有していて、導電層転写シートの導電層が転写されていることがわかった。この導電性非晶質ポリエステル樹脂板の全光線透過率は79.3%、ヘーズは1.8%であった。 Also, this conductive layer transfer sheet was overlaid so that the adhesive layer was on the surface side of an amorphous polyester resin plate having a thickness of 5 mm during extrusion molding, and after pressure bonding with a polishing roll, only the polyethylene terephthalate film was It peeled. And when the surface resistivity of the conductive amorphous polyester resin plate was measured, it had a surface resistivity of 1.6 × 10 7 Ω / □, and the conductive layer of the conductive layer transfer sheet was transferred. I understood it. This conductive amorphous polyester resin plate had a total light transmittance of 79.3% and a haze of 1.8%.

この実施例2で、転写後の表面抵抗率が転写前の表面抵抗率より減少した理由は、転写する時の圧力により、導電層のバインダー内で上下方向に分散して接触していなかったカーボンナノチューブ同士が圧縮されて接触したり、導通可能な間隔まで狭くなって導通し、表面抵抗率が減少したためか、あるいは、カーボンナノチューブが導電層の表面に突出して導通するため表面抵抗率が減少したためであると考えられる。   In Example 2, the reason why the surface resistivity after transfer was smaller than the surface resistivity before transfer was that carbon that was not dispersed and contacted within the binder of the conductive layer due to the pressure at the time of transfer. Because the nanotubes are compressed and contact each other, or because the conduction is reduced to a space where conduction is possible, the surface resistivity is reduced, or the surface resistivity is reduced because the carbon nanotubes protrude and conduct on the surface of the conductive layer. It is thought that.

本発明に係る導電層転写シートの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the conductive layer transfer sheet which concerns on this invention. (A)は導電層転写シートの導電層内部での極細導電繊維の分散状態を示す概略断面図であり、(B)は導電層転写シートの導電層表面での極細導電繊維の分散状態を示す概略断面図である。(A) is a schematic sectional drawing which shows the dispersion | distribution state of the ultrafine conductive fiber inside the conductive layer of a conductive layer transfer sheet, (B) shows the dispersion | distribution state of the ultrafine conductive fiber on the conductive layer surface of a conductive layer transfer sheet. It is a schematic sectional drawing. 導電層転写シートの導電層を平面から見た極細導電繊維の分散状態を示す概略平面図である。It is a schematic plan view which shows the dispersion state of the ultrafine conductive fiber which looked at the conductive layer of the conductive layer transfer sheet from the plane.

符号の説明Explanation of symbols

1 基材
2 導電層
2a 極細導電繊維
3 接着層
DESCRIPTION OF SYMBOLS 1 Base material 2 Conductive layer 2a Extra fine conductive fiber 3 Adhesive layer

Claims (6)

剥離性基材に極細導電繊維を含んだ導電層と接着層とがこの順で形成されていることを特徴とする導電層転写シート。   A conductive layer transfer sheet, wherein a conductive layer containing ultrafine conductive fibers and an adhesive layer are formed in this order on a peelable substrate. 導電層に含まれる極細導電繊維が、凝集することなく分散して互いに接触していることを特徴とする請求項1に記載の導電層転写シート。   The conductive layer transfer sheet according to claim 1, wherein the ultrafine conductive fibers contained in the conductive layer are dispersed without being aggregated and are in contact with each other. 導電層に含まれる極細導電繊維が、1本ずつ分離した状態で、もしくは、複数本集まって束になったものが1束ずつ分離した状態で分散して互いに接触していることを特徴とする請求項1に記載の導電層転写シート。   The ultrafine conductive fibers contained in the conductive layer are dispersed in contact with each other in a state of being separated one by one or in a state where a plurality of bundles are bundled and separated one by one The conductive layer transfer sheet according to claim 1. 極細導電繊維がカーボンナノチューブであることを特徴とする請求項1〜3のいずれかに記載の導電層転写シート。   The conductive layer transfer sheet according to any one of claims 1 to 3, wherein the ultrafine conductive fiber is a carbon nanotube. 導電層は、その550nm波長の光線透過率が50%以上の透明性を有することを特徴とする請求項1〜4のいずれかに記載の導電層転写シート。   The conductive layer transfer sheet according to any one of claims 1 to 4, wherein the conductive layer has transparency with a light transmittance at a wavelength of 550 nm of 50% or more. 接着層が、アクリル系接着樹脂又はポリウレタン系接着樹脂で形成されていることを特徴とする請求項1〜5のいずれかに記載の導電層転写シート。     The conductive layer transfer sheet according to any one of claims 1 to 5, wherein the adhesive layer is formed of an acrylic adhesive resin or a polyurethane adhesive resin.
JP2004222448A 2004-07-29 2004-07-29 Conductive layer transfer sheet Pending JP2006035771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222448A JP2006035771A (en) 2004-07-29 2004-07-29 Conductive layer transfer sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222448A JP2006035771A (en) 2004-07-29 2004-07-29 Conductive layer transfer sheet

Publications (1)

Publication Number Publication Date
JP2006035771A true JP2006035771A (en) 2006-02-09

Family

ID=35901255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222448A Pending JP2006035771A (en) 2004-07-29 2004-07-29 Conductive layer transfer sheet

Country Status (1)

Country Link
JP (1) JP2006035771A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094757A2 (en) * 2005-02-22 2007-08-23 Eastman Kodak Company Adhesive transfer method of carbon nanotube layer
JP2008201635A (en) * 2007-02-21 2008-09-04 Hokkaido Univ Method for forming micro-carbon monomolecular film, surface coating method and coated object
JP2008204872A (en) * 2007-02-21 2008-09-04 Hokkaido Univ Transparent conductive film material and transparent laminate
WO2009107758A1 (en) * 2008-02-29 2009-09-03 東レ株式会社 Substrate with a transparent conductive film, method of manufacturing the same, and touch panel using the same
JP2010168722A (en) * 2008-12-26 2010-08-05 Kao Corp Nanofiber sheet
WO2010123265A2 (en) * 2009-04-23 2010-10-28 (주)탑나노시스 Carbon nanotube conductive film and method for manufacturing same
WO2010151013A2 (en) * 2009-06-22 2010-12-29 (주)탑나노시스 Carbon nanotube conductive film and method for manufacturing same
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
KR101097417B1 (en) * 2009-04-23 2011-12-23 (주)탑나노시스 Carbon nanotube conductive layer and the method for manufacturing the same
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
KR101128291B1 (en) 2009-04-23 2012-03-23 (주)탑나노시스 Carbon nanotube conductive layer and the method for manufacturing the same
KR20140128436A (en) 2012-03-23 2014-11-05 후지필름 가부시키가이샤 Conductive composition, conductive member, conductive member manufacturing method, touch panel, and solar cell
KR20140129206A (en) 2012-03-23 2014-11-06 후지필름 가부시키가이샤 Conductive composition, conductive member, conductive member manufacturing method, touch panel, and solar cell
JP2016000364A (en) * 2015-10-05 2016-01-07 日本電信電話株式会社 Conductive material, bioelectrode, and biological signal measuring device
US9343594B2 (en) 2011-09-28 2016-05-17 Fujifilm Corporation Conductive composition, conductive member and production method thereof, touch panel, and solar cell
WO2016163364A1 (en) * 2015-04-06 2016-10-13 大日本印刷株式会社 Electroconductive layered product, touch panel, and process for producing electroconductive layered product
JP2016196180A (en) * 2015-04-06 2016-11-24 大日本印刷株式会社 Conductive laminate and touch panel
JP2016196179A (en) * 2015-04-06 2016-11-24 大日本印刷株式会社 Production method of conductive film and conductive film
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
KR20170126935A (en) * 2015-02-23 2017-11-20 린텍 오브 아메리카, 인크. Adhesive sheet
JPWO2016136685A1 (en) * 2015-02-23 2017-11-30 リンテック オブ アメリカ インクLintec Of America, Inc. Adhesive sheet
JP2017224477A (en) * 2016-06-15 2017-12-21 国立大学法人信州大学 Method of manufacturing elastic conductive film
JP2021035770A (en) * 2020-10-28 2021-03-04 リンテック オブ アメリカ インコーポレーテッドLintec of America, Inc. Plural-layer composite material including adhesive agent and one or plurality of nanofiber sheets
WO2022071394A1 (en) * 2020-10-01 2022-04-07 凸版印刷株式会社 Conductive film transfer sheet, production method for conductive film transfer sheet, conductive article, production method for conductive article, and conductive film
US11377537B2 (en) 2015-09-14 2022-07-05 Lintec Of America, Inc. Multilayer composites comprising adhesive and one or more nanofiber sheets

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094757A2 (en) * 2005-02-22 2007-08-23 Eastman Kodak Company Adhesive transfer method of carbon nanotube layer
WO2007094757A3 (en) * 2005-02-22 2007-11-01 Eastman Kodak Co Adhesive transfer method of carbon nanotube layer
US8618531B2 (en) 2005-08-12 2013-12-31 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8865027B2 (en) 2005-08-12 2014-10-21 Cambrios Technologies Corporation Nanowires-based transparent conductors
US9899123B2 (en) 2005-08-12 2018-02-20 Jonathan S. Alden Nanowires-based transparent conductors
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8174667B2 (en) 2006-10-12 2012-05-08 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US10749048B2 (en) 2006-10-12 2020-08-18 Cambrios Film Solutions Corporation Nanowire-based transparent conductors and applications thereof
US8760606B2 (en) 2006-10-12 2014-06-24 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
JP2008204872A (en) * 2007-02-21 2008-09-04 Hokkaido Univ Transparent conductive film material and transparent laminate
JP2008201635A (en) * 2007-02-21 2008-09-04 Hokkaido Univ Method for forming micro-carbon monomolecular film, surface coating method and coated object
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
WO2009107758A1 (en) * 2008-02-29 2009-09-03 東レ株式会社 Substrate with a transparent conductive film, method of manufacturing the same, and touch panel using the same
US8642895B2 (en) 2008-02-29 2014-02-04 Toray Industries, Inc. Substrate with transparent conductive layer and method for producing the same, and touch panel using the same
JP2010168722A (en) * 2008-12-26 2010-08-05 Kao Corp Nanofiber sheet
WO2010123265A3 (en) * 2009-04-23 2011-03-31 (주)탑나노시스 Carbon nanotube conductive film and method for manufacturing same
KR101128291B1 (en) 2009-04-23 2012-03-23 (주)탑나노시스 Carbon nanotube conductive layer and the method for manufacturing the same
CN102414761A (en) * 2009-04-23 2012-04-11 拓普纳诺斯株式会社 Carbon nanotube conductive film and method for manufacturing same
KR101097417B1 (en) * 2009-04-23 2011-12-23 (주)탑나노시스 Carbon nanotube conductive layer and the method for manufacturing the same
WO2010123265A2 (en) * 2009-04-23 2010-10-28 (주)탑나노시스 Carbon nanotube conductive film and method for manufacturing same
WO2010151013A3 (en) * 2009-06-22 2011-04-21 (주)탑나노시스 Carbon nanotube conductive film and method for manufacturing same
WO2010151013A2 (en) * 2009-06-22 2010-12-29 (주)탑나노시스 Carbon nanotube conductive film and method for manufacturing same
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
US9343594B2 (en) 2011-09-28 2016-05-17 Fujifilm Corporation Conductive composition, conductive member and production method thereof, touch panel, and solar cell
KR20140128436A (en) 2012-03-23 2014-11-05 후지필름 가부시키가이샤 Conductive composition, conductive member, conductive member manufacturing method, touch panel, and solar cell
US9633755B2 (en) 2012-03-23 2017-04-25 Fujifilm Corporation Conductive composition, conductive member, conductive member production method, touch panel, and solar cell
KR20140129206A (en) 2012-03-23 2014-11-06 후지필름 가부시키가이샤 Conductive composition, conductive member, conductive member manufacturing method, touch panel, and solar cell
US9224518B2 (en) 2012-03-23 2015-12-29 Fujifilm Corporation Conductive composition, conductive member, conductive member production method, touch panel, and solar cell
KR20170126935A (en) * 2015-02-23 2017-11-20 린텍 오브 아메리카, 인크. Adhesive sheet
JPWO2016136685A1 (en) * 2015-02-23 2017-11-30 リンテック オブ アメリカ インクLintec Of America, Inc. Adhesive sheet
JPWO2016136686A1 (en) * 2015-02-23 2017-11-30 リンテック オブ アメリカ インクLintec Of America, Inc. Adhesive sheet
KR102499456B1 (en) * 2015-02-23 2023-02-14 린텍 오브 아메리카, 인크. adhesive sheet
US10981356B2 (en) 2015-02-23 2021-04-20 Lintec Corporation Adhesive sheet
US11247444B2 (en) 2015-04-06 2022-02-15 Dai Nippon Printing Co., Ltd. Electroconductive layered product, touch panel, and process for producing electroconductive layered product
WO2016163364A1 (en) * 2015-04-06 2016-10-13 大日本印刷株式会社 Electroconductive layered product, touch panel, and process for producing electroconductive layered product
US11760070B2 (en) 2015-04-06 2023-09-19 Dai Nippon Printing Co., Ltd. Electroconductive layered product, touch panel, and process for producing electroconductive layered product
JP2016196179A (en) * 2015-04-06 2016-11-24 大日本印刷株式会社 Production method of conductive film and conductive film
JP2016196180A (en) * 2015-04-06 2016-11-24 大日本印刷株式会社 Conductive laminate and touch panel
US11377537B2 (en) 2015-09-14 2022-07-05 Lintec Of America, Inc. Multilayer composites comprising adhesive and one or more nanofiber sheets
JP2016000364A (en) * 2015-10-05 2016-01-07 日本電信電話株式会社 Conductive material, bioelectrode, and biological signal measuring device
JP2017224477A (en) * 2016-06-15 2017-12-21 国立大学法人信州大学 Method of manufacturing elastic conductive film
WO2022071394A1 (en) * 2020-10-01 2022-04-07 凸版印刷株式会社 Conductive film transfer sheet, production method for conductive film transfer sheet, conductive article, production method for conductive article, and conductive film
JP2022059307A (en) * 2020-10-01 2022-04-13 凸版印刷株式会社 Conductive film transfer sheet and manufacturing method thereof, conductive object and manufacturing method thereof, and conductive film
JP7113439B2 (en) 2020-10-01 2022-08-05 凸版印刷株式会社 Conductive film transfer sheet and manufacturing method thereof, conductive object and manufacturing method thereof, and conductive film
JP2021035770A (en) * 2020-10-28 2021-03-04 リンテック オブ アメリカ インコーポレーテッドLintec of America, Inc. Plural-layer composite material including adhesive agent and one or plurality of nanofiber sheets

Similar Documents

Publication Publication Date Title
JP2006035771A (en) Conductive layer transfer sheet
JP3903159B2 (en) Method for producing conductive molded body
JP4471346B2 (en) Electromagnetic shield
JP2006171336A (en) Transparent electrode member for image display, and the image display device
JP2007112133A (en) Electroconductive shaped article
US20060257638A1 (en) Articles with dispersed conductive coatings
KR101410854B1 (en) Nano carbon materials having multiple hydrogen bonding motifs and metal nanomaterial hybrid materials and their fabrication method
US7956287B2 (en) Transparent conductive formed article for a touch panel and touch panel
US20080044651A1 (en) Coatings Comprising Carbon Nanotubes
JP2007229989A (en) Conductive molded body and its manufacturing method
JP2006049843A (en) Antistatic molding for image display apparatus
US20150010695A1 (en) Transparent conductive electrodes comprising merged metal nanowires, their structure design, and method of making such structures
JP5266889B2 (en) Method for manufacturing light transmissive conductor
JP2006035773A (en) Self-adhesive conductive molding
US20150014025A1 (en) Transparent conductive electrodes comprising merged metal nanowires, their structure design, and method of making such structures
JP2005277405A (en) Optically transparent antinoise formed body for image display device
JP2004348121A (en) Electromagnetic wave-shielding light diffusing sheet
WO2008012196A1 (en) Composite
JP2006133528A (en) Anti-static light diffusion sheet
US20150140287A1 (en) Transparent conductive electrodes comprising merged metal nanowires, their structure design, and method of making such structures
JP3398587B2 (en) Moldable antistatic resin molded product
JP6580431B2 (en) Transparent conductive film
JP4454426B2 (en) Conductive film for in-mold molding
JP4795780B2 (en) Antistatic resin molding
JP4488826B2 (en) Antistatic resin molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100303