JP2004253567A - Radio wave absorption cover member and high-frequency device using the same - Google Patents

Radio wave absorption cover member and high-frequency device using the same Download PDF

Info

Publication number
JP2004253567A
JP2004253567A JP2003041598A JP2003041598A JP2004253567A JP 2004253567 A JP2004253567 A JP 2004253567A JP 2003041598 A JP2003041598 A JP 2003041598A JP 2003041598 A JP2003041598 A JP 2003041598A JP 2004253567 A JP2004253567 A JP 2004253567A
Authority
JP
Japan
Prior art keywords
radio wave
wave absorbing
layer
metal
frequency device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003041598A
Other languages
Japanese (ja)
Other versions
JP4189234B2 (en
Inventor
Hidenobu Egashira
秀伸 江頭
Hideya Matsumoto
英也 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003041598A priority Critical patent/JP4189234B2/en
Publication of JP2004253567A publication Critical patent/JP2004253567A/en
Application granted granted Critical
Publication of JP4189234B2 publication Critical patent/JP4189234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio wave absorption cover member which makes possible the fabrication of a high-frequency device which is low in height and never have the separation of a radio wave absorption layer due to heat by strongly attaching the radio wave absorption layer directly to the radio wave absorption cover member, and also to provide a high-frequency device. <P>SOLUTION: The radio wave absorption cover member 1 has such a structure that, on one principal plane of the metal cover 2, a metal layer 3a containing one or more kind of Ti, Zr, and Hf, an oxide layer 3c of the metal layer 3a, and the radio wave absorption layer 3b which contains a magnetic material of 51 to 90 wt.% which is mainly made of an Ni-Fe alloy and glass of 10 to 49 wt.% whose softening point ranges between 250 and 500°, and which has a thickness between 200 and 500 μm are stacked in this order. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高周波素子を収容する高周波装置に用いられる電波吸収蓋部材および高周波装置に関し、特にマイクロ波帯やミリ波帯の高周波(電磁波)の吸収特性に優れる電波吸収蓋部材および高周波装置に関する。
【0002】
【従来の技術】
従来の電波吸収蓋部材の断面図を図4に、従来の高周波装置の断面図を図5に示す。これらの図に示すように、11は電波吸収蓋部材、12は金属蓋体、13は電波吸収層、14は高周波装置、15は基体、16は高周波素子、Sは接合材である。
【0003】
近年、電子機器はますます高速化、高密度化、デジタル化が進み、小型、多機能化も加速傾向にある。電子機器の小型多機能化の要求から、特にマイクロ波帯やミリ波帯で使用される高周波素子16は、配線基板への部品実装密度が非常に高まり、高周波素子16のピン間、周辺回路、他の高周波素子等に電磁波障害が発生するといった問題がある。この原因は、高周波素子16としての多数の半導体素子にあり、個々の半導体素子で発生する微弱な電磁波が他の半導体素子にとっては妨害波(放射ノイズ)となり、配線の線間結合やピン間の結合の増大、放射ノイズによる電磁干渉に起因する性能劣化や異常共振等が誘起され、電磁波障害が発生するためである。
【0004】
従来、このようないわゆる電磁波障害に対しては、回路にノイズフィルタを挿入したり、高周波素子16の周囲を金属板や金属メッキ層等の導電層をコーティングしたケースで囲んで成る電磁シールディングを施したり、または電波吸収シートから成る電波吸収層13を回路基板表面、高周波装置14表面に熱硬化性樹脂、低融点ガラスあるいは半田等の低融点ロウ材などの接合材Sで貼り付けて、電磁波障害を抑制してきた(下記の特許文献1参照)。
【0005】
また、針状または扁平状であって表面に酸化被膜を有する軟磁性粉末と有機結合剤等とを含む複合磁性体で構成されているEMI(Electro Magnetic Interference:電磁的障害)対策部品を、高周波装置の上面に配置して電磁波障害を抑制することが提案されている(下記の特許文献2参照)。
【0006】
さらに、ガラスまたはセラミックスをマトリックスとし、Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,W,Fe,Ni,Co,Cu,Al,Mg,Znおよびそれらの合金、ステンレス鋼、パーマロイおよび超耐熱性合金から選ばれる少なくとも一種である金属粒子を複合相とする複合材料から成る電波吸収材料が開示されている(下記の特許文献3参照)。
【0007】
【特許文献1】
特開2002−289720号公報
【0008】
【特許文献2】
特開平10−64714号公報
【0009】
【特許文献3】
特開平9−255408号公報
【0010】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載されている、電波吸収シートから成る電波吸収層13を高周波装置14表面に貼り付けるといった手段は、高周波装置14全体の厚さが厚くなり、機器の小型化には不利である。また、電波吸収層13がゴムやエポキシ樹脂等に磁性材料を混合させたものであり、また金属蓋体12に電波吸収層13を樹脂接着剤で貼り付けているため、電波吸収層13や樹脂接着剤の耐熱性が非常に小さいことから、高周波素子16の熱等によって電波吸収層13に容易に反りが起こり、電波吸収層13が金属蓋体12から剥離するといった問題点があった。
【0011】
また、特許文献2に記載されている、EMI対策部品として用いられる扁平状、針状の軟磁性体粉末を用いた複合磁性体も有機結合材を含むため、耐熱性、寸法安定性に劣るといった問題があった。従って、この複合磁性体を高周波装置14の構成部品として用いると、熱硬化性樹脂、低融点ろう材、低融点ガラス等による接合ができないといった問題点があった。
【0012】
さらに、特許文献3に記載されている、ガラスまたはセラミックスをマトリックスとし、Ti等の金属粒子を複合相とする複合材料から成る電波吸収材料は、それ自体は耐熱性および機械的特性に優れたものである。しかしながら、特許文献3には、このような電波吸収材料を他の金属蓋体等に接合性良く被着させて、電波吸収蓋部材やパッケージ、電子装置、半導体装置等に好適に適用する点については一切開示されていない。
【0013】
従って、本発明は上記従来の問題点を鑑みて完成されたものであり、その目的は、電波吸収蓋部材に電波吸収層を直接強固に被着できるようにして、電波吸収層が熱によって剥れることのない低背化された高周波装置を作製できる電波吸収蓋部材およびこれを用いた高周波装置を提供することにある。
【0014】
【課題を解決するための手段】
本発明の電波吸収蓋部材は、金属蓋体の一主面に、Ti,ZrおよびHfのうちの1種以上を含有したAg−Cu合金を主成分とする金属層と、該金属層の酸化層と、Ni−Fe合金を主成分とする磁性材を51乃至90質量%および軟化点が250乃至500℃のガラスを10乃至49質量%含有するとともに、厚みが200乃至500μmである電波吸収層とが順次積層されていることを特徴とする。
【0015】
本発明の電波吸収蓋部材は、電波吸収層が、Ni−Fe合金を主成分とする磁性材を51乃至90質量%および軟化点が250乃至500℃のガラスを10乃至49質量%含有していることから、耐熱性に優れたものとなり、高周波素子の熱や高周波装置を外部電気回路基板等に半田等で接合する際の熱によって電波吸収層が金属蓋体から剥離することがなくなる。また、電波吸収層の厚みが200乃至500μmであることから、電波吸収蓋部材の大幅な薄型化が可能となり、高周波装置の大幅な低背化につながる。
【0016】
また、電波吸収層は、Ti,ZrおよびHfのうちの1種以上を含有したAg−Cu合金を主成分とする金属層と金属層の酸化層とを介して、金属蓋体の一主面に積層されていることから、金属層に含有されるTi,Zr,Hfの活性金属が金属蓋体の金属粒界に拡散して金属蓋体と金属層とを強固に接合するとともに、金属層の酸化層の酸化物が電波吸収層中のガラスの酸化物成分と反応して金属層と電波吸収層とを強固に接合する。その結果、金属蓋体を基体にシーム溶接やロウ付けする際に230〜240℃の熱履歴が加わったとしても、電波吸収層が熱によって剥離することがなくなる。
【0017】
また、電波吸収層が電波吸収して電磁波のエネルギーを熱に変換した際に、その熱を互いに強固に接合された電波吸収層、金属層および金属蓋体を介して外部に効率良く放熱させることができる。
【0018】
本発明の高周波装置は、上面に形成された凹部の底面に高周波素子が載置される載置部を有する基体と、前記載置部に載置固定された高周波素子と、前記基体の上面の前記凹部の周囲に前記一主面が前記高周波素子に対向するように取着された請求項1記載の電波吸収蓋部材とを具備していることを特徴とする。
【0019】
本発明の高周波装置は、上記の構成により、電波吸収層が熱によって剥れることのない低背化されたものとなるとともに、内部で電磁波の共振が発生するのを抑えることができる。その結果、マイクロ波帯やミリ波帯の高周波帯域で良好にEMI対策の施された高周波装置を作製することができる。
【0020】
【発明の実施の形態】
本発明の電波吸収蓋部材および高周波装置を以下に詳細に説明する。 図1は、本発明の電波吸収蓋部材の実施の形態の一例を示す断面図、図2はその要部拡大断面図である。これらの図において、1は電波吸収蓋部材、2は金属蓋体、3は電波吸収体、3aは金属層、3bは電波吸収層、3cは酸化層であり、主にこれらで本発明の電波吸収蓋部材1が構成されている。
【0021】
本発明の電波吸収蓋部材1は、金属蓋体2の一主面に、活性金属であるTi,ZrおよびHfのうちの1種以上を含有したAg−Cu合金を主成分とする金属層3aと、金属層3aの酸化層3cと、Ni−Fe合金を主成分とする磁性材を51乃至90質量%および軟化点が250乃至500℃のガラスを10乃至49質量%含有するとともに、厚みが200乃至500μmである電波吸収層3bとが順次積層されている。
【0022】
本発明における金属蓋体2は、例えば42アロイ(Fe−Ni合金)、Fe−Ni−Co合金等の金属や合金から成るが好ましく、これらは電磁波シールド性や電波吸収層3bとの熱整合が良いという利点がある。そして、金属蓋体2は、Fe−Ni−Co合金等の母材を打抜き金型で打抜くことによって、四角形状等の所定の形状に製作される。
【0023】
なお、金属蓋体2の電波吸収層3bが被着されていない領域には、酸化腐食の防止とロウ付け性の向上のため、Niめっき層やAuめっき層等のめっき層が形成されている。
【0024】
本発明の電波吸収層3bは、Ni−Fe合金を主成分とする磁性材を51乃至90質量%および軟化点が250乃至500℃のガラスを10乃至49質量%含有するとともに、厚みが200乃至500μmである。これにより、従来の200℃程度の耐熱性しかないゴムや樹脂に磁性材を混入させたものと異なり耐熱性に優れ、接着剤を用いて貼り付けることもないので電波吸収層3bが金属蓋体2から剥離することもない。したがって、電波吸収層3bは、耐熱性に優れたものとなり、高周波素子の熱や高周波装置を外部電気回路基板等に半田等で接合する際の熱によって電波吸収層3bが金属蓋体2から剥離することがなくなる。また、電波吸収層3bの厚みが200乃至500μmであることから、電波吸収蓋部材1の大幅な薄型化が可能となり、高周波装置の大幅な低背化につながる。
【0025】
Ni−Fe合金を主成分とする磁性材としては、例えば36−パーマロイ(Feを36質量%含有するFe−Ni合金)、45−パーマロイ、78−パーマロイ、スーパーマロイ(急冷熱処理Mo含有Fe−Ni合金)、Cr−パーマロイ(Cr含有Fe−Ni合金)、Mo−パーマロイ(Mo含有Fe−Ni合金)などが用いられる。
【0026】
また、軟化点が250乃至500℃のガラスとしては、高周波素子6(図3)への熱的影響を小さくすること、およびガラス内の残留応力を小さくする観点から、できる限り低温で溶融可能なものが好ましく、例えば、50〜80質量%の酸化鉛と15〜20質量%のフッ化鉛とを主成分として含むガラスが、軟化点が約300℃であり耐熱性に優れたものであることから、好適に用いられる。
【0027】
磁性材が90質量%を超えると、粉体とされた磁性材のガラスへの分散性が悪くなり、電波吸収層3bの強度が著しく低下し、電波吸収層3bの剥離が発生し易くなる。一方、51質量%未満だと、高周波装置と成した際に高周波装置内部で電磁波の共振を抑えることが不十分となり、また電波吸収層3bに反りが発生して剥離し易くなる。
【0028】
ガラスが10質量%未満だと、磁性材の分散性が悪くなり、電波吸収層3bの強度が著しく低下し、電波吸収層3bの剥離が発生し易くなる。一方、49質量%を超えると、高周波装置と成した際に高周波装置内部で電磁波の共振を抑えることが不十分となり、また電波吸収層3bに反りが発生して剥離し易くなる。
【0029】
ガラスの軟化点が250℃未満だと、電波吸収蓋部材1を高周波素子6を収容した基体にシーム溶接やロウ付けする際に、電波吸収層3bが溶融し易くなる。一方、ガラスの軟化点が500℃を超えると、磁性材が凝集してしまい、その結果電波吸収層3bの強度が著しく低下して電波吸収層3bが剥離し易くなる。
【0030】
電波吸収層3bの厚みが200μm未満では、電波吸収特性が不十分となる傾向があり、厚みが500μmを超えると、電波吸収蓋部材1全体が厚くなり薄型化が困難になる。また、金属蓋体2と電波吸収層3bとの熱膨張差によって金属蓋体2に反りが発生して、電波吸収層3bが剥離し易くなる。
【0031】
本発明の電波吸収蓋部材1は、電波吸収層3bは、活性金属であるTi,ZrおよびHfのうちの1種以上を含有したAg−Cu合金を主成分とする金属層3a、金属層3aの酸化層3cを介して金属蓋体2の一主面に積層されていることから、金属層3aに含有されるTi,Zr,Hfの活性金属が金属蓋体2の金属粒界に拡散して金属蓋体2と金属層3aとを強固に接合するとともに、金属層3aの酸化層3cの酸化物が電波吸収層3b中のガラスの酸化物成分と反応して金属層3aと電波吸収層3bとを強固に接合する。その結果、金属蓋体2を基体にシーム溶接やロウ付けする際に230〜240℃の熱履歴が加わったとしても、電波吸収層3bが熱によって剥離することがなくなる。
【0032】
また、電波吸収層3bが電波吸収して電磁波のエネルギーを熱に変換した際に、その熱を互いに強固に接合された電波吸収層3b、金属層3aおよび金属蓋体2を介して外部に効率良く放熱させることができる。
【0033】
このような電波吸収層3b、金属層3aは以下の方法により金属蓋体2に被着される。まず、Ag−Cu合金粉末とTi,ZrおよびHfのうちの1種以上の活性金属粉末、アクリル樹脂等の有機バインダ、トルエン,アセトン等の溶剤を混合して得た活性金属ペーストを、金属蓋体2に厚みが約70μmとなるようにスクリーン印刷し、還元雰囲気中、約800℃の温度で熱処理して金属蓋体2に密着させる方法により金属層3aを被着する。次に、Ni−Fe合金を主成分とする磁性材と軟化点が250乃至500℃のガラスに有機溶剤、溶媒を添加混合して得た磁性材ペーストを、金属蓋体2に厚みが200乃至500μmとなるようにスクリーン印刷して、電波吸収層3bとなる磁性材ペースト層を形成し、大気中、約350℃で焼成させることで、電波吸収層3bのガラス成分と金属層3aの活性金属が酸化して形成された酸化層3cが同時に形成される。これにより、金属層3aに電波吸収層3bが酸化層3cを介して強固に被着される。
【0034】
金属層3aの厚みは50〜100μmが好ましい。50μm未満では、活性金属が酸化して形成される酸化層3cが十分な厚さとならない傾向にある。100μmを超えると、還元雰囲気中で熱処理した際、金属層3a内で不均一な部分を生じることがある。
【0035】
酸化層3cの厚みは1〜3μmが好ましい。1μm未満では、金属層3aと電波吸収層3bとの接合強度が弱くなり、熱により電波吸収層3bが金属層3aから剥れ易くなる。3μmを超えると、過剰酸化となり、酸化層3cと電波吸収層3bとの接合界面において気泡をまき込み易くなるため、接合面積が減少して電波吸収層3bが金属層3aから剥れ易くなる。
【0036】
次に、本発明の電波吸収蓋部材1を用いた高周波装置4について、図3に基づいて詳細に説明する。同図は、本発明の高周波装置4の実施の形態の一例を示し、(a)は金属から成る基体5aを用いた高周波装置の断面図、(b)は絶縁体から成る基体5bを用いた高周波装置の断面図である。これらの図に示すように、2は金属蓋体、3は電波吸収体、4は高周波装置、5a,5bは基体、6は高周波素子、7はメタライズ層、8は封止材である。
【0037】
本発明の高周波装置は、上面に形成された凹部の底面に高周波素子6が載置される載置部を有する基体5a,5bと、載置部に載置固定された高周波素子6と、基体5a,5bの上面の凹部の周囲に一主面が高周波素子6に対向するように取着された本発明の電波吸収蓋部材1とを具備している。
【0038】
本発明における基体5a,5bは、上面の中央部に高周波素子6を収容するための凹部が設けられており、この凹部の底面に高周波素子6が低融点ガラス、樹脂接着剤、ロウ材等の接着剤を介して接着固定される。また、基体5a,5bの凹部の側面や底面から外面にかけて、複数のメタライズ配線層や複数のリード端子(図示せず)が、基体5a,5bの表面をつたって、または基体5a,5bを貫通するとともにガラスで気密封止されて設けられている。このメタライズ配線層やリード端子の凹部の底面に位置する部位は、高周波素子6の各電極がボンディングワイヤ等(図示せず)を介して電気的に接続され、基体5a,5bの外面に導出された部位は、外部電気回路基板の配線導体(図示せず)にボンディングワイヤ等の導電性接続部材を介して電気的に接続される。
【0039】
金属からなる基体5aは、42アロイやFe−Ni−Co合金等のから成るのが好ましく、それらの金属の母材を打抜き金型で打ち抜いたり、切削などの機械加工を施すことによって、凹部を有する所定の形状のものとして製作される。なお、基体5aの表面に、耐食性に優れ、Au−Snロウ材や半田等のロウ材との濡れ性の良好な金等の金属をめっき法等により、0.1〜1μmの厚さに被着させておくのが好ましい。
【0040】
そして、基体5aの上面の凹部の周囲と電波吸収蓋部材1の下面の外周部とを、シーム溶接などの抵抗溶接で接合する。または、電波吸収蓋部材1の下面の外周部に被着形成されたロウ材から成る封止材8を介して接合したり、さらにはシーム溶接とロウ付けとを組み合わせても構わない。
【0041】
例えば、基体5aと電波吸収蓋部材1とをシーム溶接する場合、基体5aの上面の凹部の周囲に電波吸収蓋部材1を載置し、窒素雰囲気の下で、電波吸収蓋部材1の上面の外周部に通電されたローラー電極を当てて、電波吸収蓋部材1を基体5a側にローラー電極で一定圧力で押圧しつつローラー電極を周回させて、0.5〜10分間圧着させることにより、気密に接合する。
【0042】
一方、絶縁体からなる基体5bの場合、基体5bは、酸化アルミニウム質焼結体、ムライト質焼結体、窒化アルミニウム質焼結体、炭化珪素質焼結体、ガラスセラミックス等を主成分とする焼結体(セラミックス)等の無機材料、または樹脂から成る。例えば、基体5bが酸化アルミニウム質焼結体から成る場合、先ずアルミナ(Al)やシリカ(SiO)、カルシア(CaO)、マグネシア(MgO)等の原料粉末に適当な有機溶剤、溶媒を添加混合して泥漿状と成し、これを従来周知のドクターブレード法やカレンダーロール法等によりシート状に成形してセラミックグリーンシート(以下、グリーンシートともいう)を得る。その後、グリーンシートを所定形状に打ち抜き加工するとともに複数枚積層し、約1600℃の温度で焼成することにより製作される。
【0043】
そして、基体5bの場合、その上面の凹部の周囲には、電波吸収蓋部材1に接合するための枠状のメタライズ層7が被着される。このメタライズ層7や凹部の側面や底面に形成されたメタライズ配線層は、タングステンやモリブデン、マンガン等の高融点金属から成り、これらの粉末に有機溶剤、溶媒を添加混合した金属ペーストをそれぞれグリーンシートの所定位置に従来周知のスクリーン印刷法により所定パターンに被着形成させておき、グリーンシートと同時に焼成することにより形成される。なお、メタライズ層7の表面には、耐食性に優れ、Au−Snロウ材や半田等のロウ材との濡れ性の良好な金等の金属を、めっき法等により0.1〜1μmの厚さに被着させておくのがよく、フラックスを用いることなく金属蓋体2と接合することが可能となる。
【0044】
なお、半田等に含まれるフラックスは、高周波装置4内部に飛散すると、高周波素子6の電極を腐蝕し断線を発生させる原因となることから、メタライズ層7の表面には、金等の金属をめっき法等により被着させておき、メタライズ層7と電波吸収蓋部材1との接合をフラックスを用いずに行なうことが好ましい。そして、メタライズ層7に電波吸収蓋部材1が、その下面の外周部に被着形成された封止材8を介して接合される。
基体5bと電波吸収蓋部材1との接合は、基体5b上面の凹部の周囲に形成されたメタライズ層7と電波吸収蓋部材1との間に封止材8が挟まるように電波吸収蓋部材1を基体5b上面に載置し、電波吸収蓋部材1を基体5b側に一定圧力で押圧しながらピーク温度が約280〜300℃で窒素雰囲気のシール炉に0.5〜10分間入れて、封止材8を溶融させることにより、封止材8が流れ出しフィレットを形成して気密に接合されることとなる。
【0045】
かくして、本発明の電波吸収蓋部材1および高周波装置4は、基体5a,5bの凹部底面の載置部に半導体素子等の高周波素子6を樹脂接着剤等を介して載置固定し、高周波素子6の各電極をボンディングワイヤ等を介してリード端子やメタライズ配線層に接続し、しかる後、基体5aの上面の凹部の周囲に電波吸収蓋部材1をシーム溶接で接合したり、あるいは電波吸収蓋部材1の下面の外周部に被着された封止材8を加熱溶融させ、メタライズ層7に接合することにより、基体5と電波吸収蓋部材1とを封止することによって、製品としての高周波装置4となる。
【0046】
なお、本発明は上記実施の形態に限定されず、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何等差し支えない。例えば、上述の実施の形態では高周波素子6としてIC,LSI等の半導体素子を用いた例について説明したが、高周波素子6として圧電振動子や弾性表面波素子等の電子部品を用いることもできる。また、電波吸収蓋部材1を平板状とし、基体5a,5bを上面の中央部に凹部を有する形状としたが、基体5a,5bを平板状とし、基体5a,5bの上面の外周部に枠体をロウ材や樹脂接着剤で取着した高周波装置であってもよい。また、基体5a,5bを平板状とし、電波吸収蓋部材1を、基体5a,5bと対向する面に凹部を有する形状としてもよい。
【0047】
【実施例】
本発明の電波吸収蓋部材の実施例を以下に説明する。
【0048】
図1の電波吸収蓋部材1を以下のようにして製作した。まず、寸法が縦21.1mm×横19.6mm×厚み0.3mmの四角形の板状で、Fe−Ni−Co合金から成る金属蓋体2を準備し、その電波吸収層3bが形成される部位以外の部位の全面に厚さ2.0μmのNiめっき層と厚さ0.5μmのAuめっき層を被着た。
【0049】
まず、金属蓋体2の一主面の電波吸収層3bが形成される部位に、活性金属としてTiを3質量%(Ag−Cu合金を100質量%とする)含有したAg72質量%−Cu28質量%のAg−Cu共晶からなる金属層3aを、スクリーン印刷で厚さ70μmに形成し、還元雰囲気中、800〜850℃の温度で熱処理して金属蓋体2に被着した。
【0050】
電波吸収層3bは、パーマロイ(Fe42質量%、Ni58質量%のFe−Ni合金)から成る磁性材と、酸化鉛−フッ化鉛系ガラス(PbOを56質量%、PbFを19質量%主成分として含有する軟化点280℃のガラス)を、種々の割合(下記表1参照)で混合し、これに多価アルコールエステル系有機溶剤(「CK−172」互応化学工業株式会社製)を少量添加し、スクリーン印刷法によって、縦19.1mm×横17.6mmの大きさ、および焼成後に種々の厚み(下記表1参照)となるようにして、金属蓋体2の一主面の酸化層3c上に塗布した。これを、炉中で温度300℃〜350℃で焼成して、厚さ1.5μmの酸化層3cを形成し、電波吸収層3bを金属蓋体2に被着形成した。
【0051】
得られた各種試料について、電波吸収蓋部材1の反り、金属蓋体2と電波吸収層3bとの接着強度、電磁波減衰効果を測定した。
【0052】
なお、電波吸収蓋部材1の反りについては、通炉前と通炉後を比較して、通炉後に反りが0.15mm未満であったものを○、0.15mm以上であったものを×とした。
【0053】
接着強度の測定は、金属蓋体2の一主面に電波吸収層3bが被着されている状態で、49N(ニュートン)の荷重で3点曲げ試験を行ない、プッシュプルゲージが1.0mmまで下降した際に電波吸収層3bが剥がれなかったものを○、剥がれたのものを×とした。
【0054】
電磁波減衰効果の測定は、図3(a)に示すように、基体5aの凹部の底面に高周波素子6をAu−Snロウ材で接合し、電波吸収蓋部材1を基体5aにシーム溶接した高周波装置4の各試料を作製して、キャビティ共振抑制効果の評価を行った。すなわち、ネットワークアナライザー(アジレントテクノロジー社製「HP8510C」)を用いて、Sパラメータ(高周波入出力の比)の値からキャビティ共振抑制効果を測定した。
【0055】
具体的には、高周波装置4内にマイクロストリップスルーラインが形成された配線基板を配置し、基体5aの凹部の側面に取り付けられた高周波入出力端子とマイクロストリップスルーラインをAu−Sn合金ロウ等のロウ材で電気的に接続して、高周波入出力端子とネットワークアナライザーを接続した。基体5aの上面の凹部の周囲に電波吸収蓋部材1を配置することにより、高周波装置4内部は空洞共振器となり、試料サイズから決まる共振周波数とネットワークアナライザーから入射される高周波信号の周波数が一致したとき、マイクロストリップスルーラインからの放射を共振させてSパラメータを測定した。このとき、電波吸収層3bがない状態を基準とし、キャビティ共振抑制効果はその基準に対して共振量が20dB以下であれば○、20dB以上であれば×とした。評価結果を表1に示す。
【0056】
【表1】

Figure 2004253567
表1より、パーマロイが90質量%以上のもの(No.1)は、電波吸収層3bにおける磁性材の分散性が悪いために接着強度が弱くなり、電波吸収層3bが金属蓋体2から剥離して接着不良が発生した。また、パーマロイが50質量%未満のもの(No.7,8)は、通炉後にキャビティ共振抑制効果が劣化した。これは、キャビティ共振抑制効果が電波吸収層3bにおける磁性材の粒子間距離に依存するためであり、磁性材の含有量が少ないと通炉後にガラス成分が固化して均一な粒子間距離が得られないからと考えられる。
【0057】
これに対し、パーマロイの含有量が51乃至90質量%でガラスの含有量が10乃至49質量%である本発明のもの(No.2〜6)は、いずれも反りが小さく、接着強度、キャビティ共振抑制効果も優れていた。
【0058】
また、ガラスの軟化点が250℃未満のもの(No.9)は、電波吸収蓋部材1を金属製の基体5aにシーム溶接した際にガラスが溶融軟化したため、製品として使用できなくなった。また、ガラスの軟化点が500℃を超えるもの(No.14)は、500℃を超える高温下で通炉するので電波吸収蓋部材1の反りが大きくなり、製品として使用できなくなった。
【0059】
これに対して、ガラスの軟化点が250乃至500℃である本発明のもの(No.10〜13)は、いずれも反りが小さく、接着強度、キャビティ共振抑制効果も優れていた。
【0060】
次に、電波吸収層3bの厚みが200μm未満のもの(No.15)は、キャビティ共振抑制効果が悪く、製品として使用できなくなった。また、電波吸収層3bの厚みが500μmを超えるもの(No.19)は、電波吸収蓋部材1全体が薄型化できず、またスクリーン印刷の作業性が悪いので実用的でなかった。
【0061】
これに対し、電波吸収層3bの厚みが200乃至500μmである本発明のもの(No.16〜18)は、いずれも反りが小さく、接着強度、キャビティ共振抑制効果も優れていた。
【0062】
電波吸収層体3として、上記のNo.17の試料において金属層3aを有していないものを比較例(No.17A)とし、No.17の試料において金属層3aの種類を変えた試料(No.20〜24)を作製した。これらについて、上記と同様に、電波吸収蓋部材1の反り、金属蓋体2と電波吸収層3bとの接着強度、キャビティ共振抑制効果を測定し、その結果を表2に示す。
【0063】
【表2】
Figure 2004253567
【0064】
表2より、金属層3aがTi、ZrおよびHfのうちの1種以上の活性金属を含有したAg−Cu合金を主成分とするものである試料(No.20〜24)は、電波吸収蓋部材1の反りがいずれも小さく、キャビティ共振抑制効果も優れていた。さらに接着強度についても、3点曲げ試験でプッシュプルゲージが1.0mmまで下降した際に全く問題なく、さらに下降させ2.0mmでも金属層3aおよび電波吸収層3bが剥がず、非常に強固に被着されたものとなった。なお、表2で、2.0mmまで下降しても剥がれないものを◎とした。
【0065】
【発明の効果】
本発明の電波吸収蓋部材は、電波吸収層が、Ni−Fe合金を主成分とする磁性材を51乃至90質量%および軟化点が250乃至500℃のガラスを10乃至49質量%含有していることから、耐熱性に優れたものとなり、高周波素子の熱や高周波装置を外部電気回路基板等に半田等で接合する際の熱によって電波吸収層が金属蓋体から剥離することがなくなる。また、電波吸収層の厚みが200乃至500μmであることから、電波吸収蓋部材の大幅な薄型化が可能となり、高周波装置の大幅な低背化につながる。
【0066】
また、電波吸収層は、Ti,ZrおよびHfのうちの1種以上を含有した金属層と金属層の酸化層とを介して、金属蓋体の一主面に積層されていることから、金属層に含有されるTi,Zr,Hfの活性金属が金属蓋体の金属粒界に拡散して金属蓋体と金属層とを強固に接合するとともに、金属層の酸化層の酸化物が電波吸収層中のガラスの酸化物成分と反応して金属層と電波吸収層とを強固に接合する。その結果、金属蓋体を基体にシーム溶接やロウ付けする際に230〜240℃の熱履歴が加わったとしても、電波吸収層が熱によって剥離することがなくなる。
【0067】
また、電波吸収層が電波吸収して電磁波のエネルギーを熱に変換した際に、その熱を互いに強固に接合された電波吸収層、金属層および金属蓋体を介して外部に効率良く放熱させることができる。
【0068】
本発明の高周波装置は、上面に形成された凹部の底面に高周波素子が載置される載置部を有する基体と、載置部に載置固定された高周波素子と、基体の上面の凹部の周囲に前記一主面が高周波素子に対向するように取着された本発明の電波吸収蓋部材とを具備していることにより、電波吸収層が熱によって剥れることのない低背化されたものとなるとともに、内部で電磁波の共振が発生するのを抑えることができる。その結果、マイクロ波帯やミリ波帯の高周波帯域で良好にEMI対策の施された高周波装置を作製することができる。
【図面の簡単な説明】
【図1】本発明の電波吸収蓋部材の実施の形態の一例を示す断面図である。
【図2】図1の電波吸収蓋部材の要部拡大断面図である。
【図3】(a),(b)は本発明の高周波装置についてそれぞれ実施の形態の例を示す断面図である。
【図4】従来の電波吸収蓋部材の断面図である。
【図5】従来の高周波装置の断面図である。
【符号の説明】
1:電波吸収蓋部材
2:金属蓋体
3a:金属層
3b:電波吸収層
3c:酸化層
4:高周波装置
5a,5b:基体
6:高周波素子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a radio-wave absorbing cover member and a high-frequency device used for a high-frequency device containing a high-frequency element, and more particularly to a radio-wave absorbing cover member and a high-frequency device having excellent absorption characteristics of a high frequency (electromagnetic wave) in a microwave band or a millimeter band.
[0002]
[Prior art]
FIG. 4 is a cross-sectional view of a conventional radio wave absorbing cover member, and FIG. 5 is a cross-sectional view of a conventional high-frequency device. As shown in these figures, 11 is a radio wave absorbing lid member, 12 is a metal lid, 13 is a radio wave absorbing layer, 14 is a high frequency device, 15 is a base, 16 is a high frequency element, and S is a bonding material.
[0003]
2. Description of the Related Art In recent years, electronic devices have become increasingly faster, denser, and digital, and miniaturization and multifunctionality have been accelerating. Due to the demand for miniaturization and multi-functionality of electronic equipment, the high-frequency element 16 used particularly in the microwave band or the millimeter-wave band has a very high component mounting density on a wiring board, and has a large space between pins of the high-frequency element 16, peripheral circuits, There is a problem that electromagnetic wave interference occurs in other high-frequency elements and the like. This is due to a large number of semiconductor elements as the high-frequency element 16, and weak electromagnetic waves generated in each semiconductor element become interference waves (radiation noise) for other semiconductor elements, resulting in line-to-line coupling between wires and between pins. This is because an increase in coupling, performance degradation due to electromagnetic interference due to radiation noise, abnormal resonance, and the like are induced, and electromagnetic wave interference occurs.
[0004]
Conventionally, for such a so-called electromagnetic interference, an electromagnetic shielding in which a noise filter is inserted into a circuit or a high-frequency element 16 is surrounded by a case coated with a conductive layer such as a metal plate or a metal plating layer is used. Or a radio wave absorbing layer 13 made of a radio wave absorbing sheet is adhered to the surface of the circuit board and the surface of the high-frequency device 14 with a bonding material S such as a thermosetting resin, a low melting point glass or a low melting point brazing material such as solder. Obstacles have been suppressed (see Patent Document 1 below).
[0005]
Further, an EMI (Electro Magnetic Interference) countermeasure component made of a composite magnetic material containing a needle-shaped or flat soft magnetic powder having an oxide film on the surface and an organic binder is used. It has been proposed to arrange on the upper surface of the device to suppress electromagnetic wave interference (see Patent Document 2 below).
[0006]
Further, glass or ceramics are used as a matrix, and Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, Fe, Ni, Co, Cu, Al, Mg, Zn and alloys thereof, stainless steel, permalloy and A radio wave absorbing material composed of a composite material having a composite phase containing at least one metal particle selected from a super heat-resistant alloy is disclosed (see Patent Document 3 below).
[0007]
[Patent Document 1]
JP 2002-289720 A
[0008]
[Patent Document 2]
JP-A-10-64714
[0009]
[Patent Document 3]
JP-A-9-255408
[0010]
[Problems to be solved by the invention]
However, the means described in Patent Document 1 for attaching the radio wave absorbing layer 13 made of a radio wave absorbing sheet to the surface of the high frequency device 14 increases the thickness of the high frequency device 14 as a whole, and is disadvantageous for miniaturization of equipment. It is. Further, since the electromagnetic wave absorbing layer 13 is formed by mixing a magnetic material with rubber, epoxy resin, or the like, and since the electromagnetic wave absorbing layer 13 is attached to the metal cover 12 with a resin adhesive, the electromagnetic wave absorbing layer 13 or the resin Since the heat resistance of the adhesive is very low, there is a problem that the radio wave absorbing layer 13 easily warps due to heat of the high frequency element 16 or the like, and the radio wave absorbing layer 13 is separated from the metal lid 12.
[0011]
Further, the composite magnetic material using a flat or acicular soft magnetic material powder used as an EMI countermeasure component described in Patent Literature 2 includes an organic binder, and thus is inferior in heat resistance and dimensional stability. There was a problem. Therefore, when this composite magnetic body is used as a component of the high-frequency device 14, there has been a problem that bonding with a thermosetting resin, a low-melting brazing material, low-melting glass, or the like cannot be performed.
[0012]
Further, the radio wave absorbing material described in Patent Document 3 which is composed of a composite material in which glass or ceramic is used as a matrix and metal particles such as Ti are used as a composite phase is itself excellent in heat resistance and mechanical properties. It is. However, Patent Document 3 discloses that such a radio wave absorbing material is adhered to another metal lid or the like with good bonding properties, and is suitably applied to a radio wave absorbing lid member, a package, an electronic device, a semiconductor device, or the like. Is not disclosed at all.
[0013]
Therefore, the present invention has been completed in view of the above-mentioned conventional problems, and an object of the present invention is to make it possible to directly and firmly attach a radio wave absorbing layer to a radio wave absorbing cover member, and to peel off the radio wave absorbing layer by heat. It is an object of the present invention to provide a radio wave absorbing lid member capable of manufacturing a low-frequency high-frequency device which is not reduced and a high-frequency device using the same.
[0014]
[Means for Solving the Problems]
The radio wave absorbing lid member according to the present invention includes, on one main surface of a metal lid body, a metal layer mainly composed of an Ag-Cu alloy containing at least one of Ti, Zr and Hf, and oxidation of the metal layer. A radio wave absorbing layer containing 51 to 90% by mass of a magnetic material mainly composed of a Ni-Fe alloy, 10 to 49% by mass of glass having a softening point of 250 to 500 ° C, and a thickness of 200 to 500 µm. Are sequentially laminated.
[0015]
In the radio wave absorbing cover member of the present invention, the radio wave absorbing layer contains 51 to 90% by mass of a magnetic material mainly composed of a Ni—Fe alloy and 10 to 49% by mass of glass having a softening point of 250 to 500 ° C. Therefore, the radio wave absorbing layer is excellent in heat resistance, and the radio wave absorbing layer does not peel off from the metal lid due to heat of the high-frequency element or heat at the time of bonding the high-frequency device to an external electric circuit board or the like by soldering or the like. In addition, since the thickness of the radio wave absorbing layer is 200 to 500 μm, the thickness of the radio wave absorbing lid member can be significantly reduced, and the height of the high frequency device can be significantly reduced.
[0016]
Further, the radio wave absorption layer is formed on one main surface of the metal cover via a metal layer mainly composed of an Ag—Cu alloy containing at least one of Ti, Zr and Hf and an oxide layer of the metal layer. Since the active metal of Ti, Zr, Hf contained in the metal layer diffuses into the metal grain boundaries of the metal lid, the metal lid and the metal layer are firmly joined, and The oxide of the oxide layer reacts with the oxide component of the glass in the radio wave absorption layer to firmly join the metal layer and the radio wave absorption layer. As a result, even if a heat history of 230 to 240 ° C. is applied when the metal lid is seam-welded or brazed to the base, the radio wave absorbing layer does not peel off due to heat.
[0017]
In addition, when the radio wave absorption layer absorbs radio waves and converts the energy of electromagnetic waves into heat, the heat is efficiently radiated to the outside through the radio wave absorption layer, metal layer, and metal lid that are firmly joined to each other. Can be.
[0018]
The high-frequency device of the present invention includes a base having a mounting portion on which the high-frequency element is mounted on the bottom surface of the concave portion formed on the upper surface, a high-frequency element mounted and fixed on the mounting portion, and an upper surface of the base. 2. The radio wave absorbing lid member according to claim 1, wherein the one main surface is attached around the concave portion so as to face the high frequency element.
[0019]
According to the high frequency device of the present invention, with the above configuration, the radio wave absorbing layer has a low profile that does not peel off due to heat, and can suppress the occurrence of electromagnetic wave resonance inside. As a result, it is possible to manufacture a high-frequency device in which EMI countermeasures are favorably performed in a high-frequency band such as a microwave band or a millimeter wave band.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
The radio wave absorbing lid member and the high frequency device of the present invention will be described in detail below. FIG. 1 is a sectional view showing an example of an embodiment of a radio wave absorbing cover member of the present invention, and FIG. 2 is an enlarged sectional view of a main part thereof. In these figures, 1 is a radio wave absorbing cover member, 2 is a metal cover, 3 is a radio wave absorber, 3a is a metal layer, 3b is a radio wave absorbing layer, and 3c is an oxide layer. An absorption lid member 1 is configured.
[0021]
In the radio wave absorbing cover member 1 of the present invention, a metal layer 3a mainly composed of an Ag-Cu alloy containing at least one of active metals Ti, Zr and Hf is formed on one main surface of a metal cover 2. The oxide layer 3c of the metal layer 3a, the magnetic material containing a Ni-Fe alloy as a main component in a content of 51 to 90% by mass, and a glass having a softening point of 250 to 500 ° C in a content of 10 to 49% by mass and a thickness of A radio wave absorbing layer 3b of 200 to 500 μm is sequentially laminated.
[0022]
The metal cover 2 in the present invention is preferably made of a metal or alloy such as a 42 alloy (Fe-Ni alloy) or an Fe-Ni-Co alloy, and these have good electromagnetic wave shielding properties and thermal matching with the radio wave absorbing layer 3b. It has the advantage of being good. The metal cover 2 is manufactured in a predetermined shape such as a square shape by punching a base material such as an Fe-Ni-Co alloy with a punching die.
[0023]
Note that a plating layer such as a Ni plating layer or an Au plating layer is formed in a region of the metal cover 2 where the radio wave absorbing layer 3b is not attached, in order to prevent oxidative corrosion and improve brazing properties. .
[0024]
The radio wave absorbing layer 3b of the present invention contains 51 to 90% by mass of a magnetic material mainly composed of a Ni-Fe alloy, 10 to 49% by mass of glass having a softening point of 250 to 500 ° C, and has a thickness of 200 to 49%. It is 500 μm. As a result, unlike the conventional rubber or resin having a heat resistance of only about 200 ° C. mixed with a magnetic material, it has excellent heat resistance and does not need to be attached using an adhesive. No peeling from 2 Therefore, the radio wave absorbing layer 3b has excellent heat resistance, and the radio wave absorbing layer 3b is separated from the metal lid 2 by heat of the high-frequency element or heat when the high-frequency device is bonded to an external electric circuit board or the like by soldering or the like. Will not be done. In addition, since the thickness of the radio wave absorbing layer 3b is 200 to 500 μm, the thickness of the radio wave absorbing cover member 1 can be significantly reduced, and the height of the high frequency device can be significantly reduced.
[0025]
Examples of the magnetic material mainly containing a Ni-Fe alloy include 36-permalloy (Fe-Ni alloy containing 36% by mass of Fe), 45-permalloy, 78-permalloy, and supermalloy (Fe-Ni containing quenching heat treatment Mo). Alloy), Cr-permalloy (Cr-containing Fe-Ni alloy), Mo-permalloy (Mo-containing Fe-Ni alloy), or the like is used.
[0026]
Further, the glass having a softening point of 250 to 500 ° C. can be melted at as low a temperature as possible from the viewpoint of reducing the thermal effect on the high-frequency element 6 (FIG. 3) and reducing the residual stress in the glass. Preferably, for example, glass containing 50 to 80% by mass of lead oxide and 15 to 20% by mass of lead fluoride as a main component has a softening point of about 300 ° C. and is excellent in heat resistance. From, it is preferably used.
[0027]
If the magnetic material exceeds 90% by mass, the dispersibility of the powdered magnetic material in the glass is deteriorated, the strength of the radio wave absorbing layer 3b is remarkably reduced, and the radio wave absorbing layer 3b is easily peeled. On the other hand, when the content is less than 51% by mass, it is insufficient to suppress the resonance of the electromagnetic wave inside the high-frequency device when the device is formed as a high-frequency device, and the radio wave absorbing layer 3b is easily warped and peeled.
[0028]
When the glass content is less than 10% by mass, the dispersibility of the magnetic material is deteriorated, the strength of the radio wave absorbing layer 3b is remarkably reduced, and the radio wave absorbing layer 3b is easily peeled. On the other hand, if the content exceeds 49% by mass, it becomes insufficient to suppress the resonance of electromagnetic waves inside the high-frequency device when the device is formed as a high-frequency device, and the radio wave absorbing layer 3b is easily warped and peeled.
[0029]
If the softening point of the glass is less than 250 ° C., the radio wave absorbing layer 3b is easily melted when the radio wave absorbing lid member 1 is seam welded or brazed to the base housing the high frequency element 6. On the other hand, when the softening point of the glass exceeds 500 ° C., the magnetic material aggregates, and as a result, the strength of the radio wave absorbing layer 3b is significantly reduced, and the radio wave absorbing layer 3b is easily peeled.
[0030]
If the thickness of the radio wave absorbing layer 3b is less than 200 μm, the radio wave absorbing characteristics tend to be insufficient. If the thickness exceeds 500 μm, the entire radio wave absorbing cover member 1 becomes thick and it is difficult to make it thin. Also, the metal cover 2 is warped due to a difference in thermal expansion between the metal cover 2 and the radio wave absorbing layer 3b, and the radio wave absorbing layer 3b is easily peeled off.
[0031]
In the radio wave absorbing cover member 1 of the present invention, the radio wave absorbing layer 3b has a metal layer 3a and a metal layer 3a mainly composed of an Ag-Cu alloy containing at least one of Ti, Zr and Hf as active metals. The active metal of Ti, Zr, and Hf contained in the metal layer 3a diffuses into the metal grain boundaries of the metal lid 2 because the active metal is laminated on one main surface of the metal lid 2 via the oxide layer 3c. The metal cover 2 and the metal layer 3a are firmly joined to each other, and the oxide of the oxide layer 3c of the metal layer 3a reacts with the oxide component of the glass in the radio wave absorption layer 3b to form the metal layer 3a and the radio wave absorption layer. 3b. As a result, even when a heat history of 230 to 240 ° C. is applied when the metal lid 2 is seam-welded or brazed to the base, the radio wave absorbing layer 3b does not peel off due to heat.
[0032]
Further, when the radio wave absorbing layer 3b absorbs radio waves and converts the energy of the electromagnetic wave into heat, the heat is efficiently transmitted to the outside through the radio wave absorbing layer 3b, the metal layer 3a, and the metal lid 2, which are firmly joined to each other. The heat can be radiated well.
[0033]
The radio wave absorbing layer 3b and the metal layer 3a are attached to the metal lid 2 by the following method. First, an active metal paste obtained by mixing an Ag-Cu alloy powder, one or more active metal powders of Ti, Zr, and Hf, an organic binder such as an acrylic resin, and a solvent such as toluene and acetone is mixed with a metal cover. The body 2 is screen-printed to a thickness of about 70 μm, heat-treated at a temperature of about 800 ° C. in a reducing atmosphere, and adhered to the metal lid 2 to adhere the metal layer 3 a. Next, a magnetic material paste obtained by adding and mixing an organic solvent and a solvent to glass having a softening point of 250 to 500 ° C. and a magnetic material having a Ni—Fe alloy as a main component, A magnetic material paste layer to be a radio wave absorbing layer 3b is formed by screen printing so as to have a thickness of 500 μm, and baked at about 350 ° C. in the air, so that a glass component of the radio wave absorbing layer 3b and an active metal of the metal layer 3a are formed. An oxide layer 3c formed by oxidizing is formed at the same time. As a result, the radio wave absorbing layer 3b is firmly attached to the metal layer 3a via the oxide layer 3c.
[0034]
The thickness of the metal layer 3a is preferably 50 to 100 μm. If it is less than 50 μm, the oxide layer 3c formed by oxidizing the active metal tends not to have a sufficient thickness. If it exceeds 100 μm, when heat treatment is performed in a reducing atmosphere, an uneven portion may be formed in the metal layer 3a.
[0035]
The thickness of the oxide layer 3c is preferably 1 to 3 μm. If it is less than 1 μm, the bonding strength between the metal layer 3a and the radio wave absorbing layer 3b becomes weak, and the radio wave absorbing layer 3b is easily peeled off from the metal layer 3a by heat. If the thickness exceeds 3 μm, excessive oxidation occurs, and bubbles are easily introduced at the bonding interface between the oxide layer 3c and the radio wave absorbing layer 3b. Therefore, the bonding area is reduced and the radio wave absorbing layer 3b is easily peeled from the metal layer 3a.
[0036]
Next, a high-frequency device 4 using the radio wave absorbing cover member 1 of the present invention will be described in detail with reference to FIG. FIG. 2 shows an example of an embodiment of the high-frequency device 4 of the present invention, in which (a) is a cross-sectional view of a high-frequency device using a metal base 5a, and (b) is a substrate using an insulator base 5b. It is sectional drawing of a high frequency device. As shown in these figures, 2 is a metal lid, 3 is a radio wave absorber, 4 is a high frequency device, 5a and 5b are bases, 6 is a high frequency element, 7 is a metallized layer, and 8 is a sealing material.
[0037]
The high-frequency device according to the present invention includes bases 5a and 5b each having a mounting portion on which a high-frequency element 6 is mounted on a bottom surface of a concave portion formed on an upper surface; a high-frequency element 6 mounted and fixed on the mounting portion; The radio wave absorbing lid member 1 of the present invention is provided around the concave portions on the upper surfaces of 5a and 5b so that one main surface is opposed to the high frequency element 6.
[0038]
The bases 5a and 5b according to the present invention are provided with a concave portion for accommodating the high-frequency element 6 at the center of the upper surface, and the high-frequency element 6 is formed on the bottom surface of the concave portion with low melting point glass, resin adhesive, brazing material or the like. It is bonded and fixed via an adhesive. A plurality of metallized wiring layers and a plurality of lead terminals (not shown) extend over the surfaces of the bases 5a and 5b or penetrate through the bases 5a and 5b from the side surfaces or the bottom surfaces of the concave portions of the bases 5a and 5b to the outer surface. And hermetically sealed with glass. The electrodes located on the bottom surface of the metallized wiring layer and the recess of the lead terminal are electrically connected to the respective electrodes of the high-frequency element 6 via bonding wires or the like (not shown) and led out to the outer surfaces of the bases 5a and 5b. The connected portion is electrically connected to a wiring conductor (not shown) of the external electric circuit board via a conductive connection member such as a bonding wire.
[0039]
The base 5a made of a metal is preferably made of a 42 alloy, an Fe-Ni-Co alloy, or the like, and the concave portion is formed by punching a base material of the metal with a punching die or performing machining such as cutting. It is manufactured as having a predetermined shape. The surface of the substrate 5a is coated with a metal such as gold having excellent corrosion resistance and good wettability with a brazing material such as an Au-Sn brazing material or solder by a plating method or the like to a thickness of 0.1 to 1 μm. It is preferable to keep it on.
[0040]
Then, the periphery of the concave portion on the upper surface of the base 5a and the outer peripheral portion on the lower surface of the radio wave absorbing lid member 1 are joined by resistance welding such as seam welding. Alternatively, bonding may be performed via a sealing material 8 formed of a brazing material adhered to the outer peripheral portion of the lower surface of the radio wave absorbing lid member 1, or a combination of seam welding and brazing may be used.
[0041]
For example, when the base member 5a and the radio wave absorbing lid member 1 are seam-welded, the radio wave absorbing lid member 1 is placed around a concave portion on the upper surface of the base member 5a, and the upper surface of the radio wave absorbing lid member 1 is placed under a nitrogen atmosphere. By applying an energized roller electrode to the outer peripheral portion and pressing the radio wave absorbing lid member 1 against the base 5a side at a constant pressure with the roller electrode, the roller electrode is rotated and pressed for 0.5 to 10 minutes to be airtight. To join.
[0042]
On the other hand, in the case of the base 5b made of an insulator, the base 5b is mainly composed of an aluminum oxide sintered body, a mullite sintered body, an aluminum nitride sintered body, a silicon carbide sintered body, a glass ceramic, or the like. It is made of an inorganic material such as a sintered body (ceramic) or a resin. For example, when the substrate 5b is made of an aluminum oxide sintered body, first, alumina (Al 2 O 3 ) And silica (SiO 2 ), Calcia (CaO), magnesia (MgO), etc., to an appropriate organic solvent and solvent, and mixed to form a slurry, which is formed into a sheet by a well-known doctor blade method or calender roll method. By molding, a ceramic green sheet (hereinafter, also referred to as a green sheet) is obtained. Thereafter, the green sheet is manufactured by punching into a predetermined shape, laminating a plurality of green sheets, and firing at a temperature of about 1600 ° C.
[0043]
In the case of the base 5b, a frame-shaped metallized layer 7 for bonding to the radio wave absorbing lid member 1 is attached around the concave portion on the upper surface. The metallized layer 7 and the metallized wiring layer formed on the side and bottom surfaces of the recesses are made of a high melting point metal such as tungsten, molybdenum, or manganese. Is formed in a predetermined pattern at a predetermined position by a conventionally known screen printing method, and is formed by firing simultaneously with the green sheet. A metal such as gold having excellent corrosion resistance and good wettability with a brazing material such as an Au-Sn brazing material or a solder having a thickness of 0.1 to 1 μm is formed on the surface of the metallized layer 7 by a plating method or the like. It is preferable to adhere to the metal cover 2 without using a flux.
[0044]
Since the flux contained in the solder and the like scatters inside the high-frequency device 4, it causes corrosion of the electrodes of the high-frequency device 6 to cause disconnection. Therefore, a metal such as gold is plated on the surface of the metallized layer 7. It is preferable that the metallized layer 7 and the radio wave absorbing lid member 1 are bonded without using a flux. Then, the radio wave absorbing lid member 1 is bonded to the metallized layer 7 via a sealing material 8 formed on the outer peripheral portion of the lower surface thereof.
The base member 5b and the radio wave absorbing cover member 1 are joined together such that the sealing member 8 is sandwiched between the metallized layer 7 formed around the recess on the upper surface of the base member 5b and the radio wave absorbing cover member 1. Is placed on the upper surface of the base 5b, and the electromagnetic wave absorbing lid member 1 is pressed against the base 5b side at a constant pressure while being placed in a sealing furnace in a nitrogen atmosphere at a peak temperature of about 280 to 300 ° C. for 0.5 to 10 minutes to seal. By melting the stopper 8, the sealing member 8 flows out to form a fillet and is joined airtightly.
[0045]
Thus, the radio wave absorbing lid member 1 and the high-frequency device 4 of the present invention mount and fix the high-frequency element 6 such as a semiconductor element on the mounting portion on the bottom surface of the concave portion of the bases 5a and 5b via the resin adhesive or the like. 6 is connected to a lead terminal or a metallized wiring layer via a bonding wire or the like, and thereafter, the radio wave absorbing lid member 1 is joined to the periphery of the concave portion on the upper surface of the base 5a by seam welding, or The sealing material 8 attached to the outer peripheral portion of the lower surface of the member 1 is heated and melted, and is bonded to the metallized layer 7, thereby sealing the base 5 and the radio wave absorbing lid member 1, thereby providing a high-frequency product as a product. The device 4 is obtained.
[0046]
It should be noted that the present invention is not limited to the above-described embodiment, and various changes may be made without departing from the spirit of the present invention. For example, in the above-described embodiment, an example has been described in which a semiconductor element such as an IC or an LSI is used as the high-frequency element 6, but an electronic component such as a piezoelectric vibrator or a surface acoustic wave element can be used as the high-frequency element 6. Further, the radio wave absorbing lid member 1 has a flat plate shape, and the bases 5a and 5b have a concave shape at the center of the upper surface. A high-frequency device in which the body is attached with a brazing material or a resin adhesive may be used. Further, the bases 5a and 5b may be formed in a flat plate shape, and the radio wave absorbing lid member 1 may have a shape having a concave portion on a surface facing the bases 5a and 5b.
[0047]
【Example】
An embodiment of the radio wave absorbing lid member of the present invention will be described below.
[0048]
The radio wave absorbing lid member 1 of FIG. 1 was manufactured as follows. First, a metal lid 2 made of an Fe-Ni-Co alloy and having a rectangular plate shape of 21.1 mm long × 19.6 mm wide × 0.3 mm thick is prepared, and its radio wave absorbing layer 3 b is formed. A Ni plating layer having a thickness of 2.0 μm and an Au plating layer having a thickness of 0.5 μm were applied to the entire surface of the part other than the part.
[0049]
First, at a portion where the radio wave absorbing layer 3b is formed on one main surface of the metal cover 2, Ag 72 mass% -Cu 28 mass containing 3 mass% of Ti as an active metal (100 mass% of Ag-Cu alloy). % Of a Ag-Cu eutectic was formed to a thickness of 70 μm by screen printing, and was heat-treated at a temperature of 800 to 850 ° C. in a reducing atmosphere to be adhered to the metal lid 2.
[0050]
The electromagnetic wave absorbing layer 3b is composed of a magnetic material composed of permalloy (Fe-Ni alloy of 42% by mass of Fe and 58% by mass of Ni) and a lead oxide-lead fluoride glass (56% by mass of PbO and 19% by mass of PbF as main components). The glass having a softening point of 280 ° C.) contained therein was mixed at various ratios (see Table 1 below), and a small amount of a polyhydric alcohol ester-based organic solvent (“CK-172” manufactured by Ryo Kagaku Kogyo Co., Ltd.) was added thereto. By the screen printing method, the size of 19.1 mm long × 17.6 mm wide and various thicknesses after baking (see Table 1 below) are set on the oxide layer 3 c on one main surface of the metal lid 2. Was applied. This was fired in a furnace at a temperature of 300 ° C. to 350 ° C. to form an oxide layer 3 c having a thickness of 1.5 μm, and a radio wave absorbing layer 3 b was formed on the metal lid 2.
[0051]
With respect to the obtained various samples, the warpage of the radio wave absorbing cover member 1, the adhesive strength between the metal cover 2 and the radio wave absorbing layer 3b, and the electromagnetic wave attenuation effect were measured.
[0052]
In addition, regarding the warpage of the radio wave absorbing cover member 1, when the warpage was less than 0.15 mm after the furnace was compared before and after the furnace was passed, the case where the warp was less than 0.15 mm and the case where the warp was 0.15 mm or more were ×. And
[0053]
The bond strength was measured by performing a three-point bending test under a load of 49 N (Newton) with the radio wave absorbing layer 3 b adhered to one main surface of the metal lid 2, and the push-pull gauge was increased to 1.0 mm. When the radio wave absorbing layer 3b did not peel off when descending, it was evaluated as ○, and when it did, it was evaluated as ×.
[0054]
As shown in FIG. 3 (a), the measurement of the electromagnetic wave attenuation effect is performed by joining a high frequency element 6 to the bottom surface of the concave portion of the base 5a with an Au-Sn brazing material and seam welding the radio wave absorbing lid member 1 to the base 5a. Each sample of the device 4 was manufactured, and the cavity resonance suppressing effect was evaluated. That is, using a network analyzer (“HP8510C” manufactured by Agilent Technologies), the cavity resonance suppression effect was measured from the value of the S parameter (ratio of high frequency input / output).
[0055]
Specifically, a wiring board on which a microstrip through line is formed is arranged in the high frequency device 4, and the high frequency input / output terminal and the microstrip through line attached to the side surface of the concave portion of the base 5 a are connected to the Au—Sn alloy brazing or the like. The high frequency input / output terminal and the network analyzer were connected electrically. By arranging the radio wave absorbing cover member 1 around the concave portion on the upper surface of the base 5a, the inside of the high-frequency device 4 becomes a cavity resonator, and the resonance frequency determined by the sample size and the frequency of the high-frequency signal incident from the network analyzer match. At that time, the S-parameter was measured by resonating the radiation from the microstrip through line. At this time, the state in which the radio wave absorbing layer 3b was not provided was used as a reference, and the cavity resonance suppression effect was evaluated as ○ when the resonance amount was 20 dB or less, and × when the resonance amount was 20 dB or more. Table 1 shows the evaluation results.
[0056]
[Table 1]
Figure 2004253567
From Table 1, it can be seen that, when the permalloy is 90% by mass or more (No. 1), the adhesive strength is weak due to poor dispersibility of the magnetic material in the radio wave absorbing layer 3b, and the radio wave absorbing layer 3b is separated from the metal lid 2. And adhesion failure occurred. Further, those having less than 50% by mass of permalloy (Nos. 7 and 8) had a reduced cavity resonance suppression effect after passing the furnace. This is because the effect of suppressing the cavity resonance depends on the distance between the particles of the magnetic material in the radio wave absorbing layer 3b. If the content of the magnetic material is small, the glass component is solidified after the furnace is passed and a uniform distance between the particles is obtained. It is thought that it is not possible.
[0057]
On the other hand, in the case of the present invention (Nos. 2 to 6) in which the content of permalloy is 51 to 90% by mass and the content of glass is 10 to 49% by mass, the warpage is small, the adhesive strength and the cavity are all small. The resonance suppression effect was also excellent.
[0058]
In the case where the softening point of the glass was less than 250 ° C. (No. 9), the glass was melt-softened when the radio wave absorbing lid member 1 was seam-welded to the metal base 5a, and thus could not be used as a product. In the case of glass having a softening point exceeding 500 ° C. (No. 14), the electric wave absorbing lid member 1 was warped at a high temperature exceeding 500 ° C., and thus became unusable as a product.
[0059]
On the other hand, those of the present invention (Nos. 10 to 13) in which the softening point of the glass is 250 to 500 ° C. were all small in warpage, and were excellent in the adhesive strength and the cavity resonance suppressing effect.
[0060]
Next, when the thickness of the radio wave absorbing layer 3b was less than 200 μm (No. 15), the effect of suppressing the cavity resonance was poor, and it could not be used as a product. When the thickness of the radio wave absorbing layer 3b exceeds 500 μm (No. 19), the entire radio wave absorbing cover member 1 cannot be reduced in thickness, and the workability of screen printing is poor.
[0061]
On the other hand, in the case of the present invention (Nos. 16 to 18) in which the thickness of the radio wave absorbing layer 3b is 200 to 500 μm, the warpage was small, and the adhesive strength and the cavity resonance suppressing effect were all excellent.
[0062]
As the radio wave absorbing layer body 3, Sample No. 17 having no metal layer 3a was designated as Comparative Example (No. 17A). Samples (Nos. 20 to 24) were prepared by changing the type of the metal layer 3a in the 17 samples. With respect to these, similarly to the above, the warpage of the radio wave absorbing cover member 1, the adhesive strength between the metal cover 2 and the radio wave absorbing layer 3b, and the effect of suppressing cavity resonance were measured, and the results are shown in Table 2.
[0063]
[Table 2]
Figure 2004253567
[0064]
Table 2 shows that the samples (Nos. 20 to 24) in which the metal layer 3a is mainly composed of an Ag-Cu alloy containing at least one active metal of Ti, Zr, and Hf are radio wave absorbing lids. The warpage of the member 1 was small and the cavity resonance suppressing effect was excellent. Further, regarding the adhesive strength, there was no problem when the push-pull gauge was lowered to 1.0 mm in the three-point bending test, and even when the push-pull gauge was lowered to 2.0 mm, the metal layer 3a and the radio wave absorbing layer 3b did not peel off, and were very strong. It was attached. In Table 2, those that did not come off even when lowered to 2.0 mm were marked as ◎.
[0065]
【The invention's effect】
In the radio wave absorbing cover member of the present invention, the radio wave absorbing layer contains 51 to 90% by mass of a magnetic material mainly composed of a Ni—Fe alloy and 10 to 49% by mass of glass having a softening point of 250 to 500 ° C. Therefore, the radio wave absorbing layer is excellent in heat resistance, and the radio wave absorbing layer does not peel off from the metal lid due to heat of the high-frequency element or heat at the time of bonding the high-frequency device to an external electric circuit board or the like by soldering or the like. In addition, since the thickness of the radio wave absorbing layer is 200 to 500 μm, the thickness of the radio wave absorbing lid member can be significantly reduced, and the height of the high frequency device can be significantly reduced.
[0066]
Further, since the radio wave absorption layer is laminated on one main surface of the metal cover via a metal layer containing at least one of Ti, Zr and Hf and an oxide layer of the metal layer, The active metal of Ti, Zr, Hf contained in the layer diffuses into the metal grain boundaries of the metal lid to firmly join the metal lid and the metal layer, and the oxide of the oxide layer of the metal layer absorbs radio waves. It reacts with the oxide component of the glass in the layer to firmly join the metal layer and the radio wave absorption layer. As a result, even if a heat history of 230 to 240 ° C. is applied when the metal lid is seam-welded or brazed to the base, the radio wave absorbing layer does not peel off due to heat.
[0067]
In addition, when the radio wave absorption layer absorbs radio waves and converts the energy of electromagnetic waves into heat, the heat is efficiently radiated to the outside through the radio wave absorption layer, metal layer, and metal lid that are firmly joined to each other. Can be.
[0068]
The high-frequency device of the present invention includes a base having a mounting portion on which a high-frequency element is mounted on a bottom surface of a concave portion formed on an upper surface, a high-frequency element mounted and fixed on the mounting portion, and a concave portion on the upper surface of the base. By having the radio wave absorbing lid member of the present invention attached so that the one main surface is opposed to the high-frequency element, the radio wave absorbing layer has a low profile that does not peel off due to heat. And the occurrence of electromagnetic wave resonance inside can be suppressed. As a result, it is possible to manufacture a high-frequency device in which EMI countermeasures are favorably performed in a high-frequency band such as a microwave band or a millimeter wave band.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of a radio wave absorbing lid member of the present invention.
FIG. 2 is an enlarged sectional view of a main part of the radio wave absorbing lid member of FIG.
FIGS. 3A and 3B are cross-sectional views showing examples of embodiments of the high-frequency device of the present invention.
FIG. 4 is a cross-sectional view of a conventional radio wave absorbing lid member.
FIG. 5 is a cross-sectional view of a conventional high-frequency device.
[Explanation of symbols]
1: Radio wave absorbing lid member
2: Metal cover
3a: metal layer
3b: radio wave absorption layer
3c: oxide layer
4: High frequency device
5a, 5b: substrate
6: High frequency device

Claims (2)

金属蓋体の一主面に、Ti,ZrおよびHfのうちの1種以上を含有したAg−Cu合金を主成分とする金属層と、該金属層の酸化層と、Ni−Fe合金を主成分とする磁性材を51乃至90質量%および軟化点が250乃至500℃のガラスを10乃至49質量%含有するとともに、厚みが200乃至500μmである電波吸収層とが順次積層されていることを特徴とする電波吸収蓋部材。A metal layer mainly composed of an Ag-Cu alloy containing at least one of Ti, Zr and Hf, an oxide layer of the metal layer, and a Ni-Fe alloy are formed on one main surface of the metal lid. A magnetic material as a component is contained in an amount of 51 to 90% by mass, a glass having a softening point of 250 to 500 ° C. in an amount of 10 to 49% by mass, and a radio wave absorbing layer having a thickness of 200 to 500 μm is sequentially laminated. Characteristic radio wave absorbing lid member. 上面に形成された凹部の底面に高周波素子が載置される載置部を有する基体と、前記載置部に載置固定された高周波素子と、前記基体の上面の前記凹部の周囲に前記一主面が前記高周波素子に対向するように取着された請求項1記載の電波吸収蓋部材とを具備していることを特徴とする高周波装置。A base having a mounting portion on which the high-frequency element is mounted on the bottom surface of the concave portion formed on the upper surface; a high-frequency device mounted and fixed on the mounting portion; A radio frequency device comprising: the radio wave absorbing lid member according to claim 1, wherein the main surface is attached to face the radio frequency element.
JP2003041598A 2003-02-19 2003-02-19 Radio wave absorbing lid member and high-frequency device using the same Expired - Fee Related JP4189234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041598A JP4189234B2 (en) 2003-02-19 2003-02-19 Radio wave absorbing lid member and high-frequency device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041598A JP4189234B2 (en) 2003-02-19 2003-02-19 Radio wave absorbing lid member and high-frequency device using the same

Publications (2)

Publication Number Publication Date
JP2004253567A true JP2004253567A (en) 2004-09-09
JP4189234B2 JP4189234B2 (en) 2008-12-03

Family

ID=33025136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041598A Expired - Fee Related JP4189234B2 (en) 2003-02-19 2003-02-19 Radio wave absorbing lid member and high-frequency device using the same

Country Status (1)

Country Link
JP (1) JP4189234B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147621A (en) * 2004-11-16 2006-06-08 Toray Ind Inc Photosensitive paste and method of manufacturing member for display panel using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063948U (en) * 1983-10-06 1985-05-07 日本電気株式会社 Metal hermetic container for microwave integrated circuits
JPS6382990U (en) * 1986-11-19 1988-05-31
JPH06236935A (en) * 1993-02-12 1994-08-23 Nippon Telegr & Teleph Corp <Ntt> Package for microwave circuit
JPH06338696A (en) * 1993-05-31 1994-12-06 Shinko Electric Ind Co Ltd Metal package
JPH07162181A (en) * 1993-12-02 1995-06-23 Fujitsu Ltd Method for preventing electromagnetic wave of electronic module from leaking
JP2000165084A (en) * 1998-11-27 2000-06-16 Nec Fukushima Ltd High frequency circuit package
JP2001110976A (en) * 1999-10-06 2001-04-20 Mitsubishi Electric Corp High-frequency circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063948U (en) * 1983-10-06 1985-05-07 日本電気株式会社 Metal hermetic container for microwave integrated circuits
JPS6382990U (en) * 1986-11-19 1988-05-31
JPH06236935A (en) * 1993-02-12 1994-08-23 Nippon Telegr & Teleph Corp <Ntt> Package for microwave circuit
JPH06338696A (en) * 1993-05-31 1994-12-06 Shinko Electric Ind Co Ltd Metal package
JPH07162181A (en) * 1993-12-02 1995-06-23 Fujitsu Ltd Method for preventing electromagnetic wave of electronic module from leaking
JP2000165084A (en) * 1998-11-27 2000-06-16 Nec Fukushima Ltd High frequency circuit package
JP2001110976A (en) * 1999-10-06 2001-04-20 Mitsubishi Electric Corp High-frequency circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147621A (en) * 2004-11-16 2006-06-08 Toray Ind Inc Photosensitive paste and method of manufacturing member for display panel using the same

Also Published As

Publication number Publication date
JP4189234B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
US20130057361A1 (en) Surface acoustic wave device and production method therefor
JP2006014096A (en) Surface acoustic wave device
JP4057897B2 (en) Optical semiconductor device
JP3618063B2 (en) Package for storing semiconductor elements
JP4095477B2 (en) Radio wave absorbing lid member and high-frequency device using the same
JP4189234B2 (en) Radio wave absorbing lid member and high-frequency device using the same
JP2851732B2 (en) Electronic component storage package
JP3426827B2 (en) Semiconductor device
JP2000340716A (en) Wiring substrate
JP3323171B2 (en) Package for storing semiconductor elements
JP2735708B2 (en) Ceramic wiring board
JP4105998B2 (en) High frequency circuit package lid, manufacturing method thereof, and high frequency circuit package using the same
JP2005252121A (en) Package for storing semiconductor element and method for manufacturing the same
JPH11289037A (en) Metal plate for heat dissipation and package for electronic component using the same
JP6809813B2 (en) Semiconductor packages and semiconductor devices
JP2002252461A (en) Wiring board and its manufacturing method
JP2003046180A (en) Input-output terminal, package for housing optical semiconductor element, and optical semiconductor device
JP4000093B2 (en) Input / output terminal, manufacturing method of input / output terminal, package for storing semiconductor element using input / output terminal, and semiconductor device
JP6629660B2 (en) Ceramic package and manufacturing method thereof
JP4127390B2 (en) Semiconductor element storage package and semiconductor device
JP2004228532A (en) Input/output terminal, semiconductor element housing package, and semiconductor device
WO2020004566A1 (en) Base and semiconductor device
JP3652184B2 (en) Conductive paste, glass-ceramic wiring board and manufacturing method thereof
JP3638528B2 (en) Package for storing semiconductor elements
JP3612292B2 (en) Semiconductor element storage package and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees