JP2004250296A - Method for manufacturing compound semiconductor single crystal - Google Patents

Method for manufacturing compound semiconductor single crystal Download PDF

Info

Publication number
JP2004250296A
JP2004250296A JP2003044158A JP2003044158A JP2004250296A JP 2004250296 A JP2004250296 A JP 2004250296A JP 2003044158 A JP2003044158 A JP 2003044158A JP 2003044158 A JP2003044158 A JP 2003044158A JP 2004250296 A JP2004250296 A JP 2004250296A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
compound semiconductor
raw material
semiconductor single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003044158A
Other languages
Japanese (ja)
Inventor
Michinori Wachi
三千則 和地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003044158A priority Critical patent/JP2004250296A/en
Publication of JP2004250296A publication Critical patent/JP2004250296A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a compound semiconductor single crystal, by which the yield of the single crystal can be improved drastically. <P>SOLUTION: In the pulling length from a seeding section where a seed crystal 12 is brought into contact with a raw material melt 15 to a certain growth time point, the number of revolutions of a crucible 9 is adjusted to be less than the subsequent number of revolutions of the crucible 9. Thereby, the shape of the cross section of the solid-liquid interface can be controlled to be a convex shape projected to the raw material melt 15 side with good reproducibility in the growth process of the single crystal 17, especially, in the initial growth stage from the seeding section 17a to the constant diameter section 17b, and the yield of the compound semiconductor single crystal 17 can be improved drastically. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、化合物半導体単結晶の製造方法に関する。
【0002】
【従来の技術】
化合物半導体単結晶の製造方法としてLEC法(Liquid Encapsulated Czochralski法:液体封止チョクラルスキー法)がある。以下、図3を参照してLEC法について説明する。
【0003】
図3は化合物半導体単結晶を製造するための成長炉の概念図である。
【0004】
チャンバ1内の中央に有底無蓋の円筒状のるつぼサセプタ2が、鉛直なるつぼ軸3の上端に固定されている。るつぼ軸3の下端はチャンバ1の外部下側に設けられた回転、昇降手段4に連結されている。るつぼサセプタ2は回転、昇降手段4により、るつぼ軸3を中心として回転、昇降自在となっている。チャンバ1内のるつぼサセプタ2の周囲には円筒状のヒータ5が配置されている。ヒータ5とチャンバ1の側壁との間には円筒状の熱シールド治具6、7が配置され、るつぼサセプタ2とチャンバ1の底板との間には円板状の熱シールド治具8が配置されている。るつぼサセプタ2内にはPBN(Pyrolytic Boron Nitride)製のるつぼ9が収容されるようになっている。チャンバ1内のるつぼ9の上側にはるつぼ軸と同軸とする引上げ軸10が設けられている。引上げ軸10はチャンバ1の外部上側に設けられた回転、昇降手段11により、回転、昇降自在となっている。引上げ軸10の下端には種結晶12を保持するためのホルダ13が設けられている。
【0005】
これらチャンバ1、るつぼサセプタ2、るつぼ軸3、回転、昇降手段4、ヒータ5、熱シールド治具6〜8、るつぼ9、引上げ軸10、回転、昇降手段11及びホルダ13で成長炉14が構成されている。但し、チャンバ1内を排気するための排気手段やガス導入手段等は省略されている。
【0006】
なお、図では成長途中の化合物半導体単結晶(以下「単結晶」という。)17と、液状の原料(原料融液)15と、液状の封止剤16とが示されているが、成長準備段階では原料15及び封止剤16は共に固体である。
【0007】
単結晶17の17aは種付け部(種結晶12と液状の原料15との接触部)、17bは増径部(単結晶17の略円錐状に形成された部分)、17cは定径部(単結晶17の円柱状に形成された部分)をそれぞれ示す。
【0008】
次にこの成長炉14を用いてLEC法による化合物半導体単結晶の製造方法について説明する。
【0009】
LEC法は、るつぼ9内に化合物半導体の原料(固体)15及び封止剤(固体)16を収容し、不活性ガスを充填した成長炉14内でるつぼ9をヒータ5により通電加熱して原料15及び封止剤16を融解し、回転、昇降手段11で引上げ軸10を回転、降下させて原料融液15に種結晶12を接触させた後、例えば矢印3a方向にるつぼ9(るつぼサセプタ2)を回転させると共に、例えば矢印3b方向に回転させながら種結晶12を矢印10a方向に引上げることにより種結晶12の下端から化合物半導体の単結晶17を成長させる方法である。
【0010】
このLEC法においては、るつぼ9の回転数(るつぼ軸回転数)は、図4に示すように種付け部から定径部の成長まで一定に制御するのが一般的である。すなわち、種付け部17a、増径部17b及び定径部17cの各成長過程に係わらず、るつぼ9の回転数は一定である。なお、図4においては、るつぼ9の回転数を15rpmとして記載しているが、任意に設定できることは当然である。
【0011】
なお、図4は従来の化合物半導体単結晶の製造方法における、るつぼの回転数と種結晶の種付け後の引上げ長さとの関係を示す図であり、横軸が引上げ長さを示し、縦軸が回転数を示している。
【0012】
ここで、従来技術を用いて化合物半導体の一種である砒化ガリウム(以下「GaAs」という。)を成長させる場合について図3を参照して説明する。
【0013】
直径が280mmのPBN製のるつぼ9及び10mm角の矩形断面形状の種結晶12を用い、るつぼ9、種結晶12を相対的に回転させて定径部17cの直径が110mm、長さが400mmのGaAsの単結晶17の成長を50回行った。その結果、種付けから単結晶成長最終部まで全域単結晶(All Single)の割合は50%以下であった。
【0014】
【発明が解決しようとする課題】
ところで、LEC法を用いて化合物半導体の単結晶を成長するのは非常に難しく、成長炉14のヒータ5及び熱シールド治具6〜8等の部材(ホットゾーンと呼ばれる。以下「HZ」という。)の配置、形状、材質等により、単結晶の成長に影響を及ぼすため、再現性の良い単結晶の成長条件を得るのは難しい。
【0015】
単結晶の再現性を向上させるための要因としては、HZの配置、形状、材質等のHZに係わるものであると考えられていたが、根本的には固化した単結晶と原料融液との界面(以下「固液界面」という。)の形状をいかに制御するかが、再現性の良い単結晶を得るための大きな要因であることが明確になってきた。
【0016】
図5は図3に示した成長炉を用いた成長中の単結晶の部分拡大図である。
【0017】
なお、図3に示した部材と同様の部材には共通の符号を用いた。
【0018】
原料融液15及び単結晶17の界面(固液界面)の形状と、単結晶17の収率との関係は、固液界面が原料融液15側に凹字断面形状の場合(一点鎖線L1で示す。)は、単結晶17の成長過程全般、または成長のある一定期間に係わらず、結晶欠陥であるリネージ(一部の方向がわずかにずれていること)や亜粒界(亜結晶粒界)が集積されやすくなって多結晶化しやすいので、単結晶17の収率が低下してしまう。
【0019】
単結晶17の収率を向上させるための大きな要因は、固液界面を成長過程全般にわたり、原料融液15側に凸字断面形状(二点鎖線L2で示す。)になるように制御することである。結晶欠陥であるリネージや亜粒界の集積は、特に種付け部17aから定径部17cまでの成長初期の段階で発生している場合が多い。このため、種付け部17aから定径部17cまでの成長初期段階での固液界面形状を再現性良く原料融液15側に凸字断面形状に制御することが特に重要である。しかしながら、現状では、固液界面形状を再現性良く原料融液15側に凸字断面形状に制御することは技術的に困難であり、化合物半導体単結晶の収率が低下する要因となっていたという問題があった。
【0020】
そこで、本発明の目的は、上記課題を解決し、収率を大幅に向上させた化合物半導体単結晶の製造方法を提供することにある。
【0021】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、るつぼ内に化合物半導体の原料及び封止剤を収容し、不活性ガスを充填した成長炉内でるつぼを加熱して原料及び封止剤を融解し、その原料融液に種結晶を接触させた後、るつぼ、及び種結晶を鉛直な中心軸のまわりに回転させると共に、種結晶を鉛直に引上げることにより種結晶から化合物半導体の単結晶を成長させる化合物半導体単結晶の製造方法において、種付け部からある引上げ長さまでのるつぼの回転数をそれ以降のるつぼの回転数未満とするものである。
【0022】
請求項2の発明は、請求項1に記載の構成に加え、種付け部からある引上げ長さまでのるつぼの回転数を一定の割合で増加させるのが好ましい。
【0023】
本発明によれば、種付け部からある引上げ長さまでの成長初期段階において、るつぼの回転数を、それ以降の回転数より小さくすることにより、単結晶の成長過程、特に成長初期段階での固液界面形状を再現性良く原料融液側に凸字断面形状になるように制御することができ、化合物半導体単結晶の収率を大幅に向上させることができる。
【0024】
ここで、LEC法では、コストの面から、種結晶の断面積を目標とする結晶断面積よりも小さい結晶を用い、種付け部、増径部、定径部及び尾部の順に結晶成長を行うのが一般的である。また、るつぼの回転数は、種付け部、増径部、定径部及び尾部に係わらず、一定とするのが一般的である。
【0025】
また、固液界面形状は、原料融液における単結晶の径方向の温度分布によって決定されるが、原料融液内の対流も固液界面形状に大きな影響を及ぼす。一般に、るつぼの回転数が小さい場合、成長初期段階では固液界面形状は原料融液側に凸字断面形状になり、定径部に近づくに伴い固液界面形状は反転し原料融液側に凹字断面形状になる。また、るつぼ回転数が大きい場合、成長初期段階では固液界面形状は原料融液側に凹時形状になり易く、定径に近づくに伴い固液界面形状は原料融液側により凸字断面形状になる。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて詳述する。
【0027】
図1は本発明の化合物半導体単結晶の製造方法における、るつぼの回転数と種結晶の種付け後の引上げ長さとの関係を示す図であり、横軸が引上げ長さを示し、縦軸がるつぼの回転数を示している。なお、図1においては種付け時のるつぼの回転数を2rpm、引上げ長さ40mm時のるつぼ回転数を15rpmとし、種付け時から引上げ長さ40mmで一定の割合でるつぼ回転数が増加する条件を示しているが、これに限定されるものではなく、引上げ長さ、結晶径に対応した固液界面形状とるつぼ回転数の関係を予め把握し、固液界面形状の原料融液側に最も凸字断面形状となる条件に設定することが望ましい。
【0028】
本製造方法は、図3に示す、るつぼ9内に化合物半導体の原料(固体)15及び封止剤(固体)16を収容し、不活性ガスを充填した成長炉14内でるつぼ9を加熱して原料15及び封止剤16を融解し、その原料融液15に種結晶12を接触させた後、例えばるつぼ9を矢印3a方向に回転させると共に、例えば種結晶12を矢印3b方向に回転させながら矢印10a方向に引上げることにより種結晶12の下端から化合物半導体の単結晶17を成長させる際に、種結晶12を原料融液15と接触させてからある引上げ長さまでのるつぼ回転数を、それ以降の回転数未満とするものである。
【0029】
種結晶12を原料融液15と接触させてからある引上げ長さに成長するまでの、るつぼ9の回転数は一定の割合で増加させるのが好ましい。
【0030】
図2(a)〜(c)は本発明の化合物半導体単結晶の製造方法を適用した化合物半導体単結晶の増径部の成長状態を示す図であり、図2(a)は種結晶を原料の融液に接触した状態を示し、図2(b)は増径部を引上げている状態を示し、図2(c)は定形部を引上げている際の状態を示している。
【0031】
このようにして単結晶17を成長させることにより、単結晶17の成長過程、特に種付け部17aから定径部17cの一部を含む一定の長さまでの成長初期段階での固液界面形状を再現性良く原料融液15側に凸字断面形状に制御することができ、単結晶17の収率を大幅に向上させることができる。
【0032】
【実施例】
次に図3を参照して具体的な数値を挙げて説明するが、本発明はこれに限定されるものではない。
【0033】
(実施例1)
直径が280mmのPBN製のるつぼ9及び10mm角の矩形断面形状の種結晶12を用い、定径部17cの直径が110mm、長さが400mmのGaAsの単結晶17の成長を50回行った。なお、この場合のるつぼ9の回転数は、種付け部17aで2rpm、引上げ長さ40mmの時点で15rpmとし、種付け部17aから引上げ長さ40mmまでのるつぼ9の回転数は一定の割合(引上げ長さに対し、0.325rpm/mmの割合でるつぼの回転数が増加する)で増加するようにした。この結果、単結晶の種付けから単結晶の成長最終部まで全域単結晶は95%以上の高い割合で得られた。なお、引上げ長さ40mmの時点での結晶直径は45から55mmとなるように調整した。
【0034】
また、成長完了後の単結晶の固液界面形状を確認したところ、従来技術で成長させた単結晶の固液界面形状と比較し、原料融液15側への凸状の度合いが大きくなっていた。特に、成長初期段階である単結晶17の増径部17bでの固液界面の原料融液15側への凸状の度合いが定径部17cの凸状の度合いに比べて相対的に大きくなっていた。
【0035】
(実施例2)
なお、上記実施例ではGaAs単結晶の成長の場合について説明したが、本発明はこれに限定するものではなく、InP、GaP、InAs等のLEC法で結晶成長を行う化合物半導体単結晶の成長方法や成長装置の場合についても同様の効果が得られる。
【0036】
本発明による製造方法やその製造方法を適用した装置(図示せず。)で得られる化合物半導体単結晶は、従来技術よりも全域単結晶の確率が高いだけでなく、従来技術で得られた化合物半導体単結晶に比べ、転位の集積部が少ない傾向にある。これは、従来技術の場合は、全域単結晶であっても、リネージ、亜粒界には発展しないまでも転位が集積していることを示している。本発明で得られる化合物半導体単結晶のウェハを用いて素子を形成した場合、転位に基づく素子歩留まりの低下を防止することができる。このため、工業生産における経済的効果は多大なものがある。
【0037】
LEC法での化合物半導体単結晶を成長させる際に、種付け部からある引上げ長さまでの上記るつぼの回転数がそれ以降の回転数未満とすることで、成長過程、特に種付け部から定径部までの成長初期段階での固液界面形状を再現性良く原料融液15側に凸字断面形状に制御することで化合物半導体単結晶の収率を大幅に向上させることができる。
【0038】
【発明の効果】
以上要するに本発明によれば、収率を大幅に向上させた化合物半導体単結晶の製造方法の提供を実現することができる。
【図面の簡単な説明】
【図1】本発明の化合物半導体単結晶の製造方法における、るつぼの回転数と種付け部からの引上げ長さとの関係を示す図である。
【図2】(a)〜(c)は本発明の化合物半導体単結晶の製造方法を適用した化合物半導体単結晶の成長状態を示す図であり、(a)は種結晶を原料の融液に接触した状態を示し、(b)は増径部を引上げている状態を示し、(c)は定形部を引上げている際の状態を示している。
【図3】化合物半導体単結晶を製造するための成長炉の概念図である。
【図4】従来の化合物半導体単結晶の製造方法における、るつぼの回転数と種付け部からの引上げ長さとの関係を示す図である。
【図5】図3に示した成長炉を用いた成長中の単結晶の部分拡大図である。
【符号の説明】
1 チャンバ
2 るつぼサセプタ
3 るつぼ軸
4 回転、昇降手段
5 ヒータ
6〜8 熱シールド治具
9 るつぼ
10 引上げ軸
11 回転、昇降手段
12 種結晶
13 ホルダ
14 成長炉
15 原料(固体、液体)
16 封止剤(固体、液体)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a compound semiconductor single crystal.
[0002]
[Prior art]
As a method for producing a compound semiconductor single crystal, there is an LEC method (Liquid Encapsulated Czochralski method: liquid-sealed Czochralski method). Hereinafter, the LEC method will be described with reference to FIG.
[0003]
FIG. 3 is a conceptual diagram of a growth furnace for producing a compound semiconductor single crystal.
[0004]
A cylindrical crucible susceptor 2 without a bottom is fixed to the upper end of a vertical crucible shaft 3 in the center of the chamber 1. The lower end of the crucible shaft 3 is connected to a rotating / elevating means 4 provided below the outside of the chamber 1. The crucible susceptor 2 is rotatable about a crucible shaft 3 and can be raised and lowered by means of a rotating and lifting means 4. A cylindrical heater 5 is arranged around the crucible susceptor 2 in the chamber 1. Cylindrical heat shield jigs 6 and 7 are arranged between the heater 5 and the side wall of the chamber 1, and a disc-shaped heat shield jig 8 is arranged between the crucible susceptor 2 and the bottom plate of the chamber 1. Have been. In the crucible susceptor 2, a crucible 9 made of PBN (Pyrolytic Boron Nitride) is accommodated. Above the crucible 9 in the chamber 1, there is provided a pulling shaft 10 coaxial with the crucible axis. The pulling shaft 10 is rotatable and vertically movable by a rotating and raising / lowering means 11 provided on the upper outside of the chamber 1. At the lower end of the pulling shaft 10, a holder 13 for holding the seed crystal 12 is provided.
[0005]
The growth furnace 14 is composed of the chamber 1, the crucible susceptor 2, the crucible shaft 3, the rotation and lifting means 4, the heater 5, the heat shield jigs 6 to 8, the crucible 9, the lifting shaft 10, the rotation, the lifting and lowering means 11 and the holder 13. Have been. However, an exhaust unit for exhausting the inside of the chamber 1, a gas introducing unit, and the like are omitted.
[0006]
In the drawing, a compound semiconductor single crystal (hereinafter, referred to as “single crystal”) 17 during growth, a liquid raw material (raw material melt) 15, and a liquid sealing agent 16 are shown. At this stage, the raw material 15 and the sealant 16 are both solid.
[0007]
17a of the single crystal 17 is a seeding portion (contact portion between the seed crystal 12 and the liquid raw material 15), 17b is a diameter-increasing portion (portion formed in a substantially conical shape of the single crystal 17), and 17c is a constant diameter portion (single-crystal portion). Column 17 of the crystal 17).
[0008]
Next, a method of manufacturing a compound semiconductor single crystal by the LEC method using the growth furnace 14 will be described.
[0009]
In the LEC method, a raw material (solid) 15 of a compound semiconductor and a sealing agent (solid) 16 are contained in a crucible 9, and the crucible 9 is heated and heated by a heater 5 in a growth furnace 14 filled with an inert gas. 15 and the encapsulant 16 are melted, and the pulling shaft 10 is rotated and lowered by the rotating and raising / lowering means 11 to bring the seed crystal 12 into contact with the raw material melt 15, and then the crucible 9 (crucible susceptor 2) is moved in the direction of arrow 3a, for example. ), The single crystal 17 of the compound semiconductor is grown from the lower end of the seed crystal 12 by pulling the seed crystal 12 in the direction of arrow 10a while rotating in the direction of arrow 3b.
[0010]
In this LEC method, the rotation speed of the crucible 9 (crucible shaft rotation speed) is generally controlled to be constant from the seeding portion to the growth of the constant diameter portion as shown in FIG. That is, the rotation speed of the crucible 9 is constant regardless of the growth process of the seeding portion 17a, the diameter increasing portion 17b, and the constant diameter portion 17c. In FIG. 4, the rotation speed of the crucible 9 is described as 15 rpm, but it can be set arbitrarily.
[0011]
FIG. 4 is a diagram showing the relationship between the number of rotations of the crucible and the pulling length after seeding of the seed crystal in the conventional method of manufacturing a compound semiconductor single crystal, wherein the horizontal axis represents the pulling length, and the vertical axis represents the pulling length. The number of rotations is shown.
[0012]
Here, a case in which gallium arsenide (hereinafter, referred to as "GaAs"), which is a kind of a compound semiconductor, is grown using a conventional technique will be described with reference to FIG.
[0013]
Using a crucible 9 made of PBN having a diameter of 280 mm and a seed crystal 12 having a rectangular cross-sectional shape of 10 mm square, the crucible 9 and the seed crystal 12 are relatively rotated, and the diameter of the constant diameter portion 17c is 110 mm and the length is 400 mm. The single crystal 17 of GaAs was grown 50 times. As a result, the proportion of the single crystal (All Single) in the entire region from seeding to the final single crystal growth was 50% or less.
[0014]
[Problems to be solved by the invention]
By the way, it is very difficult to grow a compound semiconductor single crystal using the LEC method, and members such as the heater 5 of the growth furnace 14 and the heat shield jigs 6 to 8 (called a hot zone; hereinafter, referred to as “HZ”). Since the arrangement, shape, material, etc. of ()) affect the growth of the single crystal, it is difficult to obtain a single crystal growth condition with good reproducibility.
[0015]
The factor for improving the reproducibility of the single crystal was thought to be related to the HZ such as the arrangement, shape, and material of the HZ. It has become clear that how to control the shape of the interface (hereinafter referred to as “solid-liquid interface”) is a major factor in obtaining a single crystal with good reproducibility.
[0016]
FIG. 5 is a partially enlarged view of a single crystal being grown using the growth furnace shown in FIG.
[0017]
Note that the same members as those shown in FIG. 3 are denoted by the same reference numerals.
[0018]
The relationship between the shape of the interface (solid-liquid interface) between the raw material melt 15 and the single crystal 17 and the yield of the single crystal 17 is such that the solid-liquid interface has a concave cross-sectional shape toward the raw material melt 15 (dashed line L1 ) Indicate line defects (slightly shifted in some directions) and sub-grain boundaries (sub-crystal grains) regardless of the entire growth process of the single crystal 17 or a certain period of growth. Are easily accumulated and polycrystals are easily formed, so that the yield of the single crystal 17 is reduced.
[0019]
A major factor for improving the yield of the single crystal 17 is to control the solid-liquid interface so as to have a convex cross-sectional shape (indicated by a two-dot chain line L2) on the raw material melt 15 side throughout the growth process. It is. The accumulation of lineage and sub-grain boundaries, which are crystal defects, often occurs particularly at the initial stage of growth from the seeding portion 17a to the constant diameter portion 17c. For this reason, it is particularly important to control the shape of the solid-liquid interface from the seeding portion 17a to the constant diameter portion 17c in the initial stage of growth with good reproducibility to a cross-sectional shape convex toward the raw material melt 15 side. However, at present, it is technically difficult to control the shape of the solid-liquid interface to a convex cross-sectional shape on the side of the raw material melt 15 with good reproducibility, and this has been a factor of reducing the yield of the compound semiconductor single crystal. There was a problem.
[0020]
Therefore, an object of the present invention is to provide a method of manufacturing a compound semiconductor single crystal which solves the above-mentioned problems and greatly improves the yield.
[0021]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 is to provide a crucible containing a compound semiconductor raw material and a sealant, and heating the crucible in a growth furnace filled with an inert gas to heat the raw material and the sealant. After the seed crystal is melted and the seed crystal is brought into contact with the raw material melt, the crucible and the seed crystal are rotated around a vertical central axis, and the seed crystal is pulled vertically to separate the compound semiconductor from the seed crystal. In the method of manufacturing a compound semiconductor single crystal for growing a crystal, the rotation speed of the crucible from the seeding portion to a certain pulling length is set to be lower than the rotation speed of the subsequent crucible.
[0022]
According to a second aspect of the present invention, in addition to the configuration of the first aspect, it is preferable that the number of rotations of the crucible from the seeding portion to a certain pulling length is increased at a constant rate.
[0023]
According to the present invention, in the initial stage of growth from the seeding portion to a certain pulling length, the rotation speed of the crucible is set to be lower than the subsequent rotation speed, so that the single crystal growth process, particularly the solid-liquid phase in the initial growth stage. The interface shape can be controlled with good reproducibility so as to have a convex cross-sectional shape on the raw material melt side, and the yield of the compound semiconductor single crystal can be greatly improved.
[0024]
Here, in the LEC method, from the viewpoint of cost, a crystal having a cross-sectional area of a seed crystal smaller than a target crystal cross-sectional area is used, and crystal growth is performed in the order of a seeding portion, a diameter increasing portion, a constant diameter portion, and a tail portion. Is common. In general, the number of rotations of the crucible is constant irrespective of the seeding portion, the increased diameter portion, the fixed diameter portion, and the tail portion.
[0025]
The shape of the solid-liquid interface is determined by the temperature distribution in the radial direction of the single crystal in the raw material melt, but convection in the raw material melt also has a large effect on the shape of the solid-liquid interface. In general, when the number of rotations of the crucible is small, the solid-liquid interface shape has a convex cross-sectional shape toward the raw material melt at the initial stage of growth, and as the diameter approaches the fixed diameter portion, the solid-liquid interface shape reverses, and the shape changes toward the raw material melt. It has a concave cross section. When the crucible rotation speed is high, the solid-liquid interface shape tends to be concave toward the raw material melt at the initial stage of growth, and as the diameter approaches a constant diameter, the solid-liquid interface shape becomes a convex cross-sectional shape due to the raw material melt side. become.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0027]
FIG. 1 is a diagram showing the relationship between the number of rotations of a crucible and the pulling length after seeding of a crucible in the method for producing a compound semiconductor single crystal of the present invention, wherein the horizontal axis represents the pulling length and the vertical axis represents the crucible. Indicates the number of rotations. In FIG. 1, the crucible rotation speed at the time of seeding is 2 rpm, the crucible rotation speed at a pulling length of 40 mm is 15 rpm, and the crucible rotation speed increases at a constant rate at a pulling length of 40 mm from the seeding time. However, the present invention is not limited to this, and the relationship between the solid-liquid interface shape corresponding to the pulling length and the crystal diameter and the crucible rotation speed is grasped in advance, and the most protruding shape on the raw material melt side of the solid-liquid interface shape is obtained. It is desirable to set the conditions for the cross-sectional shape.
[0028]
In the present manufacturing method, a raw material (solid) 15 of a compound semiconductor and a sealing agent (solid) 16 are accommodated in a crucible 9 shown in FIG. 3, and the crucible 9 is heated in a growth furnace 14 filled with an inert gas. After melting the raw material 15 and the sealant 16 and bringing the seed crystal 12 into contact with the raw material melt 15, for example, the crucible 9 is rotated in the direction of arrow 3a, and the seed crystal 12 is rotated in the direction of arrow 3b, for example. While growing the compound semiconductor single crystal 17 from the lower end of the seed crystal 12 by pulling the seed crystal 12 in the direction of the arrow 10a, the number of crucible rotations from the contact of the seed crystal 12 with the raw material melt 15 to a certain pulling length, The rotation speed is set to be lower than the rotation speed thereafter.
[0029]
It is preferable to increase the number of rotations of the crucible 9 at a constant rate from the time when the seed crystal 12 is brought into contact with the raw material melt 15 until the seed crystal 12 grows to a certain pulling length.
[0030]
2 (a) to 2 (c) are views showing a growth state of a diameter-increased portion of a compound semiconductor single crystal to which the method of manufacturing a compound semiconductor single crystal according to the present invention is applied, and FIG. 2B shows a state in which the diameter-increased portion is pulled up, and FIG. 2C shows a state in which the fixed-form portion is pulled up.
[0031]
By growing the single crystal 17 in this manner, the shape of the solid-liquid interface at the initial stage of the growth of the single crystal 17, particularly from the seeding portion 17 a to a certain length including a part of the constant diameter portion 17 c, is reproduced. It is possible to control the shape of the convex cross section toward the raw material melt 15 with good efficiency, and it is possible to greatly improve the yield of the single crystal 17.
[0032]
【Example】
Next, specific numerical values will be described with reference to FIG. 3, but the present invention is not limited thereto.
[0033]
(Example 1)
Using a PBN crucible 9 having a diameter of 280 mm and a seed crystal 12 having a rectangular cross section of 10 mm square, a GaAs single crystal 17 having a diameter of a constant diameter portion 17c of 110 mm and a length of 400 mm was grown 50 times. In this case, the rotation speed of the crucible 9 is 2 rpm at the seeding portion 17a and 15 rpm at the time of the pulling length of 40 mm, and the rotation speed of the crucible 9 from the seeding portion 17a to the pulling length of 40 mm is a fixed ratio (pulling length). On the other hand, the number of rotations of the crucible increases at a rate of 0.325 rpm / mm). As a result, from the seeding of the single crystal to the final growth of the single crystal, the entire area of the single crystal was obtained at a high ratio of 95% or more. The crystal diameter at the time of the pulling length of 40 mm was adjusted to be 45 to 55 mm.
[0034]
When the solid-liquid interface shape of the single crystal after the growth was completed was confirmed, the degree of convexity toward the raw material melt 15 was larger than that of the single crystal grown by the conventional technique. Was. In particular, the degree of convexity of the solid-liquid interface toward the raw material melt 15 at the diameter-increased portion 17b of the single crystal 17 in the initial stage of growth becomes relatively larger than the degree of convexity of the constant-diameter portion 17c. I was
[0035]
(Example 2)
In the above embodiment, the case of growing a GaAs single crystal has been described. However, the present invention is not limited to this, and a method of growing a compound semiconductor single crystal using an LEC method such as InP, GaP, InAs, etc. The same effect can be obtained in the case of a growth apparatus.
[0036]
The compound semiconductor single crystal obtained by the manufacturing method according to the present invention or an apparatus (not shown) to which the manufacturing method is applied not only has a higher probability of the entire area single crystal than the conventional technology, but also has the compound obtained by the conventional technology. There is a tendency that the number of dislocation accumulation portions is smaller than that of a semiconductor single crystal. This indicates that in the case of the prior art, even in the case of a single crystal in the whole area, dislocations are accumulated even if it does not develop into lineage and sub-grain boundaries. In the case where an element is formed using a compound semiconductor single crystal wafer obtained by the present invention, a decrease in the element yield due to dislocation can be prevented. For this reason, there is a great economic effect in industrial production.
[0037]
When growing a compound semiconductor single crystal by the LEC method, the rotation speed of the crucible from the seeding portion to a certain pulling length is set to be less than the rotation speed thereafter, so that the growth process, particularly from the seeding portion to the constant diameter portion, By controlling the shape of the solid-liquid interface at the initial stage of the growth to the cross section of the convex shape toward the raw material melt 15 with good reproducibility, the yield of the compound semiconductor single crystal can be greatly improved.
[0038]
【The invention's effect】
In short, according to the present invention, it is possible to provide a method of manufacturing a compound semiconductor single crystal with a significantly improved yield.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the number of rotations of a crucible and the length pulled from a seeding part in the method for producing a compound semiconductor single crystal of the present invention.
FIGS. 2A to 2C are diagrams showing a growth state of a compound semiconductor single crystal to which the method of manufacturing a compound semiconductor single crystal according to the present invention is applied, and FIG. (B) shows a state in which the diameter-increased portion is pulled up, and (c) shows a state in which the fixed-form portion is pulled up.
FIG. 3 is a conceptual diagram of a growth furnace for producing a compound semiconductor single crystal.
FIG. 4 is a diagram showing a relationship between the number of rotations of a crucible and a pulling length from a seeding part in a conventional method for manufacturing a compound semiconductor single crystal.
5 is a partially enlarged view of a single crystal being grown using the growth furnace shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Chamber 2 Crucible susceptor 3 Crucible shaft 4 Rotation, raising and lowering means 5 Heater 6-8 Heat shield jig 9 Crucible 10 Pulling shaft 11 Rotation, raising and lowering means 12 Seed crystal 13 Holder 14 Growth furnace 15 Raw material (solid, liquid)
16 Sealant (solid, liquid)

Claims (2)

るつぼ内に化合物半導体の原料及び封止剤を収容し、不活性ガスを充填した成長炉内で上記るつぼを加熱して上記原料及び上記封止剤を融解し、その原料融液に種結晶を接触させた後、上記るつぼ、及び上記種結晶を鉛直な中心軸のまわりに回転させると共に、上記種結晶を鉛直に引上げることにより上記種結晶から化合物半導体の単結晶を成長させる化合物半導体単結晶の製造方法において、種付け部からある引上げ長さまでの上記るつぼの回転数がそれ以降の回転数未満であることを特徴とする化合物半導体単結晶の製造方法。The raw material of the compound semiconductor and the encapsulant are accommodated in a crucible, and the crucible is heated in a growth furnace filled with an inert gas to melt the raw material and the encapsulant. After the contact, the crucible and the seed crystal are rotated around a vertical central axis, and the seed crystal is pulled vertically to grow a compound semiconductor single crystal from the seed crystal. The method for producing a compound semiconductor single crystal according to claim 1, wherein the rotation speed of the crucible from the seeding portion to a certain pulling length is lower than the rotation speed thereafter. 種付け部からある引上げ長さまでのるつぼの回転数が一定の割合で増加することを特徴とする請求項1に記載の化合物半導体単結晶の製造方法。2. The method for producing a compound semiconductor single crystal according to claim 1, wherein the number of rotations of the crucible from the seeding portion to a certain pulling length increases at a constant rate.
JP2003044158A 2003-02-21 2003-02-21 Method for manufacturing compound semiconductor single crystal Pending JP2004250296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003044158A JP2004250296A (en) 2003-02-21 2003-02-21 Method for manufacturing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003044158A JP2004250296A (en) 2003-02-21 2003-02-21 Method for manufacturing compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JP2004250296A true JP2004250296A (en) 2004-09-09

Family

ID=33026941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003044158A Pending JP2004250296A (en) 2003-02-21 2003-02-21 Method for manufacturing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2004250296A (en)

Similar Documents

Publication Publication Date Title
JPS6046998A (en) Pulling up of single crystal and its device
TW202113168A (en) Process for growing silicon single crystal
EP2045372A2 (en) Method for growing silicon ingot
JPH076972A (en) Growth method and device of silicon single crystal
JP2006327879A (en) Method for manufacturing compound semiconductor single crystal
JP2004250296A (en) Method for manufacturing compound semiconductor single crystal
KR100835293B1 (en) Manufacturing method of silicon single crystal ingot
JPH0367994B2 (en)
KR101956754B1 (en) DEVICE FOR SINGLE CRYSTAL GROWTH OF GaAs
JP3885245B2 (en) Single crystal pulling method
JP2004292288A (en) Method for melting raw material for silicon single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2005200228A (en) Growth method for compound semiconductor single crystal
JP2004269273A (en) Method for manufacturing compound semiconductor single crystal
JPH09208379A (en) Pulling up of single crystal
JP4207783B2 (en) Method for producing compound semiconductor single crystal
JP3247829B2 (en) Crystal growth furnace and crystal growth method
JP2004250297A (en) Method for manufacturing compound semiconductor single crystal
JPH05319973A (en) Single crystal production unit
JP4161787B2 (en) Method for producing compound semiconductor single crystal
JP2004099411A (en) Method for producing compound semiconductor single crystal
JPH06340493A (en) Apparatus for growing single crystal and growing method
JP2005298252A (en) Apparatus for manufacturing compound semiconductor single crystal
JP2004123444A (en) Apparatus for manufacturing compound semiconductor single crystal
JPH10279399A (en) Production of single crystal