JP2004245795A - 粒子測定方法及びそれを用いたプラズマ成膜装置 - Google Patents

粒子測定方法及びそれを用いたプラズマ成膜装置 Download PDF

Info

Publication number
JP2004245795A
JP2004245795A JP2003038556A JP2003038556A JP2004245795A JP 2004245795 A JP2004245795 A JP 2004245795A JP 2003038556 A JP2003038556 A JP 2003038556A JP 2003038556 A JP2003038556 A JP 2003038556A JP 2004245795 A JP2004245795 A JP 2004245795A
Authority
JP
Japan
Prior art keywords
plasma
particle measuring
suction tube
plasma region
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003038556A
Other languages
English (en)
Inventor
Iku Kondo
郁 近藤
Kikuo Okuyama
喜久夫 奥山
Manabu Shimada
学 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Rion Co Ltd
Original Assignee
Japan Science and Technology Agency
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Rion Co Ltd filed Critical Japan Science and Technology Agency
Priority to JP2003038556A priority Critical patent/JP2004245795A/ja
Publication of JP2004245795A publication Critical patent/JP2004245795A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

【課題】半導体などの製造におけるプラズマによる成膜工程でプラズマ領域内に発生する粒子をリアルタイムで測定することができる粒子測定方法及びそれを用いたプラズマ成膜装置を提供する。
【解決手段】プラズマを用いた成膜装置本体1内に形成されるプラズマ領域14に浮動電位状態にした吸引管21を挿入し、この吸引管21によりプラズマ領域14の気体を粒子測定装置本体20に導き、気体中に浮遊する粒子を測定する。また、プラズマを用いた成膜装置において、プラズマ領域14に挿入した吸引管21によりプラズマ領域14の気体中に浮遊する粒子を測定しながら基板6に薄膜を形成する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマを用いた成膜装置において、ウェハなどの基板を汚染する気相生成粒子をリアルタイム(実時間)で測定する粒子測定方法及びそれを用いたプラズマ成膜装置に関する。
【0002】
【従来の技術】
半導体、フラットパネルディスプレイや太陽電池などを構成する薄膜は、プラズマにより気相で材料ガスを解離、励起、電離することで生成される活性種を基板上に到達させて作製する方法(CVD:化学的気相成長法)が多く用いられている。このような方法では、気相中で活性種が核となって、容易に半導体などの製品の品質に影響を及ぼす汚染粒子を生成してしまうことが知られ、その管理が製品歩留まりの向上にとって重要となっている。
【0003】
従来、成膜などの生産工程で発生する基板の粒子汚染をリアルタイムで測定することは困難であり、製造装置を通過させた汚染管理用の試験基板(ダミーウェハ)か、または生産工程から搬出された基板上に付着した粒子を表面検査装置で測定することが行われている。
【0004】
また、吸引管を微粒子の電荷と逆符号に帯電させた状態と、同符号に帯電させた状態とを切換えたり、吸引管を微粒子の電荷と逆符号に帯電させた状態と同符号に帯電させた状態との間で連続的に変化させたりすることで、プラズマ領域内の粒子をプラズマ領域外から吸引して測定することが知られている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特許第3055645号公報
【0006】
【発明が解決しようとする課題】
しかし、表面検査装置による測定は、基板の粒子汚染状態を直接測定するため、生産される半導体などの製品の不良発生状態と強い相関関係があるものの、生産工程から搬出された後の測定となるので、成膜工程中の汚染粒子発生をリアルタイムに測定することができず、不良発生情報の生産工程へのフィードバックが遅れて製品歩留まりの向上が図れないという問題があった。
また、特許文献1に記載の発明では、生産工程においてプラズマ領域内の粒子をプラズマ領域外から吸引して測定するものの、実際上イオンシースの電位的壁が測定の障害になるという問題があった。
【0007】
本発明は、従来の技術が有するこのような問題点に鑑みてなされたものであり、その目的とするところは、半導体などの製造におけるプラズマによる成膜工程でプラズマ領域内に発生する粒子をリアルタイムで測定することができる粒子測定方法及びそれを用いたプラズマ成膜装置を提供しようとするものである。
【0008】
【課題を解決するための手段】
上記課題を解決すべく請求項1に係る発明は、プラズマを用いた成膜装置内に形成されるプラズマ領域に吸引管を挿入し、この吸引管によりプラズマ領域の気体を粒子測定装置本体に導き、前記気体中に浮遊する粒子を測定するものである。
【0009】
請求項2に係る発明は、請求項1記載の粒子測定方法において、前記吸引管を浮動電位状態にした。
【0010】
請求項3に係る発明は、請求項1又は2記載の粒子測定方法において、前記粒子測定装置本体が光散乱方式で粒子を検出する。
【0011】
請求項4に係る発明は、請求項1、2又は3記載の粒子測定方法において、前記粒子測定装置本体の粒子検出部が透明なフローセルで構成される。
【0012】
請求項5に係る発明は、請求項1、2、3又は4記載の粒子測定方法において、前記粒子測定装置本体に導かれる気体の流量を前記粒子測定装置本体の吸引圧力を調整することにより制御する。
【0013】
請求項6に係る発明は、請求項1、2、3、4又は5記載の粒子測定方法において、前記吸引管を高周波電極側のイオンシースとプラズマ領域の境界付近に挿入するようにした。
【0014】
請求項7に係る発明は、請求項1、2、3、4又は5記載の粒子測定方法において、前記吸引管をプラズマ領域の中央部に挿入するようにした。
【0015】
請求項8に係る発明は、請求項1、2、3、4又は5記載の粒子測定方法において、前記吸引管を接地電極側のイオンシースとプラズマ領域の境界付近に挿入するようにした。
【0016】
請求項9に係る発明は、プラズマを用いた成膜装置において、プラズマ領域に挿入した吸引管によりプラズマ領域の気体中に浮遊する粒子を測定しながら基板に薄膜を形成するものである。
【0017】
【発明の実施の形態】
以下に本発明の実施の形態を添付図面に基づいて説明する。ここで、図1は本発明に係る粒子測定方法の第1の実施の形態を用いたプラズマ成膜装置の構成説明図、図2は本発明に係る粒子測定方法の第2の実施の形態を用いたプラズマ成膜装置の構成説明図、図3は本発明に係る粒子測定方法の第3の実施の形態を用いたプラズマ成膜装置の構成説明図である。
【0018】
本発明に係る粒子測定方法の第1の実施の形態を用いたプラズマ成膜装置は、図1に示すように、プラズマ成膜装置本体1、粒子測定装置2、信号処理装置3、ガス流量制御装置4、高周波電源5などを備えている。6は成膜の対象となる基板、7は材料ガスである。
【0019】
プラズマ成膜装置本体1は、高周波電極11と、高周波電極11の一部をなす材料ガス吹出し口10と、高周波電極11に対向する接地電極12と、プラズマ成膜装置本体1内を減圧する真空ポンプ13などからなる。14は高周波電極11と接地電極12で構成される平行平板電極間に形成されるプラズマ領域、15はプラズマ成膜装置本体1内の圧力を計測する圧力計、16はバルブである。
【0020】
粒子測定装置2は、光散乱式で光照射部、透明なフローセルの粒子検出部、受光部などからなる粒子測定装置本体20と、プラズマ領域14に挿入してプラズマ領域14の気体中に浮遊する気相生成粒子を捉える吸引管21と、プラズマ領域14の気体を吸引するための真空ポンプ22と、吸引する気体の流量を調整する圧力計23及びバルブ24を備えている。
【0021】
吸引管21は、その先端21aが高周波電極11側のイオンシースとプラズマ領域14の境界付近に挿入されている。25は吸引管21を粒子測定装置本体20及びプラズマ成膜装置本体1とから絶縁するための絶縁体である。
【0022】
信号処理装置3は、プラズマ成膜装置本体1内の状態を最適にするために粒子測定装置本体20が測定した気相生成粒子の測定値に基づいて、高周波電極11と接地電極12に供給される高周波電力を制御すべく高周波電源5に制御信号を出力し、プラズマ成膜装置本体1に供給される材料ガス7の流量を制御すべくガス流量制御装置4に制御信号を出力し、更にプラズマ成膜装置本体1内の圧力を制御すべくバルブ16に制御信号を出力する。
【0023】
以上のように構成した本発明に係る粒子測定方法の第1の実施の形態を用いたプラズマ成膜装置の動作について説明する。
先ず、薄膜を形成する対象となる基板6を接地電極12に載置する。
【0024】
次いで、材料ガス7をガス流量制御装置4によりプラズマ成膜装置本体1内の供給しながら、プラズマ成膜装置本体1内を真空ポンプ13によって50〜500Pa程度に減圧し、高周波電源5から高周波電極11と接地電極12に供給される高周波電力により高周波電極11と接地電極12で構成される平行平板電極間にプラズマ領域14を形成させる。
【0025】
すると、材料ガス7はプラズマ領域14内で解離、励起、電離して活性種を生成し、この活性種を用いて薄膜が基板6上に形成されていく。
その際、吸引管21の先端21aを高周波電極11側のイオンシースとプラズマ領域14の境界付近に挿入し、真空ポンプ22によりプラズマ成膜装置本体1内の気体を吸引することでプラズマ領域14の気体中に浮遊する気相生成粒子を粒子測定装置本体20に導き、その粒子数濃度をリアルタイムで測定する。
【0026】
吸引管21の先端21aを高周波電極11側のイオンシースとプラズマ領域14の境界付近に挿入して粒子数濃度を測定するのは、平行平板電極方式では、気相生成粒子が静電力やイオンの抗力(イオン粘性力)などによって高周波電極11側のイオンシース(正イオンが多い領域)とプラズマ領域14の境界付近に多く滞留することが知られているからである。
【0027】
真空ポンプ22によって吸引され、粒子測定装置本体20に導かれる気体の流量は、圧力計23により測定される吸引気体の圧力と圧力計15により測定される装置本体1内の圧力との圧力差をバルブ24の開度により調整することによって制御される。
【0028】
また、吸引管21の途中に絶縁体25を設けることによって、吸引管21が粒子測定装置本体20及びプラズマ成膜装置本体1から電気的に絶縁され、吸引管21の先端を浮動電位状態にすることができるので、吸引管21を挿入することによるプラズマ領域14への影響を低減して吸引管21によるプラズマ領域14の気相生成粒子の吸引を円滑に行うことができる。
【0029】
このように、吸引管21の先端21aを高周波電極11側のイオンシースとプラズマ領域14の境界付近に配置し、気相で生成されている粒子の粒子数濃度を粒子測定装置本体20でリアルタイムに測定することにより、基板6の汚染に繋がる可能性の高いプラズマ成膜装置本体1内の気相生成粒子の粒子数濃度をリアルタイムで把握することができる。
【0030】
そして、信号処理装置3は、プラズマ成膜装置本体1内の状態を最適にするため粒子測定装置本体20がリアルタイムで測定している粒子数濃度に基づいて、高周波電源5が高周波電極11と接地電極12に供給する高周波電力、ガス流量制御装置4がプラズマ成膜装置本体1に供給する材料ガス7の流量及びバルブ16によるプラズマ成膜装置本体1内の圧力をそれぞれ制御することができる。例えば、気相生成粒子の生成速度を高周波電源5が高周波電極11と接地電極12に供給する高周波電力によって制御することができる。
【0031】
次に、本発明に係る粒子測定方法の第2の実施の形態は、図2に示すように、吸引管21の先端21aをプラズマ領域14の中央部(プラズマバルク領域)に配置したもので、他の構成は図1に示す第1の実施の形態と同様である。
【0032】
通常のプラズマ成膜工程において、プラズマ領域14の中央部には浮遊する気相生成粒子が極めて少ないことが知られている。しかし、プロセスの条件やプラズマ成膜装置本体1内の状態変化などで、プラズマ領域14の中央部に多くの気相生成粒子が流れ込むと、それがそのまま基板6の汚染に繋がる可能性が高い。
【0033】
プラズマ領域14の中央部に吸引管21の先端21aを配置することで、プラズマ領域14の中央部における突発的な或いは急激な気相生成粒子の数の増加をリアルタイムで管理することが可能になり、気相生成粒子による基板6の汚染を防止する有効な測定方法になる。
【0034】
次に、本発明に係る粒子測定方法の第3の実施の形態は、図3に示すように、吸引管21の先端21aを接地電極12側のイオンシースとプラズマ領域14の境界付近に配置したもので、他の構成は図1に示す第1の実施の形態と同様である。
【0035】
通常のプラズマ成膜工程において、接地電極12側のイオンシースとプラズマ領域14の境界付近に気相生成粒子が存在する可能性は、図2に示すプラズマ領域14の中央部と同様に低いので、この位置で気相生成粒子が多く測定されると、基板6の汚染の可能性が高いと判断できる。
【0036】
また、エッチングなど基板側にマイナスのバイアス電圧を印加する場合では、基板側のイオンシースが厚くなるので、接地電極12側のイオンシースとプラズマ領域14の境界付近で気相生成粒子が捕捉され易くなる。
従って、プラズマ領域14の粒子汚染を管理する目的で、吸引管21の先端21aを接地電極12側のイオンシースとプラズマ領域14の境界付近に配置するのは、有効な粒子汚染の測定方法になる。
【0037】
【発明の効果】
以上説明したように請求項1に係る発明によれば、基板の汚染に繋がるプラズマ成膜装置内の気相生成粒子の粒子数濃度をリアルタイムで確実に測定することができる。
【0038】
請求項2に係る発明によれば、吸引管を挿入することによるプラズマ領域への影響を低減して吸引管によるプラズマ領域の気相生成粒子の吸引を円滑に行うことができる。
【0039】
請求項3に係る発明によれば、光散乱方式により確実に粒子を検出することができる。
【0040】
請求項4に係る発明によれば、粒子検出部を透明なフローセルで構成することにより、円滑に粒子を検出することができる。
【0041】
請求項5に係る発明によれば、粒子測定装置本体に導かれる気体の流量を制御することにより、成膜速度に応じて気体中に浮遊する粒子を検出することができる。
【0042】
請求項6に係る発明によれば、基板の汚染に繋がる可能性の高いプラズマ成膜装置内の気相生成粒子の粒子数濃度をリアルタイムで確実に測定することができ、気相生成粒子による基板の汚染を有効に防止することができる。
【0043】
請求項7に係る発明によれば、プラズマ領域の中央部における突発的な或いは急激な気相生成粒子の数の増加をリアルタイムで管理することが可能になり、気相生成粒子による基板の汚染を有効に防止することができる。
【0044】
請求項8に係る発明によれば、接地電極側のイオンシースとプラズマ領域の境界付近に気相生成粒子が存在する可能性は低いので、この位置で気相生成粒子が多く測定されると、基板の汚染の可能性が高いと判断でき、有効な粒子汚染の測定方法になる。
【0045】
請求項9に係る発明によれば、成膜工程の汚染粒子発生をリアルタイムに測定することができ、不良発生情報の生産工程へのフィードバックが速やかに行われ製品歩留まりの向上が図れる。
【図面の簡単な説明】
【図1】本発明に係る粒子測定方法の第1の実施の形態を用いたプラズマ成膜装置の構成説明図
【図2】本発明に係る粒子測定方法の第2の実施の形態を用いたプラズマ成膜装置の構成説明図
【図3】本発明に係る粒子測定方法の第3の実施の形態を用いたプラズマ成膜装置の構成説明図
【符号の説明】
1…プラズマ成膜装置本体、2…粒子測定装置、3…信号処理装置、4…ガス流量制御装置、5…高周波電源、6…基板、7…材料ガス、11…高周波電極、12…接地電極、13,22…真空ポンプ、14…プラズマ領域、16,24…バルブ、20…粒子測定装置本体、21…吸引管、25…絶縁体。

Claims (9)

  1. プラズマを用いた成膜装置内に形成されるプラズマ領域に吸引管を挿入し、この吸引管によりプラズマ領域の気体を粒子測定装置本体に導き、前記気体中に浮遊する粒子を測定することを特徴とする粒子測定方法。
  2. 前記吸引管を、浮動電位状態にする請求項1記載の粒子測定方法。
  3. 前記粒子測定装置本体が、光散乱方式である請求項1又は2記載の粒子測定方法。
  4. 前記粒子測定装置本体の粒子検出部が、透明なフローセルで構成される請求項1、2又は3記載の粒子測定方法。
  5. 前記粒子測定装置本体に導かれる気体の流量を、前記粒子測定装置本体の吸引圧力を調整することにより制御する請求項1、2、3又は4記載の粒子測定方法。
  6. 前記吸引管を高周波電極側のイオンシースとプラズマ領域の境界付近に挿入する請求項1、2、3、4又は5記載の粒子測定方法。
  7. 前記吸引管をプラズマ領域の中央部に挿入する請求項1、2、3、4又は5記載の粒子測定方法。
  8. 前記吸引管を接地電極側のイオンシースとプラズマ領域の境界付近に挿入する請求項1、2、3、4又は5記載の粒子測定方法。
  9. プラズマを用いた成膜装置において、プラズマ領域に挿入した吸引管によりプラズマ領域の気体中に浮遊する粒子を測定しながら基板に薄膜を形成することを特徴とするプラズマ成膜装置。
JP2003038556A 2003-02-17 2003-02-17 粒子測定方法及びそれを用いたプラズマ成膜装置 Pending JP2004245795A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038556A JP2004245795A (ja) 2003-02-17 2003-02-17 粒子測定方法及びそれを用いたプラズマ成膜装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038556A JP2004245795A (ja) 2003-02-17 2003-02-17 粒子測定方法及びそれを用いたプラズマ成膜装置

Publications (1)

Publication Number Publication Date
JP2004245795A true JP2004245795A (ja) 2004-09-02

Family

ID=33023058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038556A Pending JP2004245795A (ja) 2003-02-17 2003-02-17 粒子測定方法及びそれを用いたプラズマ成膜装置

Country Status (1)

Country Link
JP (1) JP2004245795A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056270A (ja) * 2008-08-28 2010-03-11 Hitachi High-Technologies Corp パーティクルモニタを備えた基板処理装置及びそれを用いた基板処理方法
KR101857967B1 (ko) * 2017-07-19 2018-05-16 주식회사 위드텍 공기 오염 모니터링 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056270A (ja) * 2008-08-28 2010-03-11 Hitachi High-Technologies Corp パーティクルモニタを備えた基板処理装置及びそれを用いた基板処理方法
KR101857967B1 (ko) * 2017-07-19 2018-05-16 주식회사 위드텍 공기 오염 모니터링 장치

Similar Documents

Publication Publication Date Title
US6553277B1 (en) Method and apparatus for vacuum treatment
US8901935B2 (en) Methods and apparatus for detecting the confinement state of plasma in a plasma processing system
US11315792B2 (en) Plasma processing apparatus and plasma processing method
JP2830978B2 (ja) リアクティブイオンエッチング装置及びプラズマプロセス装置
CN100397038C (zh) 蚀刻量测量装置、蚀刻装置及蚀刻量测量方法
JP3122175B2 (ja) プラズマ処理装置
US6894474B2 (en) Non-intrusive plasma probe
JPH10509557A (ja) プラズマ中のイオン流の測定方法及び装置
TWI484524B (zh) Plasma processing device and plasma processing method
JPWO2008041702A1 (ja) プラズマドーピング方法及び装置
Kasashima et al. Instantaneous generation of many flaked particles by impulsive force of electric field stress acting on inner wall of mass-production plasma etching equipment
JP2000269195A (ja) 半導体装置の製造装置
JP2007324154A (ja) プラズマ処理装置
US9209001B2 (en) Sputtering apparatus and sputtering method
TW307027B (en) Process for reducing circuit damage during pecvd in single wafer pecvd system
JP2004245795A (ja) 粒子測定方法及びそれを用いたプラズマ成膜装置
JP2006073751A (ja) プラズマクリーニング処理の終点検出方法及び終点検出装置
JP4579206B2 (ja) 離脱状態判断方法及び真空処理装置
JP3770740B2 (ja) 基板剥離装置
JP2005142582A (ja) 半導体製造装置および処理方法
JP3976480B2 (ja) プラズマ処理装置
TWI821868B (zh) 離子銑削裝置
JP2002083853A (ja) 半導体ウェーハの評価方法及び装置
JPH0198218A (ja) 乾式薄膜加工装置
JPH0729829A (ja) 直流放電型プラズマ処理方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624