JP2004245520A - Waste treatment equipment - Google Patents

Waste treatment equipment Download PDF

Info

Publication number
JP2004245520A
JP2004245520A JP2003036877A JP2003036877A JP2004245520A JP 2004245520 A JP2004245520 A JP 2004245520A JP 2003036877 A JP2003036877 A JP 2003036877A JP 2003036877 A JP2003036877 A JP 2003036877A JP 2004245520 A JP2004245520 A JP 2004245520A
Authority
JP
Japan
Prior art keywords
chamber
temperature
combustion chamber
sub
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003036877A
Other languages
Japanese (ja)
Other versions
JP4027241B2 (en
Inventor
Itaru Watanabe
之 渡邊
Toru Asada
透 浅田
Junichi Sakakida
淳一 榊田
Masamichi Kawaragi
聖道 河原木
Yoshikatsu Takahashi
善勝 高橋
Toshiaki Hasegawa
敏明 長谷川
Takeshi Tada
健 多田
Makoto Miyata
誠 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Furnace Co Ltd
Toa Corp
Original Assignee
Nippon Furnace Co Ltd
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Furnace Co Ltd, Toa Corp filed Critical Nippon Furnace Co Ltd
Priority to JP2003036877A priority Critical patent/JP4027241B2/en
Publication of JP2004245520A publication Critical patent/JP2004245520A/en
Application granted granted Critical
Publication of JP4027241B2 publication Critical patent/JP4027241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Landscapes

  • Incineration Of Waste (AREA)
  • Air Supply (AREA)
  • Chimneys And Flues (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the waste treatment equipment for crushing infectious wastes including substances which are hardly crushed or melted such as metallic pieces, or treating them at high temperature without performing the previous combustion, and to economically prepare an ultra high temperature field suitable for the complete sterilization of the infectious wastes. <P>SOLUTION: This waste treatment device has the primary to tertiary combustion chambers, the waste is heated into small pieces in the primary combustion chamber, the combustible matters is burned to gasify thermal decomposable solid matters and to prepare the molten slag of thermal meltable solid matters in a main chamber of the secondary combustion chamber, and the gasified gas in the secondary combustion chamber is completely burned in the tertiary combustion chamber. The secondary combustion chamber has a sub-chamber for supplying the gasified gas in the main chamber to the tertiary combustion chamber, and an upstream end opening part of the sub-chamber is formed on a furnace wall of the main chamber. The main chamber has a high-temperature oxidant injecting device for injecting high-speed jet flow of high-temperature oxidant into the main chamber, and an injection port of the injection device is formed in adjacent to the opening part of the sub-chamber, so that the high-speed jet flow is injected in a state of crossing the opening part. An in-furnace area of the main chamber is kept at a temperature of 1000°C or more by the heat generated from the wastes. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄物処理装置に関するものであり、より詳細には、感染性廃棄物の完全滅菌に適した超高温場を廃棄物の発熱を利用して炉内に形成する廃棄物処理装置に関するものである。
【0002】
【従来の技術】
医療施設、各種研究施設、食品工場、大型宿泊施設、大型飲食施設等(以下、「医療施設等」という)の廃棄物は、生物学的資料、生体排出物、合成樹脂、繊維質材料、無機質系材料、金属材料、或いは、動植物の器官等の様々な種別の廃棄物を含み、衛生上の理由等により、これを容易には分別し難い。殊に、医療施設又は医療関係機関の廃棄物は、通常の施設の廃棄物と異なり、感染源となり得る感染性廃棄物を含み、感染の虞がない非感染性廃棄物であっても、注射針、手術器具、瓶、臓器、生体組織等を含むことから、人手による分別処理作業は、事実上、不可能である。このため、経済的に効率良く、しかも、環境には悪影響を与えず、更には、従事する職員にとっては安全且つ省力的に医療廃棄物等を安全に処理することが求められており、理想的には、医療施設等から産出される全ての廃棄物を発生域内(院内)処理することが望ましい。
【0003】
また、このように多種の廃材が混在した分別不能な廃棄物を焼却処理する場合、廃棄物を完全に滅菌処理するばかりでなく、大気汚染防止の観点より望ましくない諸物質、例えば、ダイオキシン等の汚染物質の発生を極力防止し、周辺環境に悪影響を及ぼさない処理方法を採用することも重視される。
【0004】
このような観点より、近年、プラズマの放射熱を利用して超高温場を形成するプラズマ溶融方式や、酸素バーナの燃焼熱により焼却設備の炉内に超高温場を形成し、超高温場で滅菌し且つ溶融し、減容・固化後のスラグを排出する廃棄物処理方法が開発されている(例えば、「ごみ焼却灰の溶融技術」(石川島播磨重工業株式会社、水野昌幸著)。また、このようなガス化溶融過程で発生したガス化ガス又は熱分解ガスを改質し、発電設備等の燃料に用いるシステムも又、開発されている(特開2001−158885 号公報)。
【0005】
【特許文献1】特開2001−158885 号公報
【0006】
【発明が解決しようとする課題】
感染性廃棄物は、可搬容器内に収納された状態で廃棄されることから、高温処理炉は、比較的大きな容積の炉内領域を要するので、酸素バーナや電気加熱(プラズマ等)により超高温場を形成する従来の廃棄物処理方法では、完全滅菌及び廃棄物減容のために多量の酸素又は電気を消費し、維持・管理費が高額化する傾向がある。このため、現実には、高温処理炉の容量及び負荷を低下すべく、粉砕工程や、可燃分の事前燃焼により予め可燃分を焼却し、減容した廃棄物を高温処理炉に導入する方法が採用されてきた。しかし、廃棄物減容のために可燃物を事前燃焼させることは、超高温場の形成に寄与し得る発熱物質を無用に消費することを意味しており、エネルギー効率上、望ましくない。
【0007】
また、感染性廃棄物の性質上、血液、ガーゼ、脱脂綿、オムツ、包帯、リネン、紙屑等の可燃物のみならず、メス、カンシ、注射針等の金属片や、ビン類等の如く粉砕困難な不燃物質が廃棄物に混入することから、焼却設備を構成する粉砕装置、事前燃焼装置、熱分解室、ガス化室又はガス化溶融室等に運転障害等が発生し易く、この種の機械的トラブルを確実に防止することは、非常に困難であった。
【0008】
本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、金属片等の破砕困難且つ溶融困難な物質を含む感染性廃棄物を粉砕処理し又は事前燃焼させることなく高温処理するとともに、感染性廃棄物の完全滅菌に適した超高温場を経済的に形成することができる廃棄物処理装置を提供することにある。
【0009】
本発明は又、このような廃棄物処理装置において、ダイオキシンの発生を防止することを目的とする。
【0010】
【課題を解決するための手段及び作用】
本発明は、上記目的を達成すべく、高温の炉内雰囲気で廃棄物を焼却する廃棄物処理装置において、
バーナ装置を備え、廃棄物を加熱して小片化する一次燃焼室と、
一次燃焼室から落下した廃棄物の小片を酸化し、可燃分の燃焼、熱分解可能な固形分のガス化および熱溶融可能な固形分の溶融スラグ化を行う二次燃焼室の主室と、
二次燃焼室のガス化ガスを完全燃焼させる三次燃焼室とを有し、
前記二次燃焼室は、前記主室のガス化ガスを三次燃焼室に給送する副室を有し、該副室の上流端開口部が、前記主室の炉壁に開口し、
前記主室は、高温酸化剤の高速噴流を主室内に吹き込む高温酸化剤噴射装置を有し、該高温酸化剤は、500℃以上の温度を有し且つ1〜30%の酸素濃度を有する気体からなり、前記噴射装置の噴射口は、前記開口部に隣接して該開口部を横切るように前記高速噴流を噴射し、前記一次燃焼室から前記主室内に落下した廃棄物の未ガス化ミストと、未溶融飛散固体粒子又はフライアッシュとが前記主室を通過して前記開口部に吹き抜けるのを防止するとともに、前記未ガス化ミストと、未溶融飛散固体粒子又はフライアッシュとを主室の底部に向って再循環するように主室の炉壁に配置され、前記主室の炉内領域は、前記廃棄物の発熱により、1000℃以上の温度を維持することを特徴とする廃棄物処理装置を提供する。
【0011】
本発明の上記構成によれば、廃棄物処理装置は、3段階の燃焼室、即ち、廃棄物を小片化する一次燃焼室、小片化した廃棄物をガス化する二次燃焼室、ガス化ガスを完全燃焼させる三次燃焼室を備える。感染性廃棄物等を収納した可搬容器は、一次燃焼室で解体され、容器内容物は、部分的に燃焼し、容器及び容器内容物の小片は、二次燃焼室に落下する。小片は、高温酸化剤の高速噴流により二次燃焼室の主室内に滞留し且つ撹拌され、小片は、高温雰囲気により熱分解し、ガス化する。ガス化ガスは、三次燃焼室で完全燃焼し、排気される。焼却不能又は熱分解不能な固形分のうち、溶融可能な固形分は、主室底部に溶融スラグとして残留し、溶融不能な固形分は、溶融スラグ中に埋入する。主室底部の溶融スラグは、高温酸化剤と反応して発熱し、主室内の高温雰囲気の維持に寄与する。溶融スラグは、廃棄物処理装置の休止後に冷却・固化し、装置外に排出され、或いは、廃棄物処理装置の運転中に連続的又は断続的に排出される。
【0012】
本発明は又、上記構成の廃棄物処理装置において、上記三次燃焼室は、燃焼用空気を三次燃焼室内に噴射する燃焼用空気噴射装置を有し、三次燃焼室内に流入したガス化ガスの可燃分は、前記燃焼用空気噴射装置の燃焼用空気と反応して完全燃焼し、三次燃焼室の排ガス温度を1000℃以上の高温に昇温し、三次燃焼室の高温排ガスは、冷却装置に供給され、該冷却装置は、前記排ガスを瞬時に200℃以下の温度に急冷することを特徴とする廃棄物処理装置を提供する。三次燃焼室による排ガス高温化処理と、冷却装置による高温排ガスの急冷処理を含むプロセスは、ダイオキシンの再合成を効果的に防止する。このため、廃棄物処理装置におけるダイオキシン発生は、抑制される。
【0013】
【発明の実施の形態】
好ましくは、廃棄物処理装置は、高温酸化剤の酸素濃度を5〜30%の範囲内の任意の値に制御する酸素濃度制御手段を更に有し、酸素濃度の制御により、副室から排出されるガス化ガスの温度及び窒素酸化物含有量を制御する。上記高温酸化剤噴射装置は、炉内の状態を目視又は撮像手段で監視する監視機構を備えることが望ましい。
【0014】
更に好ましくは、二次燃焼室の副室は、高温酸化剤の高速噴流を主室内に吹き込む第2の高温酸化剤噴射装置を備える。上記開口部を介して副室内に流入した固形分は、第2噴射装置が噴射する高温酸化剤と反応して燃焼し又は熱分解する。好ましくは、第2噴射装置の高速噴流は、副室内に旋回流を形成する。
【0015】
好適には、主室の底部に堆積した固形分の溶融スラグを排出すべく、主室の下部は、着脱可能なポット構造に形成され、或いは、冷却手段を有する出滓口を備える。同様に、副室の底部に堆積した固形分の溶融スラグを排出すべく、副室の下部は、着脱可能なポット構造に形成され、或いは、冷却手段を備えた出滓口を有する。
【0016】
更に好適には、二次燃焼室の主室は、廃棄物の発熱量の不足を補うための補助燃料を主室に供給可能な補助バーナ装置を有する。主室の補助バーナ装置は、主室の炉温と関連して作動するように制御される。好ましくは、二次燃焼室の副室も又、三次燃焼室に流入するガス化ガスの温度を安定化するための補助燃料を副室に供給可能な補助バーナ装置を有する。副室の補助バーナ装置は、三次燃焼室のガス温度に関連して作動するように制御される。
【0017】
以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。
図1は、本発明の第1実施形態に係る感染性廃棄物処理装置の全体構成を示すシステムフロー図である。
【0018】
図1に示す如く、廃棄物処理装置は、二重ダンパ装置、一次燃焼室、二次燃焼室、三次燃焼室、冷却装置、集塵装置及び高温空気発生装置を備える。一般に、感染性廃棄物は、搬送容器内に収納した状態で廃棄物処理装置に移送される。多種多様な感染性廃棄物を収容した容器は、二重ダンパ装置を介して一次燃焼室に投入される。一次燃焼室の炉温は、約1000℃に設定され、搬送容器は、一次燃焼室において燃焼し、小片化する。小片化した容器および容器内容物(感染性廃棄物)の残査又は未燃分は、二次燃焼室の主室に重力落下する。
【0019】
高温空気発生装置は、常温(大気温相当温度)の空気を500℃以上、好ましくは、800℃の高温に加熱し、二次燃焼室の主室に配設した高温空気噴射装置に高温空気を供給する。二次燃焼室は、主室に後続する副室を含み、高温空気噴射装置が噴射する高温空気噴流は、一次燃焼室から主室に流入した燃焼ガス、熱分解ガス、固体又は液体の浮遊物質等が副室に吹き抜けるのを防止し、これらのガス及び浮遊物質を容器及び容器内容物の小片と一緒に主室内に再循環し、主室内で撹拌する。容器及び容器内容物の小片は、主室内で部分酸化して還元燃焼し、発熱する。
【0020】
高温空気噴射流の流速は、好適には、30m/s以上に設定され、更に好適には、50〜150m/sに設定される。高速で噴出した高温空気流は、二次燃焼室の主室内に噴出すると同時に、主室内の燃焼ガス及び熱分解ガスと混合して酸素濃度を速やかに10%以下に低下させるとともに、1000〜1200℃、或いは、それ以上の温度に温度上昇し、主室内に浮遊した固体又は液体可燃分と接触混合し、還元燃焼する。このため、主室内には、極端な高温部の斑が生じず、温度1500℃程度に均一化した火炎が形成される。
【0021】
なお、固体可燃物に高酸素濃度の高温酸化剤が衝突するとバースト的にガス化ガスが発生して部分高温が形成され、望ましい滅菌効果が得られるが、反面、窒素酸化物(NOx )が大量に発生し、これは、排ガスを無害化する上で望ましくない。しかしながら、本発明によれば、高速の高温空気流を主室内に噴射して主室内の燃焼ガス及び熱分解ガスと直ちに混合せしめ、その酸素濃度を急激に低下させるように構成することで、高温滅菌及び排ガスクリーン化の双方を解決可能な温度場、即ち、高温、低酸素濃度且つ均一な温度場を形成することができる。
【0022】
高温空気噴流との混合接触により、熱分解可能な小片は、熱分解してガス化し、溶融可能な小片は、溶融スラグとして主室底部に滞留する。溶融スラグは、廃棄物処理装置の休止・冷却後に固化し、主室から排出されるか、或いは、装置運転中に主室の出滓口より連続的又は断続的に排出される。
【0023】
主室に生成したガス化ガスは、副室を介して三次燃焼室に流入し、三次燃焼室に供給された燃焼用空気と混合する。ガス化ガスに含まれる一酸化炭素、メタン、水素等の可燃分は、燃焼用空気と反応して三次燃焼室内で完全燃焼する。三次燃焼室から冷却装置に流出する燃焼排ガスは、約1000〜1200℃の温度を有する。
【0024】
三次燃焼室の燃焼ガスは、冷却装置に導入され、数秒の時間で約200℃に急冷される。冷却装置として、冷却水噴霧設備を備えた冷却搭を好適に使用し得る。冷却後の燃焼ガスは、バグフィルター等の集塵装置により浄化され、排気ファン及びスタック(図示せず)を介して系外に排気される。排気ファンの排気誘引圧力は、二次燃焼室の副室、三次燃焼室、浄化装置及び集塵装置に作用しており、主室に生成したガス化ガスの流路全体に排気誘引圧力が作用するので、主室から排気ファンに向かうガス流が系内全体に形成されるとともに、ガス流路は、全体的に陰圧を維持する。なお、高温空気発生装置として、本願出願人による特願平10−189号(特開平10−246428号公報)に開示された給気流加熱装置等を好適に使用し得る。
【0025】
二次燃焼室の主室は、廃棄物の発熱量の不足を補うための補助燃料を主室に供給可能な補助バーナ装置を有する。廃棄物処理装置の制御系を構成する炉温検出手段(T)が、主室に配置され、補助バーナ装置は、制御ユニット(C/U)の制御下に、主室内の炉温検出値と関連して作動する。制御ユニット(C/U)は、例えば、始動時や、廃棄物の発熱が不足する時期に主室内の炉温を所定温度(例えば、1000℃)以上に維持するように補助バーナ装置を作動する。制御ユニット(C/U)は又、高温空気発生装置の駆動部(D)を制御し、高温空気供給量を可変制御する。高温空気供給量の制御により、主室内の酸素濃度は、5〜30%の範囲内の任意の値に制御され、副室から排出されるガス化ガスの温度及び窒素酸化物含有量は、可変制御される。二次燃焼室の副室にも又、補助バーナが配設される。副室の補助バーナは、三次燃焼室のガス温度と関連して作動するように制御され、三次燃焼室に流入するガス化ガスの温度を安定化するための補助燃料を副室に供給する。
【0026】
図2は、本発明の第2実施形態に係る感染性廃棄物処理装置の全体構成を示すシステムフロー図である。
廃棄物処理装置は、第1実施形態と同様、二重ダンパ、一次燃焼室、二次燃焼室、三次燃焼室、冷却装置、除塵装置及び高温空気発生装置を備え、二次燃焼室は、主室及び副室を備える。本実施形態では、主室のガス化ガスと一緒に副室に流入した固形分が、副室内でガス化し又は溶融する。副室には、主室と同様な高温空気噴射装置が配設され、噴射装置は、高温空気発生装置の高温空気を副室内に噴射する。好ましくは、高温空気噴射装置は、副室内に流入した高温空気噴射流が副室内に旋回流を形成するように配向され、副室は、高温空気噴射流の旋回を促す断面形状、例えば、円形断面又は楕円形断面を有する。副室に流入した固形分は、副室内で酸化し、熱分解可能な固形分は、熱分解してガス化し、溶融可能な固形分は、溶融スラグとして副室底部に滞留する。副室底部の溶融スラグは、廃棄物処理装置の休止・冷却後に副室から排出されるか、或いは、装置運転中に副室から連続的又は断続的に排出される。廃棄物処理装置の他の構成は、上記第1実施形態と実質的に同一であるので、更なる詳細説明は、省略する。
【0027】
【実施例】
図3は、上記第1実施形態に係る実施例を示す廃棄物処理装置の縦断面図であり、図4(A)及び図4(B)は、図3のA−A線及びB−B線における断面図である。
【0028】
図3に示す如く、廃棄物処理装置は、一次燃焼炉1、二次燃焼炉2及び三次燃焼炉3より構成され、一次燃焼室10、二次燃焼室20及び三次燃焼室30が各炉1、2、3の炉内に形成される。一次燃焼炉1の炉体11は、その炉軸が二次燃焼炉2の炉軸に対して所定角度をなして傾斜する。二次燃焼炉2の二次燃焼室20は、垂直な縦型主室21と、水平な横型副室22とからなり、炉体23全体は、水平な炉軸を有する。三次燃焼炉30の炉体31は、その炉軸が垂直に配向され、三次燃焼室30は、その底部が連通路33を介して副室22と連通し、その頂部が排ガスダクト39に接続される。
【0029】
一次燃焼炉1は、二重ダンパ装置12及びバーナ装置17を備える。二重ダンパ装置12は、同時開放を禁止した一対のダンパ13、14と、ダンパ13、14間の中間室15とを有し、感染性廃棄物を収容した廃棄物容器W0は、ダンパ13、14の開閉制御と関連して、リフター等の供給装置(図示せず)から中間室15内に導入され、中間室15を経て一次燃焼室10に投入される。バーナ装置17は、LPG等の燃料及び燃焼用空気の供給により燃焼作動し、一次燃焼室10内の廃棄物W0を加熱し、容器を焼却し又は解体・小片化するとともに、容器内容物の小片化を促す。小片落下口18が一次燃焼室10の下部に形成され、容器及び容器内容物の小片W1が、落下口18から二次燃焼室20の主室21内に落下する。落下口18の形状及び開口面積の適切な設計により、適当なサイズの小片W1が、一次燃焼室10から主室21に落下する。
【0030】
二次燃焼炉2の主室21は、図4(B)に示す如く、長軸を二次燃焼炉2の炉軸方向に向けた楕円形横断面を有する。副室22の開口部25は、主室21の上部且つ長軸端に配置され、主室21に面する。溶滓ポット24が、分離・連結可能な接続手段27によって炉体23に着脱可能に接続される。接続手段27は、例えば、ボルト・ナットにより締結・解体可能なフランジ構造を有する。ポット内領域は、炉体23内の主室上部と連続する主室下部を構成する。主室21には、補助燃料を主室21内に供給可能な補助バーナ装置(図示せず)が所定位置に配置される。廃棄物処理装置は、主室21の炉温検出手段等(図示せず)及びバーナ制御装置(図示せず)を備え、バーナ制御装置は、主室21の炉温と関連して補助バーナ装置を作動する。補助バーナ装置は、廃棄物の発熱量が不足する場合に主室21内に燃料を噴射し、主室21内の発熱量の不足を補う。
【0031】
高温空気噴射装置4の噴射口40が、開口部25の近傍において主室21の頂壁に開口する。噴射装置4は、主室21から副室22に流出しようとする気流及び浮遊物を主室下部に差し向けるように高温空気の高速噴流を下向きに噴射する。好ましくは、噴射口40の先端部は、高温空気噴射流を50〜150m/sに高速化するように適切な開口面積及び寸法に設計され、所望により、オリィス又は縮径部を有する。
【0032】
高温空気は、500℃以上の温度を有し、好ましくは、800℃以上、更に好ましくは、1000℃以上の温度を有する。落下口18から主室21内に落下した小片W1は、高温空気の高速噴流に接して部分酸化し、熱分解し且つ減容する。小片W1の残査が溶融スラグSとして主室21の底部に堆積する。落下口18を介して主室21内に流入した固体粒子、ミスト状物質、煤粒子、重金属及び熱分解ガスや、主室21内に生成した熱分解ガス及び燃焼ガスは、開口部25を横切り又は横断する高温空気高速噴流に誘引され、主室21内で循環するとともに、高速噴流の運動エネルギーで撹拌される。高速噴流は、主室底部の溶融スラグSに接し、スラグS中の未燃分の燃焼を促す。
【0033】
小片W1、溶融スラグS、固体粒子、ミスト状物質及び熱分解ガスの発熱により、主室21内の温度は、約1500℃に達し、小片W1の減容及び溶融が促進する。溶融スラグSは、廃棄物処理装置の休止により冷却・固化する。ポット24は、接続手段27の解放により取外され、ポット24内の固化物は、ポット24から取り出され、廃棄される。なお、未溶融の金属片等は、スラグ固化物内に埋入した状態で廃棄される。
【0034】
高温空気噴射装置4は、炉内監視装置45を備える。炉内監視装置45は、噴射口40を介して、主室21内の火炎、溶融スラグレベル及び炉内雰囲気等を目視観察する覗き窓を備える。所望により、炉内の状態を撮像する撮像装置を炉内監視装置45に配設しても良い。
【0035】
主室21内のガス化ガスは、排気ファン(図1)の排気誘引圧力下に開口部25から副室22に流入し、副室22から連通路33を介して第三燃焼室30に流入する。副室22には、補助燃料を副室22内に供給可能な補助バーナ装置(図示せず)が所定位置、例えば、副室22の末端部に配設される。上述のバーナ制御装置には、三次燃焼室30のガス温度を検出する温度検出手段(図示せず)が接続され、副室22の補助バーナ装置は、バーナ制御装置の制御下に三次燃焼室30のガス温度と関連して作動する。補助バーナ装置が三次燃焼室30のガス温度低下時に副室22内に燃料を噴射するので、三次燃焼室30に流入するガス化ガスの温度は安定する。
第三燃焼炉3は、上下に所定間隔を隔てて配置された燃焼用空気噴射装置35、36を備える。副室22から第三燃焼室30に流入するガスは、比較的多量の一酸化炭素等を含有しており、ガス中の可燃分は、噴射装置35、36から噴射した燃焼用空気と反応し、完全燃焼する。第三燃焼室30の炉内温度は、部分的には1500℃以上の温度に達し、頂部流出口32の排ガスは、1000〜1200℃のガス温を維持する。
【0036】
第三燃焼室30の排ガスは、排ガスダクト39を介して冷却装置(図1)に供給され、冷却装置において、数秒の時間内に約200℃に急冷された後、バグフィルター等の集塵装置(図1)により除塵され、排気ファン(図1)及びスタック(図示せず)を介して大気に放出される。三次燃焼室30により排ガスを高温化し、高温ガスを冷却装置により急冷するプロセスは、ダイオキシンの再合成を防止するので、廃棄物処理装置におけるダイオキシン発生は、抑制される。
【0037】
図5は、上記第2実施形態に係る実施例を示す廃棄物処理装置の縦断面図であり、図6は、図5のC−C線における断面図である。
図5及び図6に示す廃棄物処理装置は、図3及び図4に示す実施例と同様、一次燃焼炉1、二次燃焼炉2及び三次燃焼炉3より構成される。図5及び図6において、図3及び図4に示す構成要素と実質的に同じ構成要素については、同一の参照符号が付されている。
【0038】
本実施例の第2燃焼炉2は、溶滓ポット51内に形成された縦型の副室22を有し、副室22には、第2の高温空気噴射装置6が配設される。副室22は、主室21で溶融スラグS1として捕捉できずに副室部分50に流入した固体粒子W3をガス化溶融するように機能する。即ち、噴射装置6から噴射した高温空気は、固体粒子W3に衝突し、固体粒子W3の未燃分は燃焼し、熱分解可能な固体粒子W3は熱分解する。ポット51の底部に堆積した残査は、固体粒子W3及び熱分解ガスの燃焼熱により溶融スラグ化し、溶融スラグS2は、廃棄物処理装置の休止により冷却・固化する。ポット51は、前述の接続手段27と同様な接続手段52を有し、接続手段52の解放により取外され、ポット51内の固化物は、ポット24から取り出され、廃棄される。
【0039】
なお、本実施例では、第1焼却炉の炉軸は、垂直に配向される。また、主室21の底部には、出滓口60が配設され、冷却水浴62を有する冷却装置61が、出滓口60と関連して配置される。
【0040】
図7は、副室22の変形例を示す廃棄物処理装置の部分横断面図である。
図7に示す如く、副室部分50を副室22に対して偏芯し、副室22に流入するガス流の運動エネルギーにより、副室22に旋回流を形成し、これにより、副室22による固形分の捕集効率を向上することができる。高温空気噴射装置6は、副室22内の旋回流を強化すべく、図5に示す如く、副室22の中心軸線に対して傾斜した向きに配向することが望ましい。
【0041】
図8は、主室21上部に配置された開口部25と、高温空気噴射装置4の噴射口40との位置関係を例示する主室上部の部分拡大断面図である。
単一且つ円形の噴射口40を開口部25に隣接して配置した構成が、図8(A)及び図8(B)に示されており、単一且つ偏平の噴射口40を開口部25に隣接して配置した構成が、図8(C)及び図8(B)に示されている。また、複数の円形噴射口40を開口部25に隣接して配置した構成が、図8(D)及び図8(B)に示されている。いずれの場合にも、高温空気噴射流は、開口部25を横断するように噴流し、開口部25に流入しようとするガス流を再循環し、主室底部に差し向ける。主室21に作用する排気ファン(図1、図2)の負圧や、主室21内のガス量の増大に伴い、主室21内の炉内ガスは、高温空気噴流が直接的に作用し難い領域を抜けて開口部25内に流入し、副室22に流出する。
【0042】
以上、本発明の好適な実施形態及び実施例について詳細に説明したが、本発明は上記実施形態及び実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能であり、該変形例又は変更例も又、本発明の範囲内に含まれるものであることは、いうまでもない。
【0043】
例えば、上記実施例では、高温空気を高温酸化剤として使用したが、CO 、N、Ar、燃焼排ガス、水蒸気等の気体中に酸素を一定濃度含み、500℃以上の高温に加熱した任意の混合気体を高温酸化剤として用いても良い。
【0044】
また、酸化剤噴射口の数、形状及び配置等は、燃焼室及び開口部の形状及び位置等に相応して、適宜変更し得るものである。
【0045】
【発明の効果】
以上説明したとおり、本発明の上記構成によれば、金属片等の破砕困難且つ溶融困難な物質を含む感染性廃棄物を粉砕処理し又は事前燃焼させることなく高温処理するとともに、感染性廃棄物の完全滅菌に適した超高温場を経済的に形成することができる廃棄物処理装置を提供することができる。
また、三次燃焼室による排ガス高温化処理と、冷却装置による高温排ガスの急冷処理を含むプロセスを採用した本発明の構成によれば、このような廃棄物処理装置において、ダイオキシンの発生を防止することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る感染性廃棄物処理装置の全体構成を示すシステムフロー図である。
【図2】本発明の第2実施形態に係る感染性廃棄物処理装置の全体構成を示すシステムフロー図である。
【図3】図1に示す実施形態に係る廃棄物処理装置の実施例を示す縦断面図である。
【図4】図3のA−A線及びB−B線における断面図である。
【図5】図2に示す実施形態に係る廃棄物処理装置の実施例を示す縦断面図である。
【図6】図5のC−C線における断面図である。
【図7】副室の変形例を示す廃棄物処理装置の部分横断面図である。
【図8】主室上部に配置された開口部と、高温空気噴射装置の噴射口との位置関係を例示する主室上部の部分拡大断面図である
【符号の説明】
1:一次燃焼炉
2:二次燃焼炉
3:三次燃焼炉
4:高温空気噴射装置
6:第2の高温空気噴射装置
10:一次燃焼室
20:二次燃焼室
21:主室
22:副室
25:開口部
30:三次燃焼室
40:噴射口
50:副室部分
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a waste treatment apparatus, and more particularly, to a waste treatment apparatus that forms an ultra-high temperature field suitable for complete sterilization of infectious waste in a furnace using heat generation of the waste. Things.
[0002]
[Prior art]
Waste from medical facilities, various research facilities, food factories, large lodging facilities, large eating facilities, etc. (hereinafter referred to as “medical facilities, etc.”) are biological materials, biological waste, synthetic resins, fibrous materials, inorganic materials. It contains various types of waste such as system materials, metal materials, and animal and plant organs, and is difficult to separate easily for hygienic reasons. In particular, the waste of medical facilities or medical institutions is different from the waste of normal facilities, and even if it is non-infectious waste that contains no infectious waste and can be infected, Since it contains needles, surgical instruments, bottles, organs, living tissues, and the like, it is virtually impossible to perform a manual sorting operation. For this reason, it is required to be economically efficient and to have no adverse effect on the environment, and furthermore, it is required for the staff involved to safely and labor-savingly treat medical waste and the like. It is desirable to treat all waste produced from medical facilities and the like in the generation area (in the hospital).
[0003]
Further, when incinerating inseparable waste in which various kinds of waste materials are mixed as described above, not only the waste is completely sterilized but also various substances that are not desirable from the viewpoint of air pollution prevention, for example, dioxin and the like. It is also important to adopt a treatment method that minimizes the generation of pollutants and does not adversely affect the surrounding environment.
[0004]
From such a viewpoint, in recent years, a plasma melting method in which an ultra-high temperature field is formed using the radiant heat of a plasma, or an ultra-high temperature field is formed in a furnace of an incinerator by the combustion heat of an oxygen burner, A waste disposal method has been developed which sterilizes and melts and discharges slag after volume reduction and solidification (for example, "Molten technology for garbage incineration ash" (Ishikawajima-Harima Heavy Industries, Ltd., Masayuki Mizuno). A system for reforming a gasified gas or a pyrolysis gas generated in such a gasification melting process and using the reformed gas as a fuel for a power generation facility or the like has also been developed (Japanese Patent Application Laid-Open No. 2001-158885).
[0005]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-158885
[0006]
[Problems to be solved by the invention]
Since infectious waste is disposed of in a portable container, the high-temperature processing furnace requires a relatively large volume inside the furnace. A conventional waste treatment method that forms a high-temperature field consumes a large amount of oxygen or electricity for complete sterilization and waste volume reduction, and tends to increase maintenance and management costs. For this reason, in reality, there is a method of incinerating combustibles in advance by a pulverizing step or pre-combustion of combustibles in order to reduce the capacity and load of the high temperature processing furnace, and introducing reduced volume waste into the high temperature processing furnace. Has been adopted. However, pre-combustion of combustibles to reduce the volume of waste means unnecessary use of heat-generating substances that can contribute to the formation of an ultra-high temperature field, which is not desirable in terms of energy efficiency.
[0007]
In addition, due to the nature of infectious waste, not only combustible materials such as blood, gauze, absorbent cotton, diapers, bandages, linen, paper waste, etc., but also difficult to crush such as metal pieces such as scalpels, kanshi, injection needles, bottles etc. Since non-combustible substances are mixed with wastes, crushing equipment, pre-combustion equipment, pyrolysis chamber, gasification chamber, gasification melting chamber, etc. that constitute incineration equipment are liable to cause operational troubles, etc. It was very difficult to reliably prevent technical troubles.
[0008]
The present invention has been made in view of such circumstances, and an object of the present invention is to crush or incinerate infectious waste containing a material that is difficult to crush and melt, such as a piece of metal. It is an object of the present invention to provide a waste treatment apparatus capable of economically forming an ultra-high temperature field suitable for complete sterilization of infectious waste while performing high-temperature treatment without waste.
[0009]
Another object of the present invention is to prevent the generation of dioxin in such a waste disposal apparatus.
[0010]
Means and Action for Solving the Problems
The present invention provides a waste treatment apparatus that incinerates waste in a high-temperature furnace atmosphere to achieve the above object.
A primary combustion chamber equipped with a burner device, which heats waste into small pieces,
A main chamber of a secondary combustion chamber that oxidizes small pieces of waste dropped from the primary combustion chamber, burns combustibles, gasifies pyrolyzable solids, and turns molten slag of heat-meltable solids,
Having a tertiary combustion chamber for completely burning the gasified gas of the secondary combustion chamber,
The secondary combustion chamber has a sub-chamber that feeds the gasified gas of the main chamber to the tertiary combustion chamber, and an upstream end opening of the sub-chamber opens to the furnace wall of the main chamber,
The main chamber has a high-temperature oxidant injection device for blowing a high-speed jet of a high-temperature oxidant into the main chamber, and the high-temperature oxidant is a gas having a temperature of 500 ° C. or more and an oxygen concentration of 1 to 30%. And an injection port of the injection device injects the high-speed jet so as to be adjacent to the opening and cross the opening, and an ungasified mist of waste that has fallen from the primary combustion chamber into the main chamber. And preventing unmelted scattered solid particles or fly ash from passing through the main chamber and blowing through the opening, and forming the ungasified mist and unmelted scattered solid particles or fly ash into the main chamber. Waste treatment characterized in that it is arranged on the furnace wall of the main chamber so as to recirculate toward the bottom, and the furnace area of the main chamber maintains a temperature of 1000 ° C. or more due to the heat generated by the waste. Provide equipment.
[0011]
According to the above configuration of the present invention, the waste treatment apparatus includes a three-stage combustion chamber, that is, a primary combustion chamber for fragmenting waste, a secondary combustion chamber for gasifying fragmented waste, and a gasified gas. Is provided with a tertiary combustion chamber for completely combusting. The portable container containing the infectious waste and the like is disassembled in the primary combustion chamber, the contents of the container partially burn, and the container and small pieces of the container contents fall into the secondary combustion chamber. The small pieces stay in the main chamber of the secondary combustion chamber and are stirred by the high-speed jet of the high-temperature oxidizing agent, and the small pieces are thermally decomposed and gasified by the high-temperature atmosphere. The gasified gas is completely burned in the tertiary combustion chamber and exhausted. Of the solids that cannot be incinerated or cannot be thermally decomposed, the solids that can be melted remain as molten slag at the bottom of the main chamber, and the solids that cannot be melted are embedded in the molten slag. The molten slag at the bottom of the main chamber reacts with the high-temperature oxidizing agent and generates heat, which contributes to maintaining a high-temperature atmosphere in the main chamber. The molten slag is cooled and solidified after the waste treatment apparatus is stopped, and is discharged outside the apparatus, or continuously or intermittently discharged during operation of the waste treatment apparatus.
[0012]
The present invention also provides the waste treatment apparatus having the above configuration, wherein the tertiary combustion chamber has a combustion air injection device for injecting combustion air into the tertiary combustion chamber, and the flammable gasified gas flowing into the tertiary combustion chamber is combustible. The reaction with the combustion air of the combustion air injection device completely combusts and raises the temperature of the exhaust gas in the tertiary combustion chamber to a high temperature of 1000 ° C. or higher, and the high temperature exhaust gas in the tertiary combustion chamber is supplied to the cooling device. In addition, the cooling device instantaneously cools the exhaust gas to a temperature of 200 ° C. or less. The process including the exhaust gas high-temperature treatment by the tertiary combustion chamber and the quenching treatment of the high-temperature exhaust gas by the cooling device effectively prevents the resynthesis of dioxin. For this reason, dioxin generation in the waste treatment device is suppressed.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferably, the waste treatment apparatus further includes oxygen concentration control means for controlling the oxygen concentration of the high-temperature oxidant to an arbitrary value within the range of 5 to 30%, and the waste gas is discharged from the sub chamber by controlling the oxygen concentration. The gaseous gas temperature and the nitrogen oxide content. It is desirable that the high-temperature oxidizing agent injection device includes a monitoring mechanism for monitoring the condition in the furnace visually or by imaging means.
[0014]
More preferably, the sub-chamber of the secondary combustion chamber includes a second high-temperature oxidant injection device that blows a high-speed jet of the high-temperature oxidant into the main chamber. The solid content flowing into the sub-chamber through the opening reacts with the high-temperature oxidant injected by the second injection device and burns or is thermally decomposed. Preferably, the high-speed jet of the second injection device forms a swirling flow in the sub-chamber.
[0015]
Preferably, the lower part of the main chamber is formed in a detachable pot structure or is provided with a slag port having a cooling means, in order to discharge the molten slag of solids deposited on the bottom of the main chamber. Similarly, the lower part of the sub-chamber is formed in a detachable pot structure or has a slag outlet provided with a cooling means, in order to discharge the molten slag of solids deposited on the bottom of the sub-chamber.
[0016]
More preferably, the main chamber of the secondary combustion chamber has an auxiliary burner device that can supply auxiliary fuel to the main chamber to make up for the shortage of heat generated by the waste. The main chamber auxiliary burner device is controlled to operate in conjunction with the main chamber furnace temperature. Preferably, the sub chamber of the secondary combustion chamber also has an auxiliary burner device capable of supplying auxiliary fuel for stabilizing the temperature of the gasified gas flowing into the tertiary combustion chamber to the sub chamber. The auxiliary burner device of the sub chamber is controlled to operate in relation to the gas temperature of the tertiary combustion chamber.
[0017]
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a system flow diagram showing the entire configuration of the infectious waste treatment apparatus according to the first embodiment of the present invention.
[0018]
As shown in FIG. 1, the waste treatment device includes a double damper device, a primary combustion chamber, a secondary combustion chamber, a tertiary combustion chamber, a cooling device, a dust collecting device, and a high-temperature air generating device. Generally, infectious waste is transferred to a waste treatment device while being stored in a transport container. Containers containing a wide variety of infectious waste are introduced into the primary combustion chamber via a double damper device. The furnace temperature of the primary combustion chamber is set to about 1000 ° C., and the transfer container burns in the primary combustion chamber and is fragmented. Residual or unburned components of the container and the contents of the container (infectious waste) fall into the main chamber of the secondary combustion chamber by gravity.
[0019]
The high-temperature air generator heats air at normal temperature (corresponding to the atmospheric temperature) to a high temperature of 500 ° C. or higher, preferably 800 ° C., and supplies the high-temperature air to a high-temperature air injection device disposed in the main chamber of the secondary combustion chamber. Supply. The secondary combustion chamber includes a sub-chamber following the main chamber, and the high-temperature air jet injected by the high-temperature air injection device emits a combustion gas, a pyrolysis gas, a solid or liquid suspended substance flowing into the main chamber from the primary combustion chamber. Prevent gas from escaping into the sub-chamber, recirculate these gases and suspended matter into the main chamber together with the container and small pieces of the contents of the container, and stir in the main chamber. The small pieces of the container and the contents of the container are partially oxidized in the main chamber, are reduced and burn, and generate heat.
[0020]
The flow velocity of the hot air jet is preferably set to 30 m / s or more, and more preferably, 50 to 150 m / s. The high-temperature air flow jetted at a high speed is jetted into the main chamber of the secondary combustion chamber, and at the same time, is mixed with the combustion gas and the pyrolysis gas in the main chamber to quickly reduce the oxygen concentration to 10% or less, and to 1000 to 1200. The temperature rises to ℃ or higher, and the mixture is mixed with solid or liquid combustibles floating in the main chamber, and then reduced and burned. For this reason, an extremely high-temperature portion is not formed in the main chamber, and a uniform flame at a temperature of about 1500 ° C. is formed.
[0021]
When a high-temperature oxidizing agent having a high oxygen concentration collides with a solid combustible, a gaseous gas is generated in a burst to form a partial high temperature, and a desirable sterilization effect can be obtained. On the other hand, a large amount of nitrogen oxide (NOx) is obtained. This is undesirable in detoxifying the exhaust gas. However, according to the present invention, by injecting a high-speed high-temperature air flow into the main chamber and immediately mixing it with the combustion gas and the pyrolysis gas in the main chamber, the oxygen concentration of the high-temperature high-temperature air is rapidly reduced. A temperature field that can solve both sterilization and exhaust gas cleaning, that is, a high temperature, low oxygen concentration and uniform temperature field can be formed.
[0022]
Due to the mixed contact with the hot air jet, the thermally decomposable pieces are pyrolyzed and gasified, and the meltable pieces stay as molten slag at the bottom of the main chamber. The molten slag solidifies after the waste treatment apparatus is stopped and cooled, and is discharged from the main chamber, or is continuously or intermittently discharged from a slag port of the main chamber during operation of the apparatus.
[0023]
The gasified gas generated in the main chamber flows into the tertiary combustion chamber via the sub chamber, and mixes with the combustion air supplied to the tertiary combustion chamber. Combustible components such as carbon monoxide, methane, and hydrogen contained in the gasified gas react with the combustion air to completely burn in the tertiary combustion chamber. The flue gas flowing out of the tertiary combustion chamber to the cooling device has a temperature of about 1000-1200C.
[0024]
The combustion gas in the tertiary combustion chamber is introduced into a cooling device and quenched to about 200 ° C. in a few seconds. As the cooling device, a cooling tower equipped with a cooling water spraying facility can be suitably used. The cooled combustion gas is purified by a dust collector such as a bag filter and exhausted to the outside of the system via an exhaust fan and a stack (not shown). The exhaust pressure of the exhaust fan acts on the sub chamber of the secondary combustion chamber, the tertiary combustion chamber, the purification device, and the dust collector, and the exhaust gas pressure acts on the entire flow path of the gasified gas generated in the main chamber. Therefore, a gas flow from the main chamber to the exhaust fan is formed in the entire system, and the gas flow path maintains a negative pressure as a whole. In addition, as the high-temperature air generating device, a supply air flow heating device or the like disclosed in Japanese Patent Application No. 10-189 (Japanese Patent Application Laid-Open No. Hei 10-246428) by the present applicant can be preferably used.
[0025]
The main chamber of the secondary combustion chamber has an auxiliary burner device that can supply auxiliary fuel to the main chamber to make up for the shortage of heat generated by the waste. Furnace temperature detecting means (T) constituting a control system of the waste treatment device is disposed in the main room, and the auxiliary burner device detects the furnace temperature detected value in the main room under the control of the control unit (C / U). Works in conjunction. The control unit (C / U) operates the auxiliary burner device so as to maintain the furnace temperature in the main room at a predetermined temperature (for example, 1000 ° C.) or more, for example, at the time of starting or at a time when the heat generation of the waste is insufficient. . The control unit (C / U) also controls the driving unit (D) of the high-temperature air generator to variably control the high-temperature air supply amount. By controlling the supply amount of high-temperature air, the oxygen concentration in the main chamber is controlled to an arbitrary value within the range of 5 to 30%, and the temperature and the nitrogen oxide content of the gasified gas discharged from the sub chamber are variable. Controlled. An auxiliary burner is also provided in the sub-chamber of the secondary combustion chamber. The auxiliary burner in the sub chamber is controlled to operate in association with the gas temperature in the tertiary combustion chamber, and supplies auxiliary fuel to the sub chamber for stabilizing the temperature of the gasified gas flowing into the tertiary combustion chamber.
[0026]
FIG. 2 is a system flow diagram showing the entire configuration of the infectious waste treatment apparatus according to the second embodiment of the present invention.
As in the first embodiment, the waste treatment apparatus includes a double damper, a primary combustion chamber, a secondary combustion chamber, a tertiary combustion chamber, a cooling device, a dust removal device, and a high-temperature air generation device. Room and sub-chamber are provided. In the present embodiment, the solid content flowing into the sub chamber together with the gasified gas in the main chamber is gasified or melted in the sub chamber. A high-temperature air injection device similar to the main room is disposed in the sub-room, and the injection device injects high-temperature air from the high-temperature air generator into the sub-room. Preferably, the hot air injection device is oriented such that the hot air jet flowing into the sub-chamber forms a swirl flow in the sub-chamber, and the sub-chamber has a cross-sectional shape that promotes the swirling of the hot air jet, for example, a circular shape. It has a cross section or an elliptical cross section. The solids flowing into the sub-chamber are oxidized in the sub-chamber, the thermally decomposable solids are pyrolyzed and gasified, and the meltable solids stay as molten slag at the bottom of the sub-chamber. The molten slag at the bottom of the sub-chamber is discharged from the sub-chamber after the waste treatment apparatus is stopped and cooled, or is continuously or intermittently discharged from the sub-chamber during operation of the apparatus. The other configuration of the waste disposal apparatus is substantially the same as that of the first embodiment, and further detailed description will be omitted.
[0027]
【Example】
FIG. 3 is a longitudinal sectional view of a waste disposal apparatus showing an example according to the first embodiment, and FIGS. 4A and 4B are sectional views taken along lines AA and BB of FIG. It is sectional drawing in a line.
[0028]
As shown in FIG. 3, the waste treatment apparatus includes a primary combustion furnace 1, a secondary combustion furnace 2, and a tertiary combustion furnace 3, and includes a primary combustion chamber 10, a secondary combustion chamber 20, and a tertiary combustion chamber 30 each. Formed in a few furnaces. The furnace shaft 11 of the primary combustion furnace 1 is inclined at a predetermined angle with respect to the furnace shaft of the secondary combustion furnace 2. The secondary combustion chamber 20 of the secondary combustion furnace 2 includes a vertical vertical main chamber 21 and a horizontal horizontal sub chamber 22, and the entire furnace body 23 has a horizontal furnace shaft. The furnace body 31 of the tertiary combustion furnace 30 has a furnace axis oriented vertically, and the tertiary combustion chamber 30 has a bottom connected to the sub-chamber 22 through a communication passage 33 and a top connected to an exhaust gas duct 39. You.
[0029]
The primary combustion furnace 1 includes a double damper device 12 and a burner device 17. The double damper device 12 has a pair of dampers 13 and 14 for which simultaneous opening is prohibited, and an intermediate chamber 15 between the dampers 13 and 14, and the waste container W0 containing infectious waste contains the damper 13. In connection with the opening / closing control of 14, it is introduced into the intermediate chamber 15 from a supply device (not shown) such as a lifter, and is introduced into the primary combustion chamber 10 via the intermediate chamber 15. The burner device 17 burns by supplying fuel such as LPG and combustion air, heats the waste W0 in the primary combustion chamber 10, incinerates or disassembles / divides the container, and generates a small piece of the container content. Promote the change. A small piece dropping port 18 is formed in the lower part of the primary combustion chamber 10, and a small piece W <b> 1 of the container and the contents of the container falls from the falling port 18 into the main chamber 21 of the secondary combustion chamber 20. With an appropriate design of the shape and the opening area of the drop port 18, a small piece W1 of an appropriate size falls from the primary combustion chamber 10 into the main chamber 21.
[0030]
As shown in FIG. 4B, the main chamber 21 of the secondary combustion furnace 2 has an elliptical cross section whose major axis is directed in the furnace axis direction of the secondary combustion furnace 2. The opening 25 of the sub-chamber 22 is disposed above the main chamber 21 and at the long axis end, and faces the main chamber 21. The slag pot 24 is detachably connected to the furnace body 23 by connection means 27 that can be separated and connected. The connecting means 27 has, for example, a flange structure that can be fastened and disassembled with bolts and nuts. The area inside the pot forms a lower part of the main chamber that is continuous with the upper part of the main chamber in the furnace body 23. In the main chamber 21, an auxiliary burner device (not shown) capable of supplying auxiliary fuel into the main chamber 21 is arranged at a predetermined position. The waste treatment apparatus includes a furnace temperature detecting means (not shown) of the main chamber 21 and a burner control device (not shown), and the burner control device includes an auxiliary burner device associated with the furnace temperature of the main chamber 21. Operate. The auxiliary burner device injects fuel into the main chamber 21 when the calorific value of the waste is insufficient, and makes up for the insufficient calorific value in the main chamber 21.
[0031]
The injection port 40 of the high-temperature air injection device 4 opens in the top wall of the main chamber 21 near the opening 25. The injection device 4 injects a high-speed jet of high-temperature air downward so as to direct an airflow and suspended matter that is going to flow from the main chamber 21 to the sub-chamber 22 toward the lower part of the main chamber. Preferably, the tip of the injection port 40 is designed with an appropriate opening area and size so as to accelerate the hot air jet flow to 50 to 150 m / s, and has an orifice or a reduced diameter as required.
[0032]
The hot air has a temperature of 500 ° C. or higher, preferably 800 ° C. or higher, more preferably 1000 ° C. or higher. The small piece W1 that has fallen into the main chamber 21 from the falling port 18 is partially oxidized in contact with the high-speed jet of high-temperature air, thermally decomposed, and reduced in volume. The residue of the small pieces W1 is deposited on the bottom of the main chamber 21 as the molten slag S. The solid particles, mist-like substances, soot particles, heavy metals and pyrolysis gas flowing into the main chamber 21 through the drop port 18 and the pyrolysis gas and combustion gas generated in the main chamber 21 cross the opening 25. Or, it is attracted to the traversing high-temperature high-speed jet, circulates in the main chamber 21, and is agitated by the kinetic energy of the high-speed jet. The high-speed jet comes into contact with the molten slag S at the bottom of the main chamber, and promotes combustion of unburned components in the slag S.
[0033]
Due to the heat generated by the small pieces W1, the molten slag S, the solid particles, the mist-like substance, and the pyrolysis gas, the temperature in the main chamber 21 reaches about 1500 ° C., and the volume reduction and melting of the small pieces W1 are promoted. The molten slag S is cooled and solidified by stopping the waste treatment device. The pot 24 is removed by releasing the connecting means 27, and the solidified material in the pot 24 is taken out of the pot 24 and discarded. The unmelted metal pieces and the like are discarded while being embedded in the solidified slag.
[0034]
The high-temperature air injection device 4 includes a furnace monitoring device 45. The in-furnace monitoring device 45 includes a viewing window for visually observing the flame in the main chamber 21, the molten slag level, the atmosphere in the furnace, and the like via the injection port 40. If desired, an imaging device for imaging the state inside the furnace may be provided in the furnace monitoring device 45.
[0035]
The gasified gas in the main chamber 21 flows into the sub-chamber 22 from the opening 25 under the exhaust pressure of the exhaust fan (FIG. 1), and flows into the third combustion chamber 30 from the sub-chamber 22 through the communication passage 33. I do. In the sub-chamber 22, an auxiliary burner device (not shown) capable of supplying auxiliary fuel into the sub-chamber 22 is provided at a predetermined position, for example, at the end of the sub-chamber 22. Temperature detection means (not shown) for detecting the gas temperature of the tertiary combustion chamber 30 is connected to the above-described burner control device, and the auxiliary burner device of the sub chamber 22 is controlled by the tertiary combustion chamber 30 under the control of the burner control device. It works in conjunction with the gas temperature of the Since the auxiliary burner device injects fuel into the sub-chamber 22 when the gas temperature in the tertiary combustion chamber 30 decreases, the temperature of the gasified gas flowing into the tertiary combustion chamber 30 is stabilized.
The third combustion furnace 3 includes combustion air injection devices 35 and 36 vertically arranged at predetermined intervals. The gas flowing into the third combustion chamber 30 from the sub chamber 22 contains a relatively large amount of carbon monoxide and the like, and the combustible components in the gas react with the combustion air injected from the injection devices 35 and 36. Burns completely. The temperature in the furnace of the third combustion chamber 30 partially reaches a temperature of 1500 ° C. or higher, and the exhaust gas at the top outlet 32 maintains a gas temperature of 1000 to 1200 ° C.
[0036]
The exhaust gas from the third combustion chamber 30 is supplied to a cooling device (FIG. 1) through an exhaust gas duct 39, where the exhaust gas is rapidly cooled to about 200 ° C. within a few seconds, and then a dust collecting device such as a bag filter. The dust is removed by (FIG. 1) and discharged to the atmosphere via an exhaust fan (FIG. 1) and a stack (not shown). The process of raising the temperature of the exhaust gas by the tertiary combustion chamber 30 and rapidly cooling the high-temperature gas by the cooling device prevents re-synthesis of dioxin, so that generation of dioxin in the waste treatment device is suppressed.
[0037]
FIG. 5 is a longitudinal sectional view of a waste disposal apparatus showing an example according to the second embodiment, and FIG. 6 is a sectional view taken along line CC of FIG.
The waste treatment apparatus shown in FIGS. 5 and 6 includes a primary combustion furnace 1, a secondary combustion furnace 2, and a tertiary combustion furnace 3, as in the embodiment shown in FIGS. 5 and 6, components that are substantially the same as the components shown in FIGS. 3 and 4 are denoted by the same reference numerals.
[0038]
The second combustion furnace 2 of this embodiment has a vertical sub-chamber 22 formed in a slag pot 51, and the second high-temperature air injection device 6 is disposed in the sub-chamber 22. The sub-chamber 22 functions to gasify and melt the solid particles W3 that cannot be captured as the molten slag S1 in the main chamber 21 and flow into the sub-chamber portion 50. That is, the high-temperature air injected from the injection device 6 collides with the solid particles W3, the unburned portion of the solid particles W3 burns, and the thermally decomposable solid particles W3 are thermally decomposed. The residue deposited on the bottom of the pot 51 is converted into molten slag by the heat of combustion of the solid particles W3 and the pyrolysis gas, and the molten slag S2 is cooled and solidified by stopping the waste treatment device. The pot 51 has a connecting means 52 similar to the connecting means 27 described above, is removed by releasing the connecting means 52, and the solidified material in the pot 51 is taken out of the pot 24 and discarded.
[0039]
In this embodiment, the furnace axis of the first incinerator is oriented vertically. A slag port 60 is provided at the bottom of the main chamber 21, and a cooling device 61 having a cooling water bath 62 is disposed in association with the slag port 60.
[0040]
FIG. 7 is a partial cross-sectional view of a waste disposal device showing a modification of the sub chamber 22.
As shown in FIG. 7, the sub-chamber portion 50 is eccentric with respect to the sub-chamber 22, and the kinetic energy of the gas flow flowing into the sub-chamber 22 forms a swirling flow in the sub-chamber 22. Can improve the collection efficiency of solids. It is desirable that the high-temperature air injection device 6 be oriented in a direction inclined with respect to the central axis of the sub-chamber 22, as shown in FIG.
[0041]
FIG. 8 is a partially enlarged cross-sectional view of the upper portion of the main chamber illustrating the positional relationship between the opening 25 arranged above the main chamber 21 and the injection port 40 of the high-temperature air injection device 4.
FIGS. 8A and 8B show a configuration in which a single and circular injection port 40 is arranged adjacent to the opening 25. In FIG. 8 (C) and FIG. 8 (B). FIGS. 8D and 8B show a configuration in which a plurality of circular injection ports 40 are arranged adjacent to the opening 25. FIG. In either case, the hot air jet flows across the opening 25 to recirculate the gas stream that is about to enter the opening 25 and direct it to the bottom of the main chamber. With the negative pressure of the exhaust fan (FIGS. 1 and 2) acting on the main chamber 21 and the increase in the amount of gas in the main chamber 21, the gas in the furnace in the main chamber 21 is directly acted on by the hot air jet. It flows into the opening 25 through the hard-to-reach area and flows out to the sub chamber 22.
[0042]
As described above, the preferred embodiments and examples of the present invention have been described in detail, but the present invention is not limited to the above-described embodiments and examples, but falls within the scope of the present invention described in the claims. It is needless to say that various modifications or changes are possible, and such modifications or changes are also included in the scope of the present invention.
[0043]
For example, in the above embodiment, the high-temperature air was used as the high-temperature oxidizing agent. 2 , N 2 , Ar, flue gas, water vapor, or other gas containing a certain concentration of oxygen, and any mixed gas heated to a high temperature of 500 ° C. or higher may be used as the high-temperature oxidizing agent.
[0044]
Further, the number, shape, arrangement, and the like of the oxidizing agent injection ports can be appropriately changed according to the shape, position, and the like of the combustion chamber and the opening.
[0045]
【The invention's effect】
As described above, according to the above configuration of the present invention, infectious waste containing a substance that is difficult to crush and melt, such as a metal piece, is subjected to high-temperature treatment without crushing or pre-combustion, And a waste disposal apparatus capable of economically forming an ultra-high temperature field suitable for complete sterilization of the waste.
Further, according to the configuration of the present invention employing the process including the process of raising the temperature of the exhaust gas by the tertiary combustion chamber and the process of rapidly cooling the high-temperature exhaust gas by the cooling device, it is possible to prevent the generation of dioxin in such a waste treatment device. Can be.
[Brief description of the drawings]
FIG. 1 is a system flow diagram showing an overall configuration of an infectious waste treatment apparatus according to a first embodiment of the present invention.
FIG. 2 is a system flow diagram showing an overall configuration of an infectious waste treatment apparatus according to a second embodiment of the present invention.
FIG. 3 is a longitudinal sectional view showing an example of the waste disposal apparatus according to the embodiment shown in FIG.
FIG. 4 is a sectional view taken along lines AA and BB in FIG. 3;
FIG. 5 is a longitudinal sectional view showing an example of the waste disposal apparatus according to the embodiment shown in FIG. 2;
FIG. 6 is a sectional view taken along line CC of FIG. 5;
FIG. 7 is a partial cross-sectional view of a waste disposal device showing a modification of the sub chamber.
FIG. 8 is a partial enlarged cross-sectional view of the upper portion of the main chamber, illustrating a positional relationship between an opening disposed in the upper portion of the main chamber and an injection port of the high-temperature air injection device.
[Explanation of symbols]
1: Primary combustion furnace
2: Secondary combustion furnace
3: Tertiary combustion furnace
4: High-temperature air injection device
6: second high-temperature air injection device
10: Primary combustion chamber
20: Secondary combustion chamber
21: Main room
22: Deputy room
25: Opening
30: Tertiary combustion chamber
40: injection port
50: sub chamber

Claims (11)

高温の炉内雰囲気で廃棄物を焼却する廃棄物処理装置において、
バーナ装置を備え、廃棄物を加熱して小片化する一次燃焼室と、
一次燃焼室から落下した廃棄物の小片を酸化し、可燃分の燃焼、熱分解可能な固形分のガス化および熱溶融可能な固形分の溶融スラグ化を行う二次燃焼室の主室と、
二次燃焼室のガス化ガスを完全燃焼させる三次燃焼室とを有し、
前記二次燃焼室は、前記主室のガス化ガスを三次燃焼室に給送する副室を有し、該副室の上流端開口部が、前記主室の炉壁に開口し、
前記主室は、高温酸化剤の高速噴流を主室内に吹き込む高温酸化剤噴射装置を有し、該高温酸化剤は、500℃以上の温度を有し且つ1〜30%の酸素濃度を有する気体からなり、前記噴射装置の噴射口は、前記開口部に隣接して該開口部を横切るように前記高速噴流を噴射し、前記一次燃焼室から前記主室内に落下した廃棄物の未ガス化ミストと、未溶融飛散固体粒子又はフライアッシュとが前記主室を通過して前記開口部に吹き抜けるのを防止するとともに、前記未ガス化ミストと、未溶融飛散固体粒子又はフライアッシュとを主室の底部に向って再循環するように主室の炉壁に配置され、前記主室の炉内領域は、前記廃棄物の発熱により、1000℃以上の温度を維持することを特徴とする廃棄物処理装置。
In waste treatment equipment that incinerates waste in a high-temperature furnace atmosphere,
A primary combustion chamber equipped with a burner device, which heats waste into small pieces,
A main chamber of a secondary combustion chamber that oxidizes small pieces of waste dropped from the primary combustion chamber, burns combustibles, gasifies pyrolyzable solids, and turns molten slag of heat-meltable solids,
Having a tertiary combustion chamber for completely burning the gasified gas of the secondary combustion chamber,
The secondary combustion chamber has a sub-chamber that feeds the gasified gas of the main chamber to the tertiary combustion chamber, and an upstream end opening of the sub-chamber opens to the furnace wall of the main chamber,
The main chamber has a high-temperature oxidant injection device for blowing a high-speed jet of a high-temperature oxidant into the main chamber, and the high-temperature oxidant is a gas having a temperature of 500 ° C. or more and an oxygen concentration of 1 to 30%. And an injection port of the injection device injects the high-speed jet so as to be adjacent to the opening and cross the opening, and an ungasified mist of waste that has fallen from the primary combustion chamber into the main chamber. And preventing unmelted scattered solid particles or fly ash from passing through the main chamber and blowing through the opening, and forming the ungasified mist and unmelted scattered solid particles or fly ash into the main chamber. Waste treatment characterized in that it is arranged on the furnace wall of the main chamber so as to recirculate toward the bottom, and the furnace area of the main chamber maintains a temperature of 1000 ° C. or more due to the heat generated by the waste. apparatus.
前記三次燃焼室は、燃焼用空気を三次燃焼室内に噴射する燃焼用空気噴射装置を有し、三次燃焼室内に流入したガス化ガスの可燃分は、前記燃焼用空気噴射装置の燃焼用空気と反応して完全燃焼し、三次燃焼室の排ガス温度を1000℃以上の高温に昇温し、三次燃焼室の高温排ガスは、冷却装置に供給され、該冷却装置は、前記排ガスを瞬時に200℃以下の温度に急冷することを特徴とする請求項1に記載の廃棄物処理装置。The tertiary combustion chamber has a combustion air injection device that injects combustion air into the tertiary combustion chamber, and the combustible portion of the gasified gas that has flowed into the tertiary combustion chamber is different from the combustion air of the combustion air injection device. Reaction and complete combustion, the temperature of the exhaust gas in the tertiary combustion chamber is raised to a high temperature of 1000 ° C. or higher, and the high-temperature exhaust gas in the tertiary combustion chamber is supplied to a cooling device. The waste treatment apparatus according to claim 1, wherein the waste treatment apparatus is rapidly cooled to the following temperature. 前記高温酸化剤の酸素濃度を5〜30%の範囲内の任意の値に制御する酸素濃度制御手段を更に有し、前記酸素濃度の制御により、前記副室から排出されるガス化ガスの温度及び窒素酸化物含有量を制御するようにしたことを特徴とする請求項1又は2に記載の廃棄物処理装置。An oxygen concentration control means for controlling an oxygen concentration of the high-temperature oxidant to an arbitrary value within a range of 5 to 30%; The waste treatment apparatus according to claim 1 or 2, wherein the nitrogen oxide content is controlled. 前記二次燃焼室の副室は、高温酸化剤の高速噴流を主室内に吹き込む第2の高温酸化剤噴射装置を備え、前記開口部を有する副室部分を介して前記副室内に流入した固形分は、前記第2噴射装置が噴射する高温酸化剤と反応して燃焼し又は熱分解することを特徴とする請求項1又は2に記載の廃棄物処理装置。The secondary chamber of the secondary combustion chamber includes a second high-temperature oxidant injection device that blows a high-speed jet of a high-temperature oxidant into the main chamber, and the solid that flows into the sub-chamber through the sub-chamber portion having the opening. The waste treatment device according to claim 1, wherein the component reacts with a high-temperature oxidant injected by the second injection device and burns or thermally decomposes. 前記副室は、副室内に流入したガス流の旋回流を形成可能な断面形状を有し、前記第2の高温酸化剤噴射装置は、前記副室内に旋回流を形成するように高速噴流を噴射することを特徴とする請求項4に記載の廃棄物処理装置。The sub-chamber has a cross-sectional shape capable of forming a swirling flow of a gas flow flowing into the sub-chamber, and the second high-temperature oxidant injection device generates a high-speed jet to form a swirling flow in the sub-chamber. The waste treatment apparatus according to claim 4, wherein the waste is ejected. 前記主室の底部に堆積した前記固形分の溶融スラグを排出すべく、前記主室の下部は、着脱可能なポット構造に形成され、又は冷却手段を有する出滓口を備えることを特徴とする請求項1乃至3のいずれか1項に記載の廃棄物処理装置。In order to discharge the solid slag deposited on the bottom of the main chamber, the lower part of the main chamber is formed in a detachable pot structure or provided with a slag port having a cooling means. The waste disposal device according to claim 1. 前記副室の底部に堆積した前記固形分の溶融スラグを排出すべく、前記副室の下部は、着脱可能なポット構造に形成され、又は冷却手段を備えた出滓口を有することを特徴とする請求項4又は5に記載の廃棄物処理装置。In order to discharge the solid slag deposited on the bottom of the sub-chamber, the lower portion of the sub-chamber is formed in a detachable pot structure or has a slag port provided with a cooling means. The waste disposal device according to claim 4 or 5, wherein 前記二次燃焼室の主室は、前記廃棄物の発熱量の不足を補うための補助燃料を前記主室に供給可能な補助バーナ装置を有することを特徴とする請求項1乃至7のいずれか1項に記載の廃棄物処理装置。The main chamber of the secondary combustion chamber has an auxiliary burner device capable of supplying auxiliary fuel to the main chamber to make up for a shortage of heat generated by the waste. 2. The waste disposal apparatus according to claim 1. 前記補助バーナ装置は、前記主室の炉温と関連して作動するように制御されることを特徴とする請求項8に記載の廃棄物処理装置。The waste treatment apparatus according to claim 8, wherein the auxiliary burner device is controlled to operate in association with a furnace temperature of the main chamber. 前記二次燃焼室の副室は、前記三次燃焼室に流入するガス化ガスの温度を安定化するための補助燃料を前記副室に供給可能な補助バーナ装置を有することを特徴とする請求項1乃至9のいずれか1項に記載の廃棄物処理装置。The sub-chamber of the secondary combustion chamber has an auxiliary burner device capable of supplying auxiliary fuel to the sub-chamber for stabilizing the temperature of gasified gas flowing into the tertiary combustion chamber. The waste disposal apparatus according to any one of claims 1 to 9. 前記高温酸化剤噴射装置は、炉内の状態を目視又は撮像手段で監視する監視機構を備えることを特徴とする請求項1乃至10に記載の廃棄物処理装置。The waste treatment apparatus according to claim 1, wherein the high-temperature oxidant injection apparatus includes a monitoring mechanism that monitors a state in the furnace visually or by an imaging unit.
JP2003036877A 2003-02-14 2003-02-14 Waste treatment equipment Expired - Fee Related JP4027241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003036877A JP4027241B2 (en) 2003-02-14 2003-02-14 Waste treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003036877A JP4027241B2 (en) 2003-02-14 2003-02-14 Waste treatment equipment

Publications (2)

Publication Number Publication Date
JP2004245520A true JP2004245520A (en) 2004-09-02
JP4027241B2 JP4027241B2 (en) 2007-12-26

Family

ID=33021846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003036877A Expired - Fee Related JP4027241B2 (en) 2003-02-14 2003-02-14 Waste treatment equipment

Country Status (1)

Country Link
JP (1) JP4027241B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242935A (en) * 2010-05-11 2011-11-16 吴学良 Novel garbage and biomass fuel combustion furnace and combustion method
CN102798127A (en) * 2012-08-01 2012-11-28 南宁佳迪斯电气科技有限责任公司 Medical waste treating method and medical waste treating equipment
CN110173697A (en) * 2019-06-14 2019-08-27 马加德 A kind of solid waste gasification and melting incineration system and method based on double molten baths
CN111826173A (en) * 2019-10-24 2020-10-27 中国船舶重工集团公司第七一一研究所 Reaction device, production system and production method for preparing low-carbon olefin
CN113217917A (en) * 2021-04-29 2021-08-06 国环绿能(北京)技术咨询有限公司 Equipment for converting resin hazardous waste into new building material
CN113399431A (en) * 2021-06-21 2021-09-17 康维杰 Solid waste treatment method and treatment device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106352343B (en) * 2016-09-21 2019-03-05 光大环境科技(中国)有限公司 Incinerator suitable for high heating value house refuse

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148511A (en) * 1989-11-04 1991-06-25 Ngk Insulators Ltd Method for burning in spiral flow-type fusion furnace
JPH10246428A (en) * 1997-01-06 1998-09-14 Nippon Furnace Kogyo Kaisha Ltd Equipment and method for heating supply air flow
JPH11270814A (en) * 1998-03-24 1999-10-05 Hitachi Zosen Corp Method and device for denitrating exhaust gas in gasification incineration system
JP2001090933A (en) * 1999-09-27 2001-04-03 Imanaka:Kk Waste melting device
JP2001098282A (en) * 1999-09-30 2001-04-10 Ngk Insulators Ltd Treatment method for waste
JP2001158885A (en) * 1999-09-20 2001-06-12 Japan Science & Technology Corp Equipment for gasifying tangible fuel and method for gasification thereof
JP2002031312A (en) * 2000-07-13 2002-01-31 Babcock Hitachi Kk EQUIPMENT AND METHOD FOR LOW-NOx COMBUSTION IN REFUSE GASIFYING AND MELTING FACILITY
JP2002250512A (en) * 2001-02-23 2002-09-06 Hitachi Ltd Combustion fusion furnace
JP2003302014A (en) * 2002-04-12 2003-10-24 Ebara Corp Melting furnace, its operating method and gasification melting system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148511A (en) * 1989-11-04 1991-06-25 Ngk Insulators Ltd Method for burning in spiral flow-type fusion furnace
JPH10246428A (en) * 1997-01-06 1998-09-14 Nippon Furnace Kogyo Kaisha Ltd Equipment and method for heating supply air flow
JPH11270814A (en) * 1998-03-24 1999-10-05 Hitachi Zosen Corp Method and device for denitrating exhaust gas in gasification incineration system
JP2001158885A (en) * 1999-09-20 2001-06-12 Japan Science & Technology Corp Equipment for gasifying tangible fuel and method for gasification thereof
JP2001090933A (en) * 1999-09-27 2001-04-03 Imanaka:Kk Waste melting device
JP2001098282A (en) * 1999-09-30 2001-04-10 Ngk Insulators Ltd Treatment method for waste
JP2002031312A (en) * 2000-07-13 2002-01-31 Babcock Hitachi Kk EQUIPMENT AND METHOD FOR LOW-NOx COMBUSTION IN REFUSE GASIFYING AND MELTING FACILITY
JP2002250512A (en) * 2001-02-23 2002-09-06 Hitachi Ltd Combustion fusion furnace
JP2003302014A (en) * 2002-04-12 2003-10-24 Ebara Corp Melting furnace, its operating method and gasification melting system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242935A (en) * 2010-05-11 2011-11-16 吴学良 Novel garbage and biomass fuel combustion furnace and combustion method
CN102798127A (en) * 2012-08-01 2012-11-28 南宁佳迪斯电气科技有限责任公司 Medical waste treating method and medical waste treating equipment
CN110173697A (en) * 2019-06-14 2019-08-27 马加德 A kind of solid waste gasification and melting incineration system and method based on double molten baths
CN111826173A (en) * 2019-10-24 2020-10-27 中国船舶重工集团公司第七一一研究所 Reaction device, production system and production method for preparing low-carbon olefin
CN111826173B (en) * 2019-10-24 2022-05-13 中国船舶重工集团公司第七一一研究所 Reaction device, production system and production method for preparing low-carbon olefin
CN113217917A (en) * 2021-04-29 2021-08-06 国环绿能(北京)技术咨询有限公司 Equipment for converting resin hazardous waste into new building material
CN113399431A (en) * 2021-06-21 2021-09-17 康维杰 Solid waste treatment method and treatment device

Also Published As

Publication number Publication date
JP4027241B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
US5534659A (en) Apparatus and method for treating hazardous waste
TWI238236B (en) Vertical refuse incinerator for incinerating wastes and method for controlling the same
CN201059564Y (en) Device used for gas controlled type medical waste-material burning of rotary kiln
TW200404980A (en) Process for the pyrolysis of medical waste and other waste materials
CN207599723U (en) Waste treatment equipment
CN205191593U (en) Medical garbage burning furnace
JP4027241B2 (en) Waste treatment equipment
JP2005249262A (en) Low quality refuse incineration system with low quality refuse incinerator and power generation plant
JP3557912B2 (en) Combustion melting furnace, combustion melting method, and waste heat power generation system
JP2003202106A (en) Re-combustion furnace for waste thermal decomposition gas and control method therefor
JP2005273975A (en) Waste treatment apparatus and waste treatment method
KR100348746B1 (en) Waste treatment apparatus
JP3623751B2 (en) Vertical waste incineration facility equipped with ash melting device and its operation method
CN213334395U (en) Movable high-temperature plasma medical waste disposal shelter
RU102979U1 (en) PLASMA INJECTOR
JP5162285B2 (en) Gasification melting method and gasification melting apparatus
Mosse et al. Plasma furnaces for toxic waste processing
JP2004101060A (en) Combustion exhaust gas quick cooling tower, cooling method, gasification melting device, and combustion exhaust gas cooling method in gasification melting device
CN215929569U (en) Incinerator for preventing slag adhesion for garbage disposal
JP2004163009A (en) Operation method of waste incineration system and waste incineration system
JP2004077013A (en) Operation method of waste incinerator, and waste incinerator
JP3861397B2 (en) Internal melting furnace
JP2531901B2 (en) Waste treatment furnace and waste treatment method by the waste treatment furnace
JP3959067B2 (en) Incinerator
JP3071172B2 (en) Waste melting equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees