JP2003302014A - Melting furnace, its operating method and gasification melting system - Google Patents

Melting furnace, its operating method and gasification melting system

Info

Publication number
JP2003302014A
JP2003302014A JP2002110983A JP2002110983A JP2003302014A JP 2003302014 A JP2003302014 A JP 2003302014A JP 2002110983 A JP2002110983 A JP 2002110983A JP 2002110983 A JP2002110983 A JP 2002110983A JP 2003302014 A JP2003302014 A JP 2003302014A
Authority
JP
Japan
Prior art keywords
combustion
combustion chamber
stage
gas
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002110983A
Other languages
Japanese (ja)
Inventor
Shinya Azuma
伸哉 東
Mitsuyoshi Kaneko
充良 金子
Masaaki Irie
正昭 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002110983A priority Critical patent/JP2003302014A/en
Publication of JP2003302014A publication Critical patent/JP2003302014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a melting furnace for producing less amount of exhaust of nitrogen oxide during the burning of generated gas including ashes and unburnt carbon, its operating method and a gasification melting system with the melting furnace. <P>SOLUTION: The melting furnace comprises a primary combustion chamber 3 and a secondary combustion chamber 4 provided therein and combustion gas supply means (dampers 12, 13, 14 and combustion air supply lines 15, 16, 17) for supplying combustion air to the furnace. The generated gas G including ashes and unburnt carbon is introduced into the primary combustion chamber and burnt at a high temperature through the primary combustion chamber 3 and the secondary combustion chamber 4 in sequence, and the ashes are melted. A control part 20 controls the combustion gas supply means to control the amount of the combustion air for keeping the primary combustion chamber in a reducing atmosphere of an air ratio being 1.0 or less, and combustion chambers from the secondary combustion chamber 4 on in oxidizing atmospheres of an air ratio being 1.0 or more. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はガス化炉等からの灰
及び未燃炭素を含む未燃の生成ガスを導入し、高温燃焼
させると共に、該灰を炉壁面に集め溶融する溶融炉、そ
の運転方法及びガス化溶融システムに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a melting furnace for introducing ash and unburned product gas containing unburned carbon from a gasification furnace or the like, burning the ash at a high temperature, and collecting the ash on a wall surface of the furnace for melting. The present invention relates to an operating method and a gasification melting system.

【0002】[0002]

【従来の技術】都市ごみ、産業廃棄物、医療廃棄物、シ
ュレッダーダストや古タイヤ等の廃棄物を焼却し減量化
すること、及びその焼却熱を有効利用することが望まれ
ている。廃棄物の焼却灰は、通常、有害な重金属を含む
ので、焼却灰を埋め立てにより処理するためには、重金
属成分を固化処理する等の対策が必要である。更に、設
備全体のスケールダウン等も求められている。こういっ
た課題に対応するため種々の金属を回収すると共に、灰
を溶融してスラグを生成し、このスラグを回収すること
ができ、また熱、電力などエネルギーを回収することの
できる、単なる焼却処理ではなく、マテリアルリサイク
ルを可能としたガス化溶融炉が近年注目されてきてい
る。
2. Description of the Related Art It is desired to incinerate and reduce the amount of waste such as municipal solid waste, industrial waste, medical waste, shredder dust and old tires, and to effectively utilize the incineration heat. Since the incinerated ash of waste usually contains harmful heavy metals, in order to treat the incinerated ash by landfill, it is necessary to take measures such as solidifying the heavy metal components. Furthermore, downscaling of the entire facility is also required. To cope with these problems, various metals are recovered, ash is melted to generate slag, and this slag can be recovered, and energy such as heat and electric power can be recovered. In recent years, attention has been paid to gasification and melting furnaces that enable material recycling rather than treatment.

【0003】このガス化溶融炉は、ガス化炉において廃
棄物をガス化し、未燃炭素(未燃炭素分)や灰を含んだ
温度500℃〜600℃程度の未燃ガスを生成した後、
この生成ガスを溶融炉に導き該溶融炉において投入され
る二次空気(燃焼空気)により低空気比(1.3〜1.
5程度)で高温に燃焼させ、灰を炉壁に集め溶融スラグ
化流を生成するものである。
In this gasification and melting furnace, waste is gasified in the gasification furnace to generate unburned gas containing unburned carbon (unburned carbon content) and ash and having a temperature of about 500 ° C to 600 ° C.
This produced gas is guided to the melting furnace and secondary air (combustion air) introduced into the melting furnace causes a low air ratio (1.3 to 1.
It is burned to a high temperature at about 5) and ash is collected on the furnace wall to generate a molten slag-forming flow.

【0004】図1はこの種の溶融炉を備えたガス化溶融
システムの構成例を示す図である。図1において、1は
流動層ガス化炉、2は一次燃焼室3と二次燃焼室4と三
次燃焼室5とからなる溶融炉、6は廃熱ボイラ、7はエ
コノマイザ、8はバグフィルタ、9は排ガス再加熱器、
10は触媒反応塔(脱硝塔)、11は煙突である。
FIG. 1 is a diagram showing a structural example of a gasification and melting system equipped with this kind of melting furnace. In FIG. 1, 1 is a fluidized bed gasification furnace, 2 is a melting furnace consisting of a primary combustion chamber 3, a secondary combustion chamber 4 and a tertiary combustion chamber 5, 6 is a waste heat boiler, 7 is an economizer, 8 is a bag filter, 9 is an exhaust gas reheater,
10 is a catalytic reaction tower (denitrification tower), and 11 is a chimney.

【0005】上記構成のガス化溶融システムにおいて、
流動層ガス化炉1内に投入された廃棄物Mはガス化さ
れ、灰や未燃炭素を含む生成ガスGとなって溶融炉2に
導入される。溶融炉2では一次燃焼室3、二次燃焼室4
にそれぞれ燃焼空気A1、燃焼空気A2を導入し、一次燃
焼室3に導入された生成ガスGと混合し、1200℃〜
1400℃(好ましくは1350℃前後)の高温で燃焼
させる。これにより、生成ガスG中に含まれる未燃炭素
は燃焼し灰は溶融し、さらに三次燃焼室5で燃焼空気A
3と混合し燃焼した後、1350℃前後の高温の燃焼排
ガスEGは廃熱ボイラ6に導入される。なお、溶融炉2
で溶融した灰分は溶融スラグDとして溶融炉2から外部
に排出され、スラグ冷却水と接触し、水砕スラグとな
る。
In the gasification and melting system having the above structure,
The waste M charged in the fluidized bed gasification furnace 1 is gasified and becomes a generated gas G containing ash and unburned carbon and introduced into the melting furnace 2. In the melting furnace 2, the primary combustion chamber 3 and the secondary combustion chamber 4
Combustion air A 1 and combustion air A 2 are introduced into the primary combustion chamber 3 and mixed with the produced gas G introduced into the primary combustion chamber 3,
Burn at a high temperature of 1400 ° C (preferably around 1350 ° C). As a result, the unburned carbon contained in the generated gas G burns, the ash melts, and the combustion air A
After mixing with 3 and burning, the high temperature combustion exhaust gas EG of about 1350 ° C. is introduced into the waste heat boiler 6. The melting furnace 2
The ash that has been melted in 1. is discharged outside from the melting furnace 2 as molten slag D, comes into contact with the slag cooling water, and becomes granulated slag.

【0006】高温の燃焼排ガスEGは廃熱ボイラ6やエ
コノマイザ7を通過することにより冷却され温度が下が
り、バグフィルタ8でその中に含まれる溶融飛灰等の塵
が除去される。さらに排ガス再加熱器9で触媒反応を起
す適切な温度に再加熱され、触媒反応塔10で燃焼排ガ
スEG中のNOxやSOxをアンモニアと反応させ除去
し、煙突11を通して大気中に放出する。
The high temperature combustion exhaust gas EG is cooled by passing through the waste heat boiler 6 and the economizer 7, and the temperature thereof is lowered, and the bag filter 8 removes dust such as molten fly ash contained therein. Further, the exhaust gas reheater 9 is reheated to an appropriate temperature for causing a catalytic reaction, and NOx and SOx in the combustion exhaust gas EG are reacted with ammonia in the catalytic reaction tower 10 to be removed and released into the atmosphere through the chimney 11.

【0007】上記構成のガス化溶融システムにおいて、
溶融炉2は一次燃焼室3、二次燃焼室4及び三次燃焼室
5内の空気比を1.0以上の酸化雰囲気とし、導入した
未燃炭素を含む生成ガスGを高温燃焼させている。その
ため廃棄物Mに含まれる窒素成分の一部が酸化するフュ
ーエルNOxだけでなく、高温燃焼のため空気中の窒素
分の一部が酸化し、サーマルNOxも発生するため、多
くの窒素酸化物(NOx)が発生する。そのためNOx
の排出基準を達成させるために、脱硝装置が必要となっ
たり、設置する脱硝装置、即ち触媒反応塔10に大きな
負担をかけるという問題があった。
In the gasification and melting system having the above structure,
The melting furnace 2 sets the air atmosphere in the primary combustion chamber 3, the secondary combustion chamber 4, and the tertiary combustion chamber 5 to an oxidizing atmosphere of 1.0 or more, and burns the introduced product gas G containing unburned carbon at a high temperature. Therefore, not only the fuel NOx in which a part of the nitrogen component contained in the waste M is oxidized, but also a part of the nitrogen component in the air is oxidized due to the high temperature combustion and thermal NOx is also generated. NOx) is generated. Therefore NOx
In order to achieve the emission standard of No. 1, there is a problem that a denitration device is required or a denitration device to be installed, that is, the catalytic reaction tower 10 is heavily burdened.

【0008】また、脱硝技術としては既知の通り、炉内
を還元雰囲気とした後、酸化雰囲気にて燃焼を完成させ
る2段燃焼法がある。例えば、ガス化溶融炉においては
ガス化炉内に還元域を形成し、その後溶融炉にて燃焼さ
せているため、2段燃焼を実施している状態にある。し
かしながら、この場合でも溶融炉は遥かに高温にて燃焼
しているため、NOx発生量が多くなるという問題があ
る。そのため、触媒反応塔10の脱硝能力を大きくしな
ければならないということにもなる。なお、この問題
は、流動層ガス化炉で生成される生成ガスのみでなく、
キルン炉、外部循環式流動層ガス化炉等で生成させる生
成ガスを溶融炉で燃焼させる場合も同様の問題がある。
Further, as is well known as the denitration technique, there is a two-stage combustion method in which the furnace is made a reducing atmosphere and then the combustion is completed in an oxidizing atmosphere. For example, in a gasification and melting furnace, a reduction zone is formed in the gasification furnace, and thereafter, combustion is carried out in the melting furnace, so that two-stage combustion is being performed. However, even in this case, since the melting furnace burns at a much higher temperature, there is a problem that the amount of NOx generated increases. Therefore, the denitration capacity of the catalytic reaction tower 10 must be increased. In addition, this problem is not limited to the generated gas generated in the fluidized bed gasification furnace,
The same problem occurs when the generated gas generated in the kiln furnace, the external circulation type fluidized bed gasification furnace, etc. is burned in the melting furnace.

【0009】[0009]

【発明が解決しようとする課題】本発明は上述の点に鑑
みてなされたもので、灰及び未燃炭素を含む生成ガスを
燃焼する際、窒素酸化物の排出量を抑制できる溶融炉、
その運転方法及び溶融炉を備えたガス化溶融システムを
提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above points, and is a melting furnace capable of suppressing the emission of nitrogen oxides when burning a produced gas containing ash and unburned carbon.
An object of the present invention is to provide a gasification and melting system including the operation method and the melting furnace.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
請求項1に記載の発明は、炉の燃焼室に少なくとも1段
目、2段目にわたり、燃焼用ガスを供給する燃焼用ガス
供給手段を具備し、該燃焼室に灰及び未燃炭素を含む生
成ガスを導入し、1段目、2段目と順次燃焼用ガスを供
給し、生成ガスを高温燃焼させると共に、該灰を溶融す
る溶融炉において、燃焼用ガス供給手段を制御して1段
目を還元雰囲気に、2段目以降を酸化雰囲気に維持する
燃焼用ガス制御手段を備えたことを特徴とする。
In order to solve the above problems, the invention according to claim 1 provides a combustion gas supply means for supplying combustion gas to a combustion chamber of a furnace at least in the first and second stages. Introducing a generated gas containing ash and unburned carbon into the combustion chamber, supplying a combustion gas to the first stage and the second stage in sequence, burning the generated gas at a high temperature and melting the ash. The melting furnace is characterized by comprising combustion gas control means for controlling the combustion gas supply means to maintain the first stage in a reducing atmosphere and the second and subsequent stages in an oxidizing atmosphere.

【0011】上記のように、1段目を還元雰囲気に、2
段目以降を酸化雰囲気に維持する燃焼用ガス制御手段を
備えたことにより、未燃炭素を含む生成ガスを1段目の
還元雰囲気下で燃焼させ、2段目以降で完全燃焼させる
2段燃焼となるから、自己脱硝作用(後に詳述)により
窒素酸化物(NOx)の発生量を抑制できる。
As described above, the first stage is set to a reducing atmosphere,
By providing the combustion gas control means for maintaining the oxidizing atmosphere in the second stage and thereafter, the two-stage combustion in which the produced gas containing unburned carbon is burned in the reducing atmosphere in the first stage and is completely burned in the second stage and thereafter. Therefore, the amount of nitrogen oxides (NOx) generated can be suppressed by the self-denitrification action (detailed later).

【0012】請求項2に記載の発明は、炉の燃焼室に少
なくとも1段目、2段目にわたり、燃焼用ガスを供給す
る燃焼用ガス供給手段を具備し、該燃焼室に灰及び未燃
炭素を含む生成ガスを導入し、1段目、2段目と順次燃
焼用ガスを供給し、生成ガスを高温燃焼させると共に、
該灰を溶融する溶融炉の運転方法において、1段目を還
元雰囲気にすると共に、2段目を酸化雰囲気とし、1段
目で導入した未燃炭素を含む生成ガスを還元雰囲気下で
燃焼させると共に、2段目以降で完全燃焼させることを
特徴とする。
According to the second aspect of the present invention, the combustion chamber of the furnace is provided with combustion gas supply means for supplying combustion gas to at least the first and second stages, and the combustion chamber has ash and unburned gas. The generated gas containing carbon is introduced, the combustion gas is sequentially supplied to the first and second stages, and the generated gas is burned at a high temperature.
In the method of operating a melting furnace for melting the ash, the first stage is set to a reducing atmosphere, the second stage is set to an oxidizing atmosphere, and the product gas containing unburned carbon introduced in the first stage is burned in a reducing atmosphere. In addition, it is characterized by complete combustion in the second and subsequent stages.

【0013】上記のように、1段目を還元雰囲気にする
と共に、2段目以降を酸化雰囲気とし、1段目で生成ガ
スを還元雰囲気下で燃焼させると共に、2段目以降で完
全燃焼させることにより、上記と同様溶融炉から排出さ
れる窒素酸化物の量を抑制できる。
As described above, the reducing atmosphere is used in the first stage, the oxidizing atmosphere is used in the second stage and thereafter, the generated gas is burned in the reducing atmosphere in the first stage, and the complete combustion is performed in the second stage and thereafter. As a result, the amount of nitrogen oxides discharged from the melting furnace can be suppressed as described above.

【0014】請求項3に記載の発明は、廃棄物をガス化
して灰及び未燃炭素を含む生成ガスを生成するガス化炉
と、炉の燃焼室に少なくとも1段目、2段目にわたり、
燃焼用ガスを供給する燃焼用ガス供給手段を具備し、該
燃焼室に灰及び未燃炭素を含む生成ガスを導入し、1段
目、2段目と順次燃焼用ガスを供給し、生成ガスを高温
燃焼させると共に、該灰を溶融する溶融炉を具備するガ
ス化溶融システムにおいて、溶融炉は、燃焼用ガス供給
手段を制御して1段目を還元雰囲気に、2段目以降を酸
化雰囲気に維持する燃焼用ガス制御手段を備えたことを
特徴とする。
The invention according to claim 3 is a gasification furnace for gasifying waste to produce a product gas containing ash and unburned carbon, and at least the first and second stages in the combustion chamber of the furnace,
Combustion gas supply means for supplying the combustion gas is provided, and the generated gas containing ash and unburned carbon is introduced into the combustion chamber, and the combustion gas is sequentially supplied to the first stage and the second stage. In a gasification melting system comprising a melting furnace for burning the ash at a high temperature and melting the ash, the melting furnace controls the combustion gas supply means to make the first stage a reducing atmosphere and the second and subsequent stages an oxidizing atmosphere. And a combustion gas control means for maintaining the above.

【0015】上記のように溶融炉は、燃焼用ガス供給手
段を制御して1段目を還元雰囲気に、2段目以降を酸化
雰囲気に維持する燃焼用ガス制御手段を備えることによ
り、未燃炭素を含む生成ガスを2段燃焼することにな
り、溶融炉から排出される窒素酸化物の量を抑制でき、
溶融炉後段の脱硝装置に係る負荷を軽減できるガス化溶
融システムを実現できる。また、脱硝装置の脱硝能力が
小さくで済むから、脱硝装置の規模を小さくできる。
As described above, the melting furnace is equipped with the combustion gas control means for controlling the combustion gas supply means to maintain the first stage in the reducing atmosphere and the second and subsequent stages in the oxidizing atmosphere, thereby making the unburned gas unburned. Since the generated gas containing carbon will be burned in two stages, the amount of nitrogen oxides discharged from the melting furnace can be suppressed,
It is possible to realize a gasification and melting system that can reduce the load on the denitration device in the latter stage of the melting furnace. Further, since the denitrification capacity of the denitrification device is small, the scale of the denitrification device can be reduced.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態例を図
面に基づいて説明する。図2は本発明に係る溶融炉の構
成例を示す図である。図示するように、溶融炉2は一次
燃焼室3、二次燃焼室4、三次燃焼室5を具備してい
る。一次燃焼室3には燃焼用ガスとしての燃焼空気供給
ライン15からダンパー12を介して燃焼空気A1が、
二次燃焼室4には燃焼空気供給ライン16からダンパー
13を介して燃焼空気A2が、三次燃焼室5には燃焼空
気供給ライン17からダンパー14を介して燃焼空気A
3が供給できるようになっている。また、各ダンパー1
2、13、14はその開度を制御部20により制御でき
るようになっている。また、三次燃焼室5の排ガス出口
部又は廃熱ボイラ6(図1参照)の煙道部には、溶融炉
2から排出される燃焼排ガスEG中の酸素濃度を検出す
るO2センサ18が設けられ、その出力が制御部20に
伝送されるようになっている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing a configuration example of the melting furnace according to the present invention. As illustrated, the melting furnace 2 includes a primary combustion chamber 3, a secondary combustion chamber 4, and a tertiary combustion chamber 5. Combustion air A 1 is supplied to the primary combustion chamber 3 from a combustion air supply line 15 as a combustion gas through a damper 12.
Combustion air A 2 from the combustion air supply line 16 to the secondary combustion chamber 4 via the damper 13, and combustion air A 2 to the tertiary combustion chamber 5 from the combustion air supply line 17 via the damper 14.
3 can be supplied. Also, each damper 1
The openings 2, 13, and 14 can be controlled by the control unit 20. An O 2 sensor 18 for detecting the oxygen concentration in the combustion exhaust gas EG discharged from the melting furnace 2 is provided at the exhaust gas outlet of the tertiary combustion chamber 5 or the flue portion of the waste heat boiler 6 (see FIG. 1). The output is transmitted to the control unit 20.

【0017】流動層ガス化炉1(図1参照)からの灰及
び未燃炭素を含む生成ガスGは溶融炉2の図示しないガ
ス導入口から一次燃焼室3の炉壁面の接線方向に導入す
ると共に、燃焼空気A1も一次燃焼室3の炉壁面の接線
方向に導入する。これにより、灰及び未燃炭素を含む生
成ガスGと燃焼空気A1は旋回流を形成しながら混合・
燃焼し、二次燃焼室4へと移動する。該二次燃焼室4で
は燃焼空気A2が二次燃焼室4の炉壁面の接線方向に導
入され旋回流を形成し、上記混合ガスの燃焼ガス旋回流
と混合しながら燃焼し、三次燃焼室5へと移動する。該
三次燃焼室5では燃焼空気A3が三次燃焼室5の炉壁面
の接線方向に導入され旋回流を形成し、上記二次燃焼室
4からの燃焼ガスの旋回流と混合しながら燃焼し、燃焼
排ガスEGとなって、廃熱ボイラ6(図1参照)へ流入
する。
The produced gas G containing ash and unburned carbon from the fluidized bed gasification furnace 1 (see FIG. 1) is introduced from a gas inlet (not shown) of the melting furnace 2 in the tangential direction of the furnace wall surface of the primary combustion chamber 3. At the same time, the combustion air A 1 is also introduced tangentially to the furnace wall surface of the primary combustion chamber 3. As a result, the produced gas G containing ash and unburned carbon and the combustion air A 1 are mixed while forming a swirling flow.
It burns and moves to the secondary combustion chamber 4. In the secondary combustion chamber 4, the combustion air A 2 is introduced in the tangential direction of the furnace wall surface of the secondary combustion chamber 4 to form a swirling flow, and burns while being mixed with the swirling flow of the combustion gas of the mixed gas. Move to 5. In the tertiary combustion chamber 5, combustion air A 3 is introduced in the tangential direction of the furnace wall surface of the tertiary combustion chamber 5 to form a swirling flow, and burns while being mixed with the swirling flow of the combustion gas from the secondary combustion chamber 4. It becomes combustion exhaust gas EG and flows into the waste heat boiler 6 (see FIG. 1).

【0018】溶融炉2において、一次燃焼室3内に導入
される燃焼空気量AQ1、二次燃焼室4内に導入される
燃焼空気量AQ2、三次燃焼室5内に導入される燃焼空
気量AQ3は、夫々一次燃焼室3内の空気比AR1を例え
ばAR1=0.9〜1.0の還元雰囲気に、二次燃焼室
4内の空気比AR2を例えばAR2=1.1の酸化雰囲気
に、三次燃焼室5内の空気比AR3を例えばAR3=1.
3の酸化雰囲気に維持するように制御部20の制御によ
り各ダンパー12、13、14の開度を制御する。これ
により、一次燃焼室に導入した未燃炭素を含む生成ガス
Gを一次燃焼室3内の還元雰囲気下で燃焼させ、続いて
二次燃焼室4及び三次燃焼室5内の酸化雰囲気下で完全
燃焼させる、所謂2段燃焼を溶融炉2においても実現で
きる。
In the melting furnace 2, the combustion air amount AQ 1 introduced into the primary combustion chamber 3, the combustion air amount AQ 2 introduced into the secondary combustion chamber 4, the combustion air introduced into the tertiary combustion chamber 5 The quantity AQ 3 is obtained by setting the air ratio AR 1 in the primary combustion chamber 3 to a reducing atmosphere of AR 1 = 0.9 to 1.0 and the air ratio AR 2 in the secondary combustion chamber 4 to AR 2 = 1, for example. .. in an oxidizing atmosphere, the air ratio AR 3 in the tertiary combustion chamber 5 is set to, for example, AR 3 = 1.
The opening degree of each of the dampers 12, 13, 14 is controlled by the control of the control unit 20 so as to maintain the oxidizing atmosphere of No. 3. As a result, the produced gas G containing unburned carbon introduced into the primary combustion chamber is burned in the reducing atmosphere in the primary combustion chamber 3, and then completely in the oxidizing atmosphere in the secondary combustion chamber 4 and the tertiary combustion chamber 5. So-called two-stage combustion, in which combustion is performed, can also be realized in the melting furnace 2.

【0019】図3は制御部20の機能を示すブロック図
である。図示するように制御部20は演算器Yと3個の
PID1〜PID3演算器を具備する。演算器Yには、O
2センサ18で検出した燃焼排ガスEG中の酸素濃度O
2(EG)と、排ガス流量M(EG)、一次燃焼室3、二次燃焼
室4、三次燃焼室5のそれぞれに供給されている空気量
1(PV)、A2(PV)、A3(PV)が入力される。演算器Yは
これら酸素濃度O2(EG)と排ガス流量M(EG)と各燃焼室
に供給されている空気量A1(PV)、A2(PV)、A3( PV)
ら各燃焼室3、4、5の実際の空気比AR1(PV)、AR
2(PV)、AR3(PV)を算出し、各PID演算器PID1
PID2、PID3に出力する。
FIG. 3 is a block diagram showing the function of the control unit 20. As shown in the figure, the control unit 20 includes a calculator Y and three PID 1 to PID 3 calculators. The operation unit Y has O
2 Oxygen concentration O in combustion exhaust gas EG detected by sensor 18
2 (EG) , exhaust gas flow rate M (EG) , the amount of air supplied to each of the primary combustion chamber 3, the secondary combustion chamber 4, and the tertiary combustion chamber 5, A 1 (PV) , A 2 (PV) , A 3 (PV) is input. The calculator Y calculates the oxygen concentration O 2 (EG) , the exhaust gas flow rate M (EG), and the amount of air supplied to each combustion chamber A 1 (PV) , A 2 (PV) , and A 3 ( PV) for each combustion. Actual air ratio AR 1 (PV) , AR in chambers 3, 4, 5
2 (PV) , AR 3 (PV) are calculated, and each PID calculator PID 1 ,
Output to PID 2 and PID 3 .

【0020】各PID演算器PID1、PID2、PID
3には、各燃焼室の設定空気比AR1 (SV)、AR2(SV)
AR3(SV)が入力されており、各PID演算器PID1
PID2、PID3で各燃焼室3、4、5の空気比AR
1(PV)、AR2(PV)、AR3(PV)が設定空気比AR1(SV)
AR2(SV)、AR3(SV)になるようなダンパー操作信号S
1(MV)、S2(MV)、S3(MV)を各ダンパー12、13、1
4に出力して、各ダンパー12、13、14を操作す
る。これにより、一次燃焼室3、二次燃焼室4及び三次
燃焼室5の各燃焼室を上記設定空気比AR1(SV)、AR
2(SV)、AR3(SV)に維持する。
Each PID operator PID 1 , PID 2 , PID
3 , the set air ratios AR 1 (SV) , AR 2 (SV) of each combustion chamber,
AR 3 (SV) is input to each PID calculator PID 1 ,
Air ratio AR of each combustion chamber 3, 4, 5 for PID 2 and PID 3
1 (PV) , AR 2 (PV) , AR 3 (PV) are set air ratio AR 1 (SV) ,
Damper operation signal S that makes AR 2 (SV) , AR 3 (SV)
1 (MV) , S2 (MV) , S3 (MV) to each damper 12, 13, 1
4 to operate each of the dampers 12, 13, and 14. As a result, the combustion chambers of the primary combustion chamber 3, the secondary combustion chamber 4, and the tertiary combustion chamber 5 are set to the set air ratios AR 1 (SV) , AR
Maintain 2 (SV) and AR 3 (SV) .

【0021】上記のように、未燃炭素を含む生成ガスG
を一次燃焼室3内の還元雰囲気下で燃焼させることによ
り、NH3や一酸化炭素(CO)のような還元性ガスが
発生する。この還元性ガスが無触媒脱硝法におけるNH
3等の吹込薬剤と同じ作用を果たし、二次燃焼室4内の
酸化雰囲気中での燃焼により、窒素酸化物NOx(或い
はNO中間体)を窒素(N2)と酸素(O2)に還元分解
する。このように一次燃焼室3内での還元雰囲気下の燃
焼と二次燃焼室4内以降の酸化雰囲気下の燃焼の2段燃
焼により、自己脱硝反応が起り燃焼排ガスEG中の窒素
酸化物を減少させることができる。
As described above, the product gas G containing unburned carbon
By burning in a reducing atmosphere in the primary combustion chamber 3, a reducing gas such as NH 3 or carbon monoxide (CO) is generated. This reducing gas is NH in the non-catalytic denitration method.
Performs the same action as the blowing agent such as 3 and reduces nitrogen oxide NOx (or NO intermediate) to nitrogen (N 2 ) and oxygen (O 2 ) by burning in an oxidizing atmosphere in the secondary combustion chamber 4. Disassemble. As described above, the two-stage combustion of the combustion in the reducing atmosphere in the primary combustion chamber 3 and the combustion in the oxidizing atmosphere after the secondary combustion chamber 4 causes the self-denitration reaction to reduce the nitrogen oxides in the combustion exhaust gas EG. Can be made.

【0022】なお、上記例では流動層ガス化炉1で生成
される生成ガスGを溶融炉2で燃焼させる例を示した
が、流動層ガス化炉1で生成される生成ガスGに限定さ
れるものではなく、キルン炉、シャフト炉、外部循環式
流動層ガス化炉等で生成させる生成ガスでもよい。
In the above example, the generated gas G generated in the fluidized bed gasification furnace 1 is burned in the melting furnace 2. However, the generated gas G is not limited to the generated gas G generated in the fluidized bed gasification furnace 1. Instead of the above, a generated gas generated in a kiln furnace, a shaft furnace, an external circulation type fluidized bed gasification furnace or the like may be used.

【0023】また、溶融炉の構成も一次、二次、三次の
3つの燃焼室を具備する構成の溶融炉に限定されるもの
ではなく、燃焼室において、少なくとも1段目、2段目
にわたり、燃焼空気を供給する燃焼空気供給手段を具備
し、1段目を空気比1.0以下の還元雰囲気に、2段目
以降を空気比1.0以上の酸化雰囲気に維持し、2段目
以降で完全燃焼させる構成であればよい。また、一次燃
焼室の上部を1段目、下部を2段目とし、上部の1段目
を空気比1.0以下の還元雰囲気に、下部の2段目以降
を空気比1.0以上の酸化雰囲気に維持するようにして
もよい。
Further, the structure of the melting furnace is not limited to a melting furnace having three combustion chambers of primary, secondary, and tertiary, and in the combustion chamber, at least the first stage and the second stage, Combustion air supply means for supplying combustion air is provided, the first stage is maintained in a reducing atmosphere with an air ratio of 1.0 or less, and the second stage and subsequent stages are maintained in an oxidizing atmosphere with an air ratio of 1.0 or greater, and the second stage and subsequent stages are maintained. It suffices if it is a structure that completely burns. In addition, the upper part of the primary combustion chamber is the first stage, the lower part is the second stage, the first stage of the upper part is a reducing atmosphere with an air ratio of 1.0 or less, and the second and lower stages of the lower part are with an air ratio of 1.0 or more. The oxidizing atmosphere may be maintained.

【0024】図1に示す構成のガス化溶融システムの溶
融炉2に図2に示す構成の溶融炉を用い、一次燃焼室
3、二次燃焼室4及び三次燃焼室5のそれぞれの空気比
AR1、AR2、AR3を上記のように維持しながら、灰
及び未燃炭素を含む生成ガスGを燃焼させることによ
り、生成ガスGの所謂2段燃焼が実現でき、該溶融炉2
から排出される燃焼排ガスEG中の窒素酸化物(NO
x)を抑制できる。これにより、触媒反応塔10に過大
な負担をかけることなく、また該触媒反応塔10に過大
な脱硝能力を要求することなく、規模を小型化すること
が可能となる。
A melting furnace having the structure shown in FIG. 2 is used as the melting furnace 2 of the gasification melting system having the structure shown in FIG. 1, and the air ratio AR of each of the primary combustion chamber 3, the secondary combustion chamber 4 and the tertiary combustion chamber 5 is increased. By burning the generated gas G containing ash and unburned carbon while maintaining 1 , AR 2 and AR 3 as described above, so-called two-stage combustion of the generated gas G can be realized.
Nitrogen oxides (NO in flue gas EG emitted from
x) can be suppressed. As a result, the scale can be reduced without imposing an excessive burden on the catalytic reaction tower 10 and without requiring the catalytic reaction tower 10 to have an excessive denitration capacity.

【0025】なお、上記例では、燃焼用ガスとして、空
気を用いる例を説明したが、燃焼用ガスは酸素賦活空気
や酸素でもよい。なお、燃焼用ガスを予熱して用いるこ
ともできる。
In the above example, air is used as the combustion gas, but the combustion gas may be oxygen activated air or oxygen. The combustion gas may be preheated and used.

【0026】[0026]

【発明の効果】以上、説明したように各請求項に記載の
発明によれば、下記のような優れた効果が期待できる。
As described above, according to the invention described in each claim, the following excellent effects can be expected.

【0027】請求項1に記載の発明によれば、1段目を
還元雰囲気に、2段目以降を酸化雰囲気に維持する燃焼
用ガス制御手段を備えたことにより、未燃炭素を含む生
成ガスを1段目の還元雰囲気下で燃焼させ、2段目以降
で完全燃焼させる2段燃焼となるから、自己脱硝作用に
より窒素酸化物(NOx)の発生量を抑制できる。
According to the first aspect of the present invention, by providing the combustion gas control means for maintaining the reducing atmosphere in the first stage and the oxidizing atmosphere in the second and subsequent stages, the produced gas containing unburned carbon is provided. Is performed in the reducing atmosphere of the first stage and complete combustion is performed in the second stage and thereafter, so that the amount of nitrogen oxides (NOx) generated can be suppressed by the self-denitration action.

【0028】請求項2に記載の発明によれば、1段目を
還元雰囲気にすると共に、2段目以降を酸化雰囲気と
し、1段目で生成ガスを還元雰囲気下で燃焼させると共
に、2段目以降で完全燃焼させることにより、上記と同
様溶融炉から排出される窒素酸化物の量を抑制できる。
According to the second aspect of the invention, the reducing atmosphere is used in the first stage, the oxidizing atmosphere is used in the second and subsequent stages, and the generated gas is burned in the reducing atmosphere in the first stage and the second stage is used. By completely burning after the eyes, the amount of nitrogen oxides discharged from the melting furnace can be suppressed as in the above.

【0029】請求項3に記載の発明によれば、溶融炉
は、燃焼用ガス供給手段を制御して1段目を還元雰囲気
に、2段目以降を酸化雰囲気に維持する燃焼用ガス制御
手段を備えることにより、未燃炭素を含む生成ガスを2
段燃焼することになり、溶融炉から排出される窒素酸化
物の量を抑制でき、溶融炉後段の脱硝装置に係る負荷を
軽減できるガス化溶融システムを実現できる。また、脱
硝装置の脱硝能力が小さくで済むから、脱硝装置の規模
を小さくできる。
According to the third aspect of the invention, in the melting furnace, the combustion gas control means for controlling the combustion gas supply means to maintain the reducing atmosphere in the first stage and the oxidizing atmosphere in the second and subsequent stages. By providing the
Since the staged combustion is performed, the amount of nitrogen oxides discharged from the melting furnace can be suppressed, and a gasification and melting system that can reduce the load on the denitration device in the latter stage of the melting furnace can be realized. Further, since the denitrification capacity of the denitrification device is small, the scale of the denitrification device can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】ガス化溶融システムの構成例である。FIG. 1 is a structural example of a gasification and melting system.

【図2】本発明に係る溶融炉の構成例を示す図である。FIG. 2 is a diagram showing a configuration example of a melting furnace according to the present invention.

【図3】本発明に係る溶融炉の制御部の機能ブロック構
成を示す図である。
FIG. 3 is a diagram showing a functional block configuration of a control unit of the melting furnace according to the present invention.

【符号の説明】[Explanation of symbols]

1 流動層ガス化炉 2 溶融炉 3 一次燃焼室 4 二次燃焼室 5 三次燃焼室 6 廃熱ボイラ 7 エコノマイザ 8 バグフィルタ 9 排ガス再加熱器 10 触媒反応塔 11 煙突 12 ダンパー 13 ダンパー 14 ダンパー 15 燃焼空気供給ライン 16 燃焼空気供給ライン 17 燃焼空気供給ライン 18 O2センサ 20 制御部1 Fluidized Bed Gasification Furnace 2 Melting Furnace 3 Primary Combustion Chamber 4 Secondary Combustion Chamber 5 Tertiary Combustion Chamber 6 Waste Heat Boiler 7 Economizer 8 Bag Filter 9 Exhaust Gas Reheater 10 Catalytic Reaction Tower 11 Chimney 12 Damper 13 Damper 14 Damper 15 Combustion Air supply line 16 Combustion air supply line 17 Combustion air supply line 18 O 2 sensor 20 Control unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F27B 17/00 B09B 3/00 303L (72)発明者 入江 正昭 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 3K061 AA07 AA11 AA16 AB03 AC01 AC03 AC14 AC19 BA06 DB16 EA03 EB16 3K078 AA06 BA03 CA02 CA12 4D004 AA36 AC04 CA27 CA29 CB04 CB05 CB34 CC02 DA02 DA10─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) F27B 17/00 B09B 3/00 303L (72) Inventor Masaaki Irie 11-1 Haneda Asahi-cho, Ota-ku, Tokyo F term in EBARA CORPORATION (reference) 3K061 AA07 AA11 AA16 AB03 AC01 AC03 AC14 AC19 BA06 DB16 EA03 EB16 3K078 AA06 BA03 CA02 CA12 4D004 AA36 AC04 CA27 CA29 CB04 CB05 CB34 CC02 DA02 DA10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炉の燃焼室に少なくとも1段目、2段目
にわたり、燃焼用ガスを供給する燃焼用ガス供給手段を
具備し、該燃焼室に灰及び未燃炭素を含む生成ガスを導
入し、1段目、2段目と順次燃焼用ガスを供給し、前記
生成ガスを高温燃焼させると共に、該灰を溶融する溶融
炉において、 前記燃焼用ガス供給手段を制御して前記1段目を還元雰
囲気に、前記2段目以降を酸化雰囲気に維持する燃焼用
ガス制御手段を備えたことを特徴とする溶融炉。
1. A combustion gas supply means for supplying a combustion gas to at least a first stage and a second stage in a combustion chamber of a furnace, and introducing a produced gas containing ash and unburned carbon into the combustion chamber. However, in the melting furnace that sequentially supplies the combustion gas to the first stage and the second stage, burns the produced gas at a high temperature, and melts the ash, the combustion gas supply unit is controlled to control the first stage. To a reducing atmosphere, and a combustion gas control means for maintaining the second and subsequent stages in an oxidizing atmosphere.
【請求項2】 炉の燃焼室に少なくとも1段目、2段目
にわたり、燃焼用ガスを供給する燃焼用ガス供給手段を
具備し、該燃焼室に灰及び未燃炭素を含む生成ガスを導
入し、1段目、2段目と順次燃焼用ガスを供給し、前記
生成ガスを高温燃焼させると共に、該灰を溶融する溶融
炉の運転方法において、 前記1段目を還元雰囲気にすると共に、前記2段目を酸
化雰囲気とし、前記1段目で前記導入した未燃炭素を含
む生成ガスを還元雰囲気下で燃焼させると共に、前記2
段目以降で完全燃焼させることを特徴とする溶融炉の運
転方法。
2. A combustion gas supply means for supplying a combustion gas to at least the first and second stages in a combustion chamber of the furnace, and introducing a produced gas containing ash and unburned carbon into the combustion chamber. However, in a method for operating a melting furnace in which a combustion gas is sequentially supplied to the first and second stages, the produced gas is burned at a high temperature, and the ash is melted, the first stage is set to a reducing atmosphere, and The second stage is set to an oxidizing atmosphere, and the produced gas containing the unburned carbon introduced in the first stage is burned in a reducing atmosphere.
A method for operating a melting furnace, which is characterized in that complete combustion is performed after the first stage.
【請求項3】 廃棄物をガス化して灰及び未燃炭素を含
む生成ガスを生成するガス化炉と、炉の燃焼室に少なく
とも1段目、2段目にわたり、燃焼用ガスを供給する燃
焼用ガス供給手段を具備し、該燃焼室に灰及び未燃炭素
を含む生成ガスを導入し、1段目、2段目と順次燃焼用
ガスを供給し、前記生成ガスを高温燃焼させると共に、
該灰を溶融する溶融炉を具備するガス化溶融システムに
おいて、 前記溶融炉は、前記燃焼用ガス供給手段を制御して前記
1段目を還元雰囲気に、前記2段目以降を酸化雰囲気に
維持する燃焼用ガス制御手段を備えたことを特徴とする
ガス化溶融システム。
3. A gasification furnace for gasifying waste to produce a product gas containing ash and unburned carbon, and combustion for supplying combustion gas to a combustion chamber of the furnace at least in first and second stages. And a combustion gas is introduced into the combustion chamber, the combustion gas is sequentially supplied to the first and second stages, and the combustion gas is burned at a high temperature.
In a gasification and melting system including a melting furnace for melting the ash, the melting furnace controls the combustion gas supply means to maintain the first stage in a reducing atmosphere and the second and subsequent stages in an oxidizing atmosphere. A gasification / melting system, comprising:
JP2002110983A 2002-04-12 2002-04-12 Melting furnace, its operating method and gasification melting system Pending JP2003302014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002110983A JP2003302014A (en) 2002-04-12 2002-04-12 Melting furnace, its operating method and gasification melting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002110983A JP2003302014A (en) 2002-04-12 2002-04-12 Melting furnace, its operating method and gasification melting system

Publications (1)

Publication Number Publication Date
JP2003302014A true JP2003302014A (en) 2003-10-24

Family

ID=29393957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002110983A Pending JP2003302014A (en) 2002-04-12 2002-04-12 Melting furnace, its operating method and gasification melting system

Country Status (1)

Country Link
JP (1) JP2003302014A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245520A (en) * 2003-02-14 2004-09-02 Itaru Watanabe Waste treatment equipment
JP2013079788A (en) * 2011-10-05 2013-05-02 Kobelco Eco-Solutions Co Ltd Apparatus and method for controlling combustion of gasification and melting furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245520A (en) * 2003-02-14 2004-09-02 Itaru Watanabe Waste treatment equipment
JP2013079788A (en) * 2011-10-05 2013-05-02 Kobelco Eco-Solutions Co Ltd Apparatus and method for controlling combustion of gasification and melting furnace

Similar Documents

Publication Publication Date Title
JP3924150B2 (en) Gas combustion treatment method and apparatus
JP2004532967A (en) Incineration process using high concentration of oxygen
JP4909655B2 (en) Fluidized bed combustion device using chromium-containing organic matter as fuel, and method for detoxifying fly ash from fluidized bed combustion device
JP2001342044A (en) Lime firing furnace
JP2007127355A (en) Rubbish incinerating/melting method and device therefor
JP2003302014A (en) Melting furnace, its operating method and gasification melting system
JP3309387B2 (en) Waste incinerator
JP2002031312A (en) EQUIPMENT AND METHOD FOR LOW-NOx COMBUSTION IN REFUSE GASIFYING AND MELTING FACILITY
JPH08110021A (en) Produced gas processing apparatus for waste melting furnace
JP5027486B2 (en) Combustion apparatus using organic matter containing chromium as fuel, and method for combusting organic matter fuel containing chromium using the same
JP2003254516A (en) Garbage burning power generation equipment
JP2006194516A (en) Secondary combustion control device for waste gasification melting furnace
JP2000117223A (en) Ash treatment for waste melting treatment device
JP2002326016A5 (en)
JP2004012047A (en) Incinerator and operation method for it
JP2002326016A (en) Denitrating method and denitrating apparatus in gasifying melting furnace facility
KR100484616B1 (en) Apparatus for combustion having heating storage type combustion mat for reducing dioxin for controlling the same
JP2000288353A (en) Combustion gas treatment method
JP3027330B2 (en) Waste incineration / melting method
KR20000045561A (en) Plasma melting method and device
JP2006097916A (en) Combustion control method of incinerator
JP2003120925A (en) Exhaust gas processor of waste disposal furnace
JP2001241629A (en) Low-pollution combustion equipment for waste
JP2004169955A (en) Waste incinerator and method of operating the same
JP4015887B2 (en) Method for treating molten exhaust gas

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107