JP2005249262A - Low quality refuse incineration system with low quality refuse incinerator and power generation plant - Google Patents

Low quality refuse incineration system with low quality refuse incinerator and power generation plant Download PDF

Info

Publication number
JP2005249262A
JP2005249262A JP2004058874A JP2004058874A JP2005249262A JP 2005249262 A JP2005249262 A JP 2005249262A JP 2004058874 A JP2004058874 A JP 2004058874A JP 2004058874 A JP2004058874 A JP 2004058874A JP 2005249262 A JP2005249262 A JP 2005249262A
Authority
JP
Japan
Prior art keywords
waste
low
incinerator
furnace
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004058874A
Other languages
Japanese (ja)
Inventor
Katsuhiko Kobayashi
勝彦 小林
Takeki Endo
雄樹 遠藤
Takeshi Amari
猛 甘利
Ryohei Ueda
良平 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004058874A priority Critical patent/JP2005249262A/en
Priority to CN2004100941976A priority patent/CN1664444A/en
Publication of JP2005249262A publication Critical patent/JP2005249262A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Incineration Of Waste (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)
  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low quality refuse incineration system with a low quality refuse incinerator and a power generation plant capable of stably burning even a low quality refuse with high water content, effectively utilizing conventional devices and a plant biomass such as straw which was often discarded, and achieving highly efficient power generation when a power generation utilizing waste heat from the incinerator is performed. <P>SOLUTION: The incinerator 30 for incinerating the low quality refuse with high water content comprises a throwing-in hopper 31 for supplying the low quality refuse into the furnace and a combustion chamber formed of a drying area, a main combustion area, and a rear combustion area. A means 37 supplying a carbide 25 generated by carbonizing the plant biomass such as straw into the furnace is installed at a portion different from the throwing-in hopper 31. A carbide supply means 37 is formed to throw the carbide into the dry area, and the low quality refuse is burned together with the carbide. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、含水率の高い低質ごみを焼却処理する焼却炉に関し、さらに該焼却炉の廃熱を利用して発電を行なう発電設備を備えた低質ごみの焼却システムに関する。   The present invention relates to an incinerator that incinerates low-quality waste having a high water content, and further relates to an incineration system for low-quality waste provided with a power generation facility that generates power using waste heat of the incinerator.

発展途上の都市部及び農村部にて集積されるごみは、含水率が高い低質ごみやわら等のように、焼却処理が困難なものがある。
一般に、焼却炉における自燃限界低位発熱量は3300〜4200kJ/kg(800〜1000kcal/kg)とされている。そこで、含水率が高く、自燃限界未満の低位発熱量の低質ごみの場合は、単独の燃焼が困難であり安定して焼却処理を行えず、またダイオキシン類等の有害物質抑制の見地から高い燃焼温度を維持することが求められており、補助燃料を使用する必要があった。補助燃料には重油等の化石燃料が使用され、地球温暖化の要因となっていた。
また、発電効率の向上が難しかった。
Some of the garbage collected in developing urban and rural areas is difficult to incinerate, such as low-quality waste and straw with high moisture content.
Generally, the lower self-combustion calorific value in an incinerator is 3300-4200 kJ / kg (800-1000 kcal / kg). Therefore, in the case of low-quality waste with high moisture content and low calorific value less than the self-flammability limit, it is difficult to incinerate alone and cannot be stably incinerated, and high combustion from the standpoint of controlling harmful substances such as dioxins. There was a need to maintain temperature, and auxiliary fuel had to be used. As auxiliary fuel, fossil fuels such as heavy oil were used, which caused global warming.
In addition, it was difficult to improve the power generation efficiency.

また図5(a)に示すように、生ごみ等の含水率の高いごみを多く含む低質ごみは、ごみピットに貯留している間に大量のごみ汚水が発生する。ごみ汚水は低質ごみ1t当り0.12m3程度発生することもあり、200t/日の低質ごみを処理する場合、ごみ汚水は24m3/日発生することになる。発生したごみ汚水は、通常炉内に吹込み焼却処理されていた。
図6に従来のストーカ式焼却炉を示す。このストーカ式焼却炉の構造は、特許文献1(特許第2575256号公報)等に開示されている。
ストーカ式焼却炉60では、投入ホッパ61より炉内に供給されたごみをフィーダ62で火格子63上に送りだし、該火格子63上で焼却しながらごみ層70を灰排出口64側に移動させ、ここで助燃バーナ66により完全燃焼され、灰層71は灰排出口64から排出される。焼却により発生した排ガスは、排ガス路65を経て未燃分を完全燃焼されて排出される。ごみ汚水を同時に処理する場合には、排ガス路65にごみ汚水を吹き込んで燃焼、蒸発させていた。
Further, as shown in FIG. 5A, a large amount of waste sewage is generated while low-quality waste containing a large amount of waste having a high water content such as garbage is stored in the waste pit. Waste sewage may be generated at about 0.12m 3 per ton of low-quality waste. When 200t / day of low-quality waste is treated, waste sewage will be generated at 24m 3 / day. The generated waste sewage was normally blown into the furnace and incinerated.
FIG. 6 shows a conventional stoker-type incinerator. The structure of this stoker-type incinerator is disclosed in Patent Document 1 (Japanese Patent No. 2575256) and the like.
In the stoker-type incinerator 60, the dust supplied from the charging hopper 61 is sent to the grate 63 by the feeder 62, and the waste layer 70 is moved to the ash discharge port 64 side while incinerated on the grate 63. Here, complete combustion is performed by the auxiliary burner 66, and the ash layer 71 is discharged from the ash discharge port 64. The exhaust gas generated by the incineration is exhausted through the exhaust gas passage 65 and the unburned portion is completely burned. When waste sewage is treated at the same time, waste sewage is blown into the exhaust gas passage 65 to burn and evaporate.

しかし、元来保有熱量が低い低質ごみに、さらに大量のごみ汚水を吹込み焼却すると、燃焼温度の低下による、ダイオキシン類等の有害物質の生成が問題となるため、これら有害物質の生成を防止するため、補助燃料使用量の増加につながってしまう。
近年、焼却炉で発生した廃熱を有効利用するために、発電設備を併設した焼却システムが普及している。これは、特許文献2(特開平5−59905号公報)、特許文献3(特開平8−61604号公報)等に記載されるように、焼却炉が具備する廃熱ボイラにて発生させた蒸気により蒸気タービンを駆動して発電を行なうシステムである。
ところが、このような発電設備を併設した焼却炉で低質ごみを焼却する場合、発電効率が低下してしまうという問題を有していた。
However, incineration by blowing a large amount of waste sewage into low-quality waste that originally has a low calorific value causes the generation of harmful substances such as dioxins due to a decrease in combustion temperature, thus preventing the generation of these harmful substances. This leads to an increase in the amount of auxiliary fuel used.
In recent years, in order to effectively use waste heat generated in incinerators, incineration systems equipped with power generation facilities have become widespread. As described in Patent Document 2 (Japanese Patent Laid-Open No. 5-59905), Patent Document 3 (Japanese Patent Laid-Open No. 8-61604) and the like, steam generated in a waste heat boiler included in an incinerator is used. This is a system for generating electricity by driving a steam turbine.
However, when incinerating low-quality waste in an incinerator equipped with such a power generation facility, there is a problem that power generation efficiency is reduced.

一方、図5(b)に示すように農村部にて畑作に伴い発生するわらが、野積みや野焼きにて適正な処理が行われない場合、野積みされ放置することによりメタンが発生し、地球温暖化を促進させたり、野焼きにより煙害を招くなど、環境破壊を引き起す原因となる。わらや籾殻、伐採木材等の草木バイオマスは、メタン発酵して処理する方法もあるが、この方法は処理時間が長く、反応装置が大型化するという問題があり、特にわらをメタン発酵する場合、わらはセルロース系であるため分解処理後も未反応物を排出してしまうという問題があった。
また図6に示したストーカ式焼却炉にてわらを焼却処理する方法も考えられるが、わらは浮遊し易く火格子上にとどまらずに飛散してしまうため、飛灰中に粉末炭化物が多く混入し、処理が煩雑になってしまう。
On the other hand, as shown in Fig. 5 (b), straw that is generated due to field cropping in rural areas, but when proper processing is not performed in field or field burning, methane is generated when left unloaded and left unattended. It may cause environmental destruction, such as promoting global warming or causing smoke damage by burning in the field. Plant biomass such as straw, rice husks, and felled wood can be processed by methane fermentation, but this method has the problem that the processing time is long and the reactor becomes large, especially when straw is methane-fermented. Since straw is a cellulosic material, there is a problem that unreacted substances are discharged after the decomposition treatment.
Although a method of incinerating straw in the stoker-type incinerator shown in FIG. 6 is also conceivable, since straw is likely to float and scatter without stopping on the grate, a large amount of powdered carbide is mixed in the fly ash. However, the process becomes complicated.

特許第2575256号公報Japanese Patent No. 2575256 特開平5−59905号公報JP-A-5-59905 特開平8−61604号公報JP-A-8-61604

従って、本発明は上記従来技術の問題点に鑑み、含水率の高い低質ごみであっても安定した焼却処理が可能で、また従来放置、廃棄される場合のあったわら等の草木バイオマスを有効利用でき、さらに、焼却炉廃熱を利用した発電を行なう際に発電率の向上が達成できる低質ごみ焼却炉及び発電設備を備えた低質ごみの焼却システムを提供することを目的とする。   Therefore, in view of the above-mentioned problems of the prior art, the present invention can stably incinerate even low-quality waste with a high water content, and can effectively use plant biomass such as straw that has been conventionally left and discarded. It is another object of the present invention to provide a low-quality waste incineration system including a low-quality waste incinerator and power generation equipment that can be used, and that can improve the power generation rate when generating power using incinerator waste heat.

そこで、本発明はかかる課題を解決するために、
含水率の高い低質ごみを焼却処理する焼却炉であって、前記低質ごみを炉内に供給する投入ホッパと、乾燥域と主燃焼域と後燃焼域からなる燃焼室とを有する焼却炉において、
前記投入ホッパとは異なる部位に、わら等の草木バイオマスを炭化して生成した炭化物を炉内に供給する手段を設け、該炭化物の供給手段を前記乾燥域に炭化物を投入するように構成し、前記低質ごみを前記炭化物とともに焼却処理することを特徴とする。
炭化物温度が低く、ごみの着火温度より低温であり、投入ホッパー内部での火災発生の心配が無い場合には、炭化物を投入ホッパー上部開口部から投入し、炭化物を低質ごみと混合して焼却炉内へ供給しても良い。
Therefore, in order to solve this problem, the present invention provides:
An incinerator for incinerating low-quality waste with a high water content, wherein the incinerator has a charging hopper that supplies the low-quality waste into the furnace, and a combustion chamber composed of a dry zone, a main combustion zone, and a post-combustion zone.
A unit different from the charging hopper is provided with a means for supplying carbide generated by carbonizing vegetation biomass such as straw into the furnace, and the carbide supplying means is configured to input the carbide into the dry zone, The low-quality waste is incinerated with the carbide.
If the carbide temperature is low and lower than the ignition temperature of the waste and there is no risk of fire inside the input hopper, the carbide is input from the upper opening of the input hopper, and the carbide is mixed with the low-quality waste and incinerator. You may supply in.

本発明によれば、性状の安定したわら等の草木バイオマスの炭化物を低質ごみとともに焼却するため、低質ごみの性状の変動を容易に吸収することができ、安定した焼却処理が可能となる。また、前記草木バイオマスを炭化物として炉内に供給するため、わらのように飛散しやすい草木バイオマスであっても飛散せずに焼却することができ、飛灰中に粉末炭化物が混入することを防げる。さらに、炭化物を同時に焼却することにより、容易に炉内を高温に保持でき、補助燃料の使用を不要、若しくは最小限の使用量に抑えることができる。さらにまた、わら等の草木バイオマスを有効利用することができ、従来の草木バイオマスの放置、野焼きによるメタンガスの発生、煙害等の環境被害を防ぐことができる。
また、前記炭化物は重油などの液体燃料と比較して、燃え切までに時間がかかるため、前記乾燥域に投入することにより未燃のまま排出されることが防止できる。
According to the present invention, charcoal of plant biomass such as straw having stable properties is incinerated together with low-quality waste, so that fluctuations in the properties of low-quality waste can be easily absorbed, and stable incineration processing becomes possible. In addition, since the plant biomass is supplied into the furnace as carbides, even plant biomass that is easily scattered like straw can be incinerated without being scattered, and powdered carbides can be prevented from being mixed into the fly ash. . Furthermore, by simultaneously incinerating carbides, the inside of the furnace can be easily maintained at a high temperature, and the use of auxiliary fuel can be suppressed to an unnecessary or minimum amount. Furthermore, it is possible to effectively use plant biomass such as straw, and to prevent environmental damage such as conventional neglect of plant biomass, generation of methane gas by field burning, and smoke damage.
Further, since the carbide takes more time to burn out than liquid fuel such as heavy oil, it can be prevented that the carbide is discharged without being burned by being put into the dry zone.

また、前記発明において、医療系廃棄物又は特別管理廃棄物からなる特殊廃棄物を含む低質ごみを焼却処理する場合、前記投入ホッパを二重ゲートダンパ構造とし、該投入ホッパより前記特殊廃棄物を封入した容器が炉内に供給されるように構成することが好ましい。これにより、従来焼却処理しにくかった特殊廃棄物を炉内で消毒、滅菌することができる。さらに、前記乾燥域に投入された炭化物が火格子上に層を作るため、前記特殊廃棄物の容器が溶融して火格子に固着することを防止できる。   Further, in the invention, when incinerating low-quality waste containing special waste consisting of medical waste or specially controlled waste, the input hopper has a double gate damper structure, and the special waste is removed from the input hopper. It is preferable that the enclosed container is supplied to the furnace. This makes it possible to disinfect and sterilize special waste that has been difficult to incinerate in the furnace. Furthermore, since the carbide put into the dry zone forms a layer on the grate, the container of the special waste can be prevented from melting and adhering to the grate.

また、廃熱ボイラを有する焼却炉と、該廃熱ボイラにより生成された蒸気を過熱する過熱器と、過熱蒸気を利用して発電を行なう発電設備とを備えた低質ごみの焼却システムにおいて、
わら等の草木バイオマスを炭化する炭化装置を設け、
前記焼却炉が、前記低質ごみを炉内に供給する投入ホッパと、前記炭化装置で生成した炭化物を炉内に供給する手段とを有するとともに、前記炭化装置にて発生した熱分解ガスを前記焼却炉又は前記過熱器に導入する構成としたことを特徴とする。
In addition, in an incinerator having a waste heat boiler, a superheater that superheats steam generated by the waste heat boiler, and a power generation facility that generates power using superheated steam, an incineration system for low-quality waste,
Establishing a carbonization device for carbonizing plant biomass such as straw,
The incinerator has a charging hopper for supplying the low-quality waste into the furnace, and means for supplying carbide generated in the carbonization apparatus into the furnace, and the pyrolysis gas generated in the carbonization apparatus is incinerated. It is characterized by being configured to be introduced into a furnace or the superheater.

本発明によれば、性状の安定した草木バイオマスの炭化物を低質ごみとともに焼却処理するため、安定した発電が可能となる。また、前記炭化装置にて発生した熱分解ガスを有効利用することにより、発電効率の向上が達成できる。また、炭化物の原料としてわら等の草木バイオマスを利用しているため、短時間で炭化物を生成でき処理時間の短縮化が図れる。尚、本発明で草木バイオマスの前処理で、乾燥処理ではなく炭化処理とした理由は、炭化処理の方が臭気の発生や腐敗等の安定性、及びハンドリング性が高いためであり、これにより草木バイオマスを安定化させることができる。   According to the present invention, since the charcoal of plant biomass with stable properties is incinerated together with low-quality waste, stable power generation is possible. Moreover, the power generation efficiency can be improved by effectively using the pyrolysis gas generated in the carbonization apparatus. Moreover, since plant biomass such as straw is used as a raw material for carbide, carbide can be generated in a short time, and the processing time can be shortened. In the present invention, the reason why the pretreatment of plant biomass is carbonized instead of dry is that the carbonized treatment has higher stability of odor generation, rot, etc., and handling properties. Biomass can be stabilized.

さらに、廃熱ボイラを有する焼却炉と、該廃熱ボイラにより生成された蒸気を過熱する過熱器と、過熱蒸気を利用して発電を行なう発電設備とを備えた低質ごみの焼却システムにおいて、
前記低質ごみから分離した汚水分に生物処理を施す生物処理装置と、該生物処理にて発生した汚泥を脱水した脱水汚泥を炭化する炭化装置と、を設け、
前記焼却炉が、前記低質ごみのうちの固形分を炉内に供給する投入ホッパと、前記炭化装置で生成した炭化物を炉内に供給する手段とを有するとともに、前記炭化装置にて発生した熱分解ガスを前記焼却炉又は前記過熱器に導入する構成としたことを特徴とする。
本発明によれば、ごみ汚水を焼却炉内に吹込む必要がないため、安定して前記低質ごみを高温燃焼することができる。また、前記炭化装置にて発生した熱分解ガスを有効利用することにより、発電効率の向上が達成できる。
In addition, in an incinerator having a waste heat boiler, a superheater that superheats steam generated by the waste heat boiler, and a power generation facility that generates power using superheated steam, an incineration system for low-quality waste,
A biological treatment device that performs biological treatment on sludge water separated from the low-quality waste, and a carbonization device that carbonizes dewatered sludge obtained by dewatering sludge generated by the biological treatment,
The incinerator has a charging hopper for supplying solid content of the low-quality waste into the furnace, and means for supplying carbide generated in the carbonization apparatus into the furnace, and heat generated in the carbonization apparatus. The decomposition gas is introduced into the incinerator or the superheater.
According to the present invention, since it is not necessary to blow waste sewage into the incinerator, the low-quality waste can be stably burned at a high temperature. Moreover, the power generation efficiency can be improved by effectively using the pyrolysis gas generated in the carbonization apparatus.

このとき、前記炭化装置の前段に、前記脱水汚泥と、わら等の草木バイオマスとを混練する混練機を設けることが好適である。
また、前記炭化装置に、前記脱水汚泥の供給手段と、わら等の草木バイオマスの供給手段とを設け、これらを直接炭化装置内に導入して炭化装置入口若しくは炭化装置内部で混合して炭化処理しても良い。
これにより、炭化装置内でのわら等の草木バイオマスが飛散することなく、安定した炭化処理を行うことができる。
さらにまた、前記低質ごみが、医療系廃棄物又は特別管理廃棄物からなる特殊廃棄物を含む場合であって、前記投入ホッパが二重ゲートダンパ構造を有しており、前記特殊廃棄物を封入した容器が前記投入ホッパにより炉内に供給され、前記炭化物とともに焼却処理されることを特徴とし、これにより特殊廃棄物を炉内で簡単に消毒、滅菌することができる。
At this time, it is preferable to provide a kneader for kneading the dewatered sludge and vegetation biomass such as straw before the carbonization apparatus.
The carbonization apparatus is provided with the dewatered sludge supply means and the straw and other plant biomass supply means, which are directly introduced into the carbonization apparatus and mixed at the carbonization apparatus inlet or inside the carbonization apparatus for carbonization treatment. You may do it.
Thereby, the stable carbonization process can be performed, without vegetation biomass such as straw in the carbonization apparatus being scattered.
Furthermore, the low-quality waste includes special waste made of medical waste or specially controlled waste, and the input hopper has a double gate damper structure and encloses the special waste. The container is supplied into the furnace by the charging hopper and is incinerated with the carbide, whereby special waste can be easily disinfected and sterilized in the furnace.

以上記載のごとく本発明によれば、含水率の高い低質ごみであっても、安定してかつ高温で焼却処理することができる。また、わら等の草木バイオマスを従来のように放置、野焼きせずに有効利用でき、メタン発生抑制、煙害防止が達成できる。
さらに、前記炭化装置にて発生した熱分解ガスを有効利用することにより、発電効率の向上が可能となる。
As described above, according to the present invention, even low-quality waste having a high moisture content can be incinerated stably and at a high temperature. Moreover, it is possible to effectively use vegetation biomass such as straw without leaving or burning it as in the past, and to achieve suppression of methane generation and prevention of smoke damage.
Furthermore, the power generation efficiency can be improved by effectively using the pyrolysis gas generated in the carbonization apparatus.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の一実施形態に係るごみ焼却処理の説明図、図2は本発明の実施例1に係るストーカ式焼却炉の縦断面図、図3は本発明の実施例2に係るストーカ式焼却炉の縦断面図、図4は本発明の実施例3に係る発電設備を備えたごみ焼却システムの構成図である。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
1 is an explanatory view of a waste incineration process according to an embodiment of the present invention, FIG. 2 is a longitudinal sectional view of a stoker type incinerator according to Example 1 of the present invention, and FIG. 3 is a stoker according to Example 2 of the present invention. FIG. 4 is a block diagram of a waste incineration system equipped with power generation equipment according to Embodiment 3 of the present invention.

図1を参照して本実施形態の概略を説明する。本実施形態では、生ごみ等の含水率が高い低質ごみをごみピットに貯留した際に発生するごみ汚水と、水切りされた低質ごみと別個に処理する。低質ごみ1t当り0.12m3のごみ汚水を排出する場合、一日200tの低質ごみからはごみ汚水が24m3/日発生する。このごみ汚水は生物処理可能な程度に希釈し、生物処理(10)を施す。生物処理で発生した処理水は放流し、一方汚泥は含水率約80%程度まで脱水(11)して炭化装置12に導入する。このとき、脱水汚泥は1.5t/日である。
一方、農村部で回収されるわらも、前記脱水汚泥とともに所定量だけ炭化装置12に導入する。該炭化装置12にて生成した炭化物は低質ごみとともに焼却炉30に導入され、焼却処理される。このとき、前記炭化装置12にて発生した熱分解ガスは、焼却炉30に導入され、燃料源とする。該焼却炉30にて発生した廃熱は、併設する発電設備に送給し、発電に利用する。
The outline of the present embodiment will be described with reference to FIG. In this embodiment, the waste sewage generated when low-quality waste having a high water content such as garbage is stored in the waste pit and the drained low-quality waste are treated separately. When 0.12m 3 of waste sewage is discharged per ton of low-quality waste, 24m 3 / day of waste sewage is generated from 200t of low-quality waste per day. The waste sewage is diluted to the extent that it can be biologically treated and subjected to biological treatment (10). The treated water generated in the biological treatment is discharged, while the sludge is dehydrated (11) to a water content of about 80% and introduced into the carbonization device 12. At this time, dehydrated sludge is 1.5 t / day.
On the other hand, the straw recovered in the rural area is also introduced into the carbonization device 12 by a predetermined amount together with the dewatered sludge. The carbide generated in the carbonization apparatus 12 is introduced into the incinerator 30 together with low-quality waste and incinerated. At this time, the pyrolysis gas generated in the carbonization apparatus 12 is introduced into the incinerator 30 and used as a fuel source. The waste heat generated in the incinerator 30 is sent to a power generation facility provided therefor and used for power generation.

本実施形態によれば、性状の安定したわら等の草木バイオマスの炭化物を低質ごみとともに焼却するため、低質ごみの性状の変動を容易に吸収することができ、安定した焼却処理が可能となる。また、前記草木バイオマスを炭化物として炉内に供給するため、わらのように飛散しやすい草木バイオマスであっても飛散せずに焼却することができ、飛灰中に粉末炭化物が混入することを防げる。さらに、炭化物を同時に焼却することにより、容易に炉内を高温に保持でき、補助燃料の使用を不要、若しくは最小限の使用量に抑えることができる。さらにまた、わら等の草木バイオマスを有効利用することができ、従来の草木バイオマスの放置、野焼きによるメタンガスの発生、煙害等の環境被害を防止できる。   According to this embodiment, the charcoal of plant biomass such as straw with stable properties is incinerated with low-quality waste, so that fluctuations in the properties of low-quality waste can be easily absorbed, and stable incineration processing is possible. In addition, since the plant biomass is supplied to the furnace as carbides, even plant biomass that is easily scattered like straw can be incinerated without being scattered, and powdered carbides can be prevented from being mixed into the fly ash. . Further, by simultaneously incinerating the carbides, the inside of the furnace can be easily maintained at a high temperature, and the use of auxiliary fuel can be suppressed to an unnecessary or minimum amount. Furthermore, it is possible to effectively use vegetation biomass such as straw, and to prevent environmental damage such as conventional vegetation biomass neglect, generation of methane gas by field burning, and smoke damage.

図2に本発明の実施例1に係るストーカ式焼却炉30を示す。かかるストーカ式焼却炉30は、ごみ24を炉内に供給する投入ホッパ31と、ごみを炉内の燃焼室に送り出すフィーダ32と、可動段と固定段からなり可動段を往復動させてごみ層41を移送する火格子33と、焼却後の灰層42を排出する灰排出口34と、該火格子33の上方に位置し、排ガス中の未燃分を燃焼する排ガス路35と、該排ガス路35の周囲に設けられ、二次空気を導入する二次空気導入口36と、を備えた構成となっている。
前記火格子33上の空間は燃焼室となっており、前記投入ホッパ31側から乾燥域と主燃焼域と後燃焼域とで形成される。前記投入ホッパ31及び前記フィーダ32により該燃焼室内に導入されたごみ24は、該燃焼室にて炉底から一次空気43を吹込みながら焼却される。
FIG. 2 shows a stoker-type incinerator 30 according to Embodiment 1 of the present invention. The stoker-type incinerator 30 includes a charging hopper 31 for supplying the waste 24 into the furnace, a feeder 32 for sending the waste to a combustion chamber in the furnace, a movable stage and a fixed stage, and a movable stage reciprocatingly moving the garbage stage. A grate 33 for transferring 41, an ash outlet 34 for discharging the ash layer 42 after incineration, an exhaust gas passage 35 for burning unburned components in the exhaust gas, located above the grate 33, and the exhaust gas A secondary air inlet 36 is provided around the path 35 and introduces secondary air.
The space on the grate 33 is a combustion chamber, and is formed from the charging hopper 31 side by a dry region, a main combustion region, and a post-combustion region. Garbage 24 introduced into the combustion chamber by the charging hopper 31 and the feeder 32 is incinerated while blowing primary air 43 from the furnace bottom in the combustion chamber.

また、焼却により発生した排ガスは前記排ガス路35を通過する際に、前記二次空気導入口36から導入される二次空気44により排ガス中の未燃分が完全燃焼される。
さらに、本実施例の主特徴とする構成は、前記二次空気導入口36の上方に、炭化物供給口37を設けた点である。該炭化物供給口37から供給される炭化物25は、前記乾燥域に投入される。尚、かかる炭化物供給口37は、二次空気導入口36の上方に限るものではなく、例えば前記フィーダ32上方等のように前記乾燥域に炭化物を供給する位置であれば何処でも良い。
炭化物温度が低く、ごみの着火温度より低温であり、投入ホッパー31内部での火災発生の心配が無い場合には、炭化物を投入ホッパー31上部開口部から投入し、炭化物を低質ごみ24と混合して焼却炉内へ供給しても良い。
Further, when the exhaust gas generated by incineration passes through the exhaust gas passage 35, the unburned components in the exhaust gas are completely burned by the secondary air 44 introduced from the secondary air introduction port 36.
Further, the main feature of the present embodiment is that a carbide supply port 37 is provided above the secondary air introduction port 36. The carbide 25 supplied from the carbide supply port 37 is put into the drying area. The carbide supply port 37 is not limited to the upper side of the secondary air introduction port 36, and may be anywhere as long as the carbide is supplied to the dry region, for example, above the feeder 32.
When the carbide temperature is low and the temperature is lower than the ignition temperature of the waste and there is no fear of fire occurring inside the charging hopper 31, the carbide is injected from the upper opening of the charging hopper 31 and the carbide is mixed with the low-quality waste 24. May be supplied to the incinerator.

前記炭化物供給口37から供給する炭化物25は、わら等の草木バイオマスを炭化して生成した炭化物、若しくは前記低質ごみから分離したごみ汚水を生物処理し、生成した汚泥を炭化して生成した炭化物とする。
これらの炭化物25を常時、若しくは間欠的に前記乾燥域に供給し、前記投入ホッパ31から供給される低質ごみ24とともに焼却する。
これにより、高温でかつ安定して低質ごみの焼却処理を行なうことができる。
The carbide 25 supplied from the carbide supply port 37 includes a carbide generated by carbonizing a sewage biomass such as straw or a biological treatment of waste sewage separated from the low-quality waste, and carbonizing the generated sludge. To do.
These carbides 25 are supplied to the drying area constantly or intermittently and incinerated with the low-quality waste 24 supplied from the input hopper 31.
Thereby, incineration processing of low quality waste can be performed stably at high temperature.

図3に本発明の実施例2に係るストーカ式焼却炉30を示す。本実施例は、低質ごみに医療系廃棄物又は特別管理廃棄物からなる特殊廃棄物を含む場合であり、これらの特殊廃棄物はプラスチック容器45に封入され、焼却炉30にて該容器45ごと焼却処理される。
かかる焼却炉30の基本構成は、図2に示した実施例1とほぼ同様であるため、同様の構成については説明を省略する。
本実施例2の主特徴とする構成は、ごみを炉内に供給する投入ホッパ31を二重ゲートダンパ構造とした点である。該二重ゲートダンパ構造は上部ダンパ46と下部ダンパ47から構成され、これらのダンパを交互に開閉することにより、前記特殊廃棄物を封入した容器45を炉内に供給する際に炉内ガスが外部へ漏出することを防止している。
FIG. 3 shows a stoker-type incinerator 30 according to Embodiment 2 of the present invention. This embodiment is a case where low-quality waste contains special waste made of medical waste or specially controlled waste. These special waste is enclosed in a plastic container 45 and is put together with the container 45 in an incinerator 30. Incinerated.
Since the basic configuration of the incinerator 30 is almost the same as that of the first embodiment shown in FIG. 2, the description of the same configuration is omitted.
The main feature of the second embodiment is that the charging hopper 31 for supplying garbage into the furnace has a double gate damper structure. The double gate damper structure is composed of an upper damper 46 and a lower damper 47. By alternately opening and closing these dampers, the furnace gas is supplied when the container 45 containing the special waste is supplied into the furnace. Prevents leakage to the outside.

前記投入ホッパ31から炉内に投入された容器45は、わら等の草木バイオマスを炭化して生成した炭化物25、若しくは前記低質ごみから分離したごみ汚水を生物処理し、生成した汚泥を炭化して生成した炭化物25とともに火格子41上で焼却され、灰排出口34より排出される。
炭化物25は、火格子41上方の乾燥域に常時供給するようにし、前記容器45を該炭化物25上に投入すると良い。これにより、前記容器45が溶融して火格子41に付着することを防止できる。また、低質ごみを収容した容器45であっても、炭化物25とともに焼却しているため、安定して高温燃焼させることができる。
投入ホッパ31から容器45を投入する際、容器45に封入する必要の無い、一般低質ごみと容器45の両方を投入ホッパー31から供給しても良い。この条件では一般低質ごみにて焼却炉内の負圧はマテリアルシールするので、二重ゲートダンパー構造を適用しなくとも良い。
The container 45 charged into the furnace from the charging hopper 31 is a biological treatment of the carbide 25 generated by carbonizing plant biomass such as straw or the waste sewage separated from the low-quality waste, and carbonizes the generated sludge. The generated carbide 25 is incinerated on the grate 41 and discharged from the ash outlet 34.
The carbide 25 may be constantly supplied to the drying area above the grate 41 and the container 45 may be put on the carbide 25. As a result, the container 45 can be prevented from melting and adhering to the grate 41. Further, even the container 45 containing low-quality waste can be stably burned at a high temperature because it is incinerated with the carbide 25.
When charging the container 45 from the charging hopper 31, both general low-quality waste and the container 45 that do not need to be sealed in the container 45 may be supplied from the charging hopper 31. Under this condition, the negative pressure in the incinerator is material-sealed with general low-quality waste, so it is not necessary to apply the double gate damper structure.

次に、本実施例2の具体的な一実施例につき説明する。
処理対象とする低質ごみ24は、感染性医療系廃棄物又は特別管理廃棄物からなる特殊廃棄物を含み、非特別管理廃棄物の医療系廃棄物も併せて処理を行う事もある。前記感染性医療系廃棄物には、例えば感染の危険性のある細菌、真菌、ウィルス等のバイオハザードや、発ガン性、催奇形性、変異原性、精子毒性、他の毒性物質等のケミカルハザードや、注射針、メス、等の鋭利な刃物であるメカニカルハザードなどが挙げられる。前記容器45は下部シュート内部で閉塞する事を防止する為に、容器45は、3辺の長さが投入ホッパ31の下部シュートの短辺の長さより短くする、望ましくは下部シュートの短辺の長さの短辺の1/2以下の寸法のプラスチック製とし、軟化点及び融点を200℃〜300℃以下とする。該容器45の混入量は、他の低質ごみの20重量%以下とする事が望ましい。
二重ゲートダンパー構造を適用する場合には、容器45のみを投入ホッパーへ供給しても良い。
容器45の材質は、プラスチック製以外にダンボール製、ビニール袋製でも良い。
Next, a specific example of the second embodiment will be described.
The low-quality waste 24 to be treated includes special waste made of infectious medical waste or specially managed waste, and non-specially managed waste medical waste may also be treated. The infectious medical waste includes, for example, biohazards such as bacteria, fungi and viruses that are at risk of infection, and chemicals such as carcinogenicity, teratogenicity, mutagenicity, sperm toxicity, and other toxic substances. Examples include hazards and mechanical hazards that are sharp blades such as injection needles and scalpels. In order to prevent the container 45 from being blocked inside the lower chute, the container 45 has a length of three sides shorter than the length of the short side of the lower chute of the charging hopper 31, preferably the short side of the lower chute. It shall be made of plastic with a dimension of 1/2 or less of the short side of the length, and the softening point and melting point shall be 200 to 300 ° C. The mixing amount of the container 45 is desirably 20% by weight or less of other low-quality waste.
When a double gate damper structure is applied, only the container 45 may be supplied to the charging hopper.
The material of the container 45 may be made of cardboard or plastic bag in addition to plastic.

前記特殊廃棄物を処理する際には、消毒薬48を投入ホッパ31の内側下部に噴霧し投入ホッパーの下部シュート内壁に流下するごみ汚水を消毒する。また消毒薬48を、フィーダ32に噴霧、塗布しフィーダ32に付着するごみ汚水を消毒する。また、投入ホッパ31、フィーダ32の外部に流出した消毒済みのごみ汚水は、洗浄水49又は消毒薬により洗い流し、炉内に噴霧する。消毒薬により、焼却設備機器が腐食する事を防止する。
腐食防止の方法として、消毒薬に腐食防止剤を混入しても良い。フィーダ32の下部フィードテーブルは、フィーダ32上及びフィードテーブル上の消毒済みのごみ汚水が焼却炉内に流下し、炉外へ流出する事を防止する為に、炉内へ向け水平面から下り勾配とする。下り勾配の角度は、水平面に対して0〜5°とする。消毒済みのごみ汚水の炉外への流出防止の為、フィードテーブルの摺動部には、スクレーパーを取り付けする。
前記焼却炉30の炉内圧力は負圧とするとともに、前記排ガス路35は約800℃以上とし排ガス滞留時間が2秒以上となるようにする。
また、前記排ガス路35の上方に有機物濃度センサ50を設置し、該有機物濃度センサ50により検出された炉内の有機物濃度に基づき酸素発生装置51で一次空気43の酸素富化量を制御し、炉内酸素濃度を調整する。例えば、前記有機物濃度が高い場合には、酸素富化量を増大し、炉内酸素濃度を増加させて排ガス中の未燃分の燃焼を促進させる。
尚、炉内の空気比を1.0以下とし、ごみから揮発する熱分解ガスを炉内で燃焼させず、炉の下流側に設備するガスタービンやガスエンジンで完全燃焼する場合には、有機物濃度を増加する為に、炉内への供給酸素量及び又は供給酸素濃度を低減し炉内酸素濃度を低下する。有機物濃度センサー50により検出された炉内の有機物濃度に基づき、炉内への供給酸素量及び又は供給酸素濃度と、炉内酸素濃度を制御する。検出された炉内酸素濃度に基づき炉内への供給酸素酸素量及び又は供給酸素濃度を制御しても、ガスタービンやガスエンジンで発電する発電量に基づき制御しても、炉内の各部で検出する温度、圧力に基づき制御しても良い。また、炉内の各部で検出する火炎や高温物質表面等の輝度に基づき制御しても、ダンパーの開度等により、供給空気量、排ガス量、熱分解ガス量の制御をしても良い。さらに、炉の下流側に燃料電池を適用し発電しても良い。
When processing the special waste, the disinfectant 48 is sprayed on the inner lower part of the charging hopper 31 to disinfect the waste sewage flowing down to the inner wall of the lower chute of the charging hopper. In addition, the disinfectant 48 is sprayed and applied to the feeder 32 to disinfect the waste sewage adhering to the feeder 32. Further, the sterilized wastewater that has flowed out of the charging hopper 31 and the feeder 32 is washed away with the washing water 49 or the disinfectant and sprayed into the furnace. The disinfectant prevents corrosion of incinerator equipment.
As a method for preventing corrosion, a corrosion inhibitor may be mixed in the disinfectant. The lower feed table of the feeder 32 has a downward slope from the horizontal plane toward the inside of the furnace in order to prevent the sterilized waste water on the feeder 32 and the feed table from flowing into the incinerator and out of the furnace. To do. The downward slope angle is 0-5 ° with respect to the horizontal plane. A scraper is attached to the sliding part of the feed table to prevent the septic waste from flowing out of the furnace.
The pressure in the incinerator 30 is set to a negative pressure, and the exhaust gas passage 35 is set to about 800 ° C. or higher so that the exhaust gas residence time is 2 seconds or longer.
Further, an organic substance concentration sensor 50 is installed above the exhaust gas path 35, and the oxygen enrichment amount of the primary air 43 is controlled by the oxygen generator 51 based on the organic substance concentration in the furnace detected by the organic substance concentration sensor 50. Adjust the oxygen concentration in the furnace. For example, when the organic matter concentration is high, the oxygen enrichment amount is increased, and the oxygen concentration in the furnace is increased to promote the combustion of unburned components in the exhaust gas.
Note that when the air ratio in the furnace is 1.0 or less and the pyrolysis gas volatilized from the waste is not burned in the furnace, but completely burned in the gas turbine or gas engine installed downstream of the furnace, the organic matter concentration is In order to increase, the amount of oxygen supplied to the furnace and / or the concentration of supplied oxygen are reduced to lower the oxygen concentration in the furnace. Based on the organic substance concentration in the furnace detected by the organic substance concentration sensor 50, the amount of oxygen supplied to the furnace and / or the supply oxygen concentration and the oxygen concentration in the furnace are controlled. Regardless of whether the amount of oxygen and / or oxygen supplied to the furnace is controlled based on the detected oxygen concentration in the furnace, or based on the amount of power generated by the gas turbine or gas engine, You may control based on the temperature and pressure to detect. Moreover, even if it controls based on the brightness | luminance of the flame, high temperature material surface, etc. which are detected in each part in a furnace, you may control the amount of supplied air, the amount of exhaust gas, and the amount of pyrolysis gas by the opening degree of a damper, etc. Further, a fuel cell may be applied to the downstream side of the furnace to generate power.

かかる焼却炉30における焼却処理は、まず前記特殊廃棄物を封入した容器45を投入ホッパ31より供給し、上部ダンパ46及び下部ダンパ47を交互に開閉してフィーダ32上に該容器45を投入し、該フィーダ32により前記火格子33上に移送する。該火格子33上には、炭化物供給口37より供給された炭化物25が層を形成しており、該炭化物の層上に容器45を投入する。そして、該炭化物25、前記容器45、及び他の低質ごみを同時に焼却処理する。前記容器45は、燃焼室の乾燥域で軟化、溶融し、内容物が火格子の撹拌効果により他の低質ごみと混合される。これらの混合ごみは、高温の燃焼火炎により焼却、滅菌される。
このように本実施形態では、従来は焼却炉にて処理しにくかった感染性医療系廃棄物又は特別管理廃棄物からなる特殊廃棄物を容易にかつ安全に処理することができる。
投入ホッパ31から容器45を投入する際、容器45に封入する必要の無い、一般低質ごみと容器45の両方を投入ホッパー31から供給しても良い。この条件では一般低質ごみにて焼却炉内の負圧はマテリアルシールするので、二重ゲートダンパー構造を適用しなくとも良い。
In the incineration process in the incinerator 30, first, the container 45 filled with the special waste is supplied from the input hopper 31, and the upper damper 46 and the lower damper 47 are alternately opened and closed, and the container 45 is input onto the feeder 32. , And transferred onto the grate 33 by the feeder 32. The carbide 25 supplied from the carbide supply port 37 forms a layer on the grate 33, and the container 45 is put on the carbide layer. The carbide 25, the container 45, and other low-quality waste are incinerated simultaneously. The container 45 is softened and melted in the drying area of the combustion chamber, and the contents are mixed with other low-quality waste by the stirring effect of the grate. These mixed wastes are incinerated and sterilized by a high-temperature combustion flame.
As described above, in this embodiment, special waste made of infectious medical waste or specially managed waste that has been difficult to treat in an incinerator can be easily and safely treated.
When charging the container 45 from the charging hopper 31, both general low-quality waste and the container 45 that do not need to be sealed in the container 45 may be supplied from the charging hopper 31. Under this condition, the negative pressure in the incinerator is material-sealed with general low-quality waste, so it is not necessary to apply the double gate damper structure.

図4は本発明の実施例3に係る発電設備を備えたごみ焼却システムの構成図である。該システムは、前記実施例1又は実施例2に示した焼却炉30を具備している。
本実施例3に係るごみ焼却システムは、嫌気性生物処理又は好気性生物処理等の生物処理装置10と、機械的又は化学的脱水を行なう脱水機11と、混練機20と、被処理物を間接加熱して炭化する炭化装置12と、前記実施例1又は2に示した焼却炉30と、蒸気を過熱して過熱蒸気を生成する過熱器13と、過熱蒸気により駆動される蒸気タービン14と、該蒸気タービン14により駆動され電力を発生する発電機15と、復水器16と、排ガス中の煤塵を捕集するバグフィルタ18と、煙突19と、を備えている。
FIG. 4 is a configuration diagram of a waste incineration system including a power generation facility according to Embodiment 3 of the present invention. The system includes the incinerator 30 shown in the first embodiment or the second embodiment.
The waste incineration system according to the third embodiment includes a biological treatment apparatus 10 such as anaerobic biological treatment or aerobic biological treatment, a dehydrator 11 that performs mechanical or chemical dehydration, a kneader 20, and an object to be treated. A carbonization apparatus 12 that performs carbonization by indirect heating, the incinerator 30 shown in the first or second embodiment, a superheater 13 that superheats steam to generate superheated steam, and a steam turbine 14 that is driven by superheated steam. , A generator 15 driven by the steam turbine 14 to generate electric power, a condenser 16, a bag filter 18 for collecting dust in the exhaust gas, and a chimney 19.

ごみピットにて発生したごみ汚水21は、生物処理に適した濃度まで希釈され、生物処理装置10にて処理水が放流可能なレベルまで生物処理され、該処理水は放流され、汚泥は脱水機11にて脱水される。脱水汚泥22は混練機20に導入され、わら等の草木バイオマス23とともに混練される。混練機20にて生成した混練物は炭化装置12に導入されて炭化物25を形成し、該炭化物25は前記焼却炉30に送給される。
焼却炉30では、低質ごみのうち前記ごみ汚水21が分離された固形ごみ24が投入ホッパより炉内に供給され、前記炭化物25とともに焼却される。
The waste sewage 21 generated in the waste pit is diluted to a concentration suitable for biological treatment and biologically treated to a level at which the treated water can be discharged by the biological treatment device 10, the treated water is discharged, and the sludge is dehydrated. 11 and dehydrated. The dewatered sludge 22 is introduced into the kneader 20 and kneaded together with the plant biomass 23 such as straw. The kneaded material generated in the kneader 20 is introduced into the carbonization device 12 to form a carbide 25, and the carbide 25 is fed to the incinerator 30.
In the incinerator 30, the solid waste 24 from which the waste sewage 21 is separated from the low-quality waste is supplied into the furnace from the input hopper and incinerated with the carbide 25.

一方、前記炭化装置12にて発生した熱分解ガス26は過熱器13に導入され、過熱器13の熱源とされる。また、前記焼却炉30が具備するボイラ17で生成された蒸気は前記過熱器13にて過熱され、ここで生成した過熱蒸気27により前記蒸気タービン14が駆動され、該蒸気タービン14の駆動エネルギーにより発電機15にて電力が発生される。前記過熱蒸気27は、復水器16にて冷却され、前記ボイラ17に送給される。
また、前記熱分解ガス26を前記焼却炉30に導入し、補助燃料として利用することもできる。
一方、前記焼却炉30にて発生した排ガス28は、バグフィルタ18で飛灰を除去された後に煙突19から外部へ排出される。このとき、前記排ガス28をガスタービン、ガスエンジン、燃料電池、他(不図示)に導入し、発電に利用しても良い。
このように、かかるシステムによれば、前記焼却炉30にて安定してかつ高温で焼却処理ができるとともに、前記炭化装置12にて発生した熱分解ガス26を焼却炉30若しくは過熱器13に導入することにより、高効率発電が可能となる。
熱分解ガス26中の含有高温腐食ガス成分濃度が、排ガス28中の含有高温腐食ガス成分濃度より低い条件では、更に過熱器出口蒸気条件の高温高圧化を計る事が可能である。
過熱器13はボイラ17内部に設備しても良い。
On the other hand, the pyrolysis gas 26 generated in the carbonization device 12 is introduced into the superheater 13 and used as a heat source for the superheater 13. The steam generated in the boiler 17 included in the incinerator 30 is superheated in the superheater 13, and the steam turbine 14 is driven by the superheated steam 27 generated here, and the driving energy of the steam turbine 14 is used. Electric power is generated by the generator 15. The superheated steam 27 is cooled by the condenser 16 and supplied to the boiler 17.
Further, the pyrolysis gas 26 can be introduced into the incinerator 30 and used as auxiliary fuel.
On the other hand, the exhaust gas 28 generated in the incinerator 30 is discharged from the chimney 19 after fly ash is removed by the bag filter 18. At this time, the exhaust gas 28 may be introduced into a gas turbine, gas engine, fuel cell, etc. (not shown) and used for power generation.
Thus, according to this system, the incinerator 30 can stably incinerate at a high temperature, and the pyrolysis gas 26 generated in the carbonization apparatus 12 is introduced into the incinerator 30 or the superheater 13. By doing so, highly efficient power generation becomes possible.
Under the condition that the concentration of the high-temperature corrosive gas component contained in the pyrolysis gas 26 is lower than the concentration of the high-temperature corrosive gas component contained in the exhaust gas 28, it is possible to further increase the temperature and pressure of the superheater outlet steam condition.
The superheater 13 may be installed inside the boiler 17.

本実施形態において、前記炭化装置12で処理後の炭化物25が、ボイラ17の出口蒸気の高温、高圧化にそぐわない腐食成分を含有すると予測される場合は、炭化物25の焼却炉30への供給を停止し、単独で焼却、溶融を行なうこともできる。このように、炭化装置、生物処理装置、焼却炉等を夫々単独で運転可能な構成とし、適宜切換えて運転することが好ましい。   In the present embodiment, when it is predicted that the carbide 25 treated by the carbonization apparatus 12 contains a corrosive component that is not suitable for the high temperature and high pressure of the outlet steam of the boiler 17, the carbide 25 is supplied to the incinerator 30. It can be stopped and incinerated or melted alone. As described above, it is preferable that the carbonization apparatus, the biological treatment apparatus, the incinerator, and the like are configured so as to be able to operate independently, and are operated by switching appropriately.

本発明の一実施形態に係るごみ焼却処理の説明図である。It is explanatory drawing of the waste incineration process which concerns on one Embodiment of this invention. 本発明の実施例1に係るストーカ式焼却炉の縦断面図である。It is a longitudinal cross-sectional view of the stoker type incinerator which concerns on Example 1 of this invention. 本発明の実施例2に係るストーカ式焼却炉の縦断面図である。It is a longitudinal cross-sectional view of the stoker type incinerator which concerns on Example 2 of this invention. 本発明の実施例3に係る発電設備を備えたごみ焼却システムの構成図である。It is a block diagram of the refuse incineration system provided with the power generation equipment which concerns on Example 3 of this invention. 従来のごみ焼却処理の説明である。It is description of the conventional waste incineration process. 従来のストーカ式焼却炉の縦断面図である。It is a longitudinal cross-sectional view of the conventional stoker type incinerator.

符号の説明Explanation of symbols

10 生物処理装置
11 脱水機
12 炭化装置
13 過熱器
14 蒸気タービン
15 発電機
16 復水器
17 ボイラ
18 バグフィルタ
19 煙突
20 混練機
21 ごみ汚水
22 脱水汚泥
23 草木バイオマス
24 低質ごみ
25 炭化物
26 熱分解ガス
27 過熱蒸気
30 焼却炉
31 投入ホッパ
32 フィーダ
33 火格子
34 灰排出口
35 排ガス路
36 二次空気導入口
37 炭化物供給口
41 ごみ層
42 灰層
43 一次空気
44 二次空気
45 容器
46 上部ダンパ
47 下部ダンパ
48 消毒薬
49 洗浄水
50 有機物濃度センサ
51 酸素発生装置
60 ストーカ式焼却炉
61 投入ホッパ
62 フィーダ
63 火格子
64 灰排出口
65 排ガス路
66 助燃バーナ
70 ごみ層
71 灰層
DESCRIPTION OF SYMBOLS 10 Biological treatment apparatus 11 Dehydrator 12 Carbonizer 13 Superheater 14 Steam turbine 15 Generator 16 Condenser 17 Boiler 18 Bag filter 19 Chimney 20 Kneader 21 Waste sewage 22 Dehydrated sludge 23 Plant biomass 24 Low quality garbage 25 Carbide 26 Pyrolysis Gas 27 Superheated steam 30 Incinerator 31 Input hopper 32 Feeder 33 Grate 34 Ash outlet 35 Exhaust gas path 36 Secondary air inlet 37 Carbide supply port 41 Garbage layer 42 Ash layer 43 Primary air 44 Secondary air 45 Container 46 Upper damper 47 Lower damper 48 Disinfectant 49 Washing water 50 Organic substance sensor 51 Oxygen generator 60 Stoker type incinerator 61 Input hopper 62 Feeder 63 Grate 64 Ash outlet 65 Exhaust gas path 66 Auxiliary burner 70 Waste layer 71 Ash layer

Claims (7)

含水率の高い低質ごみを焼却処理する焼却炉であって、前記低質ごみを炉内に供給する投入ホッパと、乾燥域と主燃焼域と後燃焼域からなる燃焼室とを有する焼却炉において、
わら等の草木バイオマスを炭化して生成した炭化物を炉内に供給する手段を設け、該炭化物の供給手段を前記乾燥域に炭化物を投入するように構成し、前記低質ごみを前記炭化物とともに焼却処理することを特徴とする低質ごみ焼却炉。
An incinerator for incinerating low-quality waste with a high water content, wherein the incinerator has a charging hopper that supplies the low-quality waste into the furnace, and a combustion chamber composed of a dry zone, a main combustion zone, and a post-combustion zone.
A means for supplying carbide generated by carbonizing plant biomass such as straw into the furnace is provided, and the carbide supply means is configured to inject the carbide into the dry zone, and the low-quality waste is incinerated with the carbide. A low-quality waste incinerator characterized by
医療系廃棄物又は特別管理廃棄物からなる特殊廃棄物を含む低質ごみを焼却処理する請求項1記載の焼却炉において、前記投入ホッパを二重ゲートダンパ構造とし、該投入ホッパより前記特殊廃棄物を封入した容器が炉内に供給されるようにしたことを特徴とする低質ごみ焼却炉。   The incinerator according to claim 1, wherein low quality waste containing special waste made of medical waste or specially controlled waste is incinerated, wherein the input hopper has a double gate damper structure, and the special waste is supplied from the input hopper. A low-quality waste incinerator characterized in that a container enclosing a container is supplied into the furnace. 廃熱ボイラを有する焼却炉と、該廃熱ボイラにより生成された蒸気を過熱する過熱器と、過熱蒸気を利用して発電を行なう発電設備とを備えた低質ごみの焼却システムにおいて、
わら等の草木バイオマスを炭化する炭化装置を設け、
前記焼却炉が、前記低質ごみを炉内に供給する投入ホッパと、前記炭化装置で生成した炭化物を炉内に供給する手段とを有するとともに、前記炭化装置にて発生した熱分解ガスを前記焼却炉又は前記過熱器に導入する構成としたことを特徴とする発電設備を備えた低質ごみの焼却システム。
In an incinerator for low-quality waste comprising an incinerator having a waste heat boiler, a superheater that superheats steam generated by the waste heat boiler, and a power generation facility that generates power using the superheated steam,
Establishing a carbonization device for carbonizing plant biomass such as straw,
The incinerator has a charging hopper for supplying the low-quality waste into the furnace, and means for supplying carbide generated in the carbonization apparatus into the furnace, and the pyrolysis gas generated in the carbonization apparatus is incinerated. A low-quality waste incineration system equipped with a power generation facility characterized by being introduced into a furnace or the superheater.
廃熱ボイラを有する焼却炉と、該廃熱ボイラにより生成された蒸気を過熱する過熱器と、過熱蒸気を利用して発電を行なう発電設備とを備えた低質ごみの焼却システムにおいて、
前記低質ごみから分離した汚水分に生物処理を施す生物処理装置と、該生物処理にて発生した汚泥を脱水した脱水汚泥を炭化する炭化装置と、を設け、
前記焼却炉が、前記低質ごみのうちの固形分を炉内に供給する投入ホッパと、前記炭化装置で生成した炭化物を炉内に供給する手段とを有するとともに、前記炭化装置にて発生した熱分解ガスを前記焼却炉又は前記過熱器に導入する構成としたことを特徴とする発電設備を備えた低質ごみの焼却システム。
In an incinerator for low-quality waste comprising an incinerator having a waste heat boiler, a superheater that superheats steam generated by the waste heat boiler, and a power generation facility that generates power using the superheated steam,
A biological treatment device that performs biological treatment on sludge water separated from the low-quality waste, and a carbonization device that carbonizes dewatered sludge obtained by dewatering sludge generated by the biological treatment,
The incinerator has a charging hopper for supplying solid content of the low-quality waste into the furnace, and means for supplying carbide generated in the carbonization apparatus into the furnace, and heat generated in the carbonization apparatus. A low-quality waste incineration system equipped with power generation equipment, characterized in that cracked gas is introduced into the incinerator or the superheater.
前記炭化装置の前段に、前記脱水汚泥と、わら等の草木バイオマスとを混練する混練機を設けたことを特徴とする請求項4記載の発電設備を備えた低質ごみの焼却システム。   The incineration system for low-quality waste provided with power generation equipment according to claim 4, wherein a kneader for kneading the dewatered sludge and vegetation biomass such as straw is provided upstream of the carbonization apparatus. 前記炭化装置に、前記脱水汚泥の供給手段と、わら等の草木バイオマスの供給手段とを設け、該炭化装置で前記脱水汚泥と前記草木バイオマスとを炭化処理することを特徴とする請求項4記載の発電設備を備えた低質ごみの焼却システム。   5. The decarbonized sludge supply means and a straw biomass biomass supply means are provided in the carbonization apparatus, and the carbonization apparatus carbonizes the dehydrated sludge and the plant biomass. A low-quality waste incineration system equipped with power generation facilities. 前記低質ごみが、医療系廃棄物又は特別管理廃棄物からなる特殊廃棄物を含む場合であって、前記投入ホッパが二重ゲートダンパ構造を有しており、前記特殊廃棄物を封入した容器が前記投入ホッパから炉内に供給され、前記炭化物とともに焼却処理されることを特徴とする請求項4乃至6の何れかに記載の発電設備を備えた低質ごみの焼却システム。   In the case where the low-quality waste includes special waste made of medical waste or special management waste, the input hopper has a double gate damper structure, and a container in which the special waste is enclosed is The incineration system for low-quality waste with power generation equipment according to any one of claims 4 to 6, wherein the incineration system is supplied from the charging hopper into the furnace and incinerated together with the carbide.
JP2004058874A 2004-03-03 2004-03-03 Low quality refuse incineration system with low quality refuse incinerator and power generation plant Withdrawn JP2005249262A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004058874A JP2005249262A (en) 2004-03-03 2004-03-03 Low quality refuse incineration system with low quality refuse incinerator and power generation plant
CN2004100941976A CN1664444A (en) 2004-03-03 2004-12-31 Low quality rubbish incinerator and low quality refuse burning system with generating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004058874A JP2005249262A (en) 2004-03-03 2004-03-03 Low quality refuse incineration system with low quality refuse incinerator and power generation plant

Publications (1)

Publication Number Publication Date
JP2005249262A true JP2005249262A (en) 2005-09-15

Family

ID=35029898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004058874A Withdrawn JP2005249262A (en) 2004-03-03 2004-03-03 Low quality refuse incineration system with low quality refuse incinerator and power generation plant

Country Status (2)

Country Link
JP (1) JP2005249262A (en)
CN (1) CN1664444A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050745A (en) * 2007-07-31 2009-03-12 Nikko Kinzoku Kk Asbestos treatment apparatus
CN103868046A (en) * 2012-12-13 2014-06-18 中国科学院过程工程研究所 Method for energizing grain residues of cellular structure colloid type biomasses
JP2015039690A (en) * 2013-08-23 2015-03-02 三菱重工環境・化学エンジニアリング株式会社 Refuse treatment system
JP2017161157A (en) * 2016-03-09 2017-09-14 大阪瓦斯株式会社 Combustor and control method thereof
JP2018114455A (en) * 2017-01-18 2018-07-26 延岡市 Sludge treatment system and sludge treatment method
JP2019157114A (en) * 2018-03-13 2019-09-19 大同特殊鋼株式会社 Carbonization processing method and carbonization processor
JP2020118314A (en) * 2019-01-21 2020-08-06 川崎重工業株式会社 Combustion furnace and method for starting-up the same
CN113249135A (en) * 2021-04-09 2021-08-13 安徽省宁国市长乐林产品开发有限公司 Biological organic matter heat energy conversion device
CN115846371A (en) * 2022-11-24 2023-03-28 武汉理工大学 Waste treatment device and treatment method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100381756C (en) * 2005-11-10 2008-04-16 朱新发 Method for high temperature borning away refuse and its equipment
CN101498448B (en) * 2009-03-09 2010-08-18 赵国英 Use of dry Jujun grass in refuse incineration process
CN102563659B (en) * 2012-03-02 2015-02-25 唐伟民 Refuse incineration power generation process and refuse incineration power generation equipment
CN105333439B (en) * 2015-11-08 2020-03-31 广东博业热能供应有限公司 Secondary high-temperature gasification incineration system for garbage
JP7381001B2 (en) * 2019-03-22 2023-11-15 三菱重工業株式会社 Hydrothermal treatment equipment
CN112032734A (en) * 2020-09-08 2020-12-04 大连理工大学 Mobile garbage disposal vehicle driven by fuel cell and disposal method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050745A (en) * 2007-07-31 2009-03-12 Nikko Kinzoku Kk Asbestos treatment apparatus
JP4566224B2 (en) * 2007-07-31 2010-10-20 日鉱金属株式会社 Asbestos processing equipment
CN103868046A (en) * 2012-12-13 2014-06-18 中国科学院过程工程研究所 Method for energizing grain residues of cellular structure colloid type biomasses
CN103868046B (en) * 2012-12-13 2016-04-27 中国科学院过程工程研究所 A kind of method of eucaryotic cell structure colloidal type living beings grain slag energy
JP2015039690A (en) * 2013-08-23 2015-03-02 三菱重工環境・化学エンジニアリング株式会社 Refuse treatment system
JP2017161157A (en) * 2016-03-09 2017-09-14 大阪瓦斯株式会社 Combustor and control method thereof
JP2018114455A (en) * 2017-01-18 2018-07-26 延岡市 Sludge treatment system and sludge treatment method
JP2019157114A (en) * 2018-03-13 2019-09-19 大同特殊鋼株式会社 Carbonization processing method and carbonization processor
JP2020118314A (en) * 2019-01-21 2020-08-06 川崎重工業株式会社 Combustion furnace and method for starting-up the same
JP7199235B2 (en) 2019-01-21 2023-01-05 川崎重工業株式会社 Combustion furnace and its starting method
CN113249135A (en) * 2021-04-09 2021-08-13 安徽省宁国市长乐林产品开发有限公司 Biological organic matter heat energy conversion device
CN115846371A (en) * 2022-11-24 2023-03-28 武汉理工大学 Waste treatment device and treatment method

Also Published As

Publication number Publication date
CN1664444A (en) 2005-09-07

Similar Documents

Publication Publication Date Title
JP4081102B2 (en) Waste complex treatment facility
KR100665251B1 (en) Carbonize system for inorganic and organic waste and dealing method
JP2005249262A (en) Low quality refuse incineration system with low quality refuse incinerator and power generation plant
CN2926833Y (en) System and apparatus for firing medical refuse
Wilson et al. A comparative assessment of commercial technologies for conversion of solid waste to energy
JP2008248161A (en) Thermal decomposition process and thermal decomposition system
CN202494116U (en) Municipal-waste-incinerating power-generating comprehensive treatment system
KR101152613B1 (en) System for treating sludge or waste having a by-pass line
JP2008212860A (en) Waste disposal facility
US20110303134A1 (en) Method and apparatus for treating solid wastes
JP2006205027A (en) Apparatus and method for reducing volume/weight of hydrous organic sludge or the like
JP2015224795A (en) Generator for fuel gas from organic materials and utilization of heat of same
KR101891088B1 (en) Organic waste drying system
CN210764947U (en) Sludge drying, carbonizing and gasifying system
KR100856677B1 (en) Treatment apparatus of food rubbish
KR100503490B1 (en) Drying and carbonization management system of sludge or food or life trash organic matter and waste matter
KR100989388B1 (en) Device for treating food waste
JP2005305314A (en) System for treating waste liquid containing solid
KR20110041170A (en) Apparatus for generating electric power by biomass
JP2001327950A (en) Incineration method and apparatus for solid waste
JP2011068824A (en) Carbonization facility for organic water-containing waste
JP2014052174A (en) Organic compound carbonization and combustion furnace
RU2089787C1 (en) Method and device for decontamination and destruction of hospital solid wastes
WO2011014094A1 (en) Method and device for recycling moist waste matter comprising organic materials
KR101883548B1 (en) Selective reduction device of the organic waste

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605