JP2014052174A - Organic compound carbonization and combustion furnace - Google Patents

Organic compound carbonization and combustion furnace Download PDF

Info

Publication number
JP2014052174A
JP2014052174A JP2013091851A JP2013091851A JP2014052174A JP 2014052174 A JP2014052174 A JP 2014052174A JP 2013091851 A JP2013091851 A JP 2013091851A JP 2013091851 A JP2013091851 A JP 2013091851A JP 2014052174 A JP2014052174 A JP 2014052174A
Authority
JP
Japan
Prior art keywords
furnace
carbonization
combustion
combustion furnace
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013091851A
Other languages
Japanese (ja)
Inventor
Yoshinobu Kobayashi
義信 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013091851A priority Critical patent/JP2014052174A/en
Publication of JP2014052174A publication Critical patent/JP2014052174A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Abstract

PROBLEM TO BE SOLVED: To dispose more efficiently waste matter etc. while restricting production of nasty smell and harmful substance such as dioxin etc. when the waste matter etc. mainly having organic compound is disposed and at the same time finally to recover it as thermal energy by igniting it.SOLUTION: A carbonization furnace 3 for carbonizing waste matter mainly having organic compound is integrally arranged adjacent to a combustion furnace 2 for igniting carbonized carbide and the carbonization furnace 3 can be heated under utilization of heat source of the combustion furnace 2 by communicating a heating chamber 6 arranged to enclose a circumference of the carbonization furnace 3 with a combustion chamber 5 of the combustion chamber 2 and, in addition, at a predetermined place of the carbonization furnace 3, a gas discharge part 24 is provided capable of discharging gas accumulated within the carbonization furnace 3 either into the combustion chamber 5 of the combustion furnace 2 or into the heating chamber 6 of the carbonization furnace 3. In this case, it is possible to increase a carbonization efficiency if a plurality of carbonization furnaces 3 are arranged around the combustion furnace 2 or a partition wall 31 is arranged at the midway part of a communication passage 30 communicating the combustion chamber 5 with the heating chamber 6.

Description

本発明は、例えば食品廃棄物や産業廃棄物や動物糞等の廃棄物や木質材や竹材等の有機物を主体とする材料を炭化し、燃焼させる炭化・燃焼炉において、ダイオキシン類の有害物質や異臭等の発生を抑制しつつ有機物の内在エネルギーを最大に活用して炭化・燃焼させることができる炭化・燃焼炉に関する。   The present invention, for example, in a carbonization / combustion furnace that carbonizes and burns wastes such as food waste, industrial waste, animal dung, etc., and organic materials such as wood and bamboo, The present invention relates to a carbonization / combustion furnace that can make carbonization / combustion by making maximum use of the internal energy of organic matter while suppressing the generation of off-flavors.

従来、例えば食品廃棄物や産業廃棄物や動物糞等の廃棄物を炭化する技術として、本出願人の提案にかかる「高温ゴミ処理方法および装置」(例えば、特許文献1参照。)や、「ゴミ処理方法および装置」(例えば、特許文献2参照。)や、「炭化燃焼ゴミ処理装置」(例えば、特許文献3参照。)などの技術が知られており、これらの技術では、いずれも、縦型の加熱塔内に廃棄物を上部から投入し、積層した廃棄物を外部から加熱することで乾燥・炭化処理し、底部に溜まった炭化物や灰分を連続的に排出するようにし、また、特許文献3の場合は、必要に応じて炭化物の一部を再燃焼させ、処理効率を高めるようにしている。   Conventionally, as a technique for carbonizing waste such as food waste, industrial waste, and animal dung, for example, “high-temperature waste disposal method and apparatus” (for example, refer to Patent Document 1) according to the applicant's proposal, “ Techniques such as “garbage disposal method and apparatus” (for example, refer to Patent Document 2) and “carbonized combustion waste disposal apparatus” (for example, refer to Patent Document 3) are known. Waste is thrown into the vertical heating tower from the top, and the stacked waste is dried and carbonized by heating from the outside so that the carbide and ash accumulated at the bottom are continuously discharged. In the case of Patent Document 3, a part of the carbide is reburned as necessary to increase the processing efficiency.

一方、樹木、竹、草などのバイオマスを燃焼させ、発生するガスを熱源として利用するとともに、分離生成した灰の成分状態を調整して、灰も付加価値の高いものとして利用するような技術として、樹木等のバイオマス素材を破砕やペレット化して乾燥させたのち燃焼させるような技術(例えば、特許文献4参照。)も知られている。   On the other hand, as a technology that burns biomass such as trees, bamboo, grass, etc., uses the generated gas as a heat source, adjusts the component state of the separated ash, and uses ash as a high added value Also known is a technique (for example, see Patent Document 4) in which a biomass material such as a tree is crushed or pelletized and dried.

特開2003−96465号公報JP 2003-96465 A 特開2003−300049号公報JP 2003-300049 A 特開2003−148712号公報JP 2003-148712 A 特開2007−196214号公報JP 2007-196214 A

ところで、上記特許文献1〜3のような炭化処理方法にあっては、特に、廃棄物等として、水分の多い動物糞や生ゴミ等の場合は処理中に異臭が発生して環境の悪化を招きやすくなるとともに、炭化炉を加熱するための加熱源がプロパンガスや都市ガス等であるため炭化するのにコストがかかり、しかも熱効率があまり良くないという問題があった。
また、特許文献4のように、樹木等のバイオマス素材を破砕やペレット化して乾燥させたのち燃焼させるような技術は、バイオマス素材を破砕したり、ペレット化したりするためのエネルギーが必要となり、燃焼させるために必要なエネルギーと、燃焼させて得られるエネルギーとの差が小さいためトータルエネルギーの観点から改善が望まれていた。
By the way, in the carbonization processing methods as in Patent Documents 1 to 3, particularly in the case of animal waste or garbage with a lot of water, such as waste, an off-flavor is generated during the processing, which deteriorates the environment. In addition to being easy to invite, the heating source for heating the carbonization furnace is propane gas, city gas, or the like, so that there is a problem that it is costly to carbonize and the thermal efficiency is not so good.
In addition, as in Patent Document 4, the technology of burning biomass materials such as trees after crushing or pelletizing them and then burning them requires energy for crushing or pelletizing biomass materials and burning them. Since the difference between the energy required for the combustion and the energy obtained by burning is small, improvement has been desired from the viewpoint of total energy.

そこで本発明は、有機物を主体とする廃棄物等を処理するにあたり、異臭やダイオキシン類等の有害物質の発生を抑制するとともに効率的に処理し、最終的にこれを燃焼させることによって熱エネルギーとして回収し、発電や暖房等のエネルギー源として有効利用が図れるようにすることを目的とする。   Therefore, the present invention suppresses generation of harmful substances such as off-flavors and dioxins when processing wastes mainly composed of organic substances, and efficiently treats them, and finally burns them as thermal energy. The purpose is to collect it and use it effectively as an energy source such as power generation and heating.

上記目的を達成するため本発明は、有機物を主体とする廃棄物等を炭化する炭化炉と、炭化した炭化物を燃焼させる燃焼炉を備えた有機物炭化・燃焼炉において、前記燃焼炉に隣接して前記炭化炉を一体的に配置し、炭化炉の周囲を取り囲むように配設される加熱室と、燃焼炉の燃焼室とを連通させることによって、前記燃焼炉の熱源を利用して炭化炉を加熱できるようにし、また、前記炭化炉の所定箇所には、炭化炉内に溜まったガスを燃焼炉の燃焼室内または炭化炉の加熱室内に放出させることのできるガス放出部を設けるようにした。   In order to achieve the above object, the present invention provides a carbonization furnace for carbonizing waste or the like mainly composed of organic matter, and an organic carbonization / combustion furnace comprising a combustion furnace for burning the carbonized carbide, adjacent to the combustion furnace. The carbonization furnace is integrally disposed, and a heating chamber disposed so as to surround the carbonization furnace and a combustion chamber of the combustion furnace are communicated with each other, so that the carbonization furnace is configured using a heat source of the combustion furnace. In addition, a gas discharge part capable of discharging the gas accumulated in the carbonization furnace into the combustion chamber of the combustion furnace or the heating chamber of the carbonization furnace is provided at a predetermined position of the carbonization furnace.

このように、炭化炉の周囲を取り囲むように配設される加熱室と、燃焼炉の燃焼室とを連通させ、燃焼炉の熱源を利用して炭化炉を加熱できるようにし、また、炭化炉の所定箇所に、炭化炉内に溜まったガスを燃焼炉の燃焼室内または炭化炉の加熱室内に放出させることのできるガス放出部を設ければ、炭化処理中に発生した異臭成分が外部に漏れ出すことなく、高温で脱臭処理される。
ここで、燃焼炉で燃焼させる「炭化した炭化物」としては、可燃ガスが完全に放出し尽くされて炭化が完全に行われた物だけでなく、炭化物が粉砕しやくなった程度に炭化されたものをも含むものとし、このような粉砕しやすくなった程度の炭化としては、炭化炉内の温度が300℃で30分程度炉内に滞留した物、400℃で1分程度炉内に滞留した物、500℃では30秒程度炉内に滞留した物などが該当する。
In this way, the heating chamber disposed so as to surround the carbonization furnace and the combustion chamber of the combustion furnace are communicated with each other so that the carbonization furnace can be heated using the heat source of the combustion furnace. If a gas discharge part that can discharge the gas accumulated in the carbonization furnace into the combustion chamber of the combustion furnace or the heating chamber of the carbonization furnace is provided at a predetermined location, the off-flavor components generated during the carbonization process leak to the outside. Deodorized at high temperature without taking out.
Here, the “carbonized carbide” burned in the combustion furnace is not only a product in which the combustible gas has been completely discharged and carbonization has been performed completely, but has also been carbonized to such an extent that the carbide is easily pulverized. As for the carbonization to such an extent that it becomes easy to pulverize, the material in the carbonization furnace stayed in the furnace at 300 ° C. for about 30 minutes, and stayed in the furnace at 400 ° C. for about 1 minute. This corresponds to a product that stays in the furnace for about 30 seconds at 500 ° C.

また、このように燃焼炉内に直接廃棄物等を投入するのでなく、炭化物を投入して燃焼させることにより、炉内の温度が不均一となって排気ガスにダイオキシン類が発生するような不具合を防止することができ、しかも、炉床温度が低下して焼却灰にダイオキシン類が含まれるような不具合も抑制され、堆肥等として有効利用を図ることができる。   Also, instead of putting waste etc. directly into the combustion furnace in this way, by introducing carbide and burning it, the temperature inside the furnace becomes uneven and dioxins are generated in the exhaust gas In addition, the inconvenience that the hearth temperature is lowered and dioxins are contained in the incinerated ash is suppressed, and effective use as compost or the like can be achieved.

なお、炭化炉内に溜まって放出されるガスとしては、異臭成分のほか、可燃ガスも含まれる。
すなわち、有機物として炭水化物の場合を例にとると、炭水化物の基本的な物質構造は、化学式でC(HO)であり、これを300〜500℃程度に加熱すると、C(炭化物)と(CO+H)に分解され、この(CO+H)は可燃性を有する可燃ガスである。
また、一般的に炭素を含む有機物では、300℃程度以上の熱を加えると、もともとの物質が分解されて可燃ガスと炭化物に分解されることが知られている。
In addition, as a gas which accumulates and discharge | releases in a carbonization furnace, a combustible gas is also contained other than an odor component.
That is, taking the case of carbohydrate as an organic substance as an example, the basic substance structure of carbohydrate is C m (H 2 O) n in a chemical formula, and when this is heated to about 300 to 500 ° C., C (carbide) is decomposed in the (CO + H 2), the (CO + H 2) is combustible gas having a combustible.
In general, it is known that an organic substance containing carbon is decomposed into a combustible gas and a carbide by decomposing the original substance when heat of about 300 ° C. or higher is applied.

このため、炭化炉内のガスを、炭化炉のガス放出部から燃焼炉の燃焼室内または炭化炉の加熱室内に放出させれば、可燃ガスが燃焼室内又は加熱室内で燃焼し、熱効率を向上させることができる。
また、燃焼炉と炭化炉を一体的に構成することにより、設備のコンパクト化が図れる。
For this reason, if the gas in the carbonization furnace is discharged from the gas discharge part of the carbonization furnace into the combustion chamber of the combustion furnace or the heating chamber of the carbonization furnace, the combustible gas is burned in the combustion chamber or the heating chamber, thereby improving the thermal efficiency. be able to.
Further, by composing the combustion furnace and the carbonization furnace integrally, the equipment can be made compact.

また、燃焼炉として、この炭化炉またはその他の任意の炭化炉を使用して生成した炭化物を燃焼させるようにし、例えば、予め炭化物を所定サイズ以下の粒径に粉砕しておくことにより、燃焼炉内の燃焼温度がほぼ均一になり、例えば、炭化させない状態の有機物をそのまま燃焼炉内に投入して燃焼させることに較べて、有機物が有するエネルギーを集中して発揮させることができ、熱分解速度や燃焼速度を速めることができる。
このため、燃焼させる炭化物としては、特に、最大寸法10mm以下のサイズの粒状物に粉砕しておくことが好ましい。
Further, as a combustion furnace, the carbide generated using this carbonization furnace or any other carbonization furnace is combusted, for example, by previously grinding the carbide to a particle size of a predetermined size or less, the combustion furnace The combustion temperature in the inside becomes almost uniform, for example, compared with the case where the organic matter that is not carbonized is put into the combustion furnace as it is and burned, the energy of the organic matter can be concentrated and exhibited, and the thermal decomposition rate And the burning rate can be increased.
For this reason, as the carbide to be burned, it is particularly preferable to pulverize it into a granular material having a maximum dimension of 10 mm or less.

因みに、燃焼速度は炭の粒度が大きくなると、粒度の3乗に比例して遅くなり、大きくなりすぎると燃焼効率が低下して必要な空気量も増加するといわれているため、できるだけ細かく粉砕しておくことが好ましい。   By the way, it is said that the combustion rate becomes slower in proportion to the cube of the particle size when the particle size of the charcoal increases, and if it becomes too large, the combustion efficiency decreases and the required amount of air increases. It is preferable to keep it.

また本発明では、前記炭化炉を、処理される廃棄物等を上部の投入口から投入し、炭化処理の進行に連れて炭化物が徐々に下方に移送される縦型とし、最終的に炭化物が下方に払い出されるようにした。 In the present invention, the carbonization furnace is a vertical type in which waste to be treated is introduced from an upper inlet, and the carbide is gradually transferred downward as the carbonization process proceeds. The payout was made downward.

このように、縦型の炭化炉にすることで、炭化処理を連続的に行えるようになるとともに、燃焼炉と炭化炉がコンパクトに纏まって構成できるようになり、設置スペース面上からも有利となる。   Thus, by using a vertical carbonization furnace, carbonization can be continuously performed, and the combustion furnace and the carbonization furnace can be configured in a compact manner, which is advantageous from the standpoint of installation space. Become.

なお、炭化炉としては、燃焼炉の周囲に複数配設するようにしてもよく、または、燃焼炉と炭化炉とを連通させる連通路の途中に、燃焼炉の高温ガスを効率的に炭化炉に送り込むための隔壁を設けるようにしてもよい。   As the carbonization furnace, a plurality of carbonization furnaces may be arranged around the combustion furnace, or the high-temperature gas of the combustion furnace is efficiently disposed in the middle of the communication path that connects the combustion furnace and the carbonization furnace. You may make it provide the partition for sending in.

すなわち、燃焼炉に隣接する炭化炉を設け、燃焼炉の燃焼室と炭化炉の加熱室を連通させて炭化炉を加熱する場合、炭化炉の炉壁のうち燃焼室側に対面する炉壁は効率よく加熱されるものの、燃焼室側と反対の炉壁の加熱はあまり効果的に行われないため、たとえ、炭化炉内に攪拌棒等を設けて炭化材料を攪拌したとしても炭化材料の炭化効率はあまりよくない。   That is, when a carbonization furnace is provided adjacent to the combustion furnace and the combustion chamber of the combustion furnace and the heating chamber of the carbonization furnace are communicated to heat the carbonization furnace, the furnace wall facing the combustion chamber side of the furnace wall of the carbonization furnace is Although the heating of the furnace wall opposite to the combustion chamber side is not performed effectively, although it is efficiently heated, the carbonization of the carbonized material is carried out even if the carbonized material is stirred by providing a stirring rod or the like in the carbonization furnace. The efficiency is not very good.

そこで、炭化炉を燃焼炉の周囲に複数配設し、複数の炭化炉で同時に炭化を行うか、または、燃焼炉の燃焼室と炭化炉の加熱室とを連通させる連通路の途中に隔壁を設けることで、炭化炉の周囲を効果的に加熱できるようにし、炭化効率の向上を図る。
すなわち、燃焼炉の周囲に炭化炉を例えば2個配設すれば、1個の場合に較べて、所定時間内にそれぞれの炭化炉で炭化させることができる炭化量を約2倍程度に増やすことができる。
また燃焼炉の燃焼室と炭化炉の加熱室とを連通させる連通路の途中に隔壁を設けて高温ガスの送給路と戻し路を隔離することにより、炭化炉の周囲の炉壁の温度をより均等に加熱することができ、炭化効率をより高めることができる。
Therefore, a plurality of carbonization furnaces are disposed around the combustion furnace, and carbonization is simultaneously performed in the plurality of carbonization furnaces, or a partition wall is provided in the middle of the communication path that connects the combustion chamber of the combustion furnace and the heating chamber of the carbonization furnace. By providing, the circumference | surroundings of a carbonization furnace can be heated effectively and the improvement of carbonization efficiency is aimed at.
That is, if, for example, two carbonization furnaces are arranged around the combustion furnace, the amount of carbonization that can be carbonized in each carbonization furnace within a predetermined time is increased by about twice compared to the case of one. Can do.
In addition, by providing a partition wall in the middle of the communication path that connects the combustion chamber of the combustion furnace and the heating chamber of the carbonization furnace, the temperature of the furnace wall around the carbonization furnace is reduced by separating the high-temperature gas supply path and the return path. It can heat more uniformly and can raise carbonization efficiency more.

有機物を主体とする廃棄物等を炭化する炭化炉と、炭化した炭化物を燃焼させる燃焼炉を備えた有機物炭化・燃焼炉において、燃焼炉と炭化炉を隣接して一体的に配置し、燃焼炉の燃焼室と炭化炉の加熱室とを連通させるとともに、炭化炉の所定箇所に、燃焼室内または加熱室内にガスを放出させることのできるガス放出部を設けることにより、燃焼炉内の温度が均一となって燃焼が安定し、しかもダイオキシン類や異臭の発生等の不具合が防止されるとともに熱効率を向上させることができる。
また、炭化炉を縦型にすることで、炭化処理を連続的に行えるとともに、燃焼炉と炭化炉をコンパクトに纏めることができ、設置スペース面上からも有利となる。
また、炭化炉を燃焼炉の周囲に複数配設するか、または燃焼炉の燃焼室と炭化炉の加熱室とが連通する連通路に隔壁を設けることで、炭化効率の向上を図ることができる。
An organic carbonization / combustion furnace equipped with a carbonization furnace that carbonizes wastes mainly composed of organic substances and a combustion furnace that combusts the carbonized carbides. The combustion chamber and the heating chamber of the carbonization furnace are in communication with each other, and a gas discharge section capable of releasing gas into the combustion chamber or the heating chamber is provided at a predetermined position of the carbonization furnace, so that the temperature in the combustion furnace is uniform. Thus, combustion is stabilized, and troubles such as generation of dioxins and off-flavors are prevented, and thermal efficiency can be improved.
Further, by making the carbonization furnace vertical, carbonization can be performed continuously, and the combustion furnace and the carbonization furnace can be combined in a compact manner, which is advantageous in terms of installation space.
Further, the carbonization efficiency can be improved by arranging a plurality of carbonization furnaces around the combustion furnace, or by providing a partition wall in a communication path where the combustion chamber of the combustion furnace and the heating chamber of the carbonization furnace communicate with each other. .

本発明に係る有機物炭化・燃焼炉の縦断面図である。1 is a longitudinal sectional view of an organic carbonization / combustion furnace according to the present invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 燃焼炉の周囲に炭化炉を複数配設する場合の一例を示す第2構成例図である。It is a 2nd structural example figure which shows an example in the case of arrange | positioning multiple carbonization furnaces around a combustion furnace. 燃焼炉の燃焼室と炭化炉の加熱室とが連通する連通路に隔壁を設ける第3構成例図であり、(a)は縦断面図、(b)は(a)のB−B線断面図である。It is a 3rd structural example figure which provides a partition in the communicating path which the combustion chamber of a combustion furnace and the heating chamber of a carbonization furnace communicate, (a) is a longitudinal cross-sectional view, (b) is a BB sectional view of (a). FIG.

本発明の実施の形態について説明する。
本発明は、例えば食品廃棄物や産業廃棄物や動物糞等の廃棄物や木質材や竹材等の有機物を主体とする材料を炭化し、燃焼させる炭化・燃焼炉において、悪臭を防止しつつ廃棄物等が有する内在エネルギーを集中的に発揮させて熱分解や燃焼速度を速め、異臭の発生やダイオキシン類の発生を防止するとともに、トータルエネルギーの面からもエネルギー効率の向上を図ることができるようにされており、炭化物を燃焼させる燃焼炉に隣接して炭化炉を配置し、燃焼炉の燃焼室と炭化炉の加熱室を連通させるとともに、炭化炉のガス放出部から放出されるガスを、燃焼炉の燃焼室内または炭化炉の加熱室内に放出させることを特徴としている。
Embodiments of the present invention will be described.
The present invention is a carbonization / combustion furnace that carbonizes and burns, for example, food waste, industrial waste, animal feces, and other organic materials such as wood and bamboo, and discards while preventing bad odors. It is possible to increase the energy efficiency from the standpoint of total energy while intensively demonstrating the inherent energy of materials, etc., accelerating thermal decomposition and combustion rate, preventing the generation of off-flavors and dioxins. The carbonization furnace is disposed adjacent to the combustion furnace for burning the carbide, the combustion chamber of the combustion furnace and the heating chamber of the carbonization furnace are communicated, and the gas released from the gas discharge part of the carbonization furnace is It is characterized by being discharged into the combustion chamber of the combustion furnace or the heating chamber of the carbonization furnace.

すなわち、本有機物炭化・燃焼炉1は、図1、図2に示すように、炭化物を燃焼させて熱エネルギーを利用することのできる燃焼炉2と、食品廃棄物や産業廃棄物や動物糞等の廃棄物や木質材や竹材等の有機物を主体とする材料を炭化することのできる炭化炉3を一体に備えており、この炭化炉3の炉壁3hは、耐熱金属製素材から構成されるとともに、前記燃焼炉2の周囲と炭化炉3の下方側の周囲は耐熱レンガ等の外壁4によって囲われることにより、燃焼炉2内の燃焼室5と炭化炉3周囲を取り囲む加熱室6とは連通状態にされている。   That is, as shown in FIG. 1 and FIG. 2, the present organic carbonization / combustion furnace 1 includes a combustion furnace 2 that can burn carbide and use thermal energy, food waste, industrial waste, animal dung, etc. Is integrally provided with a carbonization furnace 3 capable of carbonizing a material mainly composed of organic matter such as waste, wood, bamboo, etc. The furnace wall 3h of the carbonization furnace 3 is made of a heat-resistant metal material. At the same time, the surroundings of the combustion furnace 2 and the lower side of the carbonization furnace 3 are surrounded by an outer wall 4 such as a heat-resistant brick, so that the combustion chamber 5 in the combustion furnace 2 and the heating chamber 6 surrounding the carbonization furnace 3 are defined. You are in communication.

前記燃焼炉2は、炭化物を投入するための投入部7と、投入された炭化物に最初の段階で着火することのできる不図示の着火部と、燃焼炉2内に空気を送り込むためのエア供給部8などを備えており、前記投入部7には、粉砕して粒状にした炭化物を連続的に投入するためのスクリューコンベア10が配設されるとともに、投入部7の下方の燃焼炉2内には、耐熱性素材で且つ孔空き素材である受台11が設けられ、また、燃焼炉2の下部には、上方から落下してくる焼却灰等を溜めることのできる灰溜部12が設けられている。そしてこの灰溜部12には、一定量の焼却灰等が溜まった時点でこれを外部に排出するための攪拌羽根13やこれを回転駆動するための駆動モータ14が設けられている。   The combustion furnace 2 includes a charging unit 7 for charging carbide, an ignition unit (not shown) that can ignite the charged carbide in the first stage, and an air supply for sending air into the combustion furnace 2. A screw conveyor 10 for continuously charging the pulverized and granulated carbide is disposed in the charging unit 7 and the inside of the combustion furnace 2 below the charging unit 7. Is provided with a cradle 11 that is a heat-resistant material and a perforated material, and an ash reservoir 12 that can store incinerated ash falling from above is provided at the bottom of the combustion furnace 2. It has been. The ash reservoir 12 is provided with a stirring blade 13 for discharging a certain amount of incineration ash or the like to the outside when a certain amount of incineration ash or the like is accumulated, and a drive motor 14 for rotationally driving it.

この際、投入部7から投入される炭化物として、可燃ガスが完全に放出されて完全に炭化が完了した物だけでなく、炭化物が粉砕しやくなった程度に炭化されたものをも含むようにし、このような粉砕しやすくなった程度の炭化としては、炭化炉内の温度が300℃で30分程度炉内に滞留した物、400℃で1分程度炉内に滞留した物、500℃では30秒程度炉内に滞留した物などが該当する。   At this time, the carbides introduced from the charging unit 7 include not only those in which the combustible gas is completely discharged and completely carbonized, but also those that are carbonized to such an extent that the carbides are easily pulverized. As the carbonization to such an extent that it can be easily pulverized, the temperature in the carbonizing furnace is 300 ° C. for about 30 minutes, the material stayed in the furnace for about 30 minutes, 400 ° C. for about 1 minute, 500 ° C. For example, the object stayed in the furnace for about 30 seconds.

また本実施例では、炭化物として、予め最大寸法10mm以下のサイズの粒状物に粉砕するようにしている。これは、それ以上のサイズになると、燃焼時に必要量以上の酸素を必要とするようになって効率的に燃焼させることができないためであり、より効率的に燃焼させるためには、なるべく細かいサイズに粉砕することが好ましい。 In this embodiment, the carbide is pulverized in advance into a granular material having a maximum dimension of 10 mm or less. This is because if it is larger than that, it requires more oxygen than necessary during combustion and cannot be burned efficiently, and in order to burn more efficiently, it is as small as possible. It is preferable to pulverize.

また、この実施例では、燃焼炉2の燃焼室5内の上部に、発電用熱交換器15を設けており、燃焼炉2で燃焼した熱を利用して発電に利用するようにしている。もちろん、この発電用熱交換器15の配置は一例であり、熱エネルギーを発電以外の目的に使用するようにしても良い。   Further, in this embodiment, a power generation heat exchanger 15 is provided in the upper part of the combustion chamber 5 of the combustion furnace 2, and the heat burned in the combustion furnace 2 is used for power generation. Of course, the arrangement of the heat exchanger 15 for power generation is an example, and heat energy may be used for purposes other than power generation.

また、発電用熱交換器15を通過した排気ガスを排出するため、ガス排出路16が設けられており、本実施例では、このガス排出路16から排出された高温のガスを利用して、特に、有機物を主体とする廃棄物等が水分の多い生ゴミや動物糞等の場合に、これらを所定の水分量以下に乾燥させるための乾燥機等に導くようにしている。   Moreover, in order to discharge the exhaust gas that has passed through the heat exchanger 15 for power generation, a gas discharge path 16 is provided. In this embodiment, by using the high-temperature gas discharged from the gas discharge path 16, In particular, when the waste mainly composed of organic matter is raw garbage or animal dung with a lot of water, the waste is led to a dryer or the like for drying them to a predetermined moisture content or less.

前記炭化炉3の炉壁3hは、前述のように、耐熱金属製素材から構成され、上部に原料投入室17が設けられている。そしてこの原料投入室17の上方部と下方部には、独自に開閉自在な投入口としての第一シャッター18、第二シャッター19が設けられて二重ハッチ構造とされ、外部と炭化炉3内部の炭化室21との自由な空気の流通を遮断することで、炭化室21で発生するガス(可燃性ガスと異臭成分が混在するもの)が外部に漏洩するのを防止するようにしている。
すなわち、原料投入室17が空になると、第一シャッター18だけを開いて原料を投入し、これを炭化室21内に送り込むときは、第二シャッター19だけを開いて投入し、これを繰り返す。
なお、必要に応じて、二重シャッター以上の多段シャッター構造にしてもよい。
As described above, the furnace wall 3h of the carbonization furnace 3 is made of a heat-resistant metal material and is provided with a raw material charging chamber 17 in the upper part. A first shutter 18 and a second shutter 19 are provided in the upper part and the lower part of the raw material charging chamber 17 as opening ports that can be opened and closed independently to form a double hatch structure. By blocking the free air flow with the carbonization chamber 21, the gas generated in the carbonization chamber 21 (a mixture of combustible gas and off-flavor components) is prevented from leaking to the outside.
That is, when the raw material input chamber 17 becomes empty, only the first shutter 18 is opened to input the raw material, and when the raw material is fed into the carbonization chamber 21, only the second shutter 19 is opened and input, and this is repeated.
If necessary, a multi-stage shutter structure having a double shutter or more may be used.

炭化炉3の炭化室21は縦型に構成され、周囲の加熱室6から、例えば300℃以上、好ましくは350〜600℃程度で加熱することにより、内部の材料を炭化して下方に移動させ、下方に蓄積する材料ほど炭化が進行するようにされている。また、炭化室21内の材料を必要に応じて攪拌すると同時に、炭化が進行した材料を下方に向けて送るための多数の攪拌棒22とこの攪拌棒22を回転駆動するための駆動モータ23が設けられ、また、炭化炉3の所定箇所には、炭化室21内で発生したガスを、燃焼炉3の燃焼室5内または炭化炉3周囲の加熱室6に放出するためのガス放出部24が設けられている。
なお、炭化炉3の下方の外壁4には、炭化炉3内部の炭化物を冷却するための水冷機構等の冷却部4rが設けられている。
The carbonization chamber 21 of the carbonization furnace 3 is configured in a vertical shape, and the internal material is carbonized and moved downward by heating from the surrounding heating chamber 6 at, for example, 300 ° C. or more, preferably about 350 to 600 ° C. In addition, carbonization proceeds as the material accumulates downward. In addition, the material in the carbonization chamber 21 is agitated as necessary, and at the same time, a large number of stirring rods 22 for feeding the material that has undergone carbonization downward and a drive motor 23 for rotationally driving the stirring rods 22 are provided. A gas discharge unit 24 is provided at a predetermined position of the carbonization furnace 3 to discharge the gas generated in the carbonization chamber 21 into the combustion chamber 5 of the combustion furnace 3 or the heating chamber 6 around the carbonization furnace 3. Is provided.
The outer wall 4 below the carbonization furnace 3 is provided with a cooling unit 4r such as a water cooling mechanism for cooling the carbide inside the carbonization furnace 3.

また、炭化炉3の下方には、開閉自在なシャッター部材28を介して、炭化処理が完了した炭化物が落下してくるのを受けて水平方向に搬送するためのスクリューコンベア25と、これを駆動する駆動モータ26が設けられ、このスクリューコンベア25の途中の下方には、スクリューコンベア25から落下してくる炭化物を溜める貯炭部27が設けられている。   Further, below the carbonization furnace 3, a screw conveyor 25 for transporting the carbonized carbonized material falling in a horizontal direction in response to the falling of the carbonized carbonized material via a freely openable / closable shutter member 28 and driving the same. A drive motor 26 is provided, and a coal storage unit 27 for collecting carbide falling from the screw conveyor 25 is provided below the middle of the screw conveyor 25.

そして、この貯炭部27には不図示の取り出し部が設けられ、この貯炭部27から取り出された炭化物は、粉砕機構によって最大サイズ10mm以下の粒状物に粉砕され、この粉砕された炭化物が、燃焼炉2の投入部7のスクリューコンベア10の投入口に搬送されるようにしている。   The coal storage unit 27 is provided with an unillustrated extraction unit, and the carbide extracted from the coal storage unit 27 is pulverized into granular materials having a maximum size of 10 mm or less by a pulverization mechanism, and the pulverized carbide is combusted. It is made to convey to the insertion port of the screw conveyor 10 of the insertion part 7 of the furnace 2. As shown in FIG.

なお、炭化炉3の原料投入室17や、燃焼炉2の投入部7のスクリューコンベア10の投入口には、不図示の搬送機構や投入機構を設けておくことが好ましい。   In addition, it is preferable to provide a conveyance mechanism and a charging mechanism (not shown) at the raw material charging chamber 17 of the carbonization furnace 3 and the charging port of the screw conveyor 10 of the charging unit 7 of the combustion furnace 2.

以上のような炭化・燃焼炉1の作用等について説明する。
燃焼炉2においては、最初の段階で燃焼室5内に任意の着火物を投入してヒータ等の任意の着火手段を備えた着火部で燃焼させ、燃焼室5内の燃焼が定常的に安定して行われるようになると着火部の作動を停止させて投入部7から炭化物を投入する。この燃焼炉2の燃焼室5内での安定した燃焼によって、通常、燃焼室5内の温度は800℃程度となり、加熱室6の温度も通常300℃以上の温度が確保される。
The operation of the carbonization / combustion furnace 1 will be described.
In the combustion furnace 2, an arbitrary ignited material is introduced into the combustion chamber 5 in the first stage and burned in an ignition part having an arbitrary ignition means such as a heater, so that the combustion in the combustion chamber 5 is stably stabilized. Then, the operation of the ignition part is stopped and the carbide is charged from the charging part 7. Due to the stable combustion in the combustion chamber 5 of the combustion furnace 2, the temperature in the combustion chamber 5 is normally about 800 ° C., and the temperature of the heating chamber 6 is usually kept at 300 ° C. or more.

こうして燃焼炉2における燃焼が始まると、食品廃棄物や産業廃棄物や動物糞等の廃棄物や木質材や竹材等の有機物を主体とする材料を必要に応じて所定の水分量まで乾燥機等で乾燥させた後、所定寸法に裁断し、炭化炉3の第一シャッター18だけを開けて原料投入室17内に投入する。そして、原料投入室17に所定量の材料が投入されると、第一シャッター18を閉めて第二シャッター19を開け、材料を炭化室21内に投入し、必要に応じて攪拌棒22で攪拌する。   When combustion in the combustion furnace 2 is started in this way, a material such as food waste, industrial waste, animal dung, or the like, or a material mainly composed of organic matter such as wood or bamboo, is dried to a predetermined amount of moisture as required. After drying, the sheet is cut into a predetermined size, and only the first shutter 18 of the carbonization furnace 3 is opened and charged into the raw material charging chamber 17. When a predetermined amount of material is charged into the raw material charging chamber 17, the first shutter 18 is closed and the second shutter 19 is opened, the material is charged into the carbonization chamber 21, and stirred with the stirring rod 22 as necessary. To do.

すると、炭化室21内の有機物は、その周囲が少なくとも300℃以上の温度に晒されることにより、可燃ガス(炭水化物の場合はCOやHのガス)と炭化物(C)に分解し、可燃ガスは異臭成分と一緒にガス放出部24を通して燃焼炉2の燃焼室5内または炭化炉3周囲の加熱室6内に放出され、異臭成分は脱臭処理されるとともに、可燃ガスは燃焼室5または加熱室6内で燃焼し始める。
そして、投入した材料が炭化して下方に蓄積されてくると、原料投入室17内と炭化室21内に材料を継続的に投入していき、炭化処理を連続的に行う。
Then, the organic matter in the carbonization chamber 21 is decomposed into a combustible gas (CO or H 2 gas in the case of carbohydrates) and a carbide (C) when the surroundings are exposed to a temperature of at least 300 ° C., and the combustible gas. Is discharged together with the off-flavor component into the combustion chamber 5 of the combustion furnace 2 or the heating chamber 6 around the carbonization furnace 3 through the gas discharge section 24, the off-flavor component is deodorized, and the combustible gas is discharged into the combustion chamber 5 or the heating chamber. Combustion begins in chamber 6.
When the charged material is carbonized and accumulated downward, the material is continuously charged into the raw material charging chamber 17 and the carbonizing chamber 21, and the carbonization process is continuously performed.

そして、炭化物が粉砕しやすい程度に炭化すると、シャッター部材28を開かせて炭化物を炭化炉3下方のスクリューコンベア25上に落下させ、貯炭部27に溜めていく。そして、この貯炭部27から取り出された炭化物は粉砕手段により最大寸法10mm以下の粒状物に粉砕され、燃焼炉2の投入部7のスクリューコンベア10に運ばれ、スクリューコンベア10を通して燃焼室5内に投入される。   Then, when the carbide is carbonized to such an extent that it can be easily crushed, the shutter member 28 is opened, the carbide is dropped onto the screw conveyor 25 below the carbonization furnace 3, and stored in the coal storage unit 27. Then, the carbide taken out from the coal storage unit 27 is pulverized by the pulverizing means into granular materials having a maximum dimension of 10 mm or less, conveyed to the screw conveyor 10 of the charging unit 7 of the combustion furnace 2, and passed through the screw conveyor 10 into the combustion chamber 5. It is thrown.

このような要領により、有機物が有するエネルギーが集中的に発揮されて熱分解や燃焼速度が速められ、しかも、トータルエネルギーの面からもエネルギー効率の向上を図ることができ、さらに有機物の炭化から燃焼までの一連の作業を効率的に行うことができ、しかも異臭の発生やダイオキシン類の発生を防止することができる。
そして、燃焼炉2内の発電用熱交換器15を介して発電を行うとともにガス排出路16から排出される高温のガスを利用して不図示の乾燥機で廃棄物等を乾燥させるが、燃焼させたガスを利用して発電することは一例であり、熱エネルギーを他の用途に活用するようにしてもよいことは前述のとおりである。
In this way, the energy of organic matter is concentrated and thermal decomposition and combustion speed are accelerated, and energy efficiency can be improved from the standpoint of total energy. The series of operations up to can be efficiently performed, and the generation of off-flavors and dioxins can be prevented.
Then, power is generated through the heat exchanger 15 for power generation in the combustion furnace 2 and wastes and the like are dried by a dryer (not shown) using high-temperature gas discharged from the gas discharge path 16. Generating power using the generated gas is an example, and as described above, the thermal energy may be used for other purposes.

次に、燃焼炉2の周囲に炭化炉3を複数配設する場合の一例について、図3の第2構成例に基づき説明する。
この構成例では、燃焼炉2の周囲に、前記例と同様の炭化炉3を2個配設するようにしている。すなわち、図2のような炭化炉2の場合、燃焼炉2の燃焼室5と炭化炉3周囲の加熱室6とを連通させているものの、加熱室6の温度は、燃焼室5側の温度に較べて、燃焼室5とは反対側の温度がどうしても低温となり、燃焼室とは反対側の炭化原料の炭化効率がよくない。
Next, an example in which a plurality of carbonization furnaces 3 are arranged around the combustion furnace 2 will be described based on the second configuration example of FIG.
In this configuration example, two carbonization furnaces 3 similar to those in the above example are disposed around the combustion furnace 2. That is, in the case of the carbonization furnace 2 as shown in FIG. 2, although the combustion chamber 5 of the combustion furnace 2 and the heating chamber 6 around the carbonization furnace 3 are communicated, the temperature of the heating chamber 6 is the temperature on the combustion chamber 5 side. In contrast, the temperature on the side opposite to the combustion chamber 5 is inevitably low, and the carbonization efficiency of the carbonized raw material on the side opposite to the combustion chamber is not good.

このため、図3に示すように、炭化炉2を2個配設することにより、同時に二箇所で炭化できるようにすることで、炭化効率を約2倍程度に増やすことができる。勿論、炭化炉を2個以上設けてもよい。 For this reason, as shown in FIG. 3, by disposing two carbonization furnaces 2 so that carbonization can be performed at two locations at the same time, the carbonization efficiency can be increased by about twice. Of course, two or more carbonization furnaces may be provided.

ところで、炭化炉3における炭化効率を向上させるため、上記のような第2構成例の代わりに、またはこれと併用して、図4の第3構成例に示すように、燃焼炉2の燃焼室5と炭化炉3の加熱室6を連通する連通路30の途中に、燃焼炉2で発生する高温ガスを炭化炉3の加熱室6に送り込む送給路30aと、炭化炉3を加熱した後のガスを燃焼炉2に戻すための戻し路30bを水平方向に離隔するための縦向きの隔壁31を設けるようにしてもよい。
そして、例えば燃焼炉2の燃焼室5内に空気を送り込むエア供給部8の向きを調整することで、燃焼室5内から加熱室6内に向かう空気の流れが、連通路30の送給路30aを通して戻し路30bに向けてスムーズに対流するようにしておけば、炭化炉3の炉壁3hを効率良く加熱することができる。
By the way, in order to improve the carbonization efficiency in the carbonization furnace 3, instead of or in combination with the second configuration example as described above, as shown in the third configuration example in FIG. After heating the carbonization furnace 3, a feeding path 30 a for feeding the high-temperature gas generated in the combustion furnace 2 to the heating chamber 6 of the carbonization furnace 3 in the middle of the communication path 30 that communicates the heating chamber 5 with the carbonization furnace 3. A vertical partition wall 31 for separating the return path 30b for returning the gas to the combustion furnace 2 in the horizontal direction may be provided.
Then, for example, by adjusting the direction of the air supply unit 8 that sends air into the combustion chamber 5 of the combustion furnace 2, the flow of air from the combustion chamber 5 toward the heating chamber 6 is changed to the supply path of the communication passage 30. If the convection is smoothly performed toward the return path 30b through 30a, the furnace wall 3h of the carbonization furnace 3 can be efficiently heated.

このような第2、第3構成例によって、炭化原料の炭化効率をより高めることができる。 With such second and third configuration examples, the carbonization efficiency of the carbonized raw material can be further increased.

なお、本発明は以上のような実施形態に限定されるものではない。本発明の特許請求の範囲に記載した事項と実質的に同一の構成を有し、同一の作用効果を奏するものは本発明の技術的範囲に属する。   In addition, this invention is not limited to the above embodiments. What has substantially the same configuration as the matters described in the claims of the present invention and exhibits the same operational effects belongs to the technical scope of the present invention.

ダイオキシン類や異臭等の問題で処理が困難であった有機物を主体とする廃棄物等を簡単に処理でき、しかもエネルギー問題も解消できるため今後の広い普及が期待される。   Since it is possible to easily dispose of wastes mainly composed of organic substances that have been difficult to treat due to problems such as dioxins and off-flavors, and to solve the energy problem, it is expected to be widely used in the future.

1…炭化・燃焼炉、2…燃焼炉、3…炭化炉、5…燃焼室、6…加熱室、18…第一シャッター、19…第二シャッター、21…炭化室、24…ガス放出部、30…連通路、30a…送給路、30b…戻し路、31…隔壁。 DESCRIPTION OF SYMBOLS 1 ... Carbonization and combustion furnace, 2 ... Combustion furnace, 3 ... Carbonization furnace, 5 ... Combustion chamber, 6 ... Heating chamber, 18 ... First shutter, 19 ... Second shutter, 21 ... Carbonization chamber, 24 ... Gas discharge part, 30 ... Communication path, 30a ... Feeding path, 30b ... Return path, 31 ... Bulkhead.

Claims (4)

有機物を主体とする廃棄物等を炭化する炭化炉と、炭化した炭化物を燃焼させる燃焼炉を備えた有機物炭化・燃焼炉であって、前記燃焼炉に隣接して前記炭化炉を一体的に配置し、この炭化炉の周囲を取り囲むように配設される加熱室と、燃焼炉の燃焼室とを連通させることによって、前記燃焼炉の熱源を利用して炭化炉を加熱できるようにし、また、前記炭化炉の所定箇所には、炭化炉内に溜まったガスを燃焼炉の燃焼室内または炭化炉の加熱室内に放出させることのできるガス放出部が設けられることを特徴とする有機物炭化・燃焼炉。 An organic carbonization / combustion furnace equipped with a carbonization furnace for carbonizing waste or the like mainly composed of organic matter and a combustion furnace for burning the carbonized carbide, wherein the carbonization furnace is integrally disposed adjacent to the combustion furnace. The heating chamber disposed so as to surround the periphery of the carbonization furnace and the combustion chamber of the combustion furnace communicate with each other so that the carbonization furnace can be heated using the heat source of the combustion furnace, An organic carbonization / combustion furnace characterized in that a gas discharge section is provided at a predetermined location of the carbonization furnace, which can discharge gas accumulated in the carbonization furnace into a combustion chamber of the combustion furnace or a heating chamber of the carbonization furnace. . 前記炭化炉は、処理される廃棄物等が上部の投入口から投入され、炭化処理の進行に連れて炭化物が徐々に下方に移送される縦型であり、最終的に炭化物が下方に払い出されることを特徴とする請求項1に記載の有機物炭化・燃焼炉。 The carbonization furnace is a vertical type in which waste to be treated is introduced from an upper inlet, and the carbide is gradually transferred downward as the carbonization process proceeds, and finally the carbide is discharged downward. The organic carbonization and combustion furnace according to claim 1. 前記炭化炉は、前記燃焼炉の周囲に複数配設されることを特徴とする請求項1又は請求項2に記載の有機物炭化・燃焼炉。 The organic carbonization / combustion furnace according to claim 1 or 2, wherein a plurality of the carbonization furnaces are disposed around the combustion furnace. 前記燃焼炉の燃焼室と炭化炉の加熱室とを連通させる連通路の途中には、燃焼炉で発生する高温ガスを炭化炉の加熱室に送り込む送給路と、炭化炉を加熱した後のガスを燃焼炉の燃焼室に戻すための戻し路とを離隔するための隔壁が設けられることを特徴とする請求項1乃至請求項3のいずれか1項に記載の有機物炭化・燃焼炉。 In the middle of the communication path that connects the combustion chamber of the combustion furnace and the heating chamber of the carbonization furnace, a feed path for sending high-temperature gas generated in the combustion furnace to the heating chamber of the carbonization furnace, and after heating the carbonization furnace The organic carbonization and combustion furnace according to any one of claims 1 to 3, further comprising a partition wall for separating a return path for returning the gas to the combustion chamber of the combustion furnace.
JP2013091851A 2012-08-09 2013-04-25 Organic compound carbonization and combustion furnace Pending JP2014052174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013091851A JP2014052174A (en) 2012-08-09 2013-04-25 Organic compound carbonization and combustion furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012176653 2012-08-09
JP2012176653 2012-08-09
JP2013091851A JP2014052174A (en) 2012-08-09 2013-04-25 Organic compound carbonization and combustion furnace

Publications (1)

Publication Number Publication Date
JP2014052174A true JP2014052174A (en) 2014-03-20

Family

ID=50610793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013091851A Pending JP2014052174A (en) 2012-08-09 2013-04-25 Organic compound carbonization and combustion furnace

Country Status (1)

Country Link
JP (1) JP2014052174A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101606076B1 (en) 2015-04-28 2016-03-24 이달은 Pyrolysis machine of waste, and Pyrolysis apparatus including the same
CN111330942A (en) * 2020-02-28 2020-06-26 上海交通大学 Low temperature pre-dechlorination method and device for low dioxin thermochemical conversion process
CN112299392A (en) * 2020-11-20 2021-02-02 宿迁安湘环保科技有限公司 Microwave catalytic carbonization furnace for waste organic matters

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101606076B1 (en) 2015-04-28 2016-03-24 이달은 Pyrolysis machine of waste, and Pyrolysis apparatus including the same
WO2016175482A1 (en) * 2015-04-28 2016-11-03 이달은 Waste pyrolyzer, and pyrolysis apparatus comprising same
CN111330942A (en) * 2020-02-28 2020-06-26 上海交通大学 Low temperature pre-dechlorination method and device for low dioxin thermochemical conversion process
CN111330942B (en) * 2020-02-28 2021-11-23 上海交通大学 Low temperature pre-dechlorination method and device for low dioxin thermochemical conversion process
CN112299392A (en) * 2020-11-20 2021-02-02 宿迁安湘环保科技有限公司 Microwave catalytic carbonization furnace for waste organic matters
CN112299392B (en) * 2020-11-20 2024-04-09 宿迁安湘环保科技有限公司 Microwave catalytic carbonization furnace for waste organic matters

Similar Documents

Publication Publication Date Title
KR101798643B1 (en) Method for preparing solid fuel using organic waste
JP2012531296A (en) Waste management system
KR20100136534A (en) Autothermal and mobile torrefaction devices
EP3012037B1 (en) Production line and method for recycling of charcoal and gas from garbage
JP4008414B2 (en) Method and apparatus for producing smokeless porous coal
CN105114956B (en) High temperature garbage gasification power generation system
JP5176016B2 (en) Superheated steam continuous recycling equipment
JP2016010744A (en) Method and device for low-temperature catalyst decomposition treatment of organic waste such as garbage
JP2014052174A (en) Organic compound carbonization and combustion furnace
JP2005249262A (en) Low quality refuse incineration system with low quality refuse incinerator and power generation plant
JP5767084B2 (en) Fluid carbonization method of raw materials containing plant organic matter
CN202766491U (en) Rubbish dry distillation, pyrolyzation, gasification and power generation system
JP2012224677A (en) System and method for carbonizing wet biomass
CN104907319A (en) Garbage disposal device
CN105371280B (en) The apparatus and method that a kind of solid waste organic substance cleaning is burned
CN204769832U (en) Pyrolysis system is burned in mummification of birds that dies of illness poultry
JP4355667B2 (en) Method for producing valuable materials from livestock manure
KR100856677B1 (en) Treatment apparatus of food rubbish
KR101437949B1 (en) Carbonization system for garbage
JP2011068824A (en) Carbonization facility for organic water-containing waste
CN114321930A (en) Harmless integrated treatment device for hazardous waste
JP5431615B1 (en) Organic matter treatment and heat utilization equipment
JP5945929B2 (en) Waste gasification and melting equipment
KR20110128392A (en) Carbonized rice-hulls burner and drier
CN104858219A (en) Drying, incineration and pyrogenation system and process for livestock dead of diseases