JP2003202106A - Re-combustion furnace for waste thermal decomposition gas and control method therefor - Google Patents

Re-combustion furnace for waste thermal decomposition gas and control method therefor

Info

Publication number
JP2003202106A
JP2003202106A JP2002001340A JP2002001340A JP2003202106A JP 2003202106 A JP2003202106 A JP 2003202106A JP 2002001340 A JP2002001340 A JP 2002001340A JP 2002001340 A JP2002001340 A JP 2002001340A JP 2003202106 A JP2003202106 A JP 2003202106A
Authority
JP
Japan
Prior art keywords
furnace
combustion
pyrolysis gas
gas
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002001340A
Other languages
Japanese (ja)
Other versions
JP3710750B2 (en
Inventor
Mitsuharu Kishimoto
充晴 岸本
Torakatsu Miyashita
虎勝 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2002001340A priority Critical patent/JP3710750B2/en
Publication of JP2003202106A publication Critical patent/JP2003202106A/en
Application granted granted Critical
Publication of JP3710750B2 publication Critical patent/JP3710750B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water jetting gas cooling re-combustion furnace capable of preventing the development of NOx and the melting and adhesion of dust, as well as of reducing the amount of dioxin in exhaust gas and preventing an increase in the amount of the exhaust gas, by mixing sprayed water in combustion gas extremely uniformly for properly lowering combustion gas temperature. <P>SOLUTION: An inlet port 13 for thermal decomposition gas G is provided on the top of the re-combustion furnace 11. A plurality of combustion air blowing openings 15a are provided around the inlet port 13 in the peripheral direction to constitute a re-combustion burner 12. A ring-shaped cooling water header 16 for spraying cooling water into the furnace 11 together with air from the respective air blowing openings 15a is provided at the re-combustion burner 12. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、一般廃棄物(家庭
のごみ)や産業廃棄物(工場のごみ)や廃油・廃液など
の可燃性廃棄物をガス化溶融炉にて酸素等を吹き込んで
燃焼させるときに炉内で発生する、炭化水素、有機物、
油蒸気並びにダストおよび塩化水素などの腐食性ガスが
含まれる可燃性熱分解ガスを前記ダストとともに完全燃
焼するための廃棄物熱分解ガスの再燃焼炉に関するもの
で、水噴射式ガス冷却方式や直溶炉等で発生した熱分解
ガスが保有する熱をボイラで回収する方式の再燃焼炉と
その制御方法に関するものである。
TECHNICAL FIELD The present invention relates to general waste (household waste), industrial waste (factory waste), flammable waste such as waste oil and waste liquid, blown with oxygen and the like in a gasification melting furnace. Hydrocarbons, organic substances generated in the furnace when burning,
It relates to a re-combustion furnace for waste pyrolysis gas for complete combustion of flammable pyrolysis gas containing oil vapor and corrosive gas such as dust and hydrogen chloride together with the dust. The present invention relates to a re-combustion furnace of a system in which heat retained by pyrolysis gas generated in a blast furnace or the like is recovered by a boiler and a control method thereof.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】1.
基本事項:直溶炉(直接にごみをガス化すると共にダス
トを溶融するガス化溶融炉)のように廃棄物を焼却した
り、間接加熱したりすると、廃棄物からガスが発生す
る。このガスは熱分解ガスと呼ばれ、可燃性である。一
般に、このような熱分解ガスに空気を混合して燃焼させ
る炉を再燃焼炉と呼び、再燃焼炉で発生した高温の燃焼
ガスに水を噴霧させて冷却する方式の炉が本発明の対象
になるが、このような再燃焼炉が具備すべき基本機能は
下記の通りである。すなわち、 機能:ダストが、再燃焼炉内壁に付着・成長しないこ
と。
2. Prior Art and Problems to be Solved by the Invention
Basic matters: When waste is incinerated or heated indirectly, as in a direct smelting furnace (gasification and melting furnace that directly gasifies waste and melts dust), gas is generated from the waste. This gas is called pyrolysis gas and is flammable. Generally, a furnace that mixes air with such pyrolysis gas and burns it is called a re-combustion furnace, and a furnace of a system in which water is sprayed to the high-temperature combustion gas generated in the re-combustion furnace to cool it is the object of the present invention. However, the basic functions that such a reburning furnace should have are as follows. That is, the function: dust does not adhere to or grow on the inner wall of the reburn furnace.

【0003】機能:再燃焼炉内で850℃以上のガス
の滞留時間が、2秒間以上であること。
Function: The residence time of gas at 850 ° C. or higher in the reburning furnace is 2 seconds or longer.

【0004】機能:熱分解ガス中に含まれる固形可燃
物(例えば、チャー)が、完全に燃焼し尽くすこと(最
終的に分離されるダスト中に可燃物を殆ど含まないこ
と)。
Function: The solid combustible substances (for example, char) contained in the pyrolysis gas are completely burned out (the combustible substances are hardly contained in the finally separated dust).

【0005】機能:再燃焼炉出口ガス中に含まれるC
OとNOxの量が極力少ないこと。
Function: C contained in reburning furnace outlet gas
The amount of O and NOx is as small as possible.

【0006】機能:他設備を含めた全体の設備費が過
大でないこと。
Function: The total cost of equipment including other equipment is not excessive.

【0007】機能:廃棄物の質、例えば、廃棄物保有
燃焼潜熱(低位発熱量、LHV)が大きく変動しても、
上記〜の基本機能を常に発揮できること。
Function: Even if the quality of waste, for example, the latent heat of combustion of waste (low heating value, LHV) changes greatly,
Being able to always exhibit the basic functions from above.

【0008】しかしながら、従来技術にかかる再燃焼炉
では、上記基本機能を全て満足し得ない。以下、典型的
な従来技術を述べ、それらの技術では上記機能が満足さ
れない理由等について具体的に説明する。
However, the conventional reburning furnace cannot satisfy all the above basic functions. Hereinafter, typical conventional techniques will be described, and the reasons why the above functions are not satisfied by those techniques will be specifically described.

【0009】2.従来技術(先行技術) 1)従来技術−A(単純耐火物張り内壁構造形再燃焼
炉:図7参照) 本技術では熱分解ガスに空気を混入して燃焼させ、発生
した燃焼ガスは再燃焼炉51から出てガス冷却室(図示
せず)にて水が噴霧されて冷却される。本技術では、熱
分解ガスは大きい発熱量を有しているため単に燃焼させ
ると極めて高温(例えば、断熱理論温度2000℃)に
なり、下記の問題を引き起こす。なお、この種の技術
は、例えば特開平8−121728号公報に記載されて
いる。
2. Prior art (prior art) 1) Prior art-A (simple refractory-clad inner wall structure type re-combustion furnace: refer to FIG. 7) In this technology, air is mixed with pyrolysis gas for combustion, and the generated combustion gas is re-combusted. After exiting the furnace 51, water is sprayed and cooled in a gas cooling chamber (not shown). In the present technology, since the pyrolysis gas has a large calorific value, if it is simply burned, the temperature becomes extremely high (for example, the adiabatic theoretical temperature of 2000 ° C.), and the following problems occur. Note that this type of technique is described in, for example, Japanese Patent Laid-Open No. 8-121728.

【0010】(1)多量のサーマルNOx(高温で燃焼
させると多量の有害なNOxが発生し、このようなNO
xをサーマルノックスと呼ぶ)を発生する。すなわち、
上記基本機能が満足されない。
(1) A large amount of thermal NOx (When burned at a high temperature, a large amount of harmful NOx is generated.
x is called thermal knox). That is,
The above basic functions are not satisfied.

【0011】(2)ガス中に含まれるダストが溶融して
再燃焼炉全域の内壁と出口部内壁に衝突して付着・成長
して、やがてガス流れを阻害してプラントの連続操業を
不可能にする。すなわち、上記基本機能が満足されな
い。
(2) The dust contained in the gas melts and collides with the inner wall of the entire recombustion furnace and the inner wall of the outlet to adhere and grow, eventually obstructing the gas flow and making continuous plant operation impossible. To That is, the above basic functions are not satisfied.

【0012】2)従来技術−B(水噴射式耐火物張り内
壁構造形再燃焼炉:図10参照) 本技術では、燃焼ガス中に冷却水を直接噴霧して再燃焼
炉61のガス温度を適正な低い温度(サーマルノックス
を生じず、ダストの溶融・付着問題を生じない適切な温
度、例えば、900℃)にコントロールできるため、上
記Aのような欠点はない。また、廃棄物のLHVが変動
しても、冷却水噴霧量を変えることにより再燃焼炉61
内ガス温度を適正に保つことができる。しかし、本技術
では重大な問題を有する。すなわち、熱分解ガスの保有
発熱量が過大であるため多量の水を噴霧しなければなら
ない。例えば、発熱量2000kcal/Nm3で20
00Nm3/hの熱分解ガスを燃焼させて900℃まで
冷却するには約3000kg/hの水を噴霧しなければ
ならない。このような多量の水を炉内に吹込むと、噴霧
水を燃焼ガスと均一に混合させることは不可能であるこ
となどから、下記の問題を引き起こす。なお、この種の
技術は、例えば特開平11−182827号公報に記載
されている。
2) Prior art-B (water-injection type refractory-clad inner wall structure type re-combustion furnace: see FIG. 10) In the present technology, the cooling water is directly sprayed into the combustion gas to control the gas temperature of the re-combustion furnace 61. Since the temperature can be controlled to an appropriate low temperature (an appropriate temperature at which thermal knox does not occur and the problem of dust melting and adhesion does not occur, for example, 900 ° C.), there is no defect such as A above. Even if the LHV of the waste fluctuates, the combustion chamber 61 can be changed by changing the amount of cooling water sprayed.
The internal gas temperature can be maintained appropriately. However, this technique has a serious problem. That is, since the amount of heat generated by the pyrolysis gas is excessive, a large amount of water must be sprayed. For example, with a calorific value of 2000 kcal / Nm 3 , 20
In order to burn the pyrolysis gas of 00 Nm 3 / h and cool it to 900 ° C., about 3000 kg / h of water must be sprayed. When such a large amount of water is blown into the furnace, it is impossible to uniformly mix the spray water with the combustion gas, which causes the following problems. A technique of this kind is described in, for example, Japanese Patent Laid-Open No. 11-182827.

【0013】(1)熱分解ガスは燃焼した後に冷却され
る。すなわち、燃焼が高温で行われるため、上述の従来
技術−Aと同様、2つの問題がある。勿論、燃焼は瞬間
的に行われるのではなく、火焔の中で行われるため、本
技術での問題は従来技術−Aよりも多少軽減されるが、
依然問題は残る。
(1) The pyrolysis gas is cooled after burning. That is, since the combustion is performed at a high temperature, there are two problems as in the case of the conventional technique-A described above. Of course, since the combustion is not carried out instantaneously but in a flame, the problem of the present technology is somewhat less than that of the conventional technology-A.
The problem still remains.

【0014】(2)多量の水を燃焼ガスと完全に混合す
ることは不可能ゆえ、燃焼ガスと噴霧水の混合に不均一
を生じる。すなわち、部分的に過冷却な箇所と冷却が不
十分な箇所があり、最終的には、それらがさらに混合さ
れて求める温度である約900℃となる。この結果、下
記問題を引き起こす。
(2) Since it is impossible to completely mix a large amount of water with the combustion gas, the combustion gas and the spray water become non-uniform. That is, there are a part that is partially overcooled and a part that is insufficiently cooled, and finally, the temperature is about 900 ° C., which is the required temperature when they are further mixed. As a result, the following problems occur.

【0015】多量の水を早急に燃焼ガスと混合するに
は、火焔中にも多量の水を噴霧しなければならない。火
焔は未だ燃焼し尽くしていない可燃性ガスと可燃性ダス
トが存在し、それらが多量の水によって過冷却されるた
め、一部が未燃のまま下流側へ流れてしまう。また、ガ
スも過冷却されることから十分燃焼し尽くさず、例え
ば、大気公害上問題になるCOガスが多量に残る。さら
に、可燃性ダストが残ることと過冷却されること等から
有害なダイオキシンが合成されたり、分解されなかった
りする不都合を生じる。
In order to quickly mix a large amount of water with the combustion gas, a large amount of water must be sprayed during the flame. The flame contains combustible gas and combustible dust that have not been completely burned, and they are supercooled by a large amount of water, so that a part of the flammable gas flows downstream without being combusted. Further, since the gas is also supercooled, it does not burn out sufficiently, and for example, a large amount of CO gas, which is a problem in terms of atmospheric pollution, remains. Further, since flammable dust remains and is overcooled, harmful dioxins are not synthesized or decomposed.

【0016】(3)再燃焼炉は本来熱分解ガスを適正に
燃焼し、燃焼後のガス中の未燃ダストを完全燃焼させる
と共に、燃焼ガス中に含まれるダイオキシンを分解させ
るために規定温度、例えば900℃で2秒間滞留させる
役目を有する。しかし、本技術では不均一な冷却が行わ
れるために、燃焼ガスの炉内滞留時間は2秒間より長い
時間を確保する必要がある。このことは大きいサイズの
再燃焼炉を必要とすることを意味し、設備費の増大を招
く。
(3) The recombustion furnace originally properly burns the pyrolysis gas to completely burn unburned dust in the burned gas, and at the specified temperature for decomposing dioxin contained in the combustion gas, For example, it has a role of staying at 900 ° C. for 2 seconds. However, in the present technology, since the non-uniform cooling is performed, it is necessary to secure the combustion gas residence time in the furnace longer than 2 seconds. This means that a large-sized reburning furnace is required, which causes an increase in equipment cost.

【0017】3)従来技術−C(循環排ガス吹き込み式
再燃焼炉:図11参照) 上述のように再燃焼炉を出たガスは冷却、除塵された
後、排ガスとして大気に放散される。このような冷却・
除塵後の排ガスを再燃焼炉71に吹込むのが本従来技術
である。すなわち、本技術では、燃焼ガス中に温度の低
い循環排ガスを吹き込み混合し、再燃焼炉71のガス温
度を適正な低い温度にコントロールできるため、上記A
のような欠点はない。また、廃棄物のLHVが変動して
も、吹き込む排ガス量を変えることにより再燃焼炉内ガ
ス温度を適正に保つことができる。しかし、バーナーで
の燃焼は高温で行われるために燃焼直後のガス温度が高
温となり、上述の従来技術−Aと同様、2つの問題があ
る。勿論、本技術では燃焼後に循環排ガスで冷却される
ために、仮にダストが溶融しても冷却されるので、内壁
への付着は軽減される結果、本技術での問題は従来技術
−Aよりも多少軽減されるが、依然問題は残る。
3) Prior art-C (circulating exhaust gas blowing type reburning furnace: see FIG. 11) As described above, the gas leaving the reburning furnace is cooled and dust-removed, and then released to the atmosphere as exhaust gas. Such cooling
The conventional technique is to blow the exhaust gas after dust removal into the reburning furnace 71. That is, in the present technology, the circulating exhaust gas having a low temperature can be blown into and mixed with the combustion gas to control the gas temperature of the re-combustion furnace 71 to an appropriate low temperature.
There is no such drawback. Further, even if the LHV of the waste fluctuates, the gas temperature in the reburning furnace can be properly maintained by changing the amount of exhaust gas to be blown. However, since the combustion in the burner is carried out at a high temperature, the gas temperature immediately after the combustion becomes high, and there are two problems as in the case of the conventional technique-A described above. Of course, in the present technology, since it is cooled by the circulating exhaust gas after combustion, even if the dust is melted, it is cooled, and as a result, the adhesion to the inner wall is reduced. It is alleviated, but the problem still remains.

【0018】さらに、本技術の欠点は排ガス流量が増大
し、ガスを吹き込むことにより上述の基本機能が満足
されないことである。すなわち、燃焼ガス全体の流量が
増大(例えば、ガス量が40%増加)するため、後流に
位置するボイラ、集塵器(バグフィルター)、ガス中の
有毒ガス処理装置およびガス誘引通風機の設備費が増大
する欠点がある。なお、バーナー本体に排ガスを混入さ
せて燃焼ガス温度を低下させることによってNOxを減
ずる従来技術もあるが、排ガス流量が増大する欠点は依
然として残る。この種の技術は、例えば特開平7−29
3844号公報に記載されている。 4)従来技術−D(旋回溶融炉:図12参照) 本技術では、再燃焼炉81内で多量の空気を吹き込み一
気に完全燃焼させ、燃焼ガス温度を高温(例えば160
0℃)にしてガス中に含まれるダストや他の場所で発生
した灰を溶融し、底部からスラグとして取り出す方式で
ある。この方式では、多量のサーマルNOxが発生し、
且つ溶融スラグにより壁の耐火物が損耗するか、または
壁用の耐火物として極めて高価な高級耐火材を使用する
ことが必要である。さらに、処理する廃棄物量が少ない
か、または廃棄物(このLHVが変動するのは極く普
通)のLHVが小さい場合は、再燃焼炉81へ入る熱量
が不足(燃焼ガス温度をダストが溶融する温度以上にす
るには熱量が不足)するため、外部から余分の燃料(L
PGや重油)を吹き込まねばならない欠点を有する。さ
らにまた、スラグが再燃焼炉内壁面やスラグ排出口に付
着しないように適正に運転する必要があり、運転が非常
に複雑になる。以上の結果、本従来技術は上述の再燃焼
炉が保有すべき基本機能およびを満足しない。
Further, a drawback of the present technique is that the flow rate of exhaust gas is increased and the basic function described above is not satisfied by blowing gas. That is, since the flow rate of the entire combustion gas increases (for example, the gas amount increases by 40%), the boiler, the dust collector (bag filter), the poisonous gas treatment device in the gas, and the gas-induced draft fan located in the downstream side There is a drawback that equipment costs increase. Although there is a conventional technique of reducing NOx by mixing exhaust gas into the burner body to lower the combustion gas temperature, the drawback of increasing the exhaust gas flow rate still remains. This type of technology is disclosed in, for example, Japanese Patent Laid-Open No. 7-29
It is described in Japanese Patent No. 3844. 4) Conventional Technology-D (Swirl Melting Furnace: See FIG. 12) In the present technology, a large amount of air is blown into the re-combustion furnace 81 to completely burn at once, and the combustion gas temperature is set to a high temperature (for example, 160).
This is a method in which the dust contained in the gas and ash generated in other places are melted at 0 ° C.) and taken out as slag from the bottom. With this method, a large amount of thermal NOx is generated,
Moreover, the refractory of the wall is worn by the molten slag, or it is necessary to use a very expensive high-grade refractory material as the refractory for the wall. Furthermore, when the amount of waste to be processed is small or the LHV of the waste (this LHV fluctuates quite normally) is small, the amount of heat entering the reburning furnace 81 is insufficient (the combustion gas temperature melts dust. Since the amount of heat is insufficient to raise the temperature above the temperature, extra fuel (L
It has the drawback that it must be blown with PG and heavy oil. Furthermore, it is necessary to operate properly so that the slag does not adhere to the inner wall surface of the reburning furnace or the slag discharge port, which makes the operation very complicated. As a result of the above, the conventional technique does not satisfy the basic functions and features that the above-described reburning furnace should have.

【0019】本発明は上述のような各従来技術の問題点
を解決するためになされたもので、その目的とするとこ
ろは、水噴射式ガス冷却方式の再燃焼炉において、噴霧
された水が極めて均一に燃焼ガス中に混合されて燃焼ガ
ス温度が的確に下がり、NOxの発生やダストの溶融・
付着を防止できるだけではなく、排ガス中のダイオキシ
ン量の削減、排ガス量の増大防止などを図れる炉の構造
とその制御方法を提供することである。
The present invention has been made in order to solve the problems of the above-mentioned respective prior arts, and an object of the present invention is to prevent sprayed water in a re-combustion furnace of a water injection type gas cooling system. The temperature of the combustion gas is accurately lowered by mixing it in the combustion gas extremely uniformly, generating NOx and melting dust.
It is an object of the present invention to provide a furnace structure and a control method thereof that can prevent not only adhesion but also reduction of the amount of dioxin in exhaust gas and prevention of increase of exhaust gas amount.

【0020】[0020]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の請求項1に係る廃棄物熱分解ガスの再燃焼
炉は、a)一般廃棄物や産業廃棄物や廃油・廃液などの
可燃性廃棄物を部分燃焼するか、または間接加熱する
か、あるいは間接加熱すると共に部分燃焼するかのいず
れかにより上記可燃性廃棄物が熱分解して発生する、炭
化水素、有機物、油蒸気並びにダストおよび塩化水素な
どの腐食性ガスが含まれる可燃性熱分解ガスを前記ダス
トとともに完全燃焼させるための廃棄物熱分解ガスの再
燃焼炉であって、b)前記再燃焼炉の端部に熱分解ガス
の導入口を備え、この導入口の周囲に複数の燃焼用空気
吹き込み口を周方向に設けて再燃焼領域(以下、再燃焼
バーナーともいう)を構成し、c)前記再燃焼バーナー
部に前記各空気吹き込み口から冷却水を前記空気ととも
に炉内に噴霧する水噴霧装置を設けたことを特徴として
いる。
In order to achieve the above object, the recombustion furnace for waste pyrolysis gas according to claim 1 of the present invention comprises: a) general waste, industrial waste, waste oil, waste liquid, etc. Hydrocarbons, organic substances, oil vapors that are generated by the thermal decomposition of the above-mentioned combustible waste by either partially burning or indirectly heating the combustible waste And a re-combustion furnace of waste pyrolysis gas for completely combusting a combustible pyrolysis gas containing a dust and a corrosive gas such as hydrogen chloride together with the dust, and b) at an end of the re-combustion furnace. A recombustion region (hereinafter also referred to as a recombustion burner) is provided by providing a plurality of combustion air blowing ports around the introduction port of the pyrolysis gas, and c) the recombustion burner. Blow each of the above air The cooling water from seeing the mouth is characterized in that a water spray device for spraying the furnace together with the air.

【0021】上記の構成を有する廃棄物熱分解ガスの再
燃焼炉によれば、炉頂部の導入口から流入する熱分解ガ
スに対し周囲から燃焼用空気が吹き込まれることによ
り、熱分解ガスに空気が混合されて熱分解ガスが再燃焼
される。このとき多量の空気が混合されると、再燃焼ガ
スの温度が一気に上昇し、たとえば1600℃以上の高
温になると、サーマルNOxが発生するとともに、熱分
解ガス中に含まれるダストが溶融され炉壁に付着・成長
するおそれがあるが、空気とともに冷却水が噴霧状にな
って熱分解ガス中に混合されるので、再燃焼ガスの温度
が低下してNOxの発生やダストの溶融・付着が抑えら
れる。また、空気とともに冷却水が噴霧状になって再燃
焼ガス中に吹き込まれるので、均一に混合され全体的に
温度が低下する。つまり、本発明の再燃焼炉は燃焼ガス
に水を噴霧して冷却するだけではなく、再燃焼バーナー
の内部でも水を噴霧して冷却するので、噴霧された水が
極めて均一に燃焼ガス中に混合され、燃焼ガス温度が下
がりNOxの発生やダストの溶融・付着が防止できるだ
けではなく、排ガス中のダイオキシン量の削減、排ガス
量の増大防止などの長所を有する。
In the waste pyrolysis gas re-combustion furnace having the above-mentioned structure, the combustion air is blown into the pyrolysis gas flowing from the inlet of the furnace top from the surroundings, so that the pyrolysis gas is aired. Are mixed and the pyrolysis gas is reburned. At this time, when a large amount of air is mixed, the temperature of the reburning gas rises at once, and when the temperature rises to, for example, 1600 ° C. or higher, thermal NOx is generated and dust contained in the pyrolysis gas is melted to melt the furnace wall. However, since the cooling water is atomized and mixed with the pyrolysis gas along with the air, the temperature of the reburning gas decreases and NOx generation and melting / adhesion of dust are suppressed. To be Further, since the cooling water is atomized together with the air and is blown into the reburned gas, the temperature is lowered as a result of uniform mixing. That is, the re-combustion furnace of the present invention not only sprays and cools the combustion gas with water, but also sprays and cools water inside the re-combustion burner, so that the sprayed water is extremely uniformly dispersed in the combustion gas. As a result of being mixed, the combustion gas temperature is lowered to prevent generation of NOx and melting / adhesion of dust, and it has advantages such as reduction of the amount of dioxins in exhaust gas and prevention of increase of exhaust gas amount.

【0022】請求項2記載のように、前記各空気吹き込
み口を前記熱分解ガスの導入口から導入されたガス流れ
を中心として旋回流が発生するように傾斜させるか又は
ねじるとともに、各空気吹き込み口を取り囲むように円
筒状空気ヘッダーを設け、この空気ヘッダー内に前記各
空気吹き込み口に臨ませて複数の冷却水噴霧ノズルを周
方向に備えた冷却水ヘッダーを設けることが望ましい。
As described in claim 2, each of the air blowing ports is inclined or twisted so that a swirl flow is generated around the gas flow introduced from the introduction port of the pyrolysis gas, and each air blowing port is blown. It is desirable to provide a cylindrical air header so as to surround the mouth, and to provide a cooling water header in which a plurality of cooling water spray nozzles are provided in the circumferential direction so as to face the air blowing openings.

【0023】請求項2記載の再燃焼炉によれば、空気ヘ
ッダー内の冷却水ヘッダーから噴射される冷却水が噴霧
状になって空気と均一に混合され、複数の空気吹き込み
口から空気とともに冷却水が炉内に吹き込まれる。この
とき、炉内に流入する熱分解ガスの周囲で空気と冷却水
が旋回流を発生するので、空気と冷却水とが熱分解ガス
中に十分にかつ均一に混合され、再燃焼ガスの温度が均
一に低下する。
According to the second aspect of the present invention, in the reburning furnace, the cooling water injected from the cooling water header in the air header is atomized and uniformly mixed with the air, and the cooling water is cooled together with the air from the plurality of air blowing ports. Water is blown into the furnace. At this time, since the air and the cooling water generate a swirling flow around the pyrolysis gas flowing into the furnace, the air and the cooling water are sufficiently and uniformly mixed in the pyrolysis gas, and the temperature of the reburned gas is increased. Is uniformly reduced.

【0024】請求項3記載のように、熱分解ガスの前記
導入口の中心軸部に、冷却水噴霧管をその下端のノズル
を炉内中心部に向けて設けることができる。
According to the third aspect of the present invention, a cooling water spray pipe may be provided at the central axis portion of the introduction port for the pyrolysis gas so that the nozzle at the lower end of the cooling water spray pipe faces the central portion of the furnace.

【0025】請求項3記載の再燃焼炉によれば、上記し
たように熱分解ガスの周囲から空気とともに噴霧状の冷
却水を吹き込むだけでは、再燃焼ガスの温度を十分に下
げることができない場合に、熱分解ガスの中心部に冷却
水を噴霧状にして吹き込むことによって所定の温度まで
再燃焼ガス温度を低下できる。
According to the third aspect of the present invention, in the case where the temperature of the reburning gas cannot be sufficiently lowered only by blowing the atomized cooling water together with the air from the periphery of the pyrolysis gas as described above. In addition, the temperature of the reburning gas can be lowered to a predetermined temperature by spraying cooling water into the central portion of the pyrolysis gas and blowing the cooling water.

【0026】請求項4記載のように、前記再燃焼炉の上
部に複数の冷却水噴霧管を周方向に間隔をあけ、且つ先
端の噴射ノズルを再燃焼時に発生する火焔の長さ(上流
・下流方向間距離)の1/2よりも先端方向寄りに冷却
水が吹き込まれるように炉内の中心軸線に向けて斜め下
流側に傾斜させて設けることができる。
According to a fourth aspect of the present invention, a plurality of cooling water spray pipes are circumferentially spaced above the reburning furnace, and the length of the flame generated during reburning of the injection nozzle at the tip (upstream. The distance can be set so as to be inclined toward the central axial line in the furnace toward the downstream side so that the cooling water is blown toward the front end direction more than ½ of the distance (in the downstream direction).

【0027】実際は再燃焼バーナーの熱分解ガス導入口
直後で総ての熱分解ガスが瞬間的に燃焼するのではな
く、火焔部全体で均一に燃焼するから、火焔に吹き込む
水の吹き込み点は火焔長さの少なくとも1/2より先端
方向に吹込まなければ、未燃焼部を残すおそれがある
が、本請求項4の再燃焼炉によれば、未燃焼部を残すこ
となく、水噴霧して燃焼ガスの温度を下げることができ
る。
Actually, not all of the pyrolysis gas is burned instantaneously immediately after the pyrolysis gas introduction port of the reburning burner, but it is burned uniformly in the entire flame part, so the point of injection of water into the flame is the flame. If it is not blown in the tip direction from at least ½ of the length, there is a risk of leaving an unburned portion. However, according to the reburning furnace of claim 4, water is sprayed without leaving an unburned portion. The temperature of the combustion gas can be lowered.

【0028】請求項5記載のように、前記再燃焼炉頂部
の再燃焼領域下流方向の炉形状を、上流に向けて口径が
漸次縮小する円錐台形あるいは円筒形(保炎筒形)の上
端に上流方向に口径が漸次縮小する円錐台形を一体化し
た形状にすることが好ましい。
According to a fifth aspect of the present invention, the furnace shape in the downstream direction of the re-combustion region of the re-combustion furnace top is provided with an upper end of a truncated cone shape or a cylindrical shape (flame-holding cylinder shape) whose diameter gradually decreases toward the upstream side. It is preferable that the shape of a truncated cone whose diameter is gradually reduced in the upstream direction is integrated.

【0029】請求項5記載の再燃焼炉によれば、再燃焼
バーナーの熱分解ガス再燃焼時の火焔が周囲の炉壁で取
り囲まれ、火焔の拡がりが防止されるので、火焔が安定
し、燃焼状態が良好になる。
According to the reburning furnace of claim 5, the flame at the time of the recombustion of the pyrolysis gas of the reburning burner is surrounded by the surrounding furnace wall, and the spread of the flame is prevented, so that the flame is stable, Combustion becomes good.

【0030】請求項6記載のように、前記再燃焼炉頂部
における熱分解ガスの導入口の中心部に、空気吹き込み
管をその下端の吹き込み口を炉内に向けて設けることが
できる。
According to a sixth aspect of the present invention, an air blowing tube can be provided at the center of the introduction port for the pyrolysis gas at the top of the re-combustion furnace with the blowing port at the lower end facing the inside of the furnace.

【0031】冷却水の噴射だけでは燃焼ガスの温度を適
切に下げられない場合があり、その場合にはやや多くの
空気を吹き込む必要がある。しかし、多量の空気を熱分
解ガスの周囲から吹き込むと熱分解ガスと空気の混合が
悪化し、良好な燃焼が得られず、吹き消えるおそれがあ
るが、請求項6記載の再燃焼炉によれば、再燃焼バーナ
ー部の中心部にも空気吹き込み管を設けているので、そ
の下端の吹き込み口から吹き込まれる空気とその周辺の
空気吹き込みノズルから吹き込まれる空気との内外から
の多量の空気が分解ガスに対して良好に混合される。
There is a case where the temperature of the combustion gas cannot be appropriately lowered only by injecting the cooling water, and in that case, it is necessary to blow a little air. However, when a large amount of air is blown from around the pyrolysis gas, the mixture of the pyrolysis gas and air deteriorates, good combustion cannot be obtained, and there is a risk that the air will blow out. For example, since an air blowing tube is also provided in the center of the reburning burner section, a large amount of air from inside and outside of the air blown from the blow opening at the lower end and the air blown from the air blowing nozzles around it are decomposed. It mixes well with gas.

【0032】請求項7記載のように、冷却水供給管と燃
料供給管とを切換バルブを介して前記冷却水噴霧管に接
続することができる。
As described in claim 7, the cooling water supply pipe and the fuel supply pipe can be connected to the cooling water spray pipe through the switching valve.

【0033】請求項7記載の再燃焼炉によれば、再燃焼
バーナー内の熱分解ガス吹込用中心部の冷却水噴射管の
下端のノズルから、熱分解ガスがその周囲から吹き込ま
れる空気と混合されて燃焼する直前に熱分解ガス中に冷
却水が吹込まれる。もちろん、上記請求項2の再燃焼炉
と同様に、空気ヘッダーの複数の空気吹き込みノズルか
ら空気が炉内に吹込まれ、熱分解ガスと良好に混合され
て燃焼する。しかも、冷却水噴射管の切換バルブを切り
換えることによって、スタートアップ時の再燃焼炉のウ
ォーミングアップ予熱時に燃料供給管からLPGや重油
などの助燃料を吹込んで予熱することもできる。
According to the recombustion furnace of claim 7, the pyrolysis gas is mixed with the air blown from the surroundings from the nozzle at the lower end of the cooling water injection pipe in the pyrolysis gas injection center in the recombustion burner. Immediately before being combusted and burned, cooling water is blown into the pyrolysis gas. Of course, as in the reburning furnace of claim 2, air is blown into the furnace from a plurality of air blowing nozzles of the air header, and is mixed well with the pyrolysis gas and burned. Moreover, by switching the switching valve of the cooling water injection pipe, preheating can be performed by blowing auxiliary fuel such as LPG or heavy oil from the fuel supply pipe during warming up preheating of the reburning furnace at startup.

【0034】請求項8記載のように、前記冷却水噴霧管
あるいは前記空気吹き込み管を金属製管で製作し、その
外壁面をリフラクトリ耐火物(キャスタブル耐火物ある
いは磁器製セラミックス)で被覆することができる。
As described in claim 8, the cooling water spray pipe or the air blowing pipe may be made of a metal pipe, and the outer wall surface of the pipe may be coated with a refractory refractory material (castable refractory material or porcelain ceramics). it can.

【0035】請求項8記載の再燃焼炉によれば、熱分解
ガスの温度が高い場合に熱分解ガス中に含まれる塩化水
素ガスが冷却水噴霧管あるいは空気吹き込み管の金属部
分を腐食するおそれがあるが、リフラクトリ耐火物(キ
ャスタブル耐火物あるいは磁器製セラミックス)で被覆
しているので、そのようなおそれがない。
According to the eighth aspect of the present invention, when the temperature of the pyrolysis gas is high, hydrogen chloride gas contained in the pyrolysis gas may corrode the metal portion of the cooling water spray pipe or the air blowing pipe. However, since it is covered with refractory refractory (castable refractory or porcelain ceramics), there is no such possibility.

【0036】請求項9に記載のように、 前記冷却水の
一部に、ごみピット内で生じたり給塵器で圧縮され塵芥
物から分離されたりした汚水等を使用することができ
る。
As described in claim 9, as a part of the cooling water, sewage produced in the dust pit or compressed by a duster and separated from dust can be used.

【0037】請求項9記載の再燃焼炉によれば、処理の
困難な汚水等を燃焼ガス中に吹き込むことにより燃焼処
理できる。
According to the re-combustion furnace of the ninth aspect, combustion treatment can be performed by blowing sewage or the like, which is difficult to treat, into the combustion gas.

【0038】請求項10記載の再燃焼炉の制御方法は、
前記再燃焼炉内の断熱理論燃焼火焔温度が1400〜1
600℃になるように制御し、次いで火焔に対する冷却
水噴霧により900℃近く(850℃以上)まで低下さ
せ、かつ燃焼ガスの温度は局部的でも少なくとも500
℃以上になるように制御することを特徴としている。
A control method for a reburning furnace according to claim 10 is:
Adiabatic theoretical combustion flame temperature in the re-combustion furnace is 1400-1
The temperature is controlled to be 600 ° C., and then is lowered to near 900 ° C. (850 ° C. or higher) by spraying cooling water on the flame, and the temperature of the combustion gas is locally at least 500
The feature is that the temperature is controlled to be ℃ or higher.

【0039】請求項10記載の再燃焼炉の制御方法によ
れば、再燃焼バーナー部で燃焼ガス導入口の周囲から水
を噴霧することにより断熱理論燃焼火焔温度が1400
〜1600℃になるように制御されサーマルNOxの大
量発生とダストが瞬間的に溶融して炉壁面に付着するの
を防ぎ、次いで火焔の先端部側に吹込まれる冷却水によ
りダイオキシンの分解が可能な900℃まで低下させる
のである。熱分解ガスは、再燃焼バーナーの導入口直後
で総てが瞬間的に燃焼するのではなく、火焔部全体で均
一に燃焼するので、水噴霧して冷却される燃焼ガスの温
度は理想的には均一であるべきだが、実際は不均一にな
る。しかし、不均一になるとしても部分的には少なくと
も500℃以上でなければ、未燃ガスのCOが残るの
で、そのような未燃ガスCOが残らないように水噴射に
よるガス冷却を制御している。
According to the method for controlling a re-combustion furnace of the tenth aspect, the adiabatic theoretical combustion flame temperature is 1400 by spraying water from around the combustion gas inlet in the re-combustion burner section.
Controlled to ~ 1600 ° C to prevent a large amount of thermal NOx and dust from melting instantaneously and adhering to the furnace wall surface, and then dioxins can be decomposed by the cooling water blown to the tip of the flame. It is lowered to 900 ° C. All of the pyrolysis gas does not burn instantaneously immediately after the inlet of the reburning burner, but burns uniformly over the entire flame section, so the temperature of the combustion gas cooled by spraying with water is ideal. Should be uniform, but in practice it will be uneven. However, even if it becomes non-uniform, if the temperature is not at least 500 ° C. or more, CO of unburned gas remains, so gas cooling by water injection is controlled so that such unburned gas CO does not remain. There is.

【0040】請求項11記載のように、前記再燃焼バー
ナーの制御を、吹き込み空気量を一定に保ったうえで、
冷却の吹込み水量のみをコントロールすることによって
炉内温度が一定になるように行うことができる。
According to the eleventh aspect of the present invention, the control of the reburning burner is performed while keeping the amount of blown air constant.
The temperature inside the furnace can be kept constant by controlling only the amount of cooling blown water.

【0041】請求項11記載の再燃焼炉の制御方法によ
れば、再燃焼バーナー(再燃焼領域)の制御が冷却水の
吹込み水量のコントロールのみによって行われる。すな
わち、再燃焼炉内へ導入される熱分解ガスの量と成分は
変動するが、その変動に対応するため炉内温度を普通は
900℃前後で一定になるように吹込み水量だけを制御
すればよい。一方、吹込み空気量はこの調節ループには
含めず、一定流量(やや多くする)を確保しておく。
According to the control method of the re-combustion furnace of the eleventh aspect, the control of the re-combustion burner (re-combustion region) is performed only by controlling the injection amount of the cooling water. That is, the amount and composition of the pyrolysis gas introduced into the reburning furnace fluctuates, but in order to respond to the fluctuation, it is necessary to control only the amount of water blown so that the temperature inside the furnace is usually constant around 900 ° C. Good. On the other hand, the blown air amount is not included in this adjustment loop, and a constant flow rate (slightly increased) is secured.

【0042】[0042]

【発明の実施の形態】図8は廃棄物ガス化溶融炉および
再燃焼炉を含む排ガス処理設備の一例を示す概略図であ
る。
FIG. 8 is a schematic diagram showing an example of an exhaust gas treatment facility including a waste gasification and melting furnace and a reburning furnace.

【0043】図8に示すように、廃棄物焼却用のガス化
溶融炉1は縦型シャフト炉からなるが、この炉の下端開
口に一側方に溶融スラグの取出し口2aを開口した燃焼
ガス吹込み炉2が一体に連設され、この燃焼ガス吹込み
炉2に酸素含有燃料ガスを吹き込む複数の燃焼バーナー
2bが内側に向けて配備されている。炉1の上部に廃棄
物Aの投入口1cが設けられ、給塵機5で圧縮され脱水
された廃棄物Aが投入される。ごみピット3からクレー
ン3aで投入ホッパー5aへ投入される。投入前に廃棄
物Aが粉砕機4で粉砕され、投入ホッパー5aへ投入さ
れたのち、磁選機7にて廃棄物A中の鉄材等が吸引除去
され、それから給塵機5に投入される。なお、給塵機5
内で廃棄物Aを圧縮し脱水される際に生じた汚水は、後
述の再燃焼炉11内に噴霧して処理される。
As shown in FIG. 8, the gasification and melting furnace 1 for waste incineration is composed of a vertical shaft furnace, and the combustion gas in which the molten slag take-out port 2a is opened to one side at the lower end opening of the furnace. The blow-in furnaces 2 are integrally connected to each other, and a plurality of combustion burners 2b for blowing the oxygen-containing fuel gas into the combustion-gas blow-in furnaces 2 are arranged inward. An input port 1c for the waste A is provided in the upper portion of the furnace 1, and the waste A compressed by the duster 5 and dehydrated is input. It is thrown into the throwing hopper 5a by the crane 3a from the waste pit 3. The waste A is crushed by the crusher 4 before being charged and is charged into the charging hopper 5a, and then the iron material and the like in the waste A is suctioned and removed by the magnetic separator 7, and then it is charged into the dust collector 5. The dust collector 5
Sewage produced when the waste A is compressed and dehydrated therein is sprayed into the re-combustion furnace 11 described later and treated.

【0044】炉1内に投入された廃棄物Aは、順次乾燥
および熱分解されたのち、燃焼・溶融されて廃棄物A中
の不燃物が溶融スラグ滴になって溶出され、取出し口2
aから排出される。この溶融スラグ滴は水砕槽6に投入
され、冷却・固化されてスラグとして取り出される。炉
1内で発生した熱分解ガスGが炉頂部に設けられた排気
口1dから、排ガス処理設備10へ排出される。排ガス
処理設備10は本発明の特徴部分である水噴射式ガス冷
却方式の再燃焼炉11を備え、この再燃焼炉11の頂部
に設けられた再燃焼バーナー(再燃焼領域)12部のガス
導入口13にガス化溶融炉1の排気口1dから排気ダク
ト9を介して接続される。図8中の符号Dは、ガス化溶
融炉1の下部の逆円錐台部に形成されるドーム状溶融帯
(溶融ドーム)を示している。排ガス処理設備10は、
図8に示すように、再燃焼炉11の下流(後流)側に、
減温器41と集塵器(バグフィルタ)42と誘引送風機
(IDF)44と煙突45とをこの順番に一連に接続し
て備え、集塵器42の入り口付近に消石灰の投入部43
が設けられている。本例の廃棄物焼却処理設備は、廃棄
物処理量が100トン/日以下の小規模な設備で、ボイ
ラによる熱回収を行わないものである。一方、図示は省
略するが、廃棄物処理量が100トン/日以上の大規模
な設備の場合にはボイラによる熱回収を行う方が総合的
に見て有利であり、再燃焼炉11の下流にボイラを接続
し、再燃焼炉11における熱分解ガスの燃焼後の温度が
1000℃前後になるように水噴射による燃焼ガスの冷
却を調整する。
The waste A introduced into the furnace 1 is successively dried and pyrolyzed, and then burned and melted to dissolve the incombustibles in the waste A into molten slag droplets, and the discharge port 2
It is discharged from a. The molten slag droplets are put into the water granulation tank 6, cooled and solidified, and taken out as slag. The pyrolysis gas G generated in the furnace 1 is discharged to the exhaust gas treatment facility 10 through an exhaust port 1d provided at the top of the furnace. The exhaust gas treatment facility 10 is provided with a re-combustion furnace 11 of a water injection type gas cooling system which is a characteristic part of the present invention, and a gas introduction of a re-combustion burner (re-combustion region) 12 part provided at the top of the re-combustion furnace 11. The port 13 is connected from the exhaust port 1d of the gasification and melting furnace 1 through the exhaust duct 9. Reference numeral D in FIG. 8 indicates a dome-shaped melting zone (melting dome) formed in the lower truncated cone of the gasification melting furnace 1. The exhaust gas treatment facility 10 is
As shown in FIG. 8, on the downstream (wake) side of the reburning furnace 11,
A dehumidifier 41, a dust collector (bag filter) 42, an induction blower (IDF) 44, and a chimney 45 are provided in this order by being connected in series, and a slaked lime charging portion 43 is provided near the entrance of the dust collector 42.
Is provided. The waste incineration treatment facility of this example is a small-scale facility with a waste treatment amount of 100 tons / day or less and does not recover heat by the boiler. On the other hand, although illustration is omitted, in the case of a large-scale facility with a waste treatment amount of 100 tons / day or more, it is generally advantageous to perform heat recovery by a boiler, and the downstream of the reburning furnace 11 A boiler is connected to and the cooling of the combustion gas by water injection is adjusted so that the temperature after combustion of the pyrolysis gas in the re-combustion furnace 11 is around 1000 ° C.

【0045】(1)実施例−1 図1は本発明の実施例−1に係る再燃焼炉の一部である
再燃焼バーナー部を拡大して示す断面図である。同図に
示すように、再燃焼炉11は略円筒体状で内側に耐火物
炉壁11bを備えており、その頂部11aは上端中心部
の熱分解ガスの入り口(ガス導入口)13に向け、漸次
上向きに口径を縮小した円錐台形に形成され、ガス導入
口13の周囲に円環状の座板14が一体に形成されてい
る。この座板14には周方向に間隔をあけて、複数の空
気吹き込みノズル(空気吹き込み口)15aが旋回流を
発生させるように傾斜して穿設されている。また、ノズ
ル15aを取り囲むように円筒状の燃焼用空気ヘッダー
15が座板14上に装着され、空気ヘッダー15に空気
導入管15bが接続されている。さらに、空気ヘッダー
15内には、各ノズル15aに臨ませて複数の冷却水噴
霧ノズル16aを周方向に備えたリング状冷却水ヘッダ
ー16が設けられ、この冷却水ヘッダー16に冷却水導
入管16bが接続されている。なお、空気ヘッダー15
の下端周囲には外向きのフランジ15cが一体に形成さ
れ、炉11の頂端周囲に一体に形成された外向きのフラ
ンジ11cに連結具15dにて連結されている。以上の
ようにして、炉11の頂部に再燃焼バーナー(再燃焼領
域)12が構成される。
(1) Example-1 FIG. 1 is an enlarged sectional view showing a reburning burner portion which is a part of a reburning furnace according to Example-1 of the present invention. As shown in the figure, the re-combustion furnace 11 has a substantially cylindrical shape and is provided with a refractory furnace wall 11b inside, and the top part 11a is directed to the inlet (gas inlet) 13 of the pyrolysis gas at the center of the upper end. A circular conical plate 14 is integrally formed around the gas introduction port 13 so as to be formed in a truncated cone shape whose diameter is gradually reduced upward. A plurality of air blowing nozzles (air blowing ports) 15a are formed in the seat plate 14 at intervals in the circumferential direction so as to be inclined so as to generate a swirling flow. Further, a cylindrical combustion air header 15 is mounted on the seat plate 14 so as to surround the nozzle 15a, and the air introduction pipe 15b is connected to the air header 15. Further, in the air header 15, a ring-shaped cooling water header 16 having a plurality of cooling water spray nozzles 16a in the circumferential direction facing each nozzle 15a is provided, and the cooling water header 16 has a cooling water introducing pipe 16b. Are connected. The air header 15
An outward flange 15c is integrally formed around the lower end of the furnace, and is connected to an outward flange 11c integrally formed around the top end of the furnace 11 by a connector 15d. As described above, the re-combustion burner (re-combustion region) 12 is formed on the top of the furnace 11.

【0046】動作の説明 廃棄物を加熱することによって発生する熱分解ガスG
は、排気ダクト9より再燃焼バーナー12へ至る。再燃
焼バーナー12の中心部の導入口13から熱分解ガスG
が炉11内に吹き込まれる。熱分解ガス吹込み用中心部
の周囲を囲み、空気ヘッダー15が設けられており、そ
の空気ヘッダー15の複数の空気吹き込みノズル15a
から空気Bが炉11内に吹き込まれる。このノズル15
aの中心軸は熱分解ガスGの吹き込み方向とはややずれ
ているため、炉11内に吹き込まれた空気Bの流れは旋
回流となって熱分解ガスGと良好に混合されて燃焼す
る。上述のとおり、空気ヘッダー15内の冷却水噴霧ノ
ズル16aから空気中に吹き込まれた冷却水Wは空気B
と共に熱分解ガスGと良好に混合され、熱分解ガスGが
燃焼する際に蒸発して燃焼ガスを均一に冷却する。
Description of operation Pyrolysis gas G generated by heating waste
From the exhaust duct 9 to the reburning burner 12. Pyrolysis gas G from the inlet 13 at the center of the reburning burner 12
Are blown into the furnace 11. An air header 15 is provided so as to surround the central portion for blowing pyrolysis gas, and a plurality of air blowing nozzles 15 a of the air header 15 are provided.
Air B is blown into the furnace 11 from the inside. This nozzle 15
Since the central axis of a is slightly deviated from the blowing direction of the pyrolysis gas G, the flow of the air B blown into the furnace 11 becomes a swirl flow, which is well mixed with the pyrolysis gas G and burns. As described above, the cooling water W blown into the air from the cooling water spray nozzle 16a in the air header 15 is the air B.
At the same time, it is mixed well with the pyrolysis gas G, and evaporates when the pyrolysis gas G burns to uniformly cool the combustion gas.

【0047】なお、図示を省略しているが、初期点火用
および安全用(再燃焼バーナーの火焔が消えないよう常
時点灯)パイロットバーナー、火焔検知器、冷却水流量
制御装置および空気流量調整装置が炉11内の頂部11
aに設けられている。
Although not shown, the pilot burner, the flame detector, the cooling water flow rate control device and the air flow rate control device for initial ignition and for safety (always lit so that the flame of the reburn burner does not go out) are provided. Top 11 inside the furnace 11
It is provided in a.

【0048】本実施例の再燃焼バーナー12の制御は冷
却水Wの吹き込み水量のコントロールによって行われ
る。すなわち、再燃焼炉11へ至る熱分解ガスGの量と
成分は変動するので、その変動に対応するために炉内温
度が900℃で一定になるように吹き込み水量だけを制
御している。一方、吹き込み空気量はこの調節ループに
は含めずに一定流量(流量は通常やや多くする)を確保
し、その流量は必要に応じて時々見直して調整される。
The control of the reburning burner 12 of this embodiment is carried out by controlling the amount of cooling water W blown in. That is, since the amount and composition of the pyrolysis gas G reaching the re-combustion furnace 11 fluctuate, only the amount of blown water is controlled so that the furnace temperature becomes constant at 900 ° C. in order to cope with the fluctuation. On the other hand, the amount of blown air is not included in this adjustment loop, and a constant flow rate (the flow rate is usually increased a little) is secured, and the flow rate is occasionally reviewed and adjusted as necessary.

【0049】なお、本実施例の再燃焼炉11は熱分解ガ
スGの発熱量が比較的大きくない(LHV=1500k
cal/Nm3以下)熱分解ガスGを導入する炉を対象
とするものであり、したがって冷却水を再燃焼バーナー
12内で吹き込むだけで対応できる。
In the reburning furnace 11 of this embodiment, the heat generation amount of the pyrolysis gas G is not relatively large (LHV = 1500k).
(Cal / Nm 3 or less) This is intended for a furnace in which a pyrolysis gas G is introduced, and therefore, it can be dealt with only by blowing cooling water into the reburning burner 12.

【0050】(1a)実施例−1a 図2は本発明の実施例−1aに係る再燃焼炉の一部であ
る再燃焼バーナー部を拡大して示す断面図である。同図
に示すように、本例の再燃焼炉11−1aでは上記した
再燃焼炉11の頂部に設けられた再燃焼領域12に続い
て、第2の再燃焼領域12−1をその上方に設けてい
る。この再燃焼領域12aは生成熱分解ガスGの導入口
13(図示せず)が下方にあって、再燃焼領域12aに
おける炉11の形状は上方に向けて内径を漸次拡大した
円錐台形とされ、導入口上方の再燃焼領域12−1の周
囲には、空気ヘッダー15が設けられており、その空気
ヘッダー15の複数の空気吹き込みノズル15aは旋回
流を発生させるように偏向しており、各ノズル15aか
ら空気Bが炉11内に吹き込まれ、旋回流を生じさせ
る。また空気ヘッダー15の上方には、複数の冷却水噴
霧ノズル16aを周方向に間隔をあけて備えた冷却水ヘ
ッダー16が設けられ、空気Bとともに冷却水Wが炉1
1の中心部に向けて噴霧される。
(1a) Example-1a FIG. 2 is an enlarged sectional view showing a reburning burner portion which is a part of the reburning furnace according to Example-1a of the present invention. As shown in the figure, in the re-combustion furnace 11-1a of this example, following the re-combustion area 12 provided at the top of the re-combustion furnace 11 described above, a second re-combustion area 12-1 is provided above it. It is provided. The re-combustion region 12a has an inlet 13 (not shown) for the produced pyrolysis gas G below, and the shape of the furnace 11 in the re-combustion region 12a is a frusto-conical shape in which the inner diameter is gradually increased upward. An air header 15 is provided around the re-combustion region 12-1 above the introduction port, and a plurality of air blowing nozzles 15a of the air header 15 are deflected so as to generate a swirl flow. Air B is blown into the furnace 11 from 15a to generate a swirling flow. Further, above the air header 15, a cooling water header 16 having a plurality of cooling water spray nozzles 16a provided at intervals in the circumferential direction is provided, and the cooling water W together with the air B is supplied to the furnace 1.
1 is sprayed toward the center.

【0051】その他の構成については共通しているの
で、共通する部材については同一の符号を用いて図2に
示し、説明を省略する。なお、本例の再燃焼炉11−1
aの動作については熱分解ガスが上向きに流れるか、下
向きに流れるかが相違するだけで、基本的な動作につい
ては共通する。
Since the other structures are common, the common members are denoted by the same reference numerals and shown in FIG. 2, and the description thereof is omitted. In addition, the reburning furnace 11-1 of this example
Regarding the operation of a, the basic operation is common except that the pyrolysis gas flows upward or downward.

【0052】(1b)実施例−1b 図3(a)・(b)は本発明の実施例−1bに係る再燃
焼炉の一部である再燃焼バーナー部を拡大して示す横断
面図・縦断面図である。同図に示すように、本例の再燃
焼炉11−1bは少なくとも炉頂部が円筒体に形成さ
れ、熱分解ガスGの導入口13がその一端部に設けら
れ、図3(a)のように、熱分解ガスGが炉11−1b
の断面円筒形の接線方向に導入されて旋回流を生じる。
導入口13の両側に空気吹き込みノズル15aが設けら
れ、又冷却水噴射のずる16aも設けられている。
(1b) Example-1b FIGS. 3 (a) and 3 (b) are enlarged cross-sectional views showing a reburning burner portion which is a part of the reburning furnace according to Example-1b of the present invention. FIG. As shown in FIG. 3, in the reburning furnace 11-1b of this example, at least the furnace top is formed into a cylindrical body, and the introduction port 13 for the pyrolysis gas G is provided at one end thereof, as shown in FIG. In addition, the pyrolysis gas G is in the furnace 11-1b.
Is introduced in the tangential direction of the cylindrical cross section of to generate a swirling flow.
Air-blowing nozzles 15a are provided on both sides of the inlet 13, and cooling water jet slips 16a are also provided.

【0053】その他の構成については共通しているの
で、共通する部材については同一の符号を用いて図3に
示し、説明を省略する。なお、本例の再燃焼炉11−1
bの動作については、燃焼温度が高温(1200℃以
上)にならない限りダスト等が炉壁に付着しないから、
熱分解ガスを旋回させることによって燃焼を促進するも
のである。その他の基本的な動作については上記実施例
と共通するので、説明を省略する。
Since other structures are common, the common members are denoted by the same reference numerals and shown in FIG. 3, and the description thereof is omitted. In addition, the reburning furnace 11-1 of this example
Regarding the operation of b, since dust and the like do not adhere to the furnace wall unless the combustion temperature becomes high (1200 ° C or higher),
Combustion is promoted by swirling the pyrolysis gas. The other basic operations are the same as those in the above-mentioned embodiment, and the description thereof will be omitted.

【0054】(2)実施例−2 図4は本発明の実施例−2に係る再燃焼炉の一部である
再燃焼バーナー部を拡大して示す断面図である。同図に
示すように、本例の再燃焼炉11−2は熱分解ガスGの
導入口13の中心部に、冷却水噴霧管17をその下端の
ノズル17aを炉11内に向けて設けたことが上記の再
燃焼炉11と相違している。また、冷却水噴霧管17は
冷却水だけでなく、ウォーミングアップ時に燃料を炉1
1内に噴霧できるように、冷却水供給管18と燃料供給
管19とが切換バルブ20を介して接続されている。さ
らに、冷却水噴霧管17の外周面はリフラクトリ耐火物
あるいは磁器製セラミックスで被覆されている。その他
の構成については共通しているので、共通する部材につ
いては同一の符号を用いて図4に示し、説明を省略す
る。
(2) Example-2 FIG. 4 is an enlarged sectional view showing a reburning burner portion which is a part of a reburning furnace according to Example-2 of the present invention. As shown in the figure, in the re-combustion furnace 11-2 of the present example, a cooling water spray pipe 17 is provided at the center of the introduction port 13 for the pyrolysis gas G so that the nozzle 17a at the lower end thereof is directed into the furnace 11. This is different from the reburning furnace 11 described above. In addition to the cooling water, the cooling water spray pipe 17 supplies fuel to the reactor 1 during warming up.
A cooling water supply pipe 18 and a fuel supply pipe 19 are connected via a switching valve 20 so that the water can be sprayed into the inside of the fuel cell 1. Further, the outer peripheral surface of the cooling water spray pipe 17 is coated with refractory refractory or porcelain ceramics. Since other configurations are common, common members are denoted by the same reference numerals and shown in FIG. 4, and description thereof is omitted.

【0055】動作と説明 本例の再燃焼炉11−2では、再燃焼バーナー12内の
熱分解ガスG吹込用中心部の冷却水噴射管17のノズル
17aから、熱分解ガスGが空気Bと混合されて燃焼す
る直前に熱分解ガスG中に冷却水Wが吹き込まれる。も
ちろん、上記実施例の再燃焼炉11と同様に、空気ヘッ
ダー15の複数の空気吹き込みノズル15aから空気B
が炉11−2内に吹込まれ、吹き込まれた空気Bは旋回
しながら熱分解ガスGと良好に混合されて燃焼する。ま
た、空気ヘッダー15内の冷却水噴霧ノズル16aから
ヘッダー15内の空気中に吹き込まれた冷却水Wは空気
Aと共に熱分解ガスGと良好に混合され、熱分解ガスG
が燃焼する際に蒸発し燃焼ガスを均一に冷却する。
Operation and Description In the re-combustion furnace 11-2 of this example, the pyrolysis gas G is exchanged with the air B from the nozzle 17a of the cooling water injection pipe 17 in the recombustion burner 12 for injecting the pyrolysis gas G. The cooling water W is blown into the pyrolysis gas G immediately before being mixed and burned. Of course, as in the reburning furnace 11 of the above-described embodiment, the air B is discharged from the plurality of air blowing nozzles 15a of the air header 15.
Is blown into the furnace 11-2, and the blown air B is swirled, mixed well with the pyrolysis gas G, and burned. Further, the cooling water W blown into the air inside the header 15 from the cooling water spray nozzle 16a inside the air header 15 is mixed well with the thermal decomposition gas G together with the air A.
Evaporates when it burns, cooling the combustion gas uniformly.

【0056】また、この冷却水噴射管17の切換バルブ
20を切り換えることによって、スタートアップ時の再
燃焼炉のウォーミングアップ予熱時に燃料供給管19か
ら油などの燃料を吹き込み予熱(通常は炉内温度が50
0℃程度に上昇するまで)し、定常運転時には再び切換
バルブ20を切り換えて冷却水供給管18から冷却水を
吹き込む。なお、熱分解ガスGの温度が高い場合に熱分
解ガスG中に含まれる塩化水素ガスが冷却水噴霧管17
を腐食するおそれがあるが、本例の場合にはリフラクト
リ耐火物あるいは磁器製セラミックスで被覆しているの
で、そのようなおそれがない。
By switching the switching valve 20 of the cooling water injection pipe 17, fuel such as oil is blown from the fuel supply pipe 19 during warm-up preheating of the re-combustion furnace at the time of startup to preheat (usually, the temperature in the furnace is 50%).
(Until the temperature rises to about 0 ° C.), and during steady operation, the switching valve 20 is switched again to blow the cooling water from the cooling water supply pipe 18. When the temperature of the pyrolysis gas G is high, the hydrogen chloride gas contained in the pyrolysis gas G is cooled by the cooling water spray pipe 17
However, in the case of this example, since it is coated with refractory refractory or porcelain ceramics, there is no such possibility.

【0057】本例の再燃焼炉11−2は、熱分解ガスG
の温度が高い(500℃以上)場合に適用可能である。
もし、熱分解ガスGの温度が400℃以下の場合は再燃
焼バーナー12内で熱分解ガスGが冷え過ぎる結果、熱
分解ガスG中からタール分が凝縮し、含有ダストと共に
再燃焼バーナー12内に付着堆積をもたらし、バーナー
不調の原因を引き起こすことがあるからである。
The re-combustion furnace 11-2 of this example uses the pyrolysis gas G.
It is applicable when the temperature is high (500 ° C. or higher).
If the temperature of the pyrolysis gas G is 400 ° C. or lower, the pyrolysis gas G becomes too cold in the recombustion burner 12, and as a result, the tar component is condensed from the pyrolysis gas G, and the dust inside the recombustion burner 12 is condensed. This is because it may lead to adhesion and deposition on the inner wall of the burner and cause a burner malfunction.

【0058】(3)実施例−3 図5は本発明の実施例−3に係る再燃焼炉の一部である
再燃焼バーナー部を拡大して示す断面図である。同図に
示すように、本例の再燃焼炉11−3は、耐火物炉壁1
1bの円筒部上端に複数の冷却水噴霧管21を周方向に
間隔をあけ、且つ下端の噴射ノズル21aを炉11−3
内の中心軸線に向けて斜め下方に傾斜させて設けてい
る。これらの噴射ノズル21aから噴射される冷却水
が、再燃焼火焔Fの長さ(上下方向間距離:本例では
1.5m)の1/2よりも先端(下端)方向寄りに吹き
込まれるように、冷却水噴霧管21の長さおよび傾斜角
度が設定されている。その他の構成については共通して
いるので、共通する部材については同一の符号を用いて
図5に示し、説明を省略する。
(3) Example-3 FIG. 5 is an enlarged sectional view showing a reburning burner portion which is a part of a reburning furnace according to Example-3 of the present invention. As shown in the figure, the re-combustion furnace 11-3 of this example has a refractory furnace wall 1
A plurality of cooling water spray pipes 21 are circumferentially spaced at the upper end of the cylindrical portion 1b, and the injection nozzle 21a at the lower end is connected to the furnace 11-3.
It is provided so as to be inclined obliquely downward toward the central axis line. The cooling water sprayed from these spray nozzles 21a is sprayed toward the tip (lower end) direction of 1/2 of the length (distance between the up and down directions: 1.5 m in this example) of the reburning flame F. The length and inclination angle of the cooling water spray pipe 21 are set. Since other configurations are common, common members are denoted by the same reference numerals and shown in FIG. 5, and description thereof is omitted.

【0059】動作と説明 本例の再燃焼炉11−3では、実施例−1の再燃焼炉1
1における冷却水噴射に加えて、再燃焼火焔Fの下部1
/2より先端部へ向かって水噴射が行われる。再燃焼炉
11の場合、ガス組成によっては再燃焼バーナー12内
に水を吹き込んで燃焼ガス温度を900℃まで下げる
と、火焔Fが安定せず消えることがあるという問題があ
るので、この問題を解決したのが本例である。
Operation and Explanation In the reburning furnace 11-3 of this example, the reburning furnace 1 of Example-1 is used.
In addition to the cooling water injection in 1, the lower part 1 of the reburn flame F
Water is sprayed from / 2 toward the tip. In the case of the re-combustion furnace 11, there is a problem that the flame F may become unstable and disappear if the temperature of the combustion gas is lowered to 900 ° C. by blowing water into the re-combustion burner 12 depending on the gas composition. This is the solution.

【0060】本例の再燃焼炉11−3では、再燃焼バー
ナー12部で水噴射ノズル16aから水を噴霧すること
により断熱理論燃焼火焔温度が1400〜1600℃に
なるように制御し、次いで冷却水噴霧管21のノズル2
1aより火焔Fに吹込む冷却水により900℃まで低下
させる。実際はバーナー12の出口直後で総ての熱分解
ガスGが瞬間的に燃焼するのではなく、火焔F部全体で
均一に燃焼する。したがって、火焔Fに吹き込む水の吹
き込み点は火焔長さ(通常、1.5m位)の少なくとも
1/2より先端方向に吹込まなければ未燃焼部を残すお
それがある。また、水噴霧して冷却される燃焼ガスの温
度は理想的には均一であるべきだが、実際は不均一にな
る。しかし、不均一になるとしても部分的には少なくと
も500℃以上でなければ、未燃ガスCOが残る。その
ためには、上述のように吹き込み点に注意するだけでは
なく、できるだけ多くのポイントから細かい水滴で吹き
込むのが望ましい。
In the re-combustion furnace 11-3 of this example, the adiabatic theoretical combustion flame temperature is controlled to 1400 to 1600 ° C. by spraying water from the water injection nozzle 16a in the re-combustion burner 12 part, and then cooled. Nozzle 2 of water spray pipe 21
The temperature is lowered to 900 ° C. by cooling water blown into the flame F from 1a. Actually, immediately after the outlet of the burner 12, not all of the pyrolysis gas G burns instantaneously, but all of the flame F part burns uniformly. Therefore, the blowing point of the water blown into the flame F may leave an unburned portion unless it is blown in the tip direction from at least ½ of the flame length (usually about 1.5 m). Further, the temperature of the combustion gas cooled by spraying with water should ideally be uniform, but in reality, it becomes nonuniform. However, even if it becomes non-uniform, unburned gas CO remains partially unless it is at least 500 ° C. or higher. For that purpose, it is desirable not only to pay attention to the blowing point as described above, but also to blow with fine water droplets from as many points as possible.

【0061】(4)実施例−4 図6は本発明の実施例−4に係る再燃焼炉の一部である
再燃焼バーナー部を拡大して示す断面図である。同図に
示すように、本例の再燃焼炉11−4は、熱分解ガスG
の導入口13の中心部に、空気吹き込み管22をその下
端の吹き込み口22aを炉11−4内に向けて設けたこ
とが上記の再燃焼炉11と相違している。また、金属製
の空気吹き込み管22の外壁面はキャスタブル耐火物あ
るいは磁器製セラミックスで被覆されている。なお、図
示は省略するが、空気吹き込み管22の下端の吹き込み
口22aに旋回羽根を装着することによって、吹き込ま
れる空気を旋回させて熱分解ガスGとの混合を良好にす
ることもできる。その他の構成については共通している
ので、共通する部材については同一の符号を用いて図6
に示し、説明を省略する。
(4) Example-4 FIG. 6 is an enlarged sectional view showing a reburning burner portion which is a part of the reburning furnace according to Example-4 of the present invention. As shown in the figure, the re-combustion furnace 11-4 of the present example uses the pyrolysis gas G
The re-combustion furnace 11 is different from the above-described re-combustion furnace 11 in that an air blowing tube 22 is provided in the center of the introduction port 13 of the above so that the blowing port 22a at the lower end thereof is directed into the furnace 11-4. The outer wall surface of the metal air blowing tube 22 is covered with castable refractory or porcelain ceramics. Although illustration is omitted, by mounting a swirl vane on the blowing port 22a at the lower end of the air blowing pipe 22, the blown air can be swirled to improve mixing with the pyrolysis gas G. Since the other configurations are common, the same reference numerals are used for the common members in FIG.
, And the description is omitted.

【0062】動作と説明 冷却水の噴射だけでは燃焼ガスの温度を適切に下げられ
ない場合があり、その場合はやや多くの空気を吹き込む
必要がある。しかし、多量の空気を吹き込むと熱分解ガ
スGと空気Aの混合が悪化して、良好な燃焼が得られな
い(吹き消える)。この問題を解決したのが本実施例で
あり、実施例−1の再燃焼炉11に比べると本例の再燃
焼炉11−4では再燃焼バーナー12部の中心部にも空
気吹き込み管22を設けているので、その下端の吹き込
み口22aから吹き込まれる空気とその周辺の空気吹き
込みノズル15aからとの内外の空気によって熱分解ガ
スGには良好に混合される。また、実施例−3の再燃焼
炉11−3と同じように燃焼後の火焔Fにも冷却水噴霧
管21のノズル21aより水が噴霧される。
Operation and Explanation There are cases where the temperature of the combustion gas cannot be appropriately lowered only by injecting the cooling water, and in that case, it is necessary to blow a little more air. However, when a large amount of air is blown in, the mixture of the pyrolysis gas G and the air A deteriorates, and good combustion cannot be obtained (blown out). This example solves this problem. Compared to the reburning furnace 11 of the example-1, the reburning furnace 11-4 of the present example has an air blowing pipe 22 in the center of the reburning burner 12. Since it is provided, the pyrolysis gas G is satisfactorily mixed by the air blown from the blow-in port 22a at the lower end and the air inside and outside the air blow-in nozzle 15a in the periphery thereof. Further, similarly to the reburning furnace 11-3 of Example-3, water is sprayed from the nozzle 21a of the cooling water spray pipe 21 to the flame F after combustion.

【0063】(5)実施例−5 図7は本発明の実施例−5に係る再燃焼炉の一部である
再燃焼バーナー部を拡大して示す断面図である。同図に
示すように、本例の再燃焼炉11−5は熱分解ガスGの
導入口13の中心部に、空気吹き込み管を兼ねた昇温バ
ーナー管23をその下端の吹き込み口23aを炉11内
に向けて設けたことが上記の再燃焼炉11と相違してい
る。また、昇温バーナー管23には制御バルブ24aを
介して燃料供給管24が接続されると共に、制御バルブ
25aを介して空気供給管25を接続している。このた
め、スタートアップ時には昇温バーナー23として吹き
込み口23aから燃料を吹き込むだけでなく、十分昇温
したのちには空気の吹き込みもできる。さらに、昇温バ
ーナー管23の外壁周面はキャスタブル耐火物あるいは
磁器製セラミックスで被覆されている。その他の構成に
ついては共通しているので、共通する部材については同
一の符号を用いて図7に示し、説明を省略する。
(5) Example-5 FIG. 7 is an enlarged sectional view showing a reburning burner portion which is a part of a reburning furnace according to Example-5 of the present invention. As shown in the figure, in the re-combustion furnace 11-5 of this example, a temperature rising burner tube 23 also serving as an air blowing tube is provided at the center of the introduction port 13 for the pyrolysis gas G, and a blowing port 23a at the lower end of the furnace is provided. It is different from the above reburning furnace 11 in that it is provided inside 11. Further, the fuel supply pipe 24 is connected to the temperature rising burner pipe 23 via a control valve 24a, and the air supply pipe 25 is connected to the temperature raising burner pipe 23 via a control valve 25a. Therefore, at the time of start-up, not only the fuel can be blown from the blowing port 23a as the temperature raising burner 23, but also the air can be blown after the temperature is sufficiently raised. Further, the outer peripheral surface of the temperature rising burner tube 23 is covered with castable refractory or porcelain ceramics. Since other configurations are common, common members are denoted by the same reference numerals and shown in FIG. 7, and description thereof is omitted.

【0064】動作と説明 再燃焼炉11−5を常温状態からスタートアップするの
に、先ず重油やLPGなどの助燃料を昇温バーナー管2
3から炉11−5内に吹き込んで燃焼させて徐々に昇温
しなければならない。すなわち、炉内温度が約500℃
になった後、熱分解ガスGの再燃焼が可能になる。この
昇温のためには、通常は再燃焼バーナー12とは別置の
昇温バーナー23を設ける(実施例1〜4には昇温バー
ナーを図示していない)が、本例では昇温バーナー23
と再燃焼バーナー12を合体させている。つまり、昇温
時には空気供給管25の制御バルブ25aを閉じて、他
方燃料供給管24の制御バルブ24aを開ける。そし
て、十分に昇温した後、熱分解ガスGの再燃焼を行う状
態で燃料供給管24の制御バルブ24aを閉じ、空気供
給管25の制御バルブ25aを開いて空気を炉1−5内
に吹き込み、熱分解ガスGに混合させて再燃焼する。再
燃焼状態では、上記した実施例3の再燃焼炉11−3と
共通の動作をさせる。
Operation and Description In order to start the reburning furnace 11-5 from a room temperature state, first, auxiliary fuel such as heavy oil or LPG is heated by the burner tube 2
It must be blown from No. 3 into the furnace 11-5, burned, and gradually raised in temperature. That is, the temperature in the furnace is about 500 ° C.
After that, the pyrolysis gas G can be reburned. To raise the temperature, a temperature raising burner 23 is usually provided separately from the reburning burner 12 (the temperature raising burner is not shown in Examples 1 to 4), but in the present example, the temperature raising burner is used. 23
And the reburning burner 12 are combined. That is, when the temperature is raised, the control valve 25a of the air supply pipe 25 is closed and the control valve 24a of the other fuel supply pipe 24 is opened. Then, after the temperature is sufficiently raised, the control valve 24a of the fuel supply pipe 24 is closed and the control valve 25a of the air supply pipe 25 is opened in a state where the pyrolysis gas G is re-combusted, and air is introduced into the furnace 1-5. It is blown in, mixed with the pyrolysis gas G, and reburned. In the reburning state, the same operation as the above-described reburning furnace 11-3 of the third embodiment is performed.

【0065】[0065]

【発明の効果】以上説明したことから明らかなように、
本発明に係る熱分解ガスの再燃焼炉には、次のような優
れた効果がある。
As is apparent from the above description,
The pyrolysis gas re-combustion furnace according to the present invention has the following excellent effects.

【0066】1.ダストが再燃焼炉内壁に付着・成長し
ない。
1. Dust does not adhere or grow on the inner wall of the reburn furnace.

【0067】2.廃棄物の成分や廃物処理量が変動して
も常に再燃焼炉内で850℃以上のガスの滞留時間が2
秒間以上確保できる。この結果、ダイオキシンが分解す
ると共に、熱分解ガス中に含まれる固形可燃物(例えば
チャー)が完全に燃焼し尽くす(最終的に分離されるダ
スト中に可燃物を殆ど含まない)。
2. The residence time of gas at 850 ° C or higher is always 2 in the reburning furnace even if the composition of waste and the amount of waste are changed.
You can secure more than a second. As a result, the dioxin is decomposed and the solid combustibles (for example, char) contained in the pyrolysis gas are completely burned out (the combustibles are hardly contained in the finally separated dust).

【0068】3.再燃焼炉出口ガス中に含まれるCOと
NOxの量が非常に少ない。
3. The amount of CO and NOx contained in the reburning furnace outlet gas is very small.

【0069】4.後流側の集じん器や誘引通風機などの
他設備を含めた全体の設備費が安価である。
4. Overall equipment cost is low, including other equipment such as dust collectors and draft fans on the downstream side.

【0070】5.廃棄物の質や廃棄物処理量が変動して
も上記1〜4の効果を達成できる。
5. The above effects 1 to 4 can be achieved even if the quality of waste and the amount of waste processed vary.

【0071】6.噴霧された水が極めて均一に燃焼ガス
中に混合されるために、燃焼ガス温度が下がりNOxの
発生やダストの溶融・付着が防止出来るだけではなく、
排ガス中のダイオキシン量の削減、排ガス量の増大防止
等々の長所を有する。
6. Since the sprayed water is extremely uniformly mixed in the combustion gas, the temperature of the combustion gas is lowered and not only the generation of NOx and the melting and adhesion of dust can be prevented, but also
It has advantages such as reduction of the amount of dioxins in exhaust gas and prevention of increase of exhaust gas amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例−1に係る再燃焼炉の一部であ
る再燃焼バーナー部を拡大して示す断面図である。
FIG. 1 is an enlarged cross-sectional view showing a reburning burner portion that is a part of a reburning furnace according to a first embodiment of the present invention.

【図2】本発明の実施例−1に係る再燃焼炉の一部であ
る再燃焼バーナー部を拡大して示す断面図である。
FIG. 2 is an enlarged cross-sectional view showing a reburning burner portion, which is a part of the reburning furnace according to the first embodiment of the present invention.

【図3】本発明の実施例−1に係る再燃焼炉の一部であ
る再燃焼バーナー部を拡大して示す断面図である。
FIG. 3 is an enlarged cross-sectional view showing a reburning burner portion that is a part of the reburning furnace according to the first embodiment of the present invention.

【図4】本発明の実施例−2に係る再燃焼炉の一部であ
る再燃焼バーナー部を拡大して示す断面図である。
FIG. 4 is an enlarged cross-sectional view showing a reburning burner portion which is a part of a reburning furnace according to a second embodiment of the present invention.

【図5】本発明の実施例−3に係る再燃焼炉の一部であ
る再燃焼バーナー部を拡大して示す断面図である。
FIG. 5 is an enlarged sectional view showing a reburning burner portion which is a part of a reburning furnace according to a third embodiment of the present invention.

【図6】本発明の実施例−4に係る再燃焼炉の一部であ
る再燃焼バーナー部を拡大して示す断面図である。
FIG. 6 is an enlarged cross-sectional view showing a reburning burner portion which is a part of a reburning furnace according to Embodiment 4 of the present invention.

【図7】本発明の実施例−5に係る再燃焼炉の一部であ
る再燃焼バーナー部を拡大して示す断面図である。
FIG. 7 is an enlarged sectional view showing a reburning burner portion which is a part of a reburning furnace according to embodiment-5 of the present invention.

【図8】廃棄物ガス化溶融炉および再燃焼炉を含む排ガ
ス処理設備の一例を示す概略図である。
FIG. 8 is a schematic diagram showing an example of an exhaust gas treatment facility including a waste gasification and melting furnace and a reburning furnace.

【図9】従来技術−Aに係る単純耐火物張り内壁構造形
再燃焼炉の概要を示す断面図である。
FIG. 9 is a cross-sectional view showing an outline of a simple refractory-lined inner wall structure type reburning furnace according to the related art-A.

【図10】従来技術−Bに係る水噴射式耐火物張り内壁
構造形再燃焼炉の概要を示す断面図である。
FIG. 10 is a cross-sectional view showing an outline of a water-injection type refractory-clad inner wall structure type reburning furnace according to the related art-B.

【図11】従来技術−Cに係る循環排ガス吹き込み式再
燃焼炉の概要を示す断面図である。
FIG. 11 is a cross-sectional view showing the outline of a circulating exhaust gas blowing type reburning furnace according to related art-C.

【図12】従来技術−Dに係る旋回溶融炉の概要を示す
断面図である。
FIG. 12 is a cross-sectional view showing an outline of a swirl melting furnace according to related art-D.

【符号の説明】[Explanation of symbols]

1 11・11-1a・11-1b・11-2・11-3・11-4・
11-5 再燃焼炉 11a頂部 11b耐火物炉壁 12 再燃焼バーナー(再燃焼領域) 13 熱分解ガスの入り口(ガス導入口) 14 座板 15 燃焼用空気ヘッダー 15a空気吹き込みノズル(空気吹き込み口) 16 リング状冷却水ヘッダー(水噴霧装置) 16a冷却水噴霧ノズル 17 冷却水噴霧管 17aノズル 18 冷却水供給管 19 燃料供給管 20 切換バルブ 21 冷却水噴霧管 21a噴射ノズル 22 空気吹き込み管 22a吹き込み口 23 空気吹き込み管兼用昇温バーナー管 23a吹き込み口 24 燃料供給管 24a・25a制御バルブ 25 空気供給管
1 11 / 11-1a / 11-1b / 11-2 / 11-3 / 11-4 /
11-5 Reburning Furnace 11a Top 11b Refractory Furnace Wall 12 Reburning Burner (Reburning Area) 13 Pyrolysis Gas Inlet (Gas Inlet) 14 Seat Plate 15 Combustion Air Header 15a Air Injecting Nozzle (Air Inlet) 16 ring-shaped cooling water header (water spray device) 16a cooling water spray nozzle 17 cooling water spray pipe 17a nozzle 18 cooling water supply pipe 19 fuel supply pipe 20 switching valve 21 cooling water spray pipe 21a injection nozzle 22 air blowing pipe 22a blowing port 23 Air-Blowing Pipe Double-Temperature Burner Pipe 23a Blow-in Port 24 Fuel Supply Pipe 24a / 25a Control Valve 25 Air Supply Pipe

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3K061 AA16 AB02 AC06 AC07 BA02 FA02 FA12 FA21 FA23 3K062 AA16 AB02 AC01 AC06 AC07 BA02 BB02 CB03 DA01 DB28 3K065 AA16 AB02 AC01 AC06 AC07 BA02 FA15 FA21 FB03 FB07 3K078 AA02 BA02 BA22 BA24 BA26 CA02 CA18    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3K061 AA16 AB02 AC06 AC07 BA02                       FA02 FA12 FA21 FA23                 3K062 AA16 AB02 AC01 AC06 AC07                       BA02 BB02 CB03 DA01 DB28                 3K065 AA16 AB02 AC01 AC06 AC07                       BA02 FA15 FA21 FB03 FB07                 3K078 AA02 BA02 BA22 BA24 BA26                       CA02 CA18

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 一般廃棄物や産業廃棄物や廃油・廃液な
どの可燃性廃棄物を部分燃焼するか、または間接加熱す
るか、あるいは間接加熱すると共に部分燃焼するかのい
ずれかにより上記可燃性廃棄物が熱分解して発生する、
炭化水素、有機物、油蒸気並びにダストおよび塩化水素
などの腐食性ガスが含まれる可燃性熱分解ガスを前記ダ
ストとともに完全燃焼させるための廃棄物熱分解ガスの
再燃焼炉であって、 前記再燃焼炉の端部に熱分解ガスの導入口を備え、この
導入口の周囲に複数の燃焼用空気吹き込み口を周方向に
設けて再燃焼領域を構成し、 前記再燃焼領域に前記各空気吹き込み口から冷却水を前
記空気とともに炉内に噴霧する水噴霧装置を設けたこと
を特徴とする廃棄物熱分解ガスの再燃焼炉。
1. The above flammability is obtained by partial combustion of combustible waste such as general waste, industrial waste, waste oil and liquid waste, or indirect heating, or indirect heating and partial combustion. Generated by thermal decomposition of waste
A recombustion furnace for waste pyrolysis gas for complete combustion of combustible pyrolysis gas containing hydrocarbon, organic matter, oil vapor, and corrosive gas such as dust and hydrogen chloride together with the dust, An inlet for pyrolysis gas is provided at the end of the furnace, and a plurality of combustion air blowing ports are provided in the circumferential direction to form a reburning region, and each air blowing port is provided in the reburning region. A re-combustion furnace for waste pyrolysis gas, comprising a water spraying device for spraying cooling water into the furnace together with the air.
【請求項2】 前記各空気吹き込み口を前記熱分解ガス
の導入口から導入されたガス流れを中心として旋回流が
発生するように傾斜させるか又はねじるとともに、各空
気吹き込み口を取り囲むように円筒状空気ヘッダーを設
け、この空気ヘッダー内に前記各空気吹き込み口に臨ま
せて複数の冷却水噴霧ノズルを周方向に備えた冷却水ヘ
ッダーを設けたことを特徴とする請求項1記載の廃棄物
熱分解ガスの再燃焼炉。
2. A cylinder that surrounds each air blowing port while tilting or twisting each air blowing port so that a swirl flow is generated around the gas flow introduced from the pyrolysis gas introducing port. 2. The waste product according to claim 1, further comprising a cooling water header provided with a plurality of cooling water spray nozzles in the circumferential direction, the cooling water header facing the respective air blowing ports in the air header. Recombustion furnace for pyrolysis gas.
【請求項3】 熱分解ガスの前記導入口の中心軸部に、
冷却水噴霧管をその下端のノズルを炉内中心部に向けて
設けたことを特徴とする請求項1又は2記載の廃棄物熱
分解ガスの再燃焼炉。
3. A central axis portion of the introduction port of the pyrolysis gas,
The recombustion furnace for waste pyrolysis gas according to claim 1 or 2, wherein the cooling water spray pipe is provided with a nozzle at the lower end thereof directed toward the center of the furnace.
【請求項4】 前記再燃焼炉の上部に複数の冷却水噴霧
管を周方向に間隔をあけ、且つ先端の噴射ノズルを再燃
焼時に発生する火焔の長さ(上流・下流方向間距離)の
1/2よりも先端方向寄りに冷却水が吹き込まれるよう
に炉内の中心軸線に向けて斜め下流側に傾斜させて設け
たことを特徴とする請求項1〜3のいずれかに記載の廃
棄物熱分解ガスの再燃焼炉。
4. A plurality of cooling water spray pipes are circumferentially spaced above the re-combustion furnace, and the injection nozzle at the tip has a flame length (distance between upstream and downstream directions) generated during re-combustion. The disposal according to any one of claims 1 to 3, wherein the cooling water is blown in a direction closer to the front end than 1/2 so as to be inclined toward the central axis of the furnace toward the downstream side. Recombustion furnace for pyrolysis gas.
【請求項5】 前記再燃焼炉頂部の再燃焼領域下流方向
の炉形状を、上流に向けて口径が漸次縮小する円錐台形
あるいは円筒形の上端に上流方向に口径が漸次縮小する
円錐台形を一体化した形状にしたことを特徴とする請求
項1〜4のいずれかに記載の廃棄物熱分解ガスの再燃焼
炉。
5. The shape of the furnace in the downstream direction of the re-combustion region at the top of the re-combustion furnace is a frusto-conical shape in which the diameter gradually decreases toward the upstream, or a frusto-conical shape in which the diameter gradually decreases toward the upper end of the cylindrical shape. The recombustion furnace for waste pyrolysis gas according to any one of claims 1 to 4, characterized in that the furnace has a changed shape.
【請求項6】 前記再燃焼炉頂部における熱分解ガスの
導入口の中心部に、空気吹き込み管をその下端の吹き込
み口を炉内に向けて設けたことを特徴とする請求項1〜
5のいずれかに記載の廃棄物熱分解ガスの再燃焼炉。
6. An air blowing pipe is provided at the center of the introduction port of the pyrolysis gas at the top of the re-combustion furnace with the blowing port at the lower end thereof facing the inside of the furnace.
A recombustion furnace for waste pyrolysis gas according to any one of 5 above.
【請求項7】 冷却水供給管と燃料供給管とを切換バル
ブを介して前記冷却水噴霧管に接続したことを特徴とす
る請求項3記載の廃棄物熱分解ガスの再燃焼炉。
7. The recombustion furnace for waste pyrolysis gas according to claim 3, wherein a cooling water supply pipe and a fuel supply pipe are connected to the cooling water spray pipe via a switching valve.
【請求項8】 前記冷却水噴霧管あるいは前記空気吹き
込み管を金属製管で製作し、その外壁面をリフラクトリ
耐火物、キャスタブル耐火物あるいは磁器製セラミック
スで被覆したことを特徴とする請求項3、4,7又は8
記載の廃棄物熱分解ガスの再燃焼炉。
8. The cooling water spray pipe or the air blowing pipe is made of a metal pipe, and the outer wall surface thereof is coated with a refractory refractory material, castable refractory material, or porcelain ceramics. 4, 7 or 8
Re-combustion furnace for waste pyrolysis gas described.
【請求項9】 前記冷却水の一部に、ごみピット内で生
じたり給塵器で圧縮され塵芥物から分離されたりした汚
水等を使用することを特徴とする請求項1〜8のいずれ
か記載の廃棄物熱分解ガスの再燃焼炉。
9. The sewage or the like generated in a dust pit or separated from dust by being compressed in a dust dispenser is used as a part of the cooling water. Re-combustion furnace for waste pyrolysis gas described.
【請求項10】 前記再燃焼炉内の断熱理論燃焼火焔温
度が1400〜1600℃になるように制御し、次いで
火焔に対する冷却水噴霧により900℃近く(850℃
以上)まで低下させるが、燃焼ガスの温度は局部的でも
少なくとも500℃以上になるように制御することを特
徴とする請求項1〜9のいずれか記載の廃棄物熱分解ガ
スの再燃焼炉の制御方法。
10. The adiabatic theoretical combustion flame temperature in the re-combustion furnace is controlled to be 1400 to 1600 ° C., and then cooling water is sprayed to the flame to bring it to near 900 ° C. (850 ° C.).
The temperature of the combustion gas is controlled so as to be at least 500 ° C. or higher even locally, but the temperature of the combustion gas is controlled to be at least 500 ° C. or higher. Control method.
【請求項11】 前記再燃焼領域の制御を、吹き込み空
気量を一定に保ったうえで、冷却用吹込み水量のみのコ
ントロールによって炉内温度が一定になるように行うこ
とを特徴とする請求項1〜10のいずれか記載の廃棄物
熱分解ガスの再燃焼炉の制御方法。
11. The control of the re-combustion region is performed so that the temperature in the furnace is kept constant by controlling only the amount of blown water for cooling while keeping the amount of blown air constant. 11. The method for controlling a recombustion furnace for waste pyrolysis gas according to any one of 1 to 10.
JP2002001340A 2002-01-08 2002-01-08 Waste pyrolysis gas recombustion furnace and its control method Expired - Fee Related JP3710750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002001340A JP3710750B2 (en) 2002-01-08 2002-01-08 Waste pyrolysis gas recombustion furnace and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002001340A JP3710750B2 (en) 2002-01-08 2002-01-08 Waste pyrolysis gas recombustion furnace and its control method

Publications (2)

Publication Number Publication Date
JP2003202106A true JP2003202106A (en) 2003-07-18
JP3710750B2 JP3710750B2 (en) 2005-10-26

Family

ID=27641484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002001340A Expired - Fee Related JP3710750B2 (en) 2002-01-08 2002-01-08 Waste pyrolysis gas recombustion furnace and its control method

Country Status (1)

Country Link
JP (1) JP3710750B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078239A (en) * 2005-09-14 2007-03-29 Mitsubishi Heavy Ind Ltd Melting furnace of waste gasifying melting device, and control method and device for the same
JP2009019852A (en) * 2007-07-13 2009-01-29 Nippon Steel Engineering Co Ltd Combustion chamber and combustion method of waste gasification melting facility
CN102661138A (en) * 2012-05-11 2012-09-12 葛明龙 Liquid-cooling and gas-cooling air-diesel gas generators and application thereof
JP2013155955A (en) * 2012-01-31 2013-08-15 Kobelco Eco-Solutions Co Ltd Furnace and method of two-stage combustion
JP2013155956A (en) * 2012-01-31 2013-08-15 Kobelco Eco-Solutions Co Ltd Furnace and method of two-stage combustion
JP2013155954A (en) * 2012-01-31 2013-08-15 Kobelco Eco-Solutions Co Ltd Furnace and method of two-stage combustion
JP2016011813A (en) * 2014-06-30 2016-01-21 新日鉄住金エンジニアリング株式会社 Pyrolysis gas combustion method and pyrolysis gas combustion device
KR20190015139A (en) * 2017-08-03 2019-02-13 가부시키가이샤 에바라 세이사꾸쇼 Exhaust gas treatment apparatus
JP2019027776A (en) * 2017-08-03 2019-02-21 株式会社荏原製作所 Exhaust gas treatment equipment
JP2019211183A (en) * 2018-06-07 2019-12-12 日鉄エンジニアリング株式会社 Secondary combustion furnace and method for operating the same
CN112254144A (en) * 2020-11-10 2021-01-22 上海安居乐环保科技股份有限公司 Reducing atmosphere multistage oxidation thermal incinerator and waste gas treatment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107151731B (en) * 2017-07-18 2019-03-29 江苏丰东热技术有限公司 A kind of meshbeltfurnace quickly burns carbon system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548785B2 (en) * 2005-09-14 2010-09-22 三菱重工環境・化学エンジニアリング株式会社 Waste gasification melting apparatus melting furnace, and control method and apparatus in the melting furnace
JP2007078239A (en) * 2005-09-14 2007-03-29 Mitsubishi Heavy Ind Ltd Melting furnace of waste gasifying melting device, and control method and device for the same
JP2009019852A (en) * 2007-07-13 2009-01-29 Nippon Steel Engineering Co Ltd Combustion chamber and combustion method of waste gasification melting facility
JP2013155954A (en) * 2012-01-31 2013-08-15 Kobelco Eco-Solutions Co Ltd Furnace and method of two-stage combustion
JP2013155955A (en) * 2012-01-31 2013-08-15 Kobelco Eco-Solutions Co Ltd Furnace and method of two-stage combustion
JP2013155956A (en) * 2012-01-31 2013-08-15 Kobelco Eco-Solutions Co Ltd Furnace and method of two-stage combustion
CN102661138A (en) * 2012-05-11 2012-09-12 葛明龙 Liquid-cooling and gas-cooling air-diesel gas generators and application thereof
JP2016011813A (en) * 2014-06-30 2016-01-21 新日鉄住金エンジニアリング株式会社 Pyrolysis gas combustion method and pyrolysis gas combustion device
KR20190015139A (en) * 2017-08-03 2019-02-13 가부시키가이샤 에바라 세이사꾸쇼 Exhaust gas treatment apparatus
JP2019027776A (en) * 2017-08-03 2019-02-21 株式会社荏原製作所 Exhaust gas treatment equipment
KR102537741B1 (en) * 2017-08-03 2023-05-26 가부시키가이샤 에바라 세이사꾸쇼 Exhaust gas treatment apparatus
JP2019211183A (en) * 2018-06-07 2019-12-12 日鉄エンジニアリング株式会社 Secondary combustion furnace and method for operating the same
JP7016292B2 (en) 2018-06-07 2022-02-04 日鉄エンジニアリング株式会社 Secondary combustion furnace and its operation method
CN112254144A (en) * 2020-11-10 2021-01-22 上海安居乐环保科技股份有限公司 Reducing atmosphere multistage oxidation thermal incinerator and waste gas treatment method

Also Published As

Publication number Publication date
JP3710750B2 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
JP4548785B2 (en) Waste gasification melting apparatus melting furnace, and control method and apparatus in the melting furnace
JP4479655B2 (en) Grate-type waste incinerator and its combustion control method
JP2003202106A (en) Re-combustion furnace for waste thermal decomposition gas and control method therefor
EP1486729B1 (en) Incinerator
JP2004084981A (en) Waste incinerator
TWI229726B (en) Slagging combustion furnace
JP2007127355A (en) Rubbish incinerating/melting method and device therefor
JP3525077B2 (en) Directly connected incineration ash melting equipment and its operation control method
CN216480987U (en) Melting furnace and treatment system for solid hazardous waste treatment
CN115164209A (en) Fluorine-containing chlorine-containing salt-containing solid-liquid high-temperature melting incinerator
EP0499184B1 (en) Combustion method for simultaneous control of nitrogen oxides and products of incomplete combustion
JP2004169956A (en) Operation method for waste incinerator and incinerator for the method
JP2000199620A (en) Incinerating heat treating furnace for refuse
JP2008275180A (en) Waste melting treatment method and equipment
JP3680659B2 (en) Combustion apparatus and combustion method
CN216619847U (en) Flue gas treatment device for secondary combustion chamber
JPH08121728A (en) Combustion method of gas produced from wastes melting furnace and secondary combustion furnace for wastes melting furnace
JP3585348B2 (en) Burner type ash melting furnace using fluff fuel
JP2004077013A (en) Operation method of waste incinerator, and waste incinerator
JP2004163009A (en) Operation method of waste incineration system and waste incineration system
JP3977995B2 (en) Cyclone melting equipment
JPH11294734A (en) Rotary melting furnace
JP4791157B2 (en) Waste gasification melting equipment melting furnace
JP2003302022A (en) Melting furnace, operation method for melting furnace and gasification melting system
JP3273114B2 (en) Surface melting furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050810

R150 Certificate of patent or registration of utility model

Ref document number: 3710750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees