JP2004244666A - Converter operation method in smelting metal - Google Patents

Converter operation method in smelting metal Download PDF

Info

Publication number
JP2004244666A
JP2004244666A JP2003034123A JP2003034123A JP2004244666A JP 2004244666 A JP2004244666 A JP 2004244666A JP 2003034123 A JP2003034123 A JP 2003034123A JP 2003034123 A JP2003034123 A JP 2003034123A JP 2004244666 A JP2004244666 A JP 2004244666A
Authority
JP
Japan
Prior art keywords
converter
oxygen
containing gas
blowing
white
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003034123A
Other languages
Japanese (ja)
Other versions
JP4099080B2 (en
Inventor
Takeshi Ochi
武 越智
Akira Yamashita
山下  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003034123A priority Critical patent/JP4099080B2/en
Publication of JP2004244666A publication Critical patent/JP2004244666A/en
Application granted granted Critical
Publication of JP4099080B2 publication Critical patent/JP4099080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a converter operation method for improving the productivity of crude copper by increasing a quantity of white matte in a step of manufacturing copper through increasing the quantity of the molten matte to be charged into a converter, and by preventing a blowing-up phenomenon of the white matte owing to blowing of an oxygen-containing gas. <P>SOLUTION: The converter operation method for manufacturing crude copper through accommodating the molten matte in the converter 1 and blowing the oxygen-containing gas, comprises oxidizing the molten matte in the converter by blowing the oxygen-containing gas to separate it into the white matte and slag, removing the slag, further discharging 20 to 30 mass% of the white matte from the converter, blowing the oxygen-containing gas into the white matte in the converter for 30 to 120 minutes, then returning the white matte once discharged from the converter into the converter, and blowing the oxygen-containing gas. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、非鉄金属の溶融製錬工程で溶融マットから粗金属を製造する転炉の操業方法に関する。
【0002】
【従来の技術】
一般に非鉄金属(たとえば銅,ニッケル等)の溶融製錬においては、乾燥した精鉱を自溶炉で溶錬して溶融状態のマット(以下、 溶融マットという)とスラグに分離し、さらに自溶炉で得られた溶融マットを転炉に装入して、酸素を含有するガス(たとえば大気,酸素富化空気等)を吹き込んで酸化反応を起こす(以下、酸素含有ガス吹錬という)ことによって溶融マットの品位を高めて粗金属(たとえば粗銅,粗ニッケル等)を製造する。
【0003】
以下、 銅製錬の場合について説明する。
転炉を用いて溶融マットの酸素含有ガス吹錬を行なうにあたって、まず転炉を傾転して、溶融マットを転炉に装入する。次いで転炉を正立させた後、 酸素含有ガスを羽口から吹き込む。このようにして溶融マット中の不純物成分を酸化して分離し、溶融マットの品位を高める。
【0004】
つまり、自溶炉で得られた溶融マット中の銅含有量は50〜65質量%程度であるが、転炉で酸素含有ガス吹錬を行なうことによって溶融マット中の不純物成分を酸化物としてスラグやSOガスに分離して、溶融マットの品位を高める。 その結果、 銅含有量が約97〜99質量%の粗銅が得られる。
転炉における酸素含有ガス吹錬は、スラグを生成する期間(いわゆる造かん期)と、溶融白かわ(すなわち CuS相)を酸化して粗銅にする期間(いわゆる造銅期)に大別される。
【0005】
造かん期は、たとえば第1造かん期と第2造かん期に区分する場合もあるが、いずれも酸素含有ガス吹錬によって溶融マット中のFeSを酸化してスラグ中に分離するとともに、白かわと呼ばれる CuS相を生成する反応が進行する期間である。
造銅期は、造かん期で生成したスラグを除去した後、酸素含有ガス吹錬によって白かわ(すなわち CuS相)をさらに酸化して、粗銅を生成する反応が進行する期間である。この造銅期の酸素含有ガス吹錬を開始した直後は、酸化反応が安定せず、白かわに吹き込まれる酸素含有ガスの流量(すなわち送風量)が変動する。
【0006】
粗銅の生産性向上を目的として、転炉に装入する溶融マットを増量して酸素含有ガス吹錬を行なう場合には、 造かん期で生成したスラグを除去した後、 造銅期に転炉内に収容された白かわ量も増加して浴面が上昇する。このため送風中に羽口にかかる静水圧が増加する。 その結果、 白かわに吹き込まれる酸素含有ガスの流量が変動する期間(すなわち造銅期の酸素含有ガス吹錬の開始直後)において、酸素含有ガスの流量が増加したときに、転炉の炉口から白かわが吹き上がる。転炉の炉口から吹き上がった白かわは、転炉の炉口や排煙フード,さらに排熱回収装置内に付着して、転炉の回転阻害や排熱回収量の減少等、転炉の操業に支障をきたす。
【0007】
したがって造銅期の酸素含有ガス吹錬を開始した直後からしばらく発生する白かわの吹き上がり現象を防止する必要がある。 そこで、酸素含有ガス吹錬における酸素含有ガスの流量を低下して、白かわの吹き上がり現象を防止しているが、酸化反応の進行が抑制されるので、粗銅の生産性が低下するという問題がある。
【0008】
【発明が解決しようとする課題】
本発明は上記のような問題を解消し、たとえば銅製錬の場合、転炉に装入する溶融マットを増量して造銅期における白かわ量を増加し、かつ酸素含有ガス吹錬による白かわの吹き上がり現象を防止して、粗銅の生産性を向上できる転炉操業方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、転炉に溶融マットを収容して酸素含有ガス吹錬を行ない粗金属を製造する転炉操業方法において、酸素含有ガス吹錬によって転炉内の溶融マットを酸化して白かわとスラグとに分離して、 スラグを除去し、さらに白かわを転炉から排出して、転炉内の白かわの酸素含有ガス吹錬を一定時間行なった後、 排出した白かわを転炉に装入して酸素含有ガス吹錬を行なうことによって白かわを酸化して粗金属を製造する転炉操業方法である。
【0010】
前記した発明においては、第1の好適態様として、白かわのうちの5〜40質量%を転炉から排出して、転炉内の白かわの酸素含有ガス吹錬を30〜120 分間行なった後、 転炉から排出した白かわを転炉に装入することが好ましい。
また第2の好適態様として、白かわのうちの20〜30質量%を転炉から排出して、転炉内の白かわの酸素含有ガス吹錬を30〜120 分間行なった後、 転炉から排出した白かわを転炉に装入することが好ましい。
【0011】
また第3の好適態様として、粗金属が、粗銅または粗ニッケルであることが好ましい。
【0012】
【発明の実施の形態】
図1は、本発明を適用する銅製錬の装置の例を模式的に示す配置図である。
転炉1で行なう酸素含有ガス吹錬は、自溶炉(図示せず)で得られた溶融マットの品位を高めるものである。すなわち自溶炉で得られた銅含有量50〜65質量%程度の溶融マットを炉口3から転炉1に装入し、酸素を含有するガス(たとえば大気,酸素富化空気等)を羽口2から吹き込んで酸素含有ガス吹錬を行ない、銅含有量が約97〜99質量%の粗銅を製造する。
【0013】
この酸素含有ガス吹錬は、スラグを生成する期間(いわゆる造かん期)と、後期の溶融白かわの品位を高める期間(いわゆる造銅期)に大別される。
造かん期の酸素含有ガス吹錬を行なうにあたって、転炉1を傾転して炉口3から天井クレーン(図示せず)を用いてレードル7内の溶融マットを転炉1に装入し、 さらに転炉1を正立して羽口2から酸素含有ガスを吹き込む。造かん期は、複数の造かん期(たとえば第1造かん期と第2造かん期、あるいは第1造かん期,第2造かん期と第3造かん期)に区分される場合もあるが、いずれも羽口2から吹き込まれる酸素含有ガス中の酸素によって溶融マット中のFeSを酸化して、Fe分はスラグ中に分離し、S分はSOガスに分離するとともに、白かわ(すなわち CuS相)を生成する反応が進行する。造かん期(たとえば第1造かん期および第2造かん期)の酸素含有ガス吹錬が終了すると、転炉1を傾転して炉口3からスラグをスラグ用レードルに除去する。
【0014】
最終造かん期(たとえば第2造かん期あるいは第3造かん期)のスラグを除去した後、別の白かわ用レードルを転炉1前に用意する。
次いで、転炉1を傾転して炉口3から白かわを排出し、レードル7に一旦貯留する。 このときの白かわの排出量が、スラグを除去した後の転炉1内に収容されていた白かわ量の20質量%未満では、後述する造銅期の酸素含有ガス吹錬によって、白かわが炉口3から吹き上がる。 一方、 30質量%を超えると、炉内の白かわ量が少なく、反応時間が短くなるため、排出した白かわを炉内に再装入する際に白かわが吹き上がる場合がある。したがって、最終造かん期で生成したスラグを除去した後、 転炉1から排出する白かわ量は、スラグを除去した後の転炉1内に収容されていた白かわ量に対して20〜30質量%の範囲内が好ましい。なお、白かわは第1造かん期終了後に排出しても良いし、 あるいは第2造かん期終了後に排出しても良く、操業状況に応じて選択すれば良い。
【0015】
次いで造銅期の酸素含有ガス吹錬を行なうために、転炉1を正立させて、転炉1内に残留する白かわに羽口2から酸素含有ガスを吹き込む。このとき転炉1内に残留する白かわの浴面は低下しているので、白かわに吹き込まれる酸素含有ガスの流量が変動する期間(すなわち造銅期の空気吹錬の開始直後)において、酸素含有ガスの流量が増加しても、転炉1の炉口3から白かわが吹き上がるのを防止できる。しかも転炉1内の白かわ量が減少しているので、羽口2にかかる白かわによる静水圧力も小さくなり、羽口2に酸素含有ガスを送給する送風機(図示せず)の負荷を軽減でき、電力消費を削減できる。
【0016】
こうして造銅期の酸素含有ガス吹錬を30〜120 分間行なった後、 転炉1を傾転して定位置に戻し、送風を止め、 次いでレードル7に貯留した溶融白かわを、再度、炉口3から転炉1に装入する。この白かわは、排出した同じ転炉1のものであっても良いし、あるいは他の転炉1から排出したものを装入しても良い。 造銅期の酸素含有ガス吹錬を開始してからレードル7に貯留した白かわを再度装入するまでの所要時間が30分未満では、酸素含有ガス吹錬における酸素含有ガスの流量が安定していないので、酸素含有ガスの流量が増加したときに炉口3から白かわが吹き上がる。一方、 120分を超えると、炉内の白かわは反応の終点付近であるため、レードル7から再度装入した白かわ中の未反応の CuSが集中的に酸化するので、白かわが炉口3から吹き上がる場合がある。したがって、造銅期の酸素含有ガス吹錬を開始してからレードル7に貯留した白かわを再度装入するまでの所要時間は30〜120 分の範囲内が好ましい。
【0017】
その後、 転炉1を正立させて、さらに酸素含有ガス吹錬を継続して行ない、粗銅を製造する。
本発明では、転炉1に収容する溶融マットを増量しても、造銅期の酸素含有ガス吹錬を開始した直後の酸素含有ガスの流量が変動する期間に、転炉1の炉口3から白かわが吹き上がるのを防止して、転炉1を支障なく操業できる。したがって、酸素含有ガス吹錬における酸素含有ガスの流量を低下させる必要がないので、粗銅の生産性が向上する。しかも造銅期の開始直後には転炉1内の白かわ量が減少しているので、羽口2に酸素含有ガスを送給する送風機の負荷を軽減でき、電力消費を削減できる。
【0018】
【実施例】
銅の乾式製錬において、図1に示す装置(PS型転炉,直径3960mm,長さ13000mm )を用いて、Cu品位63質量%の溶融マットの酸素含有ガス吹錬を行ない、粗銅を製造した。すなわち自溶炉で得られた溶融マットを第1造かん期では170ton,第2造かん期では50ton 、転炉1に装入して造かん期の酸素含有ガス吹錬を行なった。生成したスラグを除去した後、 白かわ45ton をレードル7に排出した。このときレードル7に貯留した白かわ量は、スラグを除去した後の転炉1内に収容されていた白かわ量の24質量%に相当する。
【0019】
次いで転炉1内に残留する白かわに造銅期の酸素含有ガス吹錬を90分間行なった。その後、 天井クレーン(図示せず)によりレードル7に貯留していた白かわを転炉1に再度装入して、造銅期の酸素含有ガス吹錬を継続して行ない、粗銅を製造した。 このときの平均送風量は 44100Nm/hrであった。これを発明例とする。
【0020】
一方、 比較例として、自溶炉で得られた溶融マットを発明例と同様に転炉1に装入して造かん期の酸素含有ガス吹錬を行なった。生成したスラグを除去した後、 造銅期の酸素含有ガス吹錬を行ない、粗銅を製造した。 このときの平均送風量は 42800Nm/hrであった。
したがって本発明では、転炉1に装入する溶融マットを増量して酸素含有ガス吹錬を行なっても、送風量を低下させることなく、白かわの吹き上がり現象を防止できることが確かめられた。しかも本発明を適用して転炉1を操業すると、送風量が増加するので、造銅期の酸素含有ガス吹錬の所要時間が短縮され、生産性が向上した。
【0021】
【発明の効果】
本発明では、転炉に装入する溶融マットを増量して酸素含有ガス吹錬を行なっても、送風量を低下させることなく、白かわが吹き上がるのを防止できるので、粗銅の生産性が向上する。しかも造銅期の開始直後には転炉内の白かわ量が減少しているので、羽口に酸素含有ガスを送給する送風機の負荷を軽減でき、電力消費を削減できる。
【図面の簡単な説明】
【図1】本発明を適用する装置の例を模式的に示す配置図である。
【符号の説明】
1 転炉
2 羽口
3 炉口
4 傾転装置
5 排熱ボイラー
6 可動フード
7 レードル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of operating a converter for producing a coarse metal from a molten mat in a smelting process of a non-ferrous metal.
[0002]
[Prior art]
Generally, in the smelting and refining of non-ferrous metals (eg, copper, nickel, etc.), the dried concentrate is smelted in a flash smelting furnace and separated into a molten mat (hereinafter referred to as a smelting mat) and slag. The molten mat obtained in the furnace is charged into a converter, and an oxygen-containing gas (for example, the atmosphere, oxygen-enriched air, etc.) is blown to cause an oxidation reaction (hereinafter referred to as oxygen-containing gas blowing). The quality of the molten mat is enhanced to produce crude metal (for example, crude copper, crude nickel, etc.).
[0003]
Hereinafter, the case of copper smelting will be described.
In blowing oxygen-containing gas from a molten mat using a converter, the converter is first tilted and the molten mat is charged into the converter. Next, after erecting the converter, an oxygen-containing gas is blown from the tuyere. In this way, the impurity components in the molten mat are oxidized and separated, thereby improving the quality of the molten mat.
[0004]
That is, the copper content in the molten mat obtained in the flash smelting furnace is about 50 to 65% by mass, but by blowing oxygen-containing gas in the converter, the impurity components in the molten mat are converted into oxides to form slag. Or SO 2 gas to enhance the quality of the molten mat. As a result, blister copper having a copper content of about 97 to 99% by mass is obtained.
Oxygen-containing gas blowing in a converter is roughly divided into a period in which slag is generated (so-called copper making period) and a period in which molten white glue (that is, Cu 2 S phase) is oxidized into blister copper (so-called copper making period). Is done.
[0005]
The fermentation period may be divided into, for example, a first fermentation period and a second fermentation period. In each case, FeS in the molten mat is oxidized by oxygen-containing gas blowing to separate into slag, and whitening is performed. This is a period during which a reaction for generating a Cu 2 S phase called glue proceeds.
The copper making period is a period in which, after removing the slag generated in the fermentation period, the white glue (that is, the Cu 2 S phase) is further oxidized by oxygen-containing gas blowing to advance a reaction for producing blister copper. Immediately after the start of the oxygen-containing gas blowing in the copper-making period, the oxidation reaction is not stable, and the flow rate of the oxygen-containing gas blown into the white mold (that is, the blowing amount) fluctuates.
[0006]
When blowing oxygen-containing gas by increasing the amount of molten mat to be charged into the converter to improve the productivity of blister copper, remove the slag generated during the fermentation period, and then The amount of white glue housed inside also increases and the bath surface rises. For this reason, the hydrostatic pressure applied to the tuyere during blowing is increased. As a result, when the flow rate of the oxygen-containing gas increases during the period in which the flow rate of the oxygen-containing gas blown into the white rice fluctuates (that is, immediately after the start of the oxygen-containing gas blowing in the copper-making period), the furnace outlet of the converter The white cube blows up from. White glue blown up from the furnace mouth of the converter adheres to the furnace mouth of the converter, the smoke exhaust hood, and the exhaust heat recovery device. Hinders the operation of
[0007]
Therefore, it is necessary to prevent the blow-up phenomenon of white glue which occurs for a while immediately after the start of the oxygen-containing gas blowing in the copper making stage. Therefore, although the flow rate of the oxygen-containing gas in the oxygen-containing gas blowing is reduced to prevent the blow-up phenomenon of white glue, the problem is that the productivity of blister copper decreases because the progress of the oxidation reaction is suppressed. There is.
[0008]
[Problems to be solved by the invention]
The present invention solves the above problems, for example, in the case of copper smelting, increases the amount of molten mat to be charged into the converter to increase the amount of white mold in the copper making period, and white mold by oxygen-containing gas blowing. It is an object of the present invention to provide a converter operating method capable of preventing the blow-up phenomenon of copper and improving the productivity of blister copper.
[0009]
[Means for Solving the Problems]
The present invention relates to a converter operating method for producing a crude metal by accommodating a molten mat in a converter and performing oxygen-containing gas blowing, wherein the molten mat in the converter is oxidized by oxygen-containing gas blowing to form a white mold. Separated into slag, slag is removed, white mold is discharged from the converter, oxygen-containing gas is blown from the converter in the converter for a certain period of time, and the discharged white mold is converted into the converter. This is a converter operation method for oxidizing white glue to produce a crude metal by charging and blowing oxygen-containing gas.
[0010]
In the above-described invention, as a first preferred embodiment, 5 to 40% by mass of the white glue is discharged from the converter, and oxygen-containing gas blowing of the white glue in the converter is performed for 30 to 120 minutes. Thereafter, it is preferable to charge the white glue discharged from the converter into the converter.
In a second preferred embodiment, 20 to 30% by mass of the white glue is discharged from the converter, and the oxygen-containing gas is blown from the converter for 30 to 120 minutes. It is preferable to charge the discharged white glue to a converter.
[0011]
In a third preferred embodiment, the crude metal is preferably crude copper or crude nickel.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a layout diagram schematically showing an example of a copper smelting apparatus to which the present invention is applied.
The oxygen-containing gas blowing in the converter 1 improves the quality of the molten mat obtained in the flash smelting furnace (not shown). That is, a molten mat having a copper content of about 50 to 65% by mass obtained in a flash furnace is charged into a converter 1 from a furnace port 3, and a gas containing oxygen (for example, the atmosphere, oxygen-enriched air, or the like) is blown. An oxygen-containing gas is blown from the port 2 to produce blister copper having a copper content of about 97 to 99% by mass.
[0013]
This oxygen-containing gas blowing is roughly divided into a period in which slag is generated (so-called iron making period) and a period in which the quality of molten white glue in the latter stage is enhanced (so-called copper making period).
In performing oxygen-containing gas blowing during the sintering period, the converter 1 is tilted, and the molten mat in the ladle 7 is charged from the furnace opening 3 into the converter 1 using an overhead crane (not shown). Further, the converter 1 is erected and an oxygen-containing gas is blown from the tuyere 2. The perception period may be divided into a plurality of perception periods (for example, the first perception period and the second perception period, or the first perception period, the second perception period, and the third perception period). However, in each case, FeS in the molten mat is oxidized by oxygen in the oxygen-containing gas blown from the tuyere 2 so that the Fe component is separated into slag, the S component is separated into SO 2 gas, and white glue ( That is, the reaction for producing the Cu 2 S phase proceeds. When the oxygen-containing gas blowing in the cooking period (for example, the first cooking period and the second cooking period) is completed, the converter 1 is tilted to remove slag from the furnace port 3 to the slag ladle.
[0014]
After removing the slag in the final cooking period (for example, the second cooking period or the third cooking period), another white glue ladle is prepared in front of the converter 1.
Next, the converter 1 is tilted to discharge the white mold from the furnace opening 3 and temporarily stored in the ladle 7. If the amount of white glue discharged at this time is less than 20% by mass of the amount of white glue contained in the converter 1 after the removal of the slag, the white glue is blown by the oxygen-containing gas during the copper making stage described later. Blows up from the furnace opening 3. On the other hand, if it exceeds 30% by mass, the amount of white glue in the furnace is small and the reaction time is short, so that when the discharged white glue is recharged into the furnace, white glue may blow up. Therefore, the amount of white mold discharged from the converter 1 after removing the slag generated in the final cooking period is 20 to 30 with respect to the amount of white mold contained in the converter 1 after removing the slag. It is preferably within the range of mass%. In addition, the white glue may be discharged after the end of the first cooking period, or may be discharged after the completion of the second cooking period, and may be selected according to the operation situation.
[0015]
Next, in order to perform the oxygen-containing gas blowing in the copper making period, the converter 1 is erected, and the oxygen-containing gas is blown from the tuyere 2 into the white mold remaining in the converter 1. At this time, since the bath surface of the white glue remaining in the converter 1 is lowered, during the period when the flow rate of the oxygen-containing gas blown into the white glue fluctuates (that is, immediately after the start of the air blowing in the copper making period). Even if the flow rate of the oxygen-containing gas increases, it is possible to prevent white mold from blowing up from the furnace opening 3 of the converter 1. In addition, since the amount of white glue in the converter 1 is reduced, the hydrostatic pressure due to the white glue applied to the tuyere 2 is also small, and the load of a blower (not shown) for feeding the oxygen-containing gas to the tuyere 2 is reduced. The power consumption can be reduced.
[0016]
After blowing the oxygen-containing gas during the copper making period for 30 to 120 minutes in this way, the converter 1 was tilted back to the home position, the air blowing was stopped, and then the molten white glue stored in the ladle 7 was again removed from the furnace. Charge the converter 1 through the port 3. This white glue may be from the same converter 1 discharged, or may be charged from another converter 1. If the time required from the start of the blowing of the oxygen-containing gas in the copper making period to the reloading of the white glue stored in the ladle 7 is less than 30 minutes, the flow rate of the oxygen-containing gas in the oxygen-containing gas blowing becomes stable. Therefore, when the flow rate of the oxygen-containing gas increases, white glue blows up from the furnace port 3. On the other hand, if it exceeds 120 minutes, the white glue in the furnace is near the end point of the reaction, and the unreacted Cu 2 S in the white glue recharged from the ladle 7 is oxidized intensively. It may blow up from the furnace opening 3. Therefore, the required time from the start of the oxygen-containing gas blowing in the copper making period to the reloading of the white glue stored in the ladle 7 is preferably in the range of 30 to 120 minutes.
[0017]
Thereafter, the converter 1 is erected, and oxygen-containing gas blowing is continued to produce blister copper.
In the present invention, even if the amount of the molten mat to be accommodated in the converter 1 is increased, the flow rate of the oxygen-containing gas immediately after the start of the oxygen-containing gas blowing in the copper making period fluctuates. The converter 1 can be operated without hindrance by preventing white rice from blowing up. Therefore, it is not necessary to reduce the flow rate of the oxygen-containing gas in the oxygen-containing gas blowing, thereby improving the productivity of blister copper. Moreover, since the amount of white mold in the converter 1 is reduced immediately after the start of the copper making period, the load on the blower that supplies the oxygen-containing gas to the tuyere 2 can be reduced, and the power consumption can be reduced.
[0018]
【Example】
In the dry smelting of copper, using a device shown in FIG. 1 (PS type converter, diameter 3960 mm, length 13000 mm 2), a molten mat having a Cu grade of 63% by mass was blown with oxygen-containing gas to produce blister copper. . That is, the molten mat obtained in the flash smelting furnace was charged into the converter 1 at 170 tons in the first sintering period and 50 tons in the second sintering period, and oxygen-containing gas blowing in the sintering period was performed. After removing the generated slag, 45 tons of white glue was discharged to ladle 7. At this time, the amount of white mold stored in the ladle 7 is equivalent to 24% by mass of the amount of white mold contained in the converter 1 after removing the slag.
[0019]
Next, oxygen-containing gas blowing in the coppermaking stage was performed on the white glue remaining in the converter 1 for 90 minutes. Thereafter, the white glue stored in the ladle 7 was charged into the converter 1 again by an overhead crane (not shown), and the oxygen-containing gas blowing in the copper making period was continued to produce blister copper. The average air volume at this time was 44100 Nm 3 / hr. This is an invention example.
[0020]
On the other hand, as a comparative example, the molten mat obtained in the flash smelting furnace was charged into the converter 1 in the same manner as in the invention example, and the oxygen-containing gas was blown during the fermentation period. After removing the generated slag, oxygen-containing gas was blown during the copper making stage to produce blister copper. The average air volume at this time was 42,800 Nm 3 / hr.
Therefore, in the present invention, it was confirmed that even if the amount of the molten mat charged into the converter 1 was increased and the oxygen-containing gas was blown, the blow-up phenomenon of white glue could be prevented without reducing the blown air volume. In addition, when the converter 1 is operated by applying the present invention, the amount of air blow increases, so that the time required for blowing the oxygen-containing gas during the copper making period is reduced, and the productivity is improved.
[0021]
【The invention's effect】
In the present invention, even if the oxygen-containing gas blowing is performed by increasing the amount of the molten mat to be charged into the converter, the blown copper can be prevented from blowing up without reducing the blown air volume, so that the productivity of blister copper is reduced. improves. In addition, since the amount of white mold in the converter is reduced immediately after the start of the copper making period, the load on the blower that supplies the oxygen-containing gas to the tuyeres can be reduced, and the power consumption can be reduced.
[Brief description of the drawings]
FIG. 1 is a layout diagram schematically showing an example of an apparatus to which the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Converter 2 Tuyere 3 Furnace opening 4 Tilt device 5 Waste heat boiler 6 Movable hood 7 Ladle

Claims (4)

転炉に溶融マットを収容して酸素含有ガス吹錬を行ない粗金属を製造する転炉操業方法において、前記酸素含有ガス吹錬によって前記転炉内の前記溶融マットを酸化して白かわとスラグとに分離して、 前記スラグを除去し、さらに前記白かわを前記転炉から排出して、前記転炉内の前記白かわの前記酸素含有ガス吹錬を行なった後、 前記白かわを前記転炉に装入して前記酸素含有ガス吹錬を行なうことによって前記白かわを酸化して粗金属を製造することを特徴とする転炉操業方法。In a converter operation method for producing a crude metal by accommodating a molten mat in a converter and performing oxygen-containing gas blowing, the molten mat in the converter is oxidized by the oxygen-containing gas blowing to produce white glue and slag. After removing the slag, further discharging the white mold from the converter, performing the oxygen-containing gas blowing of the white mold in the converter, A method of operating a converter, comprising charging a white mold into a converter to blow the oxygen-containing gas and oxidizing the white mold to produce a crude metal. 前記白かわのうちの5〜40質量%を前記転炉から排出して、前記転炉内の前記白かわの前記酸素含有ガス吹錬を30〜120 分間行なった後、 前記転炉から排出した前記白かわを前記転炉に装入することを特徴とする請求項1に記載の転炉操業方法。5 to 40% by mass of the white glue was discharged from the converter, the oxygen-containing gas blowing of the white glue in the converter was performed for 30 to 120 minutes, and then discharged from the converter. The converter operation method according to claim 1, wherein the white glue is charged into the converter. 前記白かわのうちの20〜30質量%を前記転炉から排出して、前記転炉内の前記白かわの前記酸素含有ガス吹錬を30〜120 分間行なった後、 前記転炉から排出した前記白かわを前記転炉に装入することを特徴とする請求項1に記載の転炉操業方法。20 to 30% by mass of the white glue was discharged from the converter, the oxygen-containing gas was blown from the white glue in the converter for 30 to 120 minutes, and then discharged from the converter. The converter operation method according to claim 1, wherein the white glue is charged into the converter. 前記粗金属が、粗銅または粗ニッケルであることを特徴とする請求項1、2または3に記載の転炉操業方法。4. The converter operating method according to claim 1, wherein the crude metal is crude copper or crude nickel. 5.
JP2003034123A 2003-02-12 2003-02-12 Converter operation method in metal melting and smelting. Expired - Lifetime JP4099080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034123A JP4099080B2 (en) 2003-02-12 2003-02-12 Converter operation method in metal melting and smelting.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034123A JP4099080B2 (en) 2003-02-12 2003-02-12 Converter operation method in metal melting and smelting.

Publications (2)

Publication Number Publication Date
JP2004244666A true JP2004244666A (en) 2004-09-02
JP4099080B2 JP4099080B2 (en) 2008-06-11

Family

ID=33019899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034123A Expired - Lifetime JP4099080B2 (en) 2003-02-12 2003-02-12 Converter operation method in metal melting and smelting.

Country Status (1)

Country Link
JP (1) JP4099080B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026459A1 (en) * 2021-08-27 2023-03-02 Jx金属株式会社 Smelting furnace and method for operating same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026459A1 (en) * 2021-08-27 2023-03-02 Jx金属株式会社 Smelting furnace and method for operating same
JP7257594B1 (en) * 2021-08-27 2023-04-13 Jx金属株式会社 Smelting furnace and its operation method

Also Published As

Publication number Publication date
JP4099080B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
KR930001125B1 (en) Method for manufacturing molten metal containing ni &amp; cr
RU2352672C2 (en) Extraction method of metallic element, particularly metallic chromium, from charge containing metal oxides in arc furnace
JP2004244666A (en) Converter operation method in smelting metal
WO2019102705A1 (en) Low/medium-carbon ferromanganese production method
JP4780910B2 (en) How to remove hot metal
JPH0693351A (en) Production of tough pitch copper
JP3889511B2 (en) Operation method of copper converter
JP3695149B2 (en) Converter operation method
RU2209840C2 (en) Method of cleaning slag in electrical furnace
JP3239691B2 (en) Arc furnace melting method
JP3747155B2 (en) How to operate a wrought copper furnace
JP2009052070A (en) Method for dephosphorizing molten iron
JP2895828B1 (en) Method for producing blister copper by converter
JP3024206B2 (en) Refining method of metal sulfide ore
JPH0120208B2 (en)
JP5575026B2 (en) Iron / tin-containing copper processing apparatus and iron / tin-containing copper processing method
SU1344801A1 (en) Method of converting copper matte
JP3408934B2 (en) Vacuum degassing reactor for refining low carbon steel
JP3578515B2 (en) Melting method of chromium-containing steel
JP3176679B2 (en) Converter scouring method
JP2000096123A (en) Method for restraining sticking of metal in refining furnace
JP3591098B2 (en) Operating method of copper smelting furnace
JP2003166012A (en) Method for dephosphorizing molten pig iron
JP2005133117A (en) Method for producing low phosphorus molten pig iron
JP2004107716A (en) Method for producing extra-low sulfur steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080314

R150 Certificate of patent or registration of utility model

Ref document number: 4099080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term