JP4099080B2 - Converter operation method in metal melting and smelting. - Google Patents

Converter operation method in metal melting and smelting. Download PDF

Info

Publication number
JP4099080B2
JP4099080B2 JP2003034123A JP2003034123A JP4099080B2 JP 4099080 B2 JP4099080 B2 JP 4099080B2 JP 2003034123 A JP2003034123 A JP 2003034123A JP 2003034123 A JP2003034123 A JP 2003034123A JP 4099080 B2 JP4099080 B2 JP 4099080B2
Authority
JP
Japan
Prior art keywords
converter
oxygen
containing gas
white
gas blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003034123A
Other languages
Japanese (ja)
Other versions
JP2004244666A (en
Inventor
武 越智
山下  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003034123A priority Critical patent/JP4099080B2/en
Publication of JP2004244666A publication Critical patent/JP2004244666A/en
Application granted granted Critical
Publication of JP4099080B2 publication Critical patent/JP4099080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非鉄金属の溶融製錬工程で溶融マットから粗金属を製造する転炉の操業方法に関する。
【0002】
【従来の技術】
一般に非鉄金属(たとえば銅,ニッケル等)の溶融製錬においては、乾燥した精鉱を自溶炉で溶錬して溶融状態のマット(以下、 溶融マットという)とスラグに分離し、さらに自溶炉で得られた溶融マットを転炉に装入して、酸素を含有するガス(たとえば大気,酸素富化空気等)を吹き込んで酸化反応を起こす(以下、酸素含有ガス吹錬という)ことによって溶融マットの品位を高めて粗金属(たとえば粗銅,粗ニッケル等)を製造する。
【0003】
以下、 銅製錬の場合について説明する。
転炉を用いて溶融マットの酸素含有ガス吹錬を行なうにあたって、まず転炉を傾転して、溶融マットを転炉に装入する。次いで転炉を正立させた後、 酸素含有ガスを羽口から吹き込む。このようにして溶融マット中の不純物成分を酸化して分離し、溶融マットの品位を高める。
【0004】
つまり、自溶炉で得られた溶融マット中の銅含有量は50〜65質量%程度であるが、転炉で酸素含有ガス吹錬を行なうことによって溶融マット中の不純物成分を酸化物としてスラグやSO2 ガスに分離して、溶融マットの品位を高める。 その結果、 銅含有量が約97〜99質量%の粗銅が得られる。
転炉における酸素含有ガス吹錬は、スラグを生成する期間(いわゆる造かん期)と、溶融白かわ(すなわち Cu2S相)を酸化して粗銅にする期間(いわゆる造銅期)に大別される。
【0005】
造かん期は、たとえば第1造かん期と第2造かん期に区分する場合もあるが、いずれも酸素含有ガス吹錬によって溶融マット中のFeSを酸化してスラグ中に分離するとともに、白かわと呼ばれる Cu2S相を生成する反応が進行する期間である。
造銅期は、造かん期で生成したスラグを除去した後、酸素含有ガス吹錬によって白かわ(すなわち Cu2S相)をさらに酸化して、粗銅を生成する反応が進行する期間である。この造銅期の酸素含有ガス吹錬を開始した直後は、酸化反応が安定せず、白かわに吹き込まれる酸素含有ガスの流量(すなわち送風量)が変動する。
【0006】
粗銅の生産性向上を目的として、転炉に装入する溶融マットを増量して酸素含有ガス吹錬を行なう場合には、 造かん期で生成したスラグを除去した後、 造銅期に転炉内に収容された白かわ量も増加して浴面が上昇する。このため送風中に羽口にかかる静水圧が増加する。 その結果、 白かわに吹き込まれる酸素含有ガスの流量が変動する期間(すなわち造銅期の酸素含有ガス吹錬の開始直後)において、酸素含有ガスの流量が増加したときに、転炉の炉口から白かわが吹き上がる。転炉の炉口から吹き上がった白かわは、転炉の炉口や排煙フード,さらに排熱回収装置内に付着して、転炉の回転阻害や排熱回収量の減少等、転炉の操業に支障をきたす。
【0007】
したがって造銅期の酸素含有ガス吹錬を開始した直後からしばらく発生する白かわの吹き上がり現象を防止する必要がある。 そこで、酸素含有ガス吹錬における酸素含有ガスの流量を低下して、白かわの吹き上がり現象を防止しているが、酸化反応の進行が抑制されるので、粗銅の生産性が低下するという問題がある。
【0008】
【発明が解決しようとする課題】
本発明は上記のような問題を解消し、たとえば銅製錬の場合、転炉に装入する溶融マットを増量して造銅期における白かわ量を増加し、かつ酸素含有ガス吹錬による白かわの吹き上がり現象を防止して、粗銅の生産性を向上できる転炉操業方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、転炉に溶融マットを収容して酸素含有ガス吹錬を行ない粗金属を製造する転炉操業方法において、酸素含有ガス吹錬によって転炉内の溶融マットを酸化して白かわとスラグとに分離して、スラグを除去し、さらに白かわの一部を転炉から排出して、転炉内に残った白かわについて酸素含有ガス吹錬を一定時間行なった後、排出しておい一部白かわを転炉に再度装入して酸素含有ガス吹錬を行なうことによって白かわを酸化して粗金属を製造する転炉操業方法である。
【0010】
前記した発明においては、第1の好適態様として、白かわのうちの5〜40質量%を転炉から排出して、転炉内の白かわの酸素含有ガス吹錬を30〜120 分間行なった後、 転炉から排出した白かわを転炉に装入することが好ましい。
また第2の好適態様として、白かわのうちの20〜30質量%を転炉から排出して、転炉内の白かわの酸素含有ガス吹錬を30〜120 分間行なった後、 転炉から排出した白かわを転炉に装入することが好ましい。
【0011】
また第3の好適態様として、粗金属が、粗銅または粗ニッケルであることが好ましい。
【0012】
【発明の実施の形態】
図1は、本発明を適用する銅製錬の装置の例を模式的に示す配置図である。
転炉1で行なう酸素含有ガス吹錬は、自溶炉(図示せず)で得られた溶融マットの品位を高めるものである。すなわち自溶炉で得られた銅含有量50〜65質量%程度の溶融マットを炉口3から転炉1に装入し、酸素を含有するガス(たとえば大気,酸素富化空気等)を羽口2から吹き込んで酸素含有ガス吹錬を行ない、銅含有量が約97〜99質量%の粗銅を製造する。
【0013】
この酸素含有ガス吹錬は、スラグを生成する期間(いわゆる造かん期)と、後期の溶融白かわの品位を高める期間(いわゆる造銅期)に大別される。
造かん期の酸素含有ガス吹錬を行なうにあたって、転炉1を傾転して炉口3から天井クレーン(図示せず)を用いてレードル7内の溶融マットを転炉1に装入し、 さらに転炉1を正立して羽口2から酸素含有ガスを吹き込む。造かん期は、複数の造かん期(たとえば第1造かん期と第2造かん期、あるいは第1造かん期,第2造かん期と第3造かん期)に区分される場合もあるが、いずれも羽口2から吹き込まれる酸素含有ガス中の酸素によって溶融マット中のFeSを酸化して、Fe分はスラグ中に分離し、S分はSO2 ガスに分離するとともに、白かわ(すなわち Cu2S相)を生成する反応が進行する。造かん期(たとえば第1造かん期および第2造かん期)の酸素含有ガス吹錬が終了すると、転炉1を傾転して炉口3からスラグをスラグ用レードルに除去する。
【0014】
最終造かん期(たとえば第2造かん期あるいは第3造かん期)のスラグを除去した後、別の白かわ用レードルを転炉1前に用意する。
次いで、転炉1を傾転して炉口3から白かわを排出し、レードル7に一旦貯留する。 このときの白かわの排出量が、スラグを除去した後の転炉1内に収容されていた白かわ量の20質量%未満では、後述する造銅期の酸素含有ガス吹錬によって、白かわが炉口3から吹き上がる。 一方、 30質量%を超えると、炉内の白かわ量が少なく、反応時間が短くなるため、排出した白かわを炉内に再装入する際に白かわが吹き上がる場合がある。したがって、最終造かん期で生成したスラグを除去した後、 転炉1から排出する白かわ量は、スラグを除去した後の転炉1内に収容されていた白かわ量に対して20〜30質量%の範囲内が好ましい。なお、白かわは第1造かん期終了後に排出しても良いし、 あるいは第2造かん期終了後に排出しても良く、操業状況に応じて選択すれば良い。
【0015】
次いで造銅期の酸素含有ガス吹錬を行なうために、転炉1を正立させて、転炉1内に残留する白かわに羽口2から酸素含有ガスを吹き込む。このとき転炉1内に残留する白かわの浴面は低下しているので、白かわに吹き込まれる酸素含有ガスの流量が変動する期間(すなわち造銅期の空気吹錬の開始直後)において、酸素含有ガスの流量が増加しても、転炉1の炉口3から白かわが吹き上がるのを防止できる。しかも転炉1内の白かわ量が減少しているので、羽口2にかかる白かわによる静水圧力も小さくなり、羽口2に酸素含有ガスを送給する送風機(図示せず)の負荷を軽減でき、電力消費を削減できる。
【0016】
こうして造銅期の酸素含有ガス吹錬を30〜120 分間行なった後、 転炉1を傾転して定位置に戻し、送風を止め、 次いでレードル7に貯留した溶融白かわを、再度、炉口3から転炉1に装入する。この白かわは、排出した同じ転炉1のものであっても良いし、あるいは他の転炉1から排出したものを装入しても良い。 造銅期の酸素含有ガス吹錬を開始してからレードル7に貯留した白かわを再度装入するまでの所要時間が30分未満では、酸素含有ガス吹錬における酸素含有ガスの流量が安定していないので、酸素含有ガスの流量が増加したときに炉口3から白かわが吹き上がる。一方、 120分を超えると、炉内の白かわは反応の終点付近であるため、レードル7から再度装入した白かわ中の未反応の Cu2Sが集中的に酸化するので、白かわが炉口3から吹き上がる場合がある。したがって、造銅期の酸素含有ガス吹錬を開始してからレードル7に貯留した白かわを再度装入するまでの所要時間は30〜120 分の範囲内が好ましい。
【0017】
その後、 転炉1を正立させて、さらに酸素含有ガス吹錬を継続して行ない、粗銅を製造する。
本発明では、転炉1に収容する溶融マットを増量しても、造銅期の酸素含有ガス吹錬を開始した直後の酸素含有ガスの流量が変動する期間に、転炉1の炉口3から白かわが吹き上がるのを防止して、転炉1を支障なく操業できる。したがって、酸素含有ガス吹錬における酸素含有ガスの流量を低下させる必要がないので、粗銅の生産性が向上する。しかも造銅期の開始直後には転炉1内の白かわ量が減少しているので、羽口2に酸素含有ガスを送給する送風機の負荷を軽減でき、電力消費を削減できる。
【0018】
【実施例】
銅の乾式製錬において、図1に示す装置(PS型転炉,直径3960mm,長さ13000mm )を用いて、Cu品位63質量%の溶融マットの酸素含有ガス吹錬を行ない、粗銅を製造した。すなわち自溶炉で得られた溶融マットを第1造かん期では170ton,第2造かん期では50ton 、転炉1に装入して造かん期の酸素含有ガス吹錬を行なった。生成したスラグを除去した後、 白かわ45ton をレードル7に排出した。このときレードル7に貯留した白かわ量は、スラグを除去した後の転炉1内に収容されていた白かわ量の24質量%に相当する。
【0019】
次いで転炉1内に残留する白かわに造銅期の酸素含有ガス吹錬を90分間行なった。その後、 天井クレーン(図示せず)によりレードル7に貯留していた白かわを転炉1に再度装入して、造銅期の酸素含有ガス吹錬を継続して行ない、粗銅を製造した。 このときの平均送風量は 44100Nm3 /hrであった。これを発明例とする。
【0020】
一方、 比較例として、自溶炉で得られた溶融マットを発明例と同様に転炉1に装入して造かん期の酸素含有ガス吹錬を行なった。生成したスラグを除去した後、 造銅期の酸素含有ガス吹錬を行ない、粗銅を製造した。 このときの平均送風量は 42800Nm3 /hrであった。
したがって本発明では、転炉1に装入する溶融マットを増量して酸素含有ガス吹錬を行なっても、送風量を低下させることなく、白かわの吹き上がり現象を防止できることが確かめられた。しかも本発明を適用して転炉1を操業すると、送風量が増加するので、造銅期の酸素含有ガス吹錬の所要時間が短縮され、生産性が向上した。
【0021】
【発明の効果】
本発明では、転炉に装入する溶融マットを増量して酸素含有ガス吹錬を行なっても、送風量を低下させることなく、白かわが吹き上がるのを防止できるので、粗銅の生産性が向上する。しかも造銅期の開始直後には転炉内の白かわ量が減少しているので、羽口に酸素含有ガスを送給する送風機の負荷を軽減でき、電力消費を削減できる。
【図面の簡単な説明】
【図1】本発明を適用する装置の例を模式的に示す配置図である。
【符号の説明】
1 転炉
2 羽口
3 炉口
4 傾転装置
5 排熱ボイラー
6 可動フード
7 レードル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a converter operating method for producing a crude metal from a molten mat in a non-ferrous metal melting and smelting process.
[0002]
[Prior art]
In general, in the melting and smelting of non-ferrous metals (for example, copper, nickel, etc.), the dried concentrate is smelted in a flash furnace and separated into a molten mat (hereinafter referred to as a molten mat) and slag. By inserting the molten mat obtained in the furnace into the converter and injecting an oxygen-containing gas (for example, air, oxygen-enriched air, etc.) to cause an oxidation reaction (hereinafter referred to as oxygen-containing gas blowing) The quality of the molten mat is increased to produce a crude metal (eg, crude copper, crude nickel, etc.).
[0003]
The case of copper smelting is described below.
In performing the oxygen-containing gas blowing of the molten mat using the converter, the converter is first tilted and the molten mat is charged into the converter. Next, after the converter is upright, an oxygen-containing gas is blown from the tuyere. In this way, the impurity components in the molten mat are oxidized and separated to improve the quality of the molten mat.
[0004]
In other words, the copper content in the molten mat obtained in the flash smelting furnace is about 50 to 65% by mass, but the oxygen-containing gas blowing in the converter makes the impurity component in the molten mat slag as an oxide. And separate into SO 2 gas to improve the quality of the molten matte. As a result, crude copper having a copper content of about 97 to 99% by mass is obtained.
Oxygen-containing gas blowing in converters is roughly divided into a period during which slag is produced (so-called copper making period), and a period during which molten white powder (ie, Cu 2 S phase) is oxidized to form crude copper (so-called copper making stage). Is done.
[0005]
For example, there are cases in which the slagging period is divided into, for example, a first slagging period and a second slagging period. In both cases, FeS in the molten mat is oxidized and separated into slag by oxygen-containing gas blowing. This is the period during which the reaction to produce a Cu 2 S phase called “kawa” proceeds.
The copper making period is a period during which a reaction for producing crude copper proceeds by removing white slag (ie, Cu 2 S phase) by oxygen-containing gas blowing after removing the slag produced in the casting process. Immediately after starting the oxygen-containing gas blowing during the copper-making period, the oxidation reaction is not stable, and the flow rate of oxygen-containing gas blown into the white glue (that is, the blowing rate) varies.
[0006]
In order to increase the productivity of crude copper, when increasing the amount of molten mat charged to the converter and performing oxygen-containing gas blowing, the slag generated during the casting process is removed, and then the converter is used during the copper manufacturing process. The amount of white mold contained in the bath increases and the bath surface rises. For this reason, the hydrostatic pressure concerning a tuyere increases during ventilation. As a result, when the flow rate of oxygen-containing gas is increased during the period when the flow rate of oxygen-containing gas blown into the white river fluctuates (that is, immediately after the start of oxygen-containing gas blowing during the copper making stage), White buds blow up. White powder blown up from the converter's furnace mouth adheres to the converter's furnace mouth, the smoke hood, and the exhaust heat recovery device, and prevents the converter from rotating and reducing the amount of exhaust heat recovery. Interferes with the operation.
[0007]
Therefore, it is necessary to prevent the white puffing phenomenon that occurs for a while immediately after the start of the oxygen-containing gas blowing during the copper making stage. Therefore, the flow rate of the oxygen-containing gas in the oxygen-containing gas blowing is reduced to prevent the white puffing phenomenon, but since the progress of the oxidation reaction is suppressed, the problem that the productivity of crude copper is reduced There is.
[0008]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems. For example, in the case of copper smelting, the amount of molten mat charged in the converter is increased to increase the amount of white mold in the copper making stage, and the white mold by oxygen-containing gas blowing. An object of the present invention is to provide a converter operating method that can prevent the phenomenon of blown up and improve the productivity of crude copper.
[0009]
[Means for Solving the Problems]
The present invention relates to a converter operating method for producing a crude metal by containing a molten mat in a converter and performing oxygen-containing gas blowing to oxidize the molten mat in the converter by oxygen-containing gas blowing to and separated into the slag, the slag was removed and another part of the I or white is discharged from the converter, after performing a predetermined time an oxygen-containing gas blowing for I or remaining white converter furnace, and discharged a converter operation method of producing oxidized crude metal white leather by some white leather placed in re-charged into the converter performs an oxygen-containing gas blowing.
[0010]
In the above-described invention, as a first preferred embodiment, 5 to 40% by mass of white powder is discharged from the converter, and oxygen-containing gas blowing of the white powder in the converter is performed for 30 to 120 minutes. After that, it is preferable to charge the white powder discharged from the converter into the converter.
Moreover, as a second preferred embodiment, 20-30% by mass of white powder is discharged from the converter, and oxygen-containing gas blowing of the white powder in the converter is performed for 30-120 minutes, and then from the converter. It is preferable to charge the discharged white glue into the converter.
[0011]
As a third preferred embodiment, the crude metal is preferably crude copper or crude nickel.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a layout diagram schematically showing an example of a copper smelting apparatus to which the present invention is applied.
The oxygen-containing gas blowing performed in the converter 1 improves the quality of the molten mat obtained in a flash smelting furnace (not shown). That is, a molten mat having a copper content of about 50 to 65% by mass obtained in a flash furnace is charged into the converter 1 from the furnace port 3, and oxygen-containing gas (for example, air, oxygen-enriched air, etc.) is added to the feather. Blowing through the mouth 2 and blowing oxygen-containing gas to produce crude copper having a copper content of about 97 to 99% by mass.
[0013]
This oxygen-containing gas blowing is roughly divided into a period during which slag is produced (so-called “making period”) and a period during which the quality of the molten white glue in the latter period is raised (so-called copper making period).
In performing the oxygen-containing gas blowing during the formation period, the converter 1 is tilted and the molten mat in the ladle 7 is charged into the converter 1 from the furnace port 3 using an overhead crane (not shown). Further, the converter 1 is erected and oxygen-containing gas is blown from the tuyere 2. The seizure period may be divided into a plurality of seizure periods (for example, the first and second periods, or the first, second and third periods). However, in each case, the oxygen in the oxygen-containing gas blown from the tuyere 2 oxidizes FeS in the molten mat to separate the Fe content into the slag, the S content into the SO 2 gas, In other words, the reaction for producing the Cu 2 S phase proceeds. When the oxygen-containing gas blowing in the cutting period (for example, the first cutting period and the second cutting period) is completed, the converter 1 is tilted to remove the slag from the furnace port 3 to the slag ladle.
[0014]
After removing the slag in the final period (for example, the second period or the third period), another white glue ladle is prepared before the converter 1.
Next, the converter 1 is tilted to discharge white glue from the furnace port 3 and temporarily stored in the ladle 7. If the amount of white glue discharged at this time is less than 20% by mass of the amount of white glue contained in the converter 1 after the removal of slag, the white glue is blown by oxygen-containing gas blowing during the copper-making stage described later. Blows up from the furnace port 3. On the other hand, if the amount exceeds 30% by mass, the amount of white mold in the furnace is small and the reaction time is shortened, so that white mold may blow up when the discharged white mold is recharged in the furnace. Therefore, after removing the slag generated in the final cutting period, the amount of white mold discharged from the converter 1 is 20-30 with respect to the amount of white mold accommodated in the converter 1 after removing the slag. Within the range of mass% is preferable. In addition, white glue may be discharged after the end of the first building period, or may be discharged after the end of the second building period, and may be selected according to the operation status.
[0015]
Next, in order to perform oxygen-containing gas blowing during the copper making stage, the converter 1 is erected, and oxygen-containing gas is blown from the tuyere 2 into the white glue remaining in the converter 1. At this time, since the bath surface of the white glue remaining in the converter 1 is lowered, in a period in which the flow rate of the oxygen-containing gas blown into the white glue fluctuates (that is, immediately after the start of air blowing during the copper making stage), Even if the flow rate of the oxygen-containing gas increases, it is possible to prevent white glue from blowing up from the furnace port 3 of the converter 1. Moreover, since the amount of white powder in the converter 1 is reduced, the hydrostatic pressure due to the white powder applied to the tuyere 2 is also reduced, and the load of a blower (not shown) for feeding oxygen-containing gas to the tuyere 2 is reduced. It can be reduced and power consumption can be reduced.
[0016]
Thus, after oxygen-containing gas blowing during the copper making stage was performed for 30 to 120 minutes, the converter 1 was tilted back to the home position, the air blowing was stopped, and then the molten white glue stored in the ladle 7 was again returned to the furnace. The converter 1 is charged from the mouth 3. This white glue may be from the same converter 1 that has been discharged, or may be charged from another converter 1 that has been discharged. If the required time from the start of the oxygen-containing gas blowing during the copper making period to the re-charging of the white glue stored in the ladle 7 is less than 30 minutes, the flow rate of the oxygen-containing gas in the oxygen-containing gas blowing is stable. Therefore, white glue blows up from the furnace port 3 when the flow rate of the oxygen-containing gas increases. On the other hand, after 120 minutes, since the white mold in the furnace is near the end point of the reaction, unreacted Cu 2 S in the white mold charged again from the ladle 7 is intensively oxidized. There is a case where it blows up from the furnace port 3. Therefore, it is preferable that the time required from the start of the oxygen-containing gas blowing during the copper making period until the white glue stored in the ladle 7 is charged again is within a range of 30 to 120 minutes.
[0017]
Thereafter, the converter 1 is erected and oxygen-containing gas blowing is continued to produce crude copper.
In the present invention, even if the amount of the molten mat accommodated in the converter 1 is increased, the furnace port 3 of the converter 1 is in a period in which the flow rate of the oxygen-containing gas immediately after the start of the oxygen-containing gas blowing in the copper-making period fluctuates. Therefore, it is possible to operate the converter 1 without any trouble. Therefore, since it is not necessary to reduce the flow rate of the oxygen-containing gas in the oxygen-containing gas blowing, the productivity of crude copper is improved. Moreover, since the amount of white powder in the converter 1 is reduced immediately after the start of the copper making period, it is possible to reduce the load on the blower that supplies the oxygen-containing gas to the tuyere 2 and to reduce power consumption.
[0018]
【Example】
In the dry smelting of copper, using the equipment shown in Fig. 1 (PS converter, diameter 3960mm, length 13000mm), oxygen-containing gas blowing was performed on a molten matte of 63 mass% Cu grade to produce crude copper. . That is, the molten mat obtained in the flash furnace was 170 tons in the first casting period, 50 tons in the second casting period, and was charged into the converter 1 to perform oxygen-containing gas blowing in the casting period. After removing the generated slag, 45 tons of white glue was discharged to the ladle 7. At this time, the amount of white powder stored in the ladle 7 corresponds to 24% by mass of the amount of white powder stored in the converter 1 after removing the slag.
[0019]
Next, oxygen-containing gas blowing in the copper making stage was performed for 90 minutes on the white mold remaining in the converter 1. After that, white glue stored in the ladle 7 was charged again into the converter 1 by an overhead crane (not shown), and oxygen-containing gas blowing during the copper-making period was continued to produce crude copper. At this time, the average blowing rate was 44100 Nm 3 / hr. This is an invention example.
[0020]
On the other hand, as a comparative example, the molten mat obtained in the flash smelting furnace was charged into the converter 1 in the same manner as in the inventive examples, and oxygen-containing gas blowing during the smelting period was performed. After removing the produced slag, oxygen-containing gas blowing was performed during the copper making stage to produce crude copper. At this time, the average air flow rate was 42800 Nm 3 / hr.
Therefore, in the present invention, it was confirmed that even if the amount of the molten mat charged in the converter 1 is increased and the oxygen-containing gas blowing is performed, the phenomenon of white powder blowing up can be prevented without reducing the blowing rate. Moreover, when the converter 1 is operated by applying the present invention, the amount of blown air increases, so the time required for blowing the oxygen-containing gas during the copper making period is shortened and the productivity is improved.
[0021]
【The invention's effect】
In the present invention, even if the amount of molten mat charged in the converter is increased and oxygen-containing gas blowing is performed, it is possible to prevent white powder from blowing up without reducing the blown amount. improves. Moreover, since the amount of white powder in the converter is decreasing immediately after the start of the copper making period, it is possible to reduce the load on the blower that supplies the oxygen-containing gas to the tuyere and to reduce power consumption.
[Brief description of the drawings]
FIG. 1 is a layout diagram schematically showing an example of an apparatus to which the present invention is applied.
[Explanation of symbols]
1 Converter 2 Tuyere 3 Furnace 4 Tilting device 5 Waste heat boiler 6 Movable hood 7 Ladle

Claims (4)

転炉に溶融マットを収容して酸素含有ガス吹精を行ない粗金属を製造する転炉操業方法において、前記酸素含有ガス吹錬によって前記転炉内の前記溶融マットを酸化して白かわとスラグとに分離して、前記スラグを除去し、さらに前記白かわの一部を前記転炉から排出して、前記転炉内に残った白かわについて前記酸素含有ガス吹錬を行なった後、前記排出しておいた一部白かわを前記転炉に再度装入して前記酸素含有ガス吹錬を行なうことによって前記白かわを酸化して粗金属を製造することを特徴とする転炉操業方法。In a converter operating method for producing a crude metal by containing a molten mat in a converter and performing oxygen-containing gas blowing, white oxygen and slag are obtained by oxidizing the molten mat in the converter by the oxygen-containing gas blowing. And removing the slag, discharging a part of the white river from the converter, and performing the oxygen-containing gas blowing on the white river remaining in the converter, converter operation method characterized by the production of oxidized crude metal the white leather by some white leather that has been discharged again charged into the converter performing the oxygen-containing gas blowing . 前記白かわのうちの5〜40質量%を前記転炉から排出して、前記転炉内の前記白かわの前記酸素含有ガス吹錬を30〜120 分間行なった後、 前記転炉から排出した前記白かわを前記転炉に装入することを特徴とする請求項1に記載の転炉操業方法。  5 to 40% by mass of the white river was discharged from the converter, and the oxygen-containing gas blowing of the white river in the converter was performed for 30 to 120 minutes, and then discharged from the converter. The converter operation method according to claim 1, wherein the white glue is charged into the converter. 前記白かわのうちの20〜30質量%を前記転炉から排出して、前記転炉内の前記白かわの前記酸素含有ガス吹錬を30〜120 分間行なった後、前記転炉から排出した前記白かわを前記転炉に装入することを特徴とする請求項1に記載の転炉操業方法。  20-30% by mass of the white river was discharged from the converter, and the oxygen-containing gas blowing of the white river in the converter was performed for 30-120 minutes, and then discharged from the converter. The converter operation method according to claim 1, wherein the white glue is charged into the converter. 前記粗金属が、粗銅または粗ニッケルであることを特徴とする請求項1、2または3に記載の転炉操業方法。  The converter operation method according to claim 1, wherein the crude metal is crude copper or crude nickel.
JP2003034123A 2003-02-12 2003-02-12 Converter operation method in metal melting and smelting. Expired - Lifetime JP4099080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034123A JP4099080B2 (en) 2003-02-12 2003-02-12 Converter operation method in metal melting and smelting.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034123A JP4099080B2 (en) 2003-02-12 2003-02-12 Converter operation method in metal melting and smelting.

Publications (2)

Publication Number Publication Date
JP2004244666A JP2004244666A (en) 2004-09-02
JP4099080B2 true JP4099080B2 (en) 2008-06-11

Family

ID=33019899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034123A Expired - Lifetime JP4099080B2 (en) 2003-02-12 2003-02-12 Converter operation method in metal melting and smelting.

Country Status (1)

Country Link
JP (1) JP4099080B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117881802A (en) * 2021-08-27 2024-04-12 捷客斯金属株式会社 Smelting furnace and method of operating same

Also Published As

Publication number Publication date
JP2004244666A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP4099080B2 (en) Converter operation method in metal melting and smelting.
JP3702764B2 (en) Method for smelting copper sulfide concentrate
CA1234292A (en) Method of lancing for a copper producing converter
JP3682166B2 (en) Method for smelting copper sulfide concentrate
JP2009209405A (en) Method for smelting copper-containing dross
JP2003193144A (en) Operating method in slag-making stage in copper converter
JP3724196B2 (en) Copper smelting operation method
JPH0693351A (en) Production of tough pitch copper
JP4979514B2 (en) Hot metal dephosphorization method
WO2019102705A1 (en) Low/medium-carbon ferromanganese production method
JP3695149B2 (en) Converter operation method
JPH0397814A (en) Nitrogen-air blast in ni-cu converter
JP3921511B2 (en) Operation method of copper converter
JPH05148525A (en) Treatment of molten iron
JP3239691B2 (en) Arc furnace melting method
RU2209840C2 (en) Method of cleaning slag in electrical furnace
JP4411934B2 (en) Method for producing low phosphorus hot metal
JP4686659B2 (en) Operation method of copper converter
JP2895828B1 (en) Method for producing blister copper by converter
KR100865704B1 (en) Method for Refining Return Molten Steel
KR100434735B1 (en) Method for manufacturing ultra-low C steel having phosphorous
JP4111115B2 (en) Dob treatment method for non-ferrous smelting furnace
JPH0120208B2 (en)
JPS62174315A (en) Production of steel ingot
JPH11335750A (en) Operation of copper converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080314

R150 Certificate of patent or registration of utility model

Ref document number: 4099080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term