JP2004244645A - ROLLED Fe-Ni ALLOY FOIL FOR RESISTOR - Google Patents

ROLLED Fe-Ni ALLOY FOIL FOR RESISTOR Download PDF

Info

Publication number
JP2004244645A
JP2004244645A JP2002369442A JP2002369442A JP2004244645A JP 2004244645 A JP2004244645 A JP 2004244645A JP 2002369442 A JP2002369442 A JP 2002369442A JP 2002369442 A JP2002369442 A JP 2002369442A JP 2004244645 A JP2004244645 A JP 2004244645A
Authority
JP
Japan
Prior art keywords
mass
resistor
rolled
volume resistivity
multilayer substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002369442A
Other languages
Japanese (ja)
Other versions
JP4018525B2 (en
Inventor
Norio Yuki
典夫 結城
Yasuo Tomioka
靖夫 富岡
Tomohiro Senkawa
智洋 洗川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Metal Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Metal Manufacturing Co Ltd filed Critical Nikko Metal Manufacturing Co Ltd
Priority to JP2002369442A priority Critical patent/JP4018525B2/en
Publication of JP2004244645A publication Critical patent/JP2004244645A/en
Application granted granted Critical
Publication of JP4018525B2 publication Critical patent/JP4018525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide metal foil suitable for a resistive layer held in a mass laminated type multilayer substrate aimed at the densification, cost reduction, etc., of a printed wiring board. <P>SOLUTION: The rolled Fe-Ni alloy foil for a resistor for multilayer substrate has a chemical composition consisting of, by mass, 25 to 33% Ni and the balance Fe with inevitable impurities and also has ≤50 μm thickness and ≥500 nΩ×m volume resistivity. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、プリント基板の高密度化、低コスト化などを目的とした一括積層タイプの多層基板において、基板中に内蔵される抵抗層として用いられる金属箔に関するものである。
【0002】
【従来技術】
近年の電子機器の軽薄短小化、高機能化に伴い、プリント基板には高密度実装が求められ、基板の多層化により回路を3次元化して高密度回路を得る、いわゆる多層基板が用いられるケースが増えている。この多層基板において、従来は受動部品である抵抗、コンデンサーは表面実装されるのが一般的であったが、最近、これらの部品を多層基板中の層に内蔵する技術が開発されている。(これを一括積層と称する。)(例えば非特許文献1、非特許文献2、非特許文献3参照。)部品を多層基板中に内蔵するメリットとしては、以下のとおりである。
▲1▼実装工程を省略でき、製造コストを低減できる。
▲2▼基板表面の実装スペースや実装のためのスルーホールがなくなることにより基板形状の設計の自由度が増す。
▲3▼配線長を自由に調整しやすくなるため、高速信号に絶えられる構造をもつ回路を設計できる。
▲4▼導体層を金属のみとし、絶縁層を再生可能な熱可塑性樹脂のみを用いればリサイクルが可能となる。
などが挙げられる。このような背景から、部品を内蔵した多層基板が使われるケースが増えている。
【0003】
【非特許文献1】
安藤三津雄、岩田照徳「抵抗内臓多層プリント配線板」、Polyfile、1988年12月、第25巻、p.20−22
【非特許文献2】
「一括積層でコスト半減 部品内蔵で機能のみ込む」、日経エレクトロニクス、2002年4月22日号、p.120−123
【非特許文献3】
近藤宏司、外2名、「PALAP―リサイクル可能な一括多層プリント配線板―」、エレクトロニクス実装技術、平成14年9月、第18巻、第9号、p.60−63
【0004】
【発明が解決しようとする課題】
このような多層基板に内蔵される抵抗層用の材料としては、体積抵抗率が高く厚さの薄い材料を用いれば、抵抗部の配線の幅と長さをコントロールすることにより、所望の抵抗値を得るための設計が容易となる。このような抵抗体を形成する方法としては、BiRu、PbRu6.5といった酸化物のペーストを回路上に印刷したあとプレスにより積層する方法があったが、この方法ではコストがかかること、フレキシブル基板には不向きであることなどの問題があった。
【0005】
このような問題を解決する方法としては、金属箔を抵抗体として用い、リジッドまたはフレキシブルの樹脂と積層後エッチングにより所定サイズに形成する方法が考えられた。この金属箔の求められる性質としては、以下のことが挙げられる。
▲1▼上述のように、体積抵抗率の高いことが求められる。現有するCu、Alやその合金の箔では抵抗値が低いため、抵抗体回路として所望する抵抗値を得るには抵抗部の長さを非常に長く取る必要があり、設計の自由度を極端に低下させることから問題である。
▲2▼磁性のある金属箔を用いた場合には、高周波電流の通電を阻害するため、磁性のない金属箔が求められる。
▲3▼熱膨張係数が、絶縁層として用いられる樹脂に近く、積層時にそりを生じないことが求められる。
しかしながら、これらの性質を所望するレベルで兼ね備えた金属箔の出現には至っていない。
【0006】
本発明の課題は、プリント基板の高密度化、低コスト化などを目的とした一括積層タイプの多層基板において、基板中に内蔵される抵抗層に適した金属箔を提供することである。
【0007】
【問題点を解決するための手段及び作用】
発明者らは、抵抗値が高く薄肉化可能な金属箔を得るための金属材料及びその製造プロセスを鋭意研究した結果、Fe−Ni合金をベースとした圧延箔に着目し、組成をコントロールすることにより、所望する抵抗値を持ち、さらに磁性が小さく、適度な熱膨張係数を持ち、多層基板中の抵抗体に適合する圧延金属箔を製造できることを明らかにした。
【0008】
即ち、本発明は
(1)化学組成が25〜33質量%のNiを含有し残部がFe及び不可避不純物からなり、厚さが50μm以下、体積抵抗率が500nΩ・m以上、であることを特徴とする多層基板中の抵抗体用圧延Fe−Ni合金箔、
(2)化学組成が質量割合にて25〜33質量%のNiを含有し、さらにZn、Ti、Sn、Si、Mn、P、Mg、Co、Nb、Al、B、Zr、In、Ag、Hf、Au、Mo、W、Cu、およびCrの1種以上を総量で0.005質量%以上5質量%以下を含有し、残部がFe及び不可避不純物からなり、厚さが50μm以下、体積抵抗率が500nΩ・m以上であることを特徴とする多層基板の抵抗体用圧延Fe−Ni合金箔、
である。
【0009】
【発明の実施の形態】
次に本発明の限定理由について述べる。
(1)体積抵抗率および厚さ
上述のように、エッチングにより形成された抵抗体の抵抗値を自由に設計するためには、素材の体積抵抗率が十分高く、厚さが小さいことが必要である。近年の高機能の多層基板に使用可能な箔の体積抵抗率は500nΩ・m以上、望ましくは600nΩ・m以上であることが必要であり、また、厚さに関しては50μm以下まで薄くすることが必要である。ただし、厚さが薄くなるとピンホールの発生が多くなり、特に50μm以下ではピンホールが飛躍的に増加する。抵抗体用金属箔としてはピンホールが少なければ少ないほうが良いが、本発明では、1m当たりのピンホール数を1.7個以下とする。
【0010】
(2)Ni含有量
次に、Ni含有量を規定した理由について述べる。適量のNiはFe中に固溶し、体積抵抗率を上昇させるため添加した。Ni含有量を33質量%以下とした理由は、Niが33質量%を超えると磁性が生じ高周波電流の通電には不向きとなり、また熱膨張係数が小さくなりすぎるため、接合する樹脂との差が大きくなり、そりを生じるようになるためである。また、Ni含有量を25質量%以上と定めた理由は、Ni含有量が25質量%を下回ると加工誘起マルテンサイトが発生するため体積抵抗率が低下し,また磁性が強くなるためである.
【0011】
(3)Zn、Ti、Sn、Si、Mn、P、Mg、Co、Nb、Al、B、Zr、In、Ag、Hf、Au、Mo、W、Cu、およびCr
これらの元素はさらに抵抗を上昇させる元素として必要に応じて添加することができる。これらの添加元素の総量が0.005質量%以下では所望する効果が得られず、また5質量%以上では介在物が発生しピンホールを増加させる。このため、これらの添加元素の総量を0.005質量%以上5質量%以下と定めた。
【0012】
【実施例】
純鉄、純ニッケルあるいは電気ニッケルを原料として、高周波真空溶解炉にて表1に示す各種組成のインゴットを鋳造した。そして鍛造、皮剥きの後、熱間圧延を行い、3mmの圧延材を得た。酸洗で熱延板のスケールを除去した後に焼鈍と冷間圧延を繰り返して、板厚0.015mmの箔を得た。
【0013】
【表1】

Figure 2004244645
【0014】
このようにして得られた各合金について、体積抵抗率、ピンホール数、磁気特性、熱膨張係数を評価した。体積抵抗率は四端子法により求めた。ピンホール数は50μm以上のピンホールが検出できるオンライン検査機を用い、1m当たりのピンホール数が1.7個以下のものを○とし、1.7個を超えるものを×として評価した。
磁気特性は室温で400Oeの磁界を与えたときの磁束密度を求めた。熱膨張係数は圧延平行方向に試料を切り出し、200℃までの熱膨張係数を求めた。
【0015】
【表2】
Figure 2004244645
【0016】
表2にその結果を示す。結果から判るように、発明例は高い体積抵抗率を示し、良好なピンホール数、磁気特性、熱膨張係数を有することが判る。それに対し、比較例No.24はNi添加量が小さいために体積抵抗率が低下し、磁性が強くなりすぎた例である。比較例No.25、27はNi添加量が多いため、過大な磁気特性を持ち、熱膨張係数が小さくなりすぎた例である。比較例No.26は合金元素を添加しすぎたため、ピンホール数が多くなった例である。
【0017】
【発明の効果】
以上の説明で明らかなように、この発明によれば一括積層タイプの多層基板における内部抵抗層に適した合金箔を提供することができる。[0001]
[Industrial applications]
The present invention relates to a metal foil used as a resistance layer built in a substrate in a multilayer substrate of a batch lamination type for the purpose of increasing the density and cost of a printed substrate.
[0002]
[Prior art]
In recent years, as electronic devices have become lighter, thinner, smaller, and more sophisticated, high-density mounting is required on printed circuit boards. Is increasing. Conventionally, in this multilayer substrate, resistors and capacitors, which are passive components, were generally mounted on the surface, but recently, a technique for incorporating these components into layers in the multilayer substrate has been developed. (This is called collective lamination.) (See, for example, Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3.) The merits of incorporating components into a multilayer substrate are as follows.
(1) The mounting process can be omitted, and the manufacturing cost can be reduced.
(2) Eliminating the mounting space and through holes for mounting on the board surface increases the degree of freedom in designing the board shape.
(3) Since the wiring length can be easily adjusted freely, it is possible to design a circuit having a structure capable of cutting off high-speed signals.
{Circle around (4)} Recycling is possible by using only a metal for the conductor layer and using only a thermoplastic resin capable of regenerating the insulating layer.
And the like. From such a background, the use of a multi-layer substrate incorporating components is increasing.
[0003]
[Non-patent document 1]
Mitsuo Ando, Terunori Iwata, "Multilayer Printed Wiring Board with Built-in Resistor", Polyfile, December 1988, vol. 25, p. 20-22
[Non-patent document 2]
"Halve the cost by batch lamination, only incorporate functions with built-in components," Nikkei Electronics, April 22, 2002, p. 120-123
[Non-Patent Document 3]
Koji Kondo and two others, "PALAP-Recyclable Batch Multilayer Printed Wiring Board-", Electronics Packaging Technology, September 2002, Vol. 18, No. 9, p. 60-63
[0004]
[Problems to be solved by the invention]
If a material having a high volume resistivity and a small thickness is used as a material for the resistance layer incorporated in such a multilayer substrate, a desired resistance value can be obtained by controlling the width and length of the wiring of the resistance portion. The design for obtaining is easy. As a method of forming such a resistor, there was a method of printing an oxide paste such as Bi 2 Ru 2 O 7 or Pb 2 Ru 2 O 6.5 on a circuit and then laminating the paste by pressing. The method has problems such as high cost and unsuitability for a flexible substrate.
[0005]
As a method of solving such a problem, a method of using a metal foil as a resistor, laminating it with a rigid or flexible resin, and then forming the same to a predetermined size by etching has been considered. The properties required of this metal foil include the following.
{Circle around (1)} As described above, high volume resistivity is required. Since the resistance value of the existing foil of Cu, Al or its alloy is low, it is necessary to take a very long length of the resistance portion in order to obtain a desired resistance value as a resistor circuit, and the degree of freedom in design is extremely high. It is a problem from lowering.
{Circle around (2)} When a metal foil having magnetism is used, a metal foil having no magnetism is required in order to hinder the passage of a high-frequency current.
{Circle around (3)} It is required that the coefficient of thermal expansion is close to that of the resin used as the insulating layer and that no warpage occurs during lamination.
However, metal foils having these properties at desired levels have not yet been developed.
[0006]
An object of the present invention is to provide a metal foil suitable for a resistive layer built in a board in a multilayer board of a collective lamination type for the purpose of increasing the density and reducing the cost of a printed board.
[0007]
[Means and actions for solving the problems]
The inventors of the present invention have conducted intensive research on a metal material and a manufacturing process for obtaining a metal foil having a high resistance value and capable of thinning, and as a result, have focused on a rolled foil based on an Fe-Ni alloy to control the composition. It has been clarified that a rolled metal foil having a desired resistance value, a lower magnetic property, an appropriate coefficient of thermal expansion, and a resistor suitable for a resistor in a multilayer substrate can be manufactured.
[0008]
That is, the present invention is characterized in that (1) the chemical composition contains 25 to 33% by mass of Ni, the balance being Fe and unavoidable impurities, the thickness is 50 μm or less, and the volume resistivity is 500 nΩ · m or more. Rolled Fe-Ni alloy foil for resistors in a multilayer substrate,
(2) The chemical composition contains 25 to 33% by mass of Ni in mass ratio, and further contains Zn, Ti, Sn, Si, Mn, P, Mg, Co, Nb, Al, B, Zr, In, Ag, Contains at least one of Hf, Au, Mo, W, Cu, and Cr in a total amount of 0.005% by mass or more and 5% by mass or less, with the balance being Fe and unavoidable impurities, a thickness of 50 μm or less, and a volume resistance of Rolled Fe-Ni alloy foil for a resistor of a multilayer substrate, wherein the rate is 500 nΩ · m or more,
It is.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the reasons for limitation of the present invention will be described.
(1) Volume resistivity and thickness As described above, in order to freely design the resistance value of a resistor formed by etching, the material must have a sufficiently high volume resistivity and a small thickness. is there. The volume resistivity of foils that can be used for recent high-performance multilayer substrates must be 500 nΩ · m or more, preferably 600 nΩ · m or more, and the thickness needs to be reduced to 50 μm or less. It is. However, when the thickness is reduced, the number of pinholes increases, and particularly when the thickness is 50 μm or less, the number of pinholes increases dramatically. The better the less pinhole as a resistive metallic foil, but the present invention, the number of pinholes per 1 m 2 to 1.7 or less.
[0010]
(2) Ni Content Next, the reason for defining the Ni content will be described. An appropriate amount of Ni was dissolved in Fe and added to increase the volume resistivity. The reason for setting the Ni content to 33% by mass or less is that if Ni exceeds 33% by mass, magnetism is generated, which is unsuitable for high-frequency current application, and the coefficient of thermal expansion is too small. This is because it becomes larger and causes warpage. The reason why the Ni content is set to 25% by mass or more is that if the Ni content is less than 25% by mass, work-induced martensite is generated, so that the volume resistivity is reduced and the magnetism is increased.
[0011]
(3) Zn, Ti, Sn, Si, Mn, P, Mg, Co, Nb, Al, B, Zr, In, Ag, Hf, Au, Mo, W, Cu, and Cr
These elements can be added as necessary as elements for increasing the resistance. If the total amount of these additional elements is 0.005% by mass or less, the desired effect cannot be obtained, and if the total amount is 5% by mass or more, inclusions are generated and pinholes increase. Therefore, the total amount of these additional elements is determined to be 0.005% by mass or more and 5% by mass or less.
[0012]
【Example】
Ingots of various compositions shown in Table 1 were cast in a high-frequency vacuum melting furnace using pure iron, pure nickel or electric nickel as a raw material. After forging and peeling, hot rolling was performed to obtain a rolled material of 3 mm. After removing the scale of the hot rolled sheet by pickling, annealing and cold rolling were repeated to obtain a foil having a sheet thickness of 0.015 mm.
[0013]
[Table 1]
Figure 2004244645
[0014]
For each of the alloys thus obtained, the volume resistivity, the number of pinholes, the magnetic properties, and the coefficient of thermal expansion were evaluated. The volume resistivity was determined by a four-terminal method. Number pinhole using online inspection device which can detect pin hole of at least 50 [mu] m, the number pinholes per 1 m 2 is an ○ those 1.7 or less was evaluated to exceed 1.7 as ×.
The magnetic properties were determined by measuring the magnetic flux density when a magnetic field of 400 Oe was applied at room temperature. For the coefficient of thermal expansion, a sample was cut out in the direction parallel to the rolling, and the coefficient of thermal expansion up to 200 ° C. was determined.
[0015]
[Table 2]
Figure 2004244645
[0016]
Table 2 shows the results. As can be seen from the results, the invention examples show high volume resistivity, and have good pinhole numbers, magnetic properties, and thermal expansion coefficients. In contrast, Comparative Example No. Sample No. 24 is an example in which the volume resistivity was lowered due to the small amount of Ni added, and the magnetism became too strong. Comparative Example No. Nos. 25 and 27 are examples in which the amount of added Ni is large, so that they have excessive magnetic properties and the thermal expansion coefficient is too small. Comparative Example No. 26 is an example in which the number of pinholes was increased due to excessive addition of alloying elements.
[0017]
【The invention's effect】
As is apparent from the above description, according to the present invention, it is possible to provide an alloy foil suitable for an internal resistance layer in a collectively laminated type multilayer substrate.

Claims (2)

化学組成が25〜33質量%のNiを含有し残部がFe及び不可避不純物からなり、厚さが50μm以下、体積抵抗率が500nΩ・m以上、であることを特徴とする多層基板の抵抗体用圧延Fe−Ni合金箔。For a resistor of a multilayer substrate, characterized by containing Ni of 25 to 33% by mass and the balance being Fe and unavoidable impurities, having a thickness of 50 μm or less and a volume resistivity of 500 nΩ · m or more. Rolled Fe-Ni alloy foil. 化学組成が25〜33質量%のNiを含有し、さらにZn、Ti、Sn、Si、Mn、P、Mg、Co、Nb、Al、B、Zr、In、Ag、Hf、Au、Mo、W、Cu、およびCrの1種以上を総量で0.005質量%以上5質量%以下を含有し、残部がFe及び不可避不純物からなり、厚さが50μm以下、体積抵抗率が500nΩ・m以上であることを特徴とする多層基板の抵抗体用圧延Fe−Ni合金箔。Chemical composition contains Ni of 25 to 33% by mass, and Zn, Ti, Sn, Si, Mn, P, Mg, Co, Nb, Al, B, Zr, In, Ag, Hf, Au, Mo, W , Cu, and Cr in a total amount of 0.005% by mass or more and 5% by mass or less, the balance being Fe and inevitable impurities, a thickness of 50 μm or less, and a volume resistivity of 500 nΩ · m or more. A rolled Fe-Ni alloy foil for a resistor of a multilayer substrate, which is characterized in that:
JP2002369442A 2002-12-17 2002-12-20 Rolled Fe-Ni alloy foil for resistors Expired - Fee Related JP4018525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002369442A JP4018525B2 (en) 2002-12-17 2002-12-20 Rolled Fe-Ni alloy foil for resistors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002365940 2002-12-17
JP2002369442A JP4018525B2 (en) 2002-12-17 2002-12-20 Rolled Fe-Ni alloy foil for resistors

Publications (2)

Publication Number Publication Date
JP2004244645A true JP2004244645A (en) 2004-09-02
JP4018525B2 JP4018525B2 (en) 2007-12-05

Family

ID=33031684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002369442A Expired - Fee Related JP4018525B2 (en) 2002-12-17 2002-12-20 Rolled Fe-Ni alloy foil for resistors

Country Status (1)

Country Link
JP (1) JP4018525B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105280321A (en) * 2014-07-22 2016-01-27 德清森腾电子科技有限公司 Magnetic material
KR20160079968A (en) * 2014-12-26 2016-07-07 주식회사 포스코 Encapsulant for packaging an organic electric device for display with low thermal expansion coefficient
KR101668529B1 (en) 2014-12-23 2016-10-31 주식회사 포스코 Encapsulant for packaging an organic electric device for display with low thermal expansion coefficient
CN115679219A (en) * 2022-11-14 2023-02-03 寰采星科技(宁波)有限公司 Iron-nickel alloy foil for precise metal mask plate and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105280321A (en) * 2014-07-22 2016-01-27 德清森腾电子科技有限公司 Magnetic material
CN105280321B (en) * 2014-07-22 2017-08-29 德清森腾电子科技有限公司 A kind of magnetic material
KR101668529B1 (en) 2014-12-23 2016-10-31 주식회사 포스코 Encapsulant for packaging an organic electric device for display with low thermal expansion coefficient
KR20160079968A (en) * 2014-12-26 2016-07-07 주식회사 포스코 Encapsulant for packaging an organic electric device for display with low thermal expansion coefficient
KR101677352B1 (en) 2014-12-26 2016-11-18 주식회사 포스코 Encapsulant for packaging an organic electric device for display with low thermal expansion coefficient
CN115679219A (en) * 2022-11-14 2023-02-03 寰采星科技(宁波)有限公司 Iron-nickel alloy foil for precise metal mask plate and preparation method thereof

Also Published As

Publication number Publication date
JP4018525B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
JP2898627B2 (en) Copper alloy foil
JP2009108376A (en) Copper foil and flexible printed circuit board using the same
TWI526553B (en) Flexible laminates for flexible wiring
JP5235080B2 (en) Copper alloy foil and flexible printed circuit board using the same
KR101935128B1 (en) Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device
JP3824593B2 (en) Rolled copper foil with high elongation
TWI663270B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP3479470B2 (en) Copper alloy foil for hard disk drive suspension and method of manufacturing the same
JP2007270305A (en) Cu-Cr-Si-BASED ALLOY AND Cu-Cr-Si-BASED ALLOY FOIL FOR ELECTRICAL/ELECTRONIC COMPONENT
JP4018525B2 (en) Rolled Fe-Ni alloy foil for resistors
WO2013031911A1 (en) Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board and electronic device
JP2009177180A (en) Resistor lamination conductor for print circuit board and its production method, and printed circuit board
JPH11264040A (en) Copper alloy foil
JP2505480B2 (en) Copper alloy foil for flexible circuit boards
JP2008024995A (en) Copper alloy plate for electrical/electronic component having excellent heat resistance
JP2006283146A (en) Rolled copper foil and method for producing the same
JPH11264037A (en) Copper alloy foil
JP2008041972A (en) Metal material for printed-wiring board
JP2013055162A (en) Copper foil for flexible printed wiring board, copper clad laminate, flexible printed wiring board, and electronic apparatus
JP2004244646A (en) Rolled copper alloy foil for resistor and manufacturing method therefor
JP4018551B2 (en) Rolled Fe-Cr-Ni alloy foil for resistor
JP4798894B2 (en) Copper alloy foil for laminates
JPH06104543A (en) Copper clad laminate for printed wiring board excellent in heat dissipation properties and production thereof
WO2018147136A1 (en) Wiring structure and method for manufacturing same, sputtering target material, and oxidization prevention method
CN113363042B (en) Thin film inductance material, preparation method thereof and double-sided thin film inductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350