JP2004244446A - Method of joining thermoplastic resin materials - Google Patents

Method of joining thermoplastic resin materials Download PDF

Info

Publication number
JP2004244446A
JP2004244446A JP2003033002A JP2003033002A JP2004244446A JP 2004244446 A JP2004244446 A JP 2004244446A JP 2003033002 A JP2003033002 A JP 2003033002A JP 2003033002 A JP2003033002 A JP 2003033002A JP 2004244446 A JP2004244446 A JP 2004244446A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
joining
melting point
resin
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003033002A
Other languages
Japanese (ja)
Other versions
JP4233342B2 (en
Inventor
Tatsuaki Takagi
辰彰 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2003033002A priority Critical patent/JP4233342B2/en
Publication of JP2004244446A publication Critical patent/JP2004244446A/en
Application granted granted Critical
Publication of JP4233342B2 publication Critical patent/JP4233342B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/14Particular design of joint configurations particular design of the joint cross-sections the joint having the same thickness as the thickness of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which thermoplastic resin materials quite different from each other in molecular structure and hardly joinable to each other are joined by a highly reliable adhesive power and which excels in economy and industrial mass-producibility. <P>SOLUTION: The method of joining the thermoplastic resin materials comprises holding a metallic foil (C) previously surface-treated with a coupling agent such as 1,3,5-triazine-2,4,6-trithiol monosodium between the joining surface of a thermoplastic resin material (A) with a low melting point and the joining surface of a thermoplastic resin material (B) with a high melting point and heating the metallic foil (C) with a high-frequency induction heater to melt the thermoplastic resin material (A) with a low melting point and to melt part of the thermoplastic resin material (B) with a high melting point in a layered state on the side in contact with the metallic foil (C). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、接合し難い異種の熱可塑性樹脂材料を重ね合わせ、両者を高周波誘導加熱によって接合させる方法に関するものである。
【0002】
【従来の技術】
従来、熱可塑性樹脂材料同士を接合する加工技術において、二次加工的な方法として、接着剤による接着、熱板溶着、振動溶着、超音波溶着、高周波溶着、レーザー溶着などの方法があり、また、一次加工的な方法として射出成形による多重成形法などが知られている。
接着剤を利用する方法は最も古典的で簡便な方法であるが、これを工業的に利用する上では、接着剤の塗布作業、硬化工程、管理が煩雑であり、また耐久性などにおける懸念もあり、一時的な接合手段として有効な方法ではあるが、過酷な使用環境に耐え得る製品を得るための熱可塑性樹脂材料の接合方法として好適とは言えない。
【0003】
次ぎに、熱板溶着、振動溶着、超音波溶着、高周波溶着、レーザー溶着、射出成形による多重成形法などの方法に共通する点は、物理的な方法により接合界面で熱エネルギーを発生させるか、或いは系外から得た熱エネルギーを接合界面に持ち込むことにより、互いに接合する熱可塑性樹脂材料表面を溶融させて融着接合することである。従って、これらの方法では、接合する熱可塑性樹脂材料同士の相溶性が、密着性を得るための最重要因子になっており、一般的には、同一材料同士の接合、若しくは共通の樹脂成分を含む異種の熱可塑性樹脂材料同士の接合、或いはポリブチレンテレフタレート樹脂とポリエチレンテレフタレート樹脂との関係のように、同じポリエステル樹脂としてその分子鎖中に類似構造を有し、かつ互いに相溶性がある異種の熱可塑性樹脂材料同士の接合に用いられる。
【0004】
例えば、高周波誘導加熱による熱可塑性樹脂材料同士の接合方法として、特開昭57−123020号公報や特開昭60−56534号公報に例示される方法があるが、前者の場合、相互に融着し得る熱可塑性合成樹脂材料が必須条件であり、同系統の合成樹脂の接合にのみ適用される。また、後者の場合、同材質製の合成樹脂部品同士を接合する方法であって、両者の接合界面に同材質の合成樹脂材料中に金属製繊維を配合した高周波誘導発熱体を配するものであり、接合界面における融着メカニズム自体は、同一樹脂マトリックスによる熱融着である。(特許文献1および2参照。)
【0005】
一方、樹脂材料と金属材料との接着複合化に関する従来技術として、トリアジンチオール化合物で表面処理した銅材料とポリエチレンとのプレス圧着に関する技術が、特公平1−60051号公報に提案されている。しかしながら、当該技術は接着する金属が銅材料に限定されている。(特許文献3参照。)
また、ゴムと金属との接着体に関する特公平60−41084号公報に開示された方法も同様である。すなわち、従来の発明は、分子構造が全く異なる異種の熱可塑性樹脂材料同士を、信頼性高く接合したいという要求に対しては、いずれもその解決策を与えるものではなかった。(特許文献4参照。)
【0006】
【特許文献1】
特開昭57−123020号公報(請求項1;第2頁、第55−58行)
【特許文献2】
特開昭60−56534号公報(請求項1;第2頁、第50−55行及び第66−70行)
【特許文献3】
特公平1−60051号公報(請求項1;第4頁、第2表)
【特許文献4】
特公平60−41084号公報(請求項1)
【0007】
【発明が解決しようとする課題】
本発明の解決しようとする課題は、従来技術では接合が困難であった、ポリアセタール樹脂とポリブチレンテレフタレート樹脂、ポリアセタール樹脂とポリフェニレンサルファイド樹脂、ポリブチレンテレフタレート樹脂とポリフェニレンサルファイド樹脂、ポリエチレン樹脂とポリアセタール樹脂等の組合せの如き、その分子構造が全く異なる異種の熱可塑性樹脂材料同士を、信頼性が高い密着力で接合可能な方法で、経済的かつ工業量産性に優れた方法を提供することにある。
【0008】
【課題を解決するための手段】
係る状況に鑑み、本発明者は鋭意研究を進めた結果、予め特定のカップリング剤で表面処理した金属箔又は金属シートを、接合する異種の熱可塑性樹脂材料の接合面間に挟み、特定の条件で高周波誘導加熱溶着することにより、良好な密着性を有する異種材料複合体が得られることを見出した。本発明は上記知見に基づいてなされたものである。
【0009】
すなわち本発明の第1は、融点の低い熱可塑性樹脂材料(A)と、融点の高い材料(B)との、異種熱可塑性樹脂材料(A)及び(B)を重ね合わせて両者を接合する方法であって、予め下記一般式(1)で表わされるカップリング剤で表面処理された金属箔(C)を異種材料の接合面間に挟み、高周波誘導加熱装置により金属箔(C)を加熱して、融点の低い熱可塑性樹脂材料(A)を融解させ、融点の高い材料(B)の金属箔(C)に接する側を層状に少なくとも一部を融解させるまで加熱することを特徴とする異種の熱可塑性樹脂材料の接合方法を提供する。
【化2】

Figure 2004244446
(上式において、Rは−OR’、−SR’、−NHR’または−N(R’)で、R’は水素原子、炭素数1〜10の、アルキル基、アルケニル基、フェニル基、フェニルアルキル基、アルキルフェニル基またはシクロアルキル基であり、MはH、Na、Li、K、1/2Ba、1/2Ca、脂肪族一級、二級及び三級アミン類または4級アンモニウム塩である。)
本発明の第2は、金属が、アルミ、アルミ合金、及びステンレスの中から選ばれた少なくとも一種である本発明の第1記載の接合方法を提供する。
本発明の第3は、熱可塑性樹脂が結晶性樹脂である本発明の第1又は2に記載の接合方法を提供する。
本発明の第4は、異種熱可塑性樹脂材料の組み合わせが、ポリアセタール樹脂、ポリアルキレンテレフタレート樹脂、ポリアリーレンサルファイド樹脂、ポリオレフィン樹脂からなる群から選ばれた二種の組み合わせである本発明の第1〜3のいずれかに記載の接合方法を提供する。
本発明の第5は、接合樹脂同士を0.1MPa以上の圧力で加圧することを特徴とする本発明の第1〜4のいずれかに記載の接合方法を提供する。
本発明の第6は、高周波電流の印加を停止した後に、加圧を1秒以上保持することを特徴とする本発明の第1〜5のいずれかに記載の接合方法を提供する。
本発明の第7は、本発明の第1〜6のいずれかに記載の接合方法を用いて、異種熱可塑性樹脂材料(A)及び(B)の金属箔(C)を挟んだ接合部のみを部分的に接合した複合成形品を提供する。
【0010】
【発明の実施の形態】
熱可塑性樹脂
本発明で使用する熱可塑性樹脂材料は、その主成分たる熱可塑性ポリマーの種類が互いに異なるものであり、従って、材料の融点が互いに異なる、異種の熱可塑性樹脂の組合せであって、それぞれの熱可塑性樹脂材料の形状や加工方法などは特に問わない。
また、上記熱可塑性樹脂材料には、公知の各種添加剤や無機・有機充填材などを含有していても構わない。
【0011】
本発明で使用する熱可塑性樹脂材料の種類としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン;ナイロン6、同6,6、同12、同6,12のような各種脂肪族ポリアミドまたは芳香族ポリアミド(PA);ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)のような芳香族ポリエステル樹脂;ポリアセタール樹脂(POM、コポリマーであってもよい。)、ポリフェニレンサルファイド(PPS)、液晶性ポリエステル(LCP)等の結晶性樹脂、及び、環状オレフィン系樹脂、ポリスチレン(PS)、AS樹脂、ABS樹脂、ポリ塩化ビニル(PVC)、ポリアクリロニトリル(PAN)、(メタ)アクリル樹脂、ポリカーボネート(PC)、ポリフェニレンエーテル(PPO)、ポリイミド(PI)等の非結晶性樹脂が挙げられる。しかし、溶融樹脂の固化速度が早く、従って溶着時の接合界面近傍の溶融樹脂が冷却固化するのに要する時間を相対的に短縮できる点から、結晶性樹脂が好ましい。
【0012】
本発明で使用する異種の熱可塑性樹脂材料における組合せの具体例としては、ポリアセタール樹脂(融点:約163℃〜173℃)とポリブチレンテレフタレート樹脂(融点:約223℃)、ポリアセタール樹脂とポリフェニレンサルファイド樹脂(融点:約285℃)、ポリブチレンテレフタレート樹脂とポリフエニレンサルファイド樹脂、高密度ポリエチレン樹脂(融点:約135℃)とポリアセタール樹脂、などの組み合わせが挙げられる。
【0013】
金属箔
本発明で使用する金属箔は、材質についてはアルミニウム、アルミ合金、ステンレスのいずれかであることが好ましい。黄銅やりん青銅などの銅合金類は、湿潤環境下で腐食し易く、密着強度が著しく低下するため使用しにくい場合がある。
また、厚みについては特に制限はなく、金属シートの形状であってもよいが、0.01〜1mm程度のものが好適に用いられる。
また、形状についても、予め接合面の形状に応じて、切断、予備賦形してあっても構わない。
【0014】
カップリング剤
本発明で使用する特定のカップリング剤とは、前記一般式で示されるトリアジンジチオール化合物である。上記カップリング剤としては、一般に市販されている(ジスネット(登録商標)/三協化成株式会社)などを利用することができる。
【0015】
金属箔の表面処理工程
本発明では、後に説明する高周波誘導加熱による接着を行う前に、予め、金属箔(C)を上記カップリング剤で表面処理する必要がある。
このカップリング剤を使用した金属箔の表面処理は、金属箔表面に該カップリング剤の薄い皮膜を形成することが目的であり、その方法について特に制限はないが、一般的に知られる方法として、該カップリング剤を水又は特定の有機溶剤に溶かし、この溶液中に金属箔を単に浸漬する方法や、浸漬して金属箔を陽極に、白金板等を陰極として電気化学的に吸着させる方法などがあり、これらの方法により、表面処理された金属箔(C)が得られる。
トリアジンジチオール化合物による金属体の表面処理は、例えば、トリアジンジチオール化合物の水または有機溶媒溶液に金属体を浸漬することによって行うことができる。処理方法の例として、特公昭60−41084号公報や特公平1−60051号公報に記載された方法が挙げられる。
また、表面処理は電気化学的に行うこともできる。例えば、トリアジンチオール化合物の水溶液または有機溶媒溶液を電着液として用い、金属体の金属を陽極とし、陰極には適宜の導体、例えば白金板やチタン板を用いて、例えば20V以下の電圧、0.1mA/dm以上の電流密度で、直流電流を0.1秒以上流して行うことができる。処理方法の例として、特公平5−51671号公報に記載された方法が挙げられる。
【0016】
高周波誘導加熱装置
高周波誘導加熱では、高周波磁場内に磁性体または導電体を置くと、ヒステリシス損と渦電流によるジュール熱によって極めて短時間に発熱が起こり、この発熱を金属の加熱に利用する。
高周波誘導加熱装置は、一般的に、高周波溶接機或いは電磁誘導ウェルダーなどと呼ばれ、市販されている。この装置を合成樹脂材料同士の直接加熱溶着に利用する場合、その合成樹脂材料が分極された分子構造を有していることが必要で、この分極の整列化による分子間摩擦衝突により発熱が生じる。このような分極構造を有する合成樹脂材料はいくつかあるが、溶融温度範囲が狭くて制御が困難などの理由により、一般的にはポリ塩化ビニル或いはポリ塩化ビニルを主成分とした材料に適用される。従って、ポリ塩化ビニル以外の合成樹脂材料同士を溶着させる場合には、一方の合成樹脂材料に金属粉や金属繊維等を混ぜ合わせたものを使用するか、接合面間に同材質の合成樹脂材料中に金属粉や金属繊維等を配合した材料を挟み、金属などからの間接的な発熱を利用して接合界面の樹脂を溶かすことにより溶着接合するのが一般的である。
本発明で使用する高周波誘導加熱装置は、このように一般的に工業利用されている装置である。
【0017】
熱可塑性樹脂材料間の接合
このような装置を使用し、前記異種の熱可塑性樹脂材料の接合面間に、前記表面処理した金属箔(C)を挟み、接合面周辺に配したコイルに高周波電流を印加することにより高周波磁場が発生、接合面間に置かれた金属箔(C)が発熱する。この際、高周波電流を印加して金属箔が発熱している間は、エアーシリンダーなどを利用して一定以上の圧力で前記異種の熱可塑性樹脂材料の接合面間を加圧することが好ましく、0.1MPa以上に加圧するのが効果的である。加圧をしないと、接合面間に部分的な隙間が生じて、接着不良を起こす場合がある。
【0018】
また、金属箔の温度は、融点の低い材料(A)を融解させ、融点の高い材料(B)の金属箔(C)に接する側を層状に少なくとも一部を融解させるまでの温度になるように加熱する必要がある。金属箔(C)に接する側の樹脂を層状に融解させる場合、金属箔(C)に接する部分は、金属箔(C)の全面であっても、一部であってもよいが、通常は全面である。融解させる樹脂層の厚みは、バリなどを見ながら決める。
金属箔の温度が、融点以上の温度に到達したかどうかは、接合端面の溶融バリ発生の有無で目視確認することが出来る。
なお、金属箔の温度の上限に関して特に規定はないが、融点の高い材料(B)の融点温度より著しく高くなると、樹脂材料の分解による物性の低下や分解ガスが多量に発生するなどの問題を生じるため好ましくない。
【0019】
次ぎに、本発明において、高周波の印加を停止した後に加圧力をそのまま1秒以上保持する工程を設けることが好ましい。この工程がなかったり、保持時間が1秒未満の場合、加圧力を開放した時点で接合界面での剥離が生じ、密着強度の低下を引き起こすことがある。一方、保持時間を過大に取りすぎても、生産効率に著しい影響を及ぼすことになるため好ましくない。従って、接合界面の溶融樹脂相が完全に固化するまでの間、加圧保持することが重要であり、この時間を短縮するために、圧縮エアーなどを利用して強制冷却することなども有効である。
上記接合方法は、材料(A)と材料(B)が特定の表面処理された金属箔(C)を介して交互に複数枚接合される場合にも、使用することが可能である。
【0020】
【実施例】
以下に本発明の実施例について説明するが、本発明の主旨を逸脱しない限り、本発明はこれら実施例に限定されるものではない。
実施例で使用した樹脂は次の通りである。
ポリアセタール樹脂:ジュラコン(登録商標)M90S、ポリプラスチックス(株)社製(融点:約163℃)
ポリブチレンテレフタレート樹脂:ジュラネックス(登録商標)2000/ポリプラスチックス(株)社製(融点:約223℃)
ポリフェニレンサルファイド樹脂:フォートロン(登録商標)O220A9、ポリプラスチックス(株)社製(融点:約285℃)
高密度ポリエチレン樹脂:ハイゼックス(登録商標)三井化学(株)社製(融点:約135℃)
【0021】
[実施例1]
異種の熱可塑性樹脂材料として、ポリアセタール樹脂とポリブチレンテレフタレート樹脂を用い、通常の射出成形法により10mm×130mm×厚み3mmの短冊状の成形品をそれぞれ作製した。
次ぎに、市販のアルミ箔(厚み50μm)をアセトンで脱脂処理した上で、1N水酸化ナトリウム水溶液に15秒間浸漬した後、超音波洗浄による水洗処理を行った。水洗後のアルミ箔を陽極とし、陰極に白金板を使用して、カップリング剤として市販の1,3,5−トリアジン−2,4,6−トリチオール・モノナトリウム(商品名:ジスネットTTN(登録商標)/三協化成株式会社)を用い、以下の条件で、定電流電解法によりアルミ箔を表面処理した。
・溶媒:蒸留水
・カップリング剤濃度:1×10−3モル/リットル
・処理温度:25℃
・電流密度:0.05mA/cm
・処理時間:10分
その後、メタノールで洗浄して付着した不純物を取り除き乾燥した。次ぎに、このカップリング剤で表面処理したアルミ箔を、カッターナイフを用いて10mm×10mmの正方形に切り出し、図1に示すように、前記ポリアセタールコポリマー樹脂成形品とポリブチレンテレフタレート樹脂成形品との間に挟んで重ね合わせ、下記条件により高周波誘導加熱接着を行い、接着強度評価用サンプルを得た。
・高周波誘導加熱装置:UH−10K(精電舎電子工業製)
・高周波電流:50A
・陽極電流:0.4A
・高周波印加時間:3秒
・加圧力:0.2MPa
・冷却保持時間:10秒
上記により得られたサンプルを、引張り試験機を使用して接着部の初期せん断破壊強度を測定(引張り速度:10mm/分)するとともに、破壊形態を調べた。結果を表1に示す。
また、上記接着強度評価用サンプルを温度85℃、相対湿度95%に設定した恒温恒湿槽内に放置し、1000時間経過後サンプルを取り出して室温に戻した後、上記と同様にしてせん断破壊強度を測定した。同様に、結果を表1に示す。
【0022】
[実施例2]
異種の熱可塑性樹脂材料として、ポリアセタール樹脂とポリフエニレンサルファイド樹脂を用い、高周波誘導加熱接着条件を表1に示した通りとした他は、実施例1と同様にして評価サンプルを得、同様に評価した。結果を表1に示す。
【0023】
[実施例3]
異種の熱可塑性樹脂材料として、ポリブチレンテレフタレート樹脂とポリフェニレンサルファイド樹脂を用い、高周波誘導加熱接着条件を表1に示した通りとした他は、実施例1と同様にして評価サンプルを得、同様に評価した。結果を表1に示す。
【0024】
[実施例4]
異種の熱可塑性樹脂材料として、ポリエチレン樹脂とポリアセタール樹脂を用い、また金属箔として市販のステンレス箔(厚み30μm)を使用し、高周波誘導加熱接着条件を表1に示した通りとした他は、実施例1と同様にして評価サンプルを得、同様に評価した。結果を表1に示す。
【0025】
[実施例5]
金属箔として市販の黄銅箔(厚み35μm)を使用した他は、実施例1と同様にして評価サンプルを得、同様に評価した。結果を表1に示す。
【0026】
[実施例6]
金属箔として市販の黄銅箔(厚み35μm)を使用した他は、実施例2と同様にして評価サンプルを得、同様に評価した。結果を表1に示す。
【0027】
[比較例1]
市販のアルミ箔にカップリング剤による表面処理を行わなかった他は、実施例1と同様にして評価サンプルを得、同様に評価した。結果を表1に示す。
【0028】
[比較例2]
市販のアルミ箔(厚み50μm)をアセトンで脱脂処理した上で、1N水酸化ナトリウム水溶液に15秒間浸漬した後、超音波洗浄による水洗処理を行った。更にメタノールで超音波洗浄した後、60℃に設定した熱風乾燥器で15分間乾燥した。
次に、乾燥後のアルミ箔をγ−グリシドキシプロピルトリメトキシシラン(商品名:TSL8350、東芝シリコーン(株)社製)を用い、以下の工程及び条件で、表面処理した。
▲1▼溶液調製
・溶媒として蒸留水を用い、γ−グリシドキシプロピルトリメトキシシランの5体積%水溶液を調製した。
▲2▼撹拌混合
・上記水溶液をスターラーで15分間撹拌混合した。
▲3▼処理液調製
・上記水溶液/イソプロピルアルコール/酢酸を、10/90/0.5体積比で混合し、シランカップリング処理液を調製した。
▲4▼アルミ箔の表面処理
上記シランカップリング処理液にアルミ箔を、超音波振動を与えながら下記条件で浸漬処理した。
・処理温度:室温
・処理時間:15分
▲5▼乾燥
▲4▼後のアルミ箔を、120℃に設定した熱風乾燥器で15分間乾燥した。
実施例1で使用した表面処理したアルミ箔の代りに、上記表面処理したアルミ箔を使用した他は、実施例1と同様にして高周波誘導加熱接着を行い、評価サンプルを得、同様に評価した。結果を表1に示す。
【0029】
[比較例3]
高周波誘導加熱接着条件を表1に示した通りとした他は、実施例2と同様にして評価サンプルを得、同様に評価した。結果を表1に示す。
【0030】
[比較例4]
高周波誘導加熱接着条件を表1に示した通りとした他は、実施例3と同様にして評価サンプルを得、同様に評価した。結果を表1に示す。
【0031】
[比較例5]
表面処理したアルミ箔の代りに、ステンレス繊維20体積%を含有するポリブチレンテレフタレート樹脂を用いて作成した10mm×10mm×約0.8mm厚みのシート材を使用した他は、実施例1と同様にして高周波誘導加熱接着を行い、評価サンプルを得、同様に評価した。結果を表1に示す。
【0032】
[比較例6]
表面処理したアルミ箔の代りに、厚み50μmのアルミ箔にレーザー加工により直径1.5mmの孔を多数あけたものを使用した他は、実施例3と同様にして、評価サンプルを得、同様に評価した。結果を表1に示す。
【0033】
[参考例]
高周波誘導加熱時の接着条件を表1に示した通りとした他は、実施例4と同様にして評価サンプルを得、同様に評価した。結果を表1(表は2分割)に示す。
【0034】
【表1】
Figure 2004244446
【0035】
【表2】
Figure 2004244446
【0036】
【発明の効果】
本発明によれば、従来不可能であった異種プラスチック材料間の溶着接合が可能となり、かつ過酷な環境下においても優れた密着性を有する異種材料複合体が得られる。従って、自動車分野などにおける耐圧気密性容器を始めとして、種々の産業分野において利用できる。
【図面の簡単な説明】
【図1】本発明の異種の熱可塑性樹脂材料間の接合方法の一例を示す図である。
【符号の説明】
A 融点の低い熱可塑性樹脂材料
B 融点の高い熱可塑性樹脂材料
C 表面処理された金属箔
D 高周波誘導加熱装置
E 誘導コイル
F 絶縁体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of superimposing different types of thermoplastic resin materials that are difficult to bond and bonding them by high frequency induction heating.
[0002]
[Prior art]
Conventionally, in processing technology for joining thermoplastic resin materials, there are secondary processing methods such as adhesive bonding, hot plate welding, vibration welding, ultrasonic welding, high frequency welding, laser welding, etc. As a primary processing method, a multiple molding method by injection molding or the like is known.
The method of using an adhesive is the most classic and simple method. However, when it is used industrially, the application work of the adhesive, the curing process, and the management are complicated, and there are also concerns about durability. Although it is an effective method as a temporary joining means, it cannot be said to be suitable as a joining method of a thermoplastic resin material for obtaining a product that can withstand a severe use environment.
[0003]
Next, in common with methods such as hot plate welding, vibration welding, ultrasonic welding, high frequency welding, laser welding, and multiple molding methods by injection molding, thermal energy is generated at the bonding interface by physical methods, Alternatively, by bringing heat energy obtained from outside the system into the bonding interface, the surfaces of the thermoplastic resin materials to be bonded to each other are melted and fusion bonded. Therefore, in these methods, the compatibility between the thermoplastic resin materials to be joined is the most important factor for obtaining adhesion, and in general, joining of the same materials or a common resin component is used. As the same polyester resin, it has a similar structure in its molecular chain and is compatible with each other, such as the bonding between different thermoplastic resin materials or the relationship between polybutylene terephthalate resin and polyethylene terephthalate resin. Used for joining thermoplastic resin materials.
[0004]
For example, as a method for joining thermoplastic resin materials by high-frequency induction heating, there are methods exemplified in Japanese Patent Application Laid-Open Nos. 57-123020 and 60-56534. In the former case, they are fused to each other. A possible thermoplastic synthetic resin material is an indispensable condition and is applied only to the joining of synthetic resins of the same system. In the latter case, a synthetic resin component made of the same material is bonded to each other, and a high frequency induction heating element in which a metal fiber is mixed in a synthetic resin material of the same material is disposed at the bonding interface between the two. In addition, the fusing mechanism itself at the bonding interface is thermal fusing with the same resin matrix. (See Patent Documents 1 and 2.)
[0005]
On the other hand, Japanese Patent Publication No. 1-60051 proposes a technique relating to press-bonding of a copper material surface-treated with a triazine thiol compound and polyethylene as a conventional technique relating to the adhesive compounding of a resin material and a metal material. However, in this technique, the metal to be bonded is limited to a copper material. (See Patent Document 3)
The method disclosed in Japanese Examined Patent Publication No. 60-41084 relating to an adhesive body of rubber and metal is also the same. That is, none of the conventional inventions provide a solution to the requirement to join different types of thermoplastic resin materials having completely different molecular structures with high reliability. (See Patent Document 4)
[0006]
[Patent Document 1]
JP 57-123020 A (Claim 1; page 2, lines 55-58)
[Patent Document 2]
JP-A-60-56534 (Claim 1; page 2, lines 50-55 and lines 66-70)
[Patent Document 3]
Japanese Patent Publication No. 1-60051 (Claim 1; Page 4, Table 2)
[Patent Document 4]
Japanese Patent Publication No. 60-41084 (Claim 1)
[0007]
[Problems to be solved by the invention]
Problems to be solved by the present invention include a polyacetal resin and a polybutylene terephthalate resin, a polyacetal resin and a polyphenylene sulfide resin, a polybutylene terephthalate resin and a polyphenylene sulfide resin, a polyethylene resin and a polyacetal resin, and the like, which are difficult to join with the prior art. It is an object of the present invention to provide an economical and excellent industrial mass-productivity method by which different types of thermoplastic resin materials having completely different molecular structures, such as the above-mentioned combinations, can be bonded with high reliability.
[0008]
[Means for Solving the Problems]
In view of the situation, the inventor has conducted earnest research, and as a result, the metal foil or metal sheet surface-treated with a specific coupling agent in advance is sandwiched between the joining surfaces of different types of thermoplastic resin materials to be joined. It has been found that a composite of different materials having good adhesion can be obtained by high frequency induction heating welding under conditions. The present invention has been made based on the above findings.
[0009]
That is, in the first aspect of the present invention, different thermoplastic resin materials (A) and (B) of a thermoplastic resin material (A) having a low melting point and a material (B) having a high melting point are overlapped and joined together. A metal foil (C) surface-treated with a coupling agent represented by the following general formula (1) is sandwiched between bonding surfaces of different materials, and the metal foil (C) is heated by a high frequency induction heating device. Then, the thermoplastic resin material (A) having a low melting point is melted, and the side in contact with the metal foil (C) of the material (B) having a high melting point is heated until at least a part thereof is melted in a layered manner. Provided is a method for joining different types of thermoplastic resin materials.
[Chemical formula 2]
Figure 2004244446
(In the above formula, R is —OR ′, —SR ′, —NHR ′ or —N (R ′) 2 , where R ′ is a hydrogen atom, an alkyl group, an alkenyl group, a phenyl group having 1 to 10 carbon atoms, A phenylalkyl group, an alkylphenyl group or a cycloalkyl group, and M is H, Na, Li, K, 1 / 2Ba, 1 / 2Ca, aliphatic primary, secondary and tertiary amines or a quaternary ammonium salt. .)
A second aspect of the present invention provides the joining method according to the first aspect of the present invention, wherein the metal is at least one selected from aluminum, an aluminum alloy, and stainless steel.
A third aspect of the present invention provides the joining method according to the first or second aspect of the present invention, wherein the thermoplastic resin is a crystalline resin.
According to a fourth aspect of the present invention, the combination of different thermoplastic resin materials is a combination of two selected from the group consisting of a polyacetal resin, a polyalkylene terephthalate resin, a polyarylene sulfide resin, and a polyolefin resin. 3. The joining method according to any one of 3 is provided.
5th of this invention provides the joining method in any one of the 1st-4th of this invention characterized by pressurizing joining resin with the pressure of 0.1 Mpa or more.
6th of this invention provides the joining method in any one of 1-5 of this invention characterized by hold | maintaining pressurization for 1 second or more, after stopping application of a high frequency current.
7th of this invention is only the junction part which pinched | interposed the metal foil (C) of a different thermoplastic resin material (A) and (B) using the joining method in any one of 1st-6th of this invention. Provided is a composite molded article in which are partially joined.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Thermoplastic resin The thermoplastic resin material used in the present invention is a combination of different types of thermoplastic resins in which the types of thermoplastic polymers as main components thereof are different from each other, and therefore the melting points of the materials are different from each other. The shape and processing method of each thermoplastic resin material are not particularly limited.
The thermoplastic resin material may contain various known additives and inorganic / organic fillers.
[0011]
Examples of the thermoplastic resin material used in the present invention include polyolefins such as polyethylene (PE) and polypropylene (PP); various aliphatic polyamides such as nylon 6, 6, 6, 12, 12, and 12, or Aromatic polyamide (PA); aromatic polyester resin such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT); polyacetal resin (POM, may be a copolymer), polyphenylene sulfide (PPS), liquid crystalline polyester Crystalline resins such as (LCP), cyclic olefin resins, polystyrene (PS), AS resins, ABS resins, polyvinyl chloride (PVC), polyacrylonitrile (PAN), (meth) acrylic resins, polycarbonate (PC) , Polyphenylene ether (PPO Include non-crystalline resin polyimide (PI) or the like. However, the crystalline resin is preferable because the solidification speed of the molten resin is fast, and therefore the time required for the molten resin in the vicinity of the bonding interface at the time of welding to cool and solidify can be relatively shortened.
[0012]
Specific examples of combinations in different thermoplastic resin materials used in the present invention include polyacetal resin (melting point: about 163 ° C. to 173 ° C.) and polybutylene terephthalate resin (melting point: about 223 ° C.), polyacetal resin and polyphenylene sulfide resin. (Melting point: about 285 ° C.), polybutylene terephthalate resin and polyphenylene sulfide resin, high density polyethylene resin (melting point: about 135 ° C.) and polyacetal resin, and the like.
[0013]
Metal foil The metal foil used in the present invention is preferably made of aluminum, aluminum alloy, or stainless steel. Copper alloys such as brass and phosphor bronze are likely to corrode in a wet environment and may be difficult to use because adhesion strength is significantly reduced.
Moreover, there is no restriction | limiting in particular about thickness, Although the shape of a metal sheet may be sufficient, a thing of about 0.01-1 mm is used suitably.
Also, the shape may be cut and preshaped according to the shape of the joint surface in advance.
[0014]
Coupling agent The specific coupling agent used in the present invention is a triazine dithiol compound represented by the above general formula. As the coupling agent, commercially available (Gisnet (registered trademark) / Sankyo Kasei Co., Ltd.) and the like can be used.
[0015]
Metal foil surface treatment step In the present invention, the metal foil (C) needs to be surface-treated with the above-mentioned coupling agent in advance before performing adhesion by high-frequency induction heating described later.
The surface treatment of the metal foil using this coupling agent is intended to form a thin film of the coupling agent on the surface of the metal foil, and there is no particular limitation on the method, but as a generally known method , A method in which the coupling agent is dissolved in water or a specific organic solvent, and a metal foil is simply immersed in this solution, or a method in which the metal foil is immersed and electrochemically adsorbed using the platinum plate or the like as a cathode. The surface-treated metal foil (C) can be obtained by these methods.
The surface treatment of the metal body with the triazine dithiol compound can be performed, for example, by immersing the metal body in water or an organic solvent solution of the triazine dithiol compound. Examples of the processing method include the methods described in JP-B-60-41084 and JP-B-1-60051.
The surface treatment can also be performed electrochemically. For example, an aqueous solution or an organic solvent solution of a triazine thiol compound is used as an electrodeposition solution, a metal metal is used as an anode, and an appropriate conductor such as a platinum plate or a titanium plate is used as a cathode. It can be carried out at a current density of 0.1 mA / dm 2 or more by passing a direct current for 0.1 seconds or more. Examples of the processing method include the method described in Japanese Patent Publication No. 5-51671.
[0016]
In a high frequency induction heating apparatus, when a magnetic material or a conductor is placed in a high frequency magnetic field, heat is generated in a very short time due to hysteresis loss and Joule heat due to eddy current, and this heat generation is used for heating a metal.
The high-frequency induction heating device is generally called a high-frequency welder or an electromagnetic induction welder and is commercially available. When this apparatus is used for direct heating welding of synthetic resin materials, the synthetic resin material must have a polarized molecular structure, and heat is generated due to intermolecular frictional collision caused by this polarization alignment. . There are several synthetic resin materials having such a polarization structure, but they are generally applied to polyvinyl chloride or materials based on polyvinyl chloride for reasons such as a narrow melting temperature range and difficulty in control. The Therefore, when welding synthetic resin materials other than polyvinyl chloride, use a mixture of metal powder or metal fibers in one synthetic resin material, or use the same synthetic resin material between joint surfaces. Generally, a material containing metal powder, metal fiber, or the like is sandwiched therebetween, and welding at the joint interface is performed by using indirect heat generated from the metal or the like to perform welding and joining.
The high-frequency induction heating device used in the present invention is a device that is generally used industrially as described above.
[0017]
Bonding between thermoplastic resin materials Using such a device, the surface-treated metal foil (C) is sandwiched between the bonding surfaces of the different types of thermoplastic resin materials, and a high-frequency current is applied to a coil disposed around the bonding surface. Is applied, a high frequency magnetic field is generated, and the metal foil (C) placed between the joining surfaces generates heat. At this time, while the high-frequency current is applied and the metal foil is generating heat, it is preferable to press between the joint surfaces of the different types of thermoplastic resin materials using an air cylinder or the like at a certain pressure or higher. It is effective to pressurize to 1 MPa or more. If pressure is not applied, a partial gap may occur between the joint surfaces, which may cause poor adhesion.
[0018]
The temperature of the metal foil is such that the material (A) having a low melting point is melted and at least a part of the material in contact with the metal foil (C) of the material (B) having a high melting point is melted in layers. Need to be heated. When the resin on the side in contact with the metal foil (C) is melted in layers, the portion in contact with the metal foil (C) may be the entire surface of the metal foil (C) or a part thereof. It is the whole surface. The thickness of the resin layer to be melted is determined by looking at burrs.
Whether or not the temperature of the metal foil has reached a temperature equal to or higher than the melting point can be visually confirmed by the presence or absence of occurrence of molten burrs on the joining end face.
The upper limit of the temperature of the metal foil is not particularly specified, but if the temperature is significantly higher than the melting point temperature of the material (B) having a high melting point, there are problems such as deterioration of physical properties due to decomposition of the resin material and generation of a large amount of decomposition gas. This is not preferable because it occurs.
[0019]
Next, in the present invention, it is preferable to provide a step of holding the applied pressure as it is for 1 second or more after the application of the high frequency is stopped. If this step is not performed or the holding time is less than 1 second, peeling at the bonding interface occurs when the applied pressure is released, which may cause a decrease in adhesion strength. On the other hand, taking too much holding time is not preferable because it significantly affects the production efficiency. Therefore, it is important to maintain the pressure until the molten resin phase at the bonding interface is completely solidified. To shorten this time, forced cooling using compressed air is also effective. is there.
The above joining method can also be used when a plurality of materials (A) and (B) are joined alternately via a specific surface-treated metal foil (C).
[0020]
【Example】
Examples of the present invention will be described below, but the present invention is not limited to these examples without departing from the gist of the present invention.
Resins used in the examples are as follows.
Polyacetal resin: Duracon (registered trademark) M90S, manufactured by Polyplastics Co., Ltd. (melting point: about 163 ° C.)
Polybutylene terephthalate resin: DURANEX (registered trademark) 2000 / manufactured by Polyplastics Co., Ltd. (melting point: about 223 ° C.)
Polyphenylene sulfide resin: Fortron (registered trademark) O220A9, manufactured by Polyplastics Co., Ltd. (melting point: about 285 ° C.)
High density polyethylene resin: Made by Hi-X (registered trademark) Mitsui Chemicals, Inc. (melting point: about 135 ° C.)
[0021]
[Example 1]
Using polyacetal resin and polybutylene terephthalate resin as different types of thermoplastic resin materials, strip-shaped molded products having a size of 10 mm × 130 mm × thickness 3 mm were prepared by a normal injection molding method.
Next, a commercially available aluminum foil (thickness 50 μm) was degreased with acetone, immersed in a 1N aqueous sodium hydroxide solution for 15 seconds, and then washed with water by ultrasonic cleaning. Aluminum foil after washing is used as an anode, a platinum plate is used as a cathode, and a commercially available 1,3,5-triazine-2,4,6-trithiol monosodium (trade name: Disnet TTN (registered) (Trademark) / Sankyo Kasei Co., Ltd.), and the aluminum foil was surface-treated by the constant current electrolysis method under the following conditions.
・ Solvent: Distilled water ・ Coupling agent concentration: 1 × 10 −3 mol / liter ・ Processing temperature: 25 ° C.
Current density: 0.05 mA / cm 2
Treatment time: 10 minutes, and then washed with methanol to remove attached impurities and dry. Next, the aluminum foil surface-treated with this coupling agent was cut into a 10 mm × 10 mm square using a cutter knife, and as shown in FIG. 1, the polyacetal copolymer resin molded product and the polybutylene terephthalate resin molded product were The samples were stacked between each other and subjected to high-frequency induction heating bonding under the following conditions to obtain a sample for bonding strength evaluation.
・ High frequency induction heating device: UH-10K (manufactured by Seidensha Electronics)
・ High frequency current: 50A
・ Anode current: 0.4A
・ High frequency application time: 3 seconds ・ Pressure: 0.2 MPa
-Cooling holding time: 10 seconds The initial shear fracture strength of the bonded portion was measured using a tensile tester (tensile speed: 10 mm / min) and the fracture mode was examined. The results are shown in Table 1.
The sample for evaluating the adhesive strength is left in a constant temperature and humidity chamber set at a temperature of 85 ° C. and a relative humidity of 95%. After 1000 hours, the sample is taken out and returned to room temperature, and then the shear fracture is performed as described above. The strength was measured. Similarly, the results are shown in Table 1.
[0022]
[Example 2]
An evaluation sample was obtained in the same manner as in Example 1 except that polyacetal resin and polyphenylene sulfide resin were used as the different types of thermoplastic resin materials, and the high frequency induction heating adhesion conditions were as shown in Table 1. evaluated. The results are shown in Table 1.
[0023]
[Example 3]
An evaluation sample was obtained in the same manner as in Example 1 except that polybutylene terephthalate resin and polyphenylene sulfide resin were used as different types of thermoplastic resin materials, and the high frequency induction heating adhesion conditions were as shown in Table 1. evaluated. The results are shown in Table 1.
[0024]
[Example 4]
Except for using different types of thermoplastic resin materials, polyethylene resin and polyacetal resin, and using commercially available stainless steel foil (thickness 30 μm) as the metal foil, and using the high frequency induction heating bonding conditions as shown in Table 1, Evaluation samples were obtained in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1.
[0025]
[Example 5]
An evaluation sample was obtained and evaluated in the same manner as in Example 1 except that a commercially available brass foil (thickness: 35 μm) was used as the metal foil. The results are shown in Table 1.
[0026]
[Example 6]
An evaluation sample was obtained and evaluated in the same manner as in Example 2 except that a commercially available brass foil (thickness: 35 μm) was used as the metal foil. The results are shown in Table 1.
[0027]
[Comparative Example 1]
An evaluation sample was obtained and evaluated in the same manner as in Example 1 except that the commercially available aluminum foil was not subjected to surface treatment with a coupling agent. The results are shown in Table 1.
[0028]
[Comparative Example 2]
A commercially available aluminum foil (thickness 50 μm) was degreased with acetone, immersed in a 1N aqueous sodium hydroxide solution for 15 seconds, and then washed with water by ultrasonic cleaning. Furthermore, after ultrasonically washing with methanol, it was dried for 15 minutes in a hot air drier set at 60 ° C.
Next, the aluminum foil after drying was surface-treated in the following steps and conditions using γ-glycidoxypropyltrimethoxysilane (trade name: TSL8350, manufactured by Toshiba Silicone Co., Ltd.).
(1) Solution preparation • A distilled water was used as a solvent to prepare a 5% by volume aqueous solution of γ-glycidoxypropyltrimethoxysilane.
(2) Stirring and mixing The above aqueous solution was stirred and mixed with a stirrer for 15 minutes.
(3) Preparation of treatment solution • The above aqueous solution / isopropyl alcohol / acetic acid was mixed at a volume ratio of 10/90 / 0.5 to prepare a silane coupling treatment solution.
(4) Surface treatment of aluminum foil Aluminum foil was immersed in the silane coupling treatment solution under the following conditions while applying ultrasonic vibration.
Treatment temperature: room temperature Treatment time: 15 minutes (5) Drying (4) The aluminum foil after drying was dried for 15 minutes in a hot air drier set at 120 ° C.
Instead of the surface-treated aluminum foil used in Example 1, high-frequency induction heating adhesion was performed in the same manner as in Example 1 except that the surface-treated aluminum foil was used, and an evaluation sample was obtained and evaluated in the same manner. . The results are shown in Table 1.
[0029]
[Comparative Example 3]
An evaluation sample was obtained and evaluated in the same manner as in Example 2 except that the high frequency induction heating bonding conditions were as shown in Table 1. The results are shown in Table 1.
[0030]
[Comparative Example 4]
An evaluation sample was obtained and evaluated in the same manner as in Example 3 except that the high frequency induction heating bonding conditions were as shown in Table 1. The results are shown in Table 1.
[0031]
[Comparative Example 5]
The same procedure as in Example 1 was used except that a sheet material 10 mm × 10 mm × about 0.8 mm thick prepared using a polybutylene terephthalate resin containing 20% by volume of stainless steel fibers was used instead of the surface-treated aluminum foil. Then, high frequency induction heating adhesion was performed to obtain an evaluation sample, which was similarly evaluated. The results are shown in Table 1.
[0032]
[Comparative Example 6]
In place of the surface-treated aluminum foil, an evaluation sample was obtained in the same manner as in Example 3 except that a 50 μm thick aluminum foil having a number of holes with a diameter of 1.5 mm formed by laser processing was used. evaluated. The results are shown in Table 1.
[0033]
[Reference example]
An evaluation sample was obtained and evaluated in the same manner as in Example 4 except that the bonding conditions during high frequency induction heating were as shown in Table 1. The results are shown in Table 1 (the table is divided into two).
[0034]
[Table 1]
Figure 2004244446
[0035]
[Table 2]
Figure 2004244446
[0036]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the dissimilar-material composite_body | complex which can perform the welding joining between the dissimilar plastic materials which was impossible conventionally, and has the outstanding adhesiveness also in a severe environment is obtained. Therefore, it can be used in various industrial fields including pressure-tight and airtight containers in the automobile field.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a joining method between different types of thermoplastic resin materials of the present invention.
[Explanation of symbols]
A Thermoplastic resin material having a low melting point B Thermoplastic resin material having a high melting point C Surface-treated metal foil D High-frequency induction heating device E Induction coil F Insulator

Claims (7)

融点の低い熱可塑性樹脂材料(A)と、融点の高い材料(B)との、異種の熱可塑性樹脂材料(A)及び(B)を重ね合わせて両者を接合する方法であって、予め下記一般式(1)で表わされるカップリング剤で表面処理された金属箔(C)を異種材料の接合面間に挟み、高周波誘導加熱装置により金属箔(C)を加熱して、融点の低い熱可塑性樹脂材料(A)を融解させ、融点の高い材料(B)の金属箔(C)に接する側を層状に少なくとも一部を融解させるまで加熱することを特徴とする異種の熱可塑性樹脂材料の接合方法。
Figure 2004244446
(上式において、Rは−OR’、−SR’、−NHR’または−N(R’)で、R’は水素原子、炭素数1〜10の、アルキル基、アルケニル基、フェニル基、フェニルアルキル基、アルキルフェニル基またはシクロアルキル基であり、MはH、Na、Li、K、1/2Ba、1/2Ca、脂肪族一級、二級及び三級アミン類または4級アンモニウム塩である。)
A method of superposing different types of thermoplastic resin materials (A) and (B) on a thermoplastic resin material (A) having a low melting point and a material (B) having a high melting point and joining them together, A metal foil (C) surface-treated with a coupling agent represented by the general formula (1) is sandwiched between bonding surfaces of different materials, and the metal foil (C) is heated by a high-frequency induction heating device, so that heat with a low melting point is obtained. The thermoplastic resin material (A) is melted, and the side of the high melting point material (B) in contact with the metal foil (C) is heated in a layered manner until at least a part thereof is melted. Joining method.
Figure 2004244446
(In the above formula, R is —OR ′, —SR ′, —NHR ′ or —N (R ′) 2 , where R ′ is a hydrogen atom, an alkyl group, an alkenyl group, a phenyl group having 1 to 10 carbon atoms, A phenylalkyl group, an alkylphenyl group or a cycloalkyl group, and M is H, Na, Li, K, 1 / 2Ba, 1 / 2Ca, aliphatic primary, secondary and tertiary amines or a quaternary ammonium salt. .)
金属が、アルミ、アルミ合金、及びステンレスの中から選ばれた少なくとも一種である請求項1記載の接合方法。The joining method according to claim 1, wherein the metal is at least one selected from aluminum, an aluminum alloy, and stainless steel. 熱可塑性樹脂が結晶性樹脂である請求項1又は2に記載の接合方法。The joining method according to claim 1 or 2, wherein the thermoplastic resin is a crystalline resin. 異種熱可塑性樹脂材料の組み合わせが、ポリアセタール樹脂、ポリアルキレンテレフタレート樹脂、ポリアリーレンサルファイド樹脂、ポリオレフィン樹脂からなる群から選ばれた二種の組み合わせである請求項1〜3のいずれかに記載の接合方法。The bonding method according to any one of claims 1 to 3, wherein the combination of different thermoplastic resin materials is a combination of two selected from the group consisting of a polyacetal resin, a polyalkylene terephthalate resin, a polyarylene sulfide resin, and a polyolefin resin. . 接合樹脂同士を0.1MPa以上の圧力で加圧することを特徴とする請求項1〜4のいずれかに記載の接合方法。The joining method according to any one of claims 1 to 4, wherein the joining resins are pressurized with a pressure of 0.1 MPa or more. 高周波電流の印加を停止した後に、加圧を1秒以上保持することを特徴とする請求項1〜5のいずれかに記載の接合方法。6. The bonding method according to claim 1, wherein after applying the high-frequency current is stopped, pressurization is maintained for 1 second or more. 請求項1〜6のいずれかに記載の接合方法を用いて、異種熱可塑性樹脂材料(A)及び(B)の金属箔(C)を挟んだ接合部のみを部分的に接合した複合成形品。A composite molded article obtained by partially joining only the joining portion sandwiching the metal foils (C) of the different thermoplastic resin materials (A) and (B) using the joining method according to any one of claims 1 to 6. .
JP2003033002A 2003-02-10 2003-02-10 Joining method of thermoplastic resin materials Expired - Fee Related JP4233342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003033002A JP4233342B2 (en) 2003-02-10 2003-02-10 Joining method of thermoplastic resin materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003033002A JP4233342B2 (en) 2003-02-10 2003-02-10 Joining method of thermoplastic resin materials

Publications (2)

Publication Number Publication Date
JP2004244446A true JP2004244446A (en) 2004-09-02
JP4233342B2 JP4233342B2 (en) 2009-03-04

Family

ID=33019120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003033002A Expired - Fee Related JP4233342B2 (en) 2003-02-10 2003-02-10 Joining method of thermoplastic resin materials

Country Status (1)

Country Link
JP (1) JP4233342B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119752A (en) * 2005-09-28 2007-05-17 Iwate Univ Molecular adhesive for pasting resin and rubber, method for pasting resin and rubber, and composite pasted product from resin and rubber
WO2011027524A1 (en) 2009-09-02 2011-03-10 株式会社カネカ Hot-melt adhesive material for induction heating
JP2012084438A (en) * 2010-10-13 2012-04-26 Aisin Chemical Co Ltd Microwave heating element and welding method thereby
JP2019049023A (en) * 2017-09-08 2019-03-28 ジオネーション株式会社 Resin metal joined body and method for manufacturing the same
CN115109282A (en) * 2022-04-25 2022-09-27 中国科学院上海光学精密机械研究所 Chemical connection method of metal and polymer material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119752A (en) * 2005-09-28 2007-05-17 Iwate Univ Molecular adhesive for pasting resin and rubber, method for pasting resin and rubber, and composite pasted product from resin and rubber
WO2011027524A1 (en) 2009-09-02 2011-03-10 株式会社カネカ Hot-melt adhesive material for induction heating
JP2012084438A (en) * 2010-10-13 2012-04-26 Aisin Chemical Co Ltd Microwave heating element and welding method thereby
JP2019049023A (en) * 2017-09-08 2019-03-28 ジオネーション株式会社 Resin metal joined body and method for manufacturing the same
CN115109282A (en) * 2022-04-25 2022-09-27 中国科学院上海光学精密机械研究所 Chemical connection method of metal and polymer material

Also Published As

Publication number Publication date
JP4233342B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
TWI707781B (en) Metal-resin composite molded article and production method thereof
JP5648069B2 (en) Manufacturing method of carbon fiber composite material joining member
US8696923B2 (en) Composite of steel and resin and method for manufacturing same
JP5958615B2 (en) Composite of metal and thermoplastic resin
TW200806459A (en) Welding of functional components to polymer composite components
Lambiase et al. Mechanism of bonding of AA7075 aluminum alloy and CFRP during friction assisted joining
JP5253416B2 (en) Metal-resin composite and method for producing the same
Banik A review on the use of thermoplastic composites and their effects in induction welding method
JP2016060051A (en) Production method of composite of metal and frtp and the composite
JP4233342B2 (en) Joining method of thermoplastic resin materials
JP6280834B2 (en) Dissimilar material joined body and manufacturing method thereof
EP3034277A1 (en) Bonded body and bonding method
JP6302606B1 (en) Manufacturing method of joined body
JP2013014113A (en) Method of joining fiber-reinforced thermoplastic resin
JP6436243B2 (en) Metal resin bonding member and method for manufacturing the same
Worrall et al. Novel induction heating technique for joining of carbon fibre composites
WO2016199339A1 (en) Metal resin composite molded body and method for producing same
WO2024010037A1 (en) Bonding method
Totla et al. Resistance welding analysis of thermoplastic composite structures in aeronautical applications
JPS6262733A (en) Jointing of plastic molding
Bose et al. A review on recent developments in ultrasonic welding of polymers and polymeric composites
Jandali et al. Vibration welding of continuous-fiber thermoplastic matrix composites
JPH1047580A (en) Ih resin heater
JP2020040368A (en) Method for manufacturing composite body of coated metal contouring material and resin material
JPH11207826A (en) Manufacture of resin-made intake manifold

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4233342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees