WO2024010037A1 - Bonding method - Google Patents
Bonding method Download PDFInfo
- Publication number
- WO2024010037A1 WO2024010037A1 PCT/JP2023/024956 JP2023024956W WO2024010037A1 WO 2024010037 A1 WO2024010037 A1 WO 2024010037A1 JP 2023024956 W JP2023024956 W JP 2023024956W WO 2024010037 A1 WO2024010037 A1 WO 2024010037A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base material
- metal base
- polymer solution
- resin
- bonding
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 83
- 239000000463 material Substances 0.000 claims abstract description 254
- 229910052751 metal Inorganic materials 0.000 claims abstract description 145
- 239000002184 metal Substances 0.000 claims abstract description 145
- 239000011347 resin Substances 0.000 claims abstract description 129
- 229920005989 resin Polymers 0.000 claims abstract description 129
- 229920000642 polymer Polymers 0.000 claims abstract description 102
- 239000000126 substance Substances 0.000 claims abstract description 52
- 238000002844 melting Methods 0.000 claims abstract description 23
- 230000008018 melting Effects 0.000 claims abstract description 23
- 229920003169 water-soluble polymer Polymers 0.000 claims abstract description 21
- 125000000524 functional group Chemical group 0.000 claims abstract description 6
- 239000000243 solution Substances 0.000 claims description 99
- 238000005304 joining Methods 0.000 claims description 56
- 238000010438 heat treatment Methods 0.000 claims description 22
- 239000000843 powder Substances 0.000 claims description 18
- 238000009832 plasma treatment Methods 0.000 claims description 17
- 238000004140 cleaning Methods 0.000 claims description 14
- 238000005238 degreasing Methods 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 7
- 239000000155 melt Substances 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 6
- 230000004048 modification Effects 0.000 claims description 3
- 238000012986 modification Methods 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 56
- 239000002994 raw material Substances 0.000 description 30
- 229920002125 Sokalan® Polymers 0.000 description 19
- 238000010586 diagram Methods 0.000 description 19
- 238000007731 hot pressing Methods 0.000 description 16
- 238000004381 surface treatment Methods 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 229910000831 Steel Inorganic materials 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 229910001867 inorganic solvent Inorganic materials 0.000 description 10
- 239000003049 inorganic solvent Substances 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 229920002239 polyacrylonitrile Polymers 0.000 description 7
- -1 polybutylene Polymers 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000004927 fusion Effects 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000004734 Polyphenylene sulfide Substances 0.000 description 4
- 229920006184 cellulose methylcellulose Polymers 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 description 4
- 239000008213 purified water Substances 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229940057995 liquid paraffin Drugs 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000004584 polyacrylic acid Substances 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000004372 laser cladding Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/12—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
Definitions
- the present invention relates to a joining method for joining metal and resin.
- Patent Document 1 fine protrusions are formed on the surface of a metal base material by so-called laser cladding, and a resin base material placed on the protrusions is melted by laser irradiation to create an anchor effect. discloses a method for joining resin base materials.
- Patent Document 1 may require large-scale preparations and equipment for laser cladding, and cannot be said to be easy. Furthermore, in the technique of Patent Document 1 mentioned above, when joining molded plastic base materials, it is not possible to apply a pressing force to the plastic base materials to exhibit an anchor effect, and the plastic base material and the metal base material cannot be bonded. There was also the possibility that voids would form between the materials and the joint strength would decrease.
- the purpose of this application is to provide a technology that can bond metal and resin in a simpler way than conventional bonding using anchor effects or adhesives using organic solvents.
- the present invention can be realized as the following forms.
- the joining method of the first form includes a first step of performing at least one of degreasing and cleaning and surface modification by plasma treatment on the joining surface of the metal material, and heating the bonding surface of the metal material after the first step.
- the metal material and the resin material are joined by heating and pressing or by injection molding the resin material. According to the joining method of the first embodiment, joining can be easily performed at low cost without using large-scale equipment such as a laser.
- the polymer solution used in the bonding method of the first embodiment may contain an inorganic powder that melts at the temperature during bonding. By including inorganic powder in the polymer solution, it is possible to increase the bonding strength.
- the third embodiment is provided as a joining method for joining a metal base material and a resin base material.
- the third embodiment of the bonding method includes applying a polymer solution containing a water-soluble polymer having a functional group to the surface of the metal base material, and bonding the water-soluble polymer with the groups present on the surface of the metal base material.
- the method includes the steps of: forming a chemically bonded layer that is fixed to the surface of the metal base material by bonding; and melting the resin base material and fusing it to the chemically bonded layer that is fixed to the metal base material. .
- the third embodiment of the bonding method it is possible to easily form a chemical bonding layer that adheres to the metal base material by chemical bonding by applying a polymer solution.
- high bonding strength between the resin base material and the metal base material can be obtained by the molten resin base material entering and being mixed with the chemical bonding layer fixed to the metal base material. Therefore, joining the metal base material and the resin base material can be facilitated.
- the bonding method of the fourth embodiment further includes a step of degreasing and cleaning an area to which the polymer solution is applied on the surface of the metal base material, before applying the polymer solution to the metal base material. It's okay. According to the joining method of the fourth embodiment, the joining strength between the metal base material and the resin base material can be further increased.
- the bonding method of the third or fourth embodiment may include a step of performing plasma treatment on the application area before applying the polymer solution to the metal base material.
- the joining strength between the metal base material and the resin base material can be further increased.
- the bonding method according to any one of the third, fourth, and fifth embodiments further includes the step of applying the polymer solution to the metal base material.
- the method may include a step of removing an oxide film on the surface where the polymer solution is applied.
- the joining strength between the metal base material and the resin base material can be further increased.
- the polymer solution fuses the chemically bonded layer to the resin base material.
- the bonding strength between the metal base material and the resin base material can be further increased by fusion of the inorganic powder.
- the resin base material is joined via the joining layer. preparing the metal base material as a first metal base material; and melting the resin base material onto the chemical bonding layer of the second metal base material formed by applying the polymer solution to a second metal base material. and fusion bonding. According to the bonding method of the eighth embodiment, two metal base materials can be easily bonded via a resin base material.
- the present invention can also be realized in various forms other than the bonding method.
- the polymer solution used in the bonding method a metal base material having a chemically bonded layer formed by the polymer solution, a bonded body of the metal base material and a resin base material, various products using the bonded body, It can be realized in the form of a method for manufacturing these joined bodies or products, an apparatus for implementing the above-mentioned joining method or manufacturing method, a control unit or a control program for the apparatus, and the like.
- FIG. 3 is an explanatory diagram showing steps of a joining method.
- FIG. 3 is a schematic diagram showing the contents of each step of the joining method.
- An explanatory diagram summarizing production examples of polymer solutions.
- Reference diagram of the first experimental example The first reference diagram of the second experimental example.
- the second reference diagram of the second experimental example The third reference diagram of the second experimental example.
- the fourth reference diagram of the second experimental example The first explanatory diagram summarizing the results of the third experimental example.
- a second explanatory diagram summarizing the results of the third experimental example.
- FIG. 7 is a schematic diagram showing the contents of each step of the joining method of the second embodiment.
- FIG. 1 shows a flowchart showing the steps of the joining method of the first embodiment.
- FIGS. 2A to 2E are schematic diagrams showing the contents of each step S10 to S40 in the joining method of the first embodiment in the order of the steps.
- 2(a) is a reference diagram of step S10
- FIG. 2(b) is a reference diagram of step S20
- FIG. 2(c) is a reference diagram of step S30
- FIG. 2(d) is a reference diagram of step S30.
- (e) are reference diagrams of step S40.
- the metal base material 10 and the resin base material 20 are joined.
- base material is used to broadly mean members to be processed, members constituting products, etc., and can also be referred to as "raw material.”
- the types of metal base material 10 and resin base material 20 are not particularly limited, but suitable examples include the following.
- metal base material Aluminum (Al), Al alloy, copper (Cu), Cu alloy, nickel (Ni), Ni alloy, iron (Fe), cold rolled steel sheet (SPCC), galvanized steel sheet (SECC, SGCC, SEHC, etc.), carbon Tool steel (SK material), carbon steel for machine structures (SC material), stainless steel, general mild steel material, ultra-high tensile strength steel, and various other metals, alloys, steel materials, etc.
- PA Polyamide
- PA6 and PA66 Polyamide (PA) resins such as PA6 and PA66, polybutylene tephthalate (PBT), polyphenylene sulfide (PPS), polyethylene terephthalate (PET), carbon fiber reinforced thermoplastic resin (CFRTP), ABS resin, polyethylene (PE) , polypropylene (PP), polyacetal (POM), vinyl chloride (PVC), other plastics, rubber, thermoplastic resins, and other synthetic resins that soften when heated.
- PA Polyamide
- PA66 polybutylene tephthalate
- PPS polyphenylene sulfide
- PET polyethylene terephthalate
- CFRTP carbon fiber reinforced thermoplastic resin
- ABS resin polyethylene
- PE polypropylene
- POM polyacetal
- PVM vinyl chloride
- other plastics rubber, thermoplastic resins, and other synthetic resins that soften when heated.
- step S10 the bonding surface of the metal base material 10 is surface-treated as a preparation for bonding. This surface treatment is performed at least on a coating area CA of the joint surface to which a polymer solution to be described later is applied.
- the application area CA is shown by a broken line for convenience.
- the surface treatment for example, degreasing and cleaning, surface modification by plasma treatment, etc. can be adopted.
- This surface treatment can improve the adhesion of the chemical bonding layer 32 shown in FIG. 2(d), which will be described later, to the metal base material 10, and can increase the bonding strength between the metal base material 10 and the resin base material 20. .
- step S10 it is preferable that at least one of degreasing cleaning and plasma treatment is performed as the surface treatment in step S10. Moreover, in step S10, it is more preferable to perform plasma treatment after degreasing and cleaning. The reason why plasma treatment is suitable will be described later.
- an oxide film removal process for removing an oxide film in the coating area may be performed as the surface treatment.
- the oxide film removal treatment as surface treatment is preferably combined with degreasing cleaning and plasma treatment.
- the oxide film removal process is performed, for example, by applying an oxide film removing agent such as sulfuric acid or hydrochloric acid to the application area CA of the metal base material 10. By performing the oxide film removal treatment, the adhesion of the chemical bonding layer 32 to the metal base material 10 can be further improved.
- step S10 for example, a process of removing foreign matter from the joint surface of the metal base material 10 using a brush or the like may be performed. Note that the surface treatment in step S10 may be omitted depending on the type of metal base material 10, the surface quality and condition of the bonding surface, etc.
- step S20 the polymer solution 30 is applied to the application area CA of the joint surface of the metal base material 10.
- the polymer solution 30 is composed of a liquid containing a resin component that forms a chemical bond with the bonding surface of the metal base material 10 .
- the polymer solution 30 contains a water-soluble polymer having a functional group, which corresponds to the resin component described above.
- liquid also includes a paste-like liquid with high viscosity.
- water-soluble polymer for example, polyacrylic acid amide, sodium polyacrylate, sodium carboxymethyl cellulose, etc. can be used.
- the water-soluble polymer is not limited to the above-mentioned polymers, and any polymer that can form the chemically bonded layer 32 in step S30 may be used.
- the polymer solution 30 contains an inorganic solvent.
- the inorganic solvent may be, for example, water. Although it is possible not to use an inorganic solvent in the polymer solution 30, in this case, the applicability of the polymer solution 30 may deteriorate.
- the ratio of the mass percent concentration of the water-soluble polymer and the inorganic solvent can be set as appropriate, for example, within the range of 1:0.01 to 99.
- the ratio of the mass percent concentrations of the water-soluble polymer and the inorganic solvent may be, for example, 1:0.02, 1:0.5, or 1:1.
- the ratio of the mass percent concentration of the water-soluble polymer and the inorganic solvent may be, for example, 1:10, 1:20, 1:50, 1:70, or 1: It may be set to 90. Note that the above ratio values allow an error within a range of ⁇ 20%.
- liquid paraffin, surfactant, alcohol, etc. may be added to the polymer solution 30 as appropriate additives. If liquid paraffin is added, the polymer solution 30 can be made cloudy to improve its visibility, and the coatability of the polymer solution 30 can be improved. The viscosity of the polymer solution 30 can be adjusted by adjusting the amount of the surfactant added. By adding alcohol, oxidation of the polymer solution 30 can be prevented.
- the alcohol for example, ethanol, polyvinyl alcohol (PVA), etc. can be used. Note that it is preferable that no organic solvent be used in the polymer solution 30.
- the polymer solution 30 may contain an inorganic powder that will be melted together with the resin component in the step of fusing the resin base material 20 in step S40, which will be described later.
- an inorganic powder that melts at the heating temperature of the resin base material 20 in step S40 may be added.
- the inorganic powder preferably has a melting point lower than the melting point of the resin base material 20. If such an inorganic powder is added to the polymer solution 30, the effect of fusion of the inorganic powder is added, and the bonding strength between the metal base material 10 and the resin base material 20 can be improved.
- the inorganic powder for example, tin (Sn) powder can be used.
- a paste-like polymer solution 30 is applied to the bonding surface of the metal base material 10 using a coating device such as a die coater.
- the polymer solution 30 may be applied by dropping and spreading onto the bonding surface of the metal substrate 10.
- the polymer solution 30 may be applied by dipping, in which the joint surface of the metal substrate 10 is immersed in the polymer solution 30.
- the polymer solution 30 may have a low viscosity and be applied to the joint surface of the metal base material 10 by spraying or the like.
- the thickness of the coating layer of the polymer solution 30 is preferably, for example, 10 ⁇ m or more and 150 ⁇ m or less.
- the thickness of the coating layer of the polymer solution 30 is more preferably 50 ⁇ m or more, and even more preferably 80 ⁇ m or more.
- the thickness of the coating layer of the polymer solution 30 is more preferably 130 ⁇ m or less, and even more preferably 110 ⁇ m or less.
- step S30 the polymer solution 30 applied to the metal base material 10 is dried.
- a chemical bonding layer 32 that is fixed to the surface of the metal base material 10 by chemical bonding is formed.
- the functional groups of the water-soluble polymer are shared with the groups present on the entire surface of the metal base material 10. It is presumed that they are combined to form a chemically bonded layer 32 of water-soluble polymer. Further, the functional groups of the water-soluble polymer are considered to be bonded to the hydroxyl groups (OH groups) fixed on the surface of the metal base material 10 through ester bonds.
- step S10 if plasma treatment is performed, the number of OH groups on the bonding surface of the metal base material 10 can be increased. Therefore, it is possible to effectively improve the adhesion of the chemical bonding layer 32 to the metal base material 10.
- step S40 the resin base material 20 is melted and fused to the chemical bonding layer 32.
- step S40 of this embodiment as shown in FIG. 2D, the resin base material 20 is heated to a temperature equal to or higher than its melting point to melt it, and is pressed onto the chemical bonding layer 32 to fuse it. This step can be performed, for example, by hot pressing.
- the resin component of the resin base material 20 melts and enters the chemical bonding layer 32 and is mixed, forming a bonding layer 35 that constitutes a bonding site, and A joined body of 10 and the resin base material 20 is completed.
- the heating temperature in step S40 is preferably, for example, 200°C or more and 350°C or less. If the heating temperature is 200° C. or higher, it is possible to melt various resin materials. In order to more easily melt various types of resin base materials 20, the heating temperature is preferably 250°C or higher, more preferably 280°C or higher. It is more preferable that the heating temperature is 330°C or higher. When the heating temperature is set to 330° C. or lower, the resin base material 20 can be efficiently melted while suppressing an increase in energy consumption for heating.
- steps S30 and S40 may be performed in parallel as described below.
- the resin base material 20 is placed on top of the polymer solution 30 before the polymer solution 30 is completely dried. If the polymer solution 30 and the resin base material 20 are heated together in this state, the polymer solution 30 dries and the chemically bonded layer 32 is formed, and in parallel, the resin base material 20 is melted and the chemically bonded layer 32 is formed. A resin component is mixed into the mixture. With this method, it is possible to shorten the time required for the joining process of joining the metal base material 10 and the resin base material 20.
- step S40 instead of disposing the resin base material 20 on the chemical bonding layer 32 and then melting it by heating, the resin base material 20 after being melted by heating is disposed on the chemical bonding layer 32. It may also be cured and fused. With this method, it is possible to form a molded article of the resin base material 20 on the chemical bonding layer 32 by injection molding. Therefore, compared to the case where the molded resin base material 20 is joined to the metal base material 10, the need for a design that takes the joining process into consideration is reduced, and the degree of freedom in designing the resin base material 20 can be increased. . Furthermore, deformation of the resin base material 20 during the bonding process can be avoided.
- the resin base material 20 may be melted by a method other than raising the temperature using a heating means such as a heater.
- the resin base material 20 may be melted by, for example, laser irradiation, ultrasonic irradiation, friction, or the like.
- the metal base material 10 and the resin base material 20 are bonded by applying and drying the polymer solution 30 to the metal base material 10 and melting and curing the resin base material 20. It is possible to join easily. Moreover, high bonding strength between the metal base material 10 and the resin base material 20 is realized by the chemical bonding of the water-soluble polymer to the metal base material 10 and the fusion of the resin base material 20 to the chemical bonding layer 32. Furthermore, according to the bonding method of the present embodiment, the bonding strength between the metal base material 10 and the resin base material 20 can be increased by a simple preparation step of surface treatment of the bonding surface of the metal base material 10 before applying the polymer solution 30. can be effectively increased.
- the bonding layer 35 exhibits sealing properties, deterioration of the bonded interface due to water intrusion or entry of outside air is suppressed, and aging deterioration of bond strength is suppressed. Is possible.
- the polymer solution 30 used in the bonding method of this embodiment can be prepared without using an organic solvent, so it is easy to handle and has a small impact on the global environment even if it is discarded. .
- Polymer solution PAA was prepared by mixing polyacrylic acid amide as a water-soluble polymer and purified water as an inorganic solvent.
- the polymer solution PAAs was prepared by mixing polyacrylic acid amide as a water-soluble polymer and purified water as an inorganic solvent, and further adding Sn powder as an inorganic powder.
- Polymer solution PAN was prepared by mixing sodium polyacrylate as a water-soluble polymer and purified water as an inorganic solvent.
- Polymer solution CMC was prepared by mixing sodium carboxymethylcellulose as a water-soluble polymer and purified water as an inorganic solvent.
- additives such as liquid paraffin, surfactant, and alcohol were appropriately added in order to improve their handling properties.
- details such as specific types and amounts added will be omitted.
- ⁇ Tensile test> The tensile test conducted in this example will be explained with reference to FIG. 4.
- FIG. 4 for convenience, the metal base material MM and the resin base material RM to be tested are shown separated by solid lines and dashed lines, respectively, and the application area CA of the polymer solution on the metal base material MM is hatched. It has been done. Further, in FIG. 4, the horizontal width of the application area CA is indicated by x, and the vertical width is indicated by y.
- the application area CA corresponds to the bonding area between the metal base material MM and the resin base material RM.
- a chemical bonding layer was formed by applying a polymer solution to the application area CA at one end of the plate-shaped metal base material MM having a rectangular plate surface.
- a plate-shaped resin base material RM having a rectangular plate surface is arranged such that its longitudinal direction coincides with the longitudinal direction of the metal base material MM, one end thereof is placed on the chemical bonding layer, and the other end side is placed on the metal base material MM. They were laminated in such a way that they extended from above, and were fused together by hot pressing.
- FIG. 5A shows a table summarizing the configurations of Examples E1 and E2 and Comparative Examples C1 and C2.
- FIG. 5(b) shows a bar graph showing the measurement results of the bonding strengths of Examples E1 and E2 and Comparative Examples C1 and C2.
- Examples E1 and E2 and Comparative Examples C1 and C2 As shown in FIG. 5(a), in Examples E1 and E2 and Comparative Examples C1 and C2, A5052, which is an alloy of Al and magnesium (Mg), was used as the metal base material MM, and polyamide was used as the resin base material RM. A PA6 resin was used. Moreover, the horizontal width x of the bonding region in Examples E1 and E2 and Comparative Examples C1 and C2 was 20 mm, and the vertical width y was 3 mm.
- Example E1 a chemical bonding layer was formed on the metal base material MM using a polymer solution PAAs, and a resin base material RM was fused to the chemical bonding layer by hot pressing.
- Example E2 a chemical bonding layer was formed on the metal base material MM using the polymer solution PAA, and the resin base material RM was fused to the chemical bonding layer by hot pressing.
- the application area CA of the metal base material MM before the polymer solution was applied was subjected to degreasing cleaning and plasma treatment. Further, in both Examples E1 and E2, the polymer solution was applied to a film thickness of approximately 50 ⁇ m.
- Comparative Example C1 only plasma treatment was performed on the bonding region of the metal base material MM, and the resin base material RM was fused to the metal base material MM by hot pressing without forming a chemical bonding layer using a polymer solution. .
- Comparative Example C2 only the bonding area of the metal base material MM was degreased and cleaned, and the resin base material RM was fused to the metal base material MM by hot pressing without forming a chemical bonding layer using a polymer solution. . Ethanol was used for degreasing and cleaning.
- the hot pressing conditions in Examples E1, E2, C1, and C2 are the same.
- the heating temperature in the hot press was higher than the melting points of PA6 and Sn.
- both Examples E1 and E2 were able to obtain higher bonding strength than the two Comparative Examples C1 and C2.
- This result shows that the improvement in bonding strength in Examples E1 and E2 was achieved by the chemical bonding layer formed by the polymer solution.
- the bonding strengths obtained in Examples E1 and E2 exceeded 12.0 MPa, indicating that the bonding properties were significantly improved. I understand.
- Example E1 was able to obtain higher bonding strength than Example E2.
- the bonding strength of Example E1 was improved because the Sn powder added to the polymer solution was melted by heating during hot pressing and fused to the metal base material MM and the resin base material RM. it is conceivable that.
- FIG. 6 shows a table summarizing the measurement results of the bonding strengths of Examples E3, E4, E5, E6, E6a, E7, E7a, E8, and E9.
- Examples E3, E4, E5, E6, E6a, E7, E7a, E8, and E9 degreasing cleaning and plasma treatment were performed on the application area CA of the metal base material MM before applying the polymer solution. did.
- the hot pressing was performed under the same pressure and at a heating temperature higher than the melting point of the resin base material RM.
- Examples E3, E4, and E5 were conducted under the same conditions except that polymer solutions PAA, PAN, and CMC were used, respectively.
- A5052 was used for the metal base material MM
- PA6 was used for the resin base material RM.
- the horizontal width x of the bonding area was 20 mm
- the vertical width y was 5 mm.
- bonding forces exceeding 1000 N were obtained.
- a bonding strength exceeding 2000N was obtained.
- Example E6 polymer solution PAA was used, Cu was used as the metal base material MM, and PA6 was used as the resin base material RM.
- Example E7 polymer solution PAN was used, SPCC was used as the metal base material MM, and PA6 was used as the resin base material RM.
- the horizontal width x of the bonding area was 20 mm, and the vertical width y was 10 mm.
- bonding forces exceeding 1000N were obtained. In particular, in Example E6, a bonding force exceeding 2000N was obtained.
- Examples E6a and E7a were conducted under almost the same conditions as Examples E6 and E7, except that the oxide film in the coating area CA was removed before applying the polymer solution.
- the bonding force was improved by 900 N or more compared to Example E6
- the bonding force was improved by 1800 N or more compared to Example E7. From this result, according to the bonding method of the present invention, the bonding strength between the metal base material and the resin base material can be easily improved by simply performing the process of removing the oxide film in the application area CA before applying the polymer solution. It turns out that you can do it.
- Examples E8 and E9 were conducted under the same conditions except that SUS and SGCC were used as the metal base material MM.
- polymer solution PAN was used and PA6 was used as the resin base material RM.
- the horizontal width x of the bonding area was 20 mm, and the vertical width y was 10 mm.
- a bonding force of 1000 N or more was obtained.
- a bonding force of 1800N or more was obtained.
- polyamide resin and metal such as Al alloy, Cu, and steel are bonded with a bonding force exceeding 1000 N. I was able to join it with strength. Moreover, high bonding strength could be obtained regardless of whether polymer solution PAA, PAN, or CMC was used.
- FIG. 7 shows a table summarizing the types of base materials and polymer solutions used in Example E10 and photographed images showing the states of the metal base material MM and resin base material RM after the tensile test.
- A5052 was used as the metal base material MM
- PBT was used as the resin base material RM.
- a chemically bonded layer was formed by applying the polymer solution PAA to the metal substrate MM.
- the resin base material RM was fused to the chemical bonding layer by hot pressing at a heating temperature higher than the melting point of PBT.
- the application area CA of the metal base material MM before the polymer solution was applied was subjected to degreasing cleaning and plasma treatment.
- Example E10 As shown in the photographed image of Example E10, a portion of the resin base material RM remained at the fractured joint site of the metal base material MM. From this photographed image, it can be seen that in Example E10, sufficient bonding strength to withstand practical use was obtained.
- FIG. 8 shows a table summarizing the types of base materials and polymer solutions used in Example E11 and photographed images showing the states of the metal base material MM and resin base material RM after the tensile test.
- a 980 MPa class high tensile strength steel plate (high tensile steel plate) was used as the metal base material MM
- PA66 was used as the resin base material RM.
- the polymer solution PAA was applied to the metal base material MM to form a chemically bonded layer.
- the resin base material RM was fused to the chemical bonding layer by hot pressing at a heating temperature higher than the melting point of PA66.
- the application area CA of the metal base material MM before the polymer solution was applied was subjected to degreasing cleaning and plasma treatment.
- Example E11 As shown in the photographed image of Example E11, a portion of the resin base material RM remained at the fractured joint site of the metal base material MM. From this photographed image, it can be seen that sufficient bonding strength for practical use was obtained in Example E11 as well.
- FIG. 9 shows a table summarizing the combinations of base materials to be bonded and the bonding results for the above examples. Further, in FIG. 9, a table regarding the joining results of the comparative example is added on the right side. In the comparative example, it was verified whether or not metal substrates could be bonded together using a polymer solution. In the table of FIG. 9, "0" means a good result in which a bonding strength equal to or higher than the reference value was obtained. "x” means an unsatisfactory result in which the bonding strength above the standard value was not obtained. "-” means a combination that has not yet been implemented.
- the joining method of the present invention it was possible to join metals including various alloys and steels to resin. Further, as shown in the results of the comparative example, it was not possible to obtain bonding strength between metals.
- This result shows that the polymer solution of the present invention is different from conventional general adhesives, which adhere to objects by drying and curing.
- the reason why the bonding strength is obtained in the present invention is that the combination of the adhesion of the chemical bonding layer to the metal base material and the fusion of the resin by mixing the resin component in the chemical bonding layer is important.
- FIG. 10 shows a bar graph obtained by an experiment that verified the bonding strength at each bonding temperature, which is the heating temperature in step S40.
- A5052 was used as the metal base material MM
- PA6 was used as the resin base material RM.
- a chemical bonding layer was formed by applying the polymer solution PAA to a coating area CA having a width of 20 mm and a width of 3 mm, and the resin base material RM was fused to the chemical bonding layer by hot pressing. Note that, before applying the polymer solution PAA, the application area CA was subjected to ethanol cleaning and plasma treatment as surface treatment of the bonding surface.
- the melting point of PA6, which is the resin base material RM is 225°C. From the graph of FIG. 10, it can be seen that high bonding strength is obtained by setting the bonding temperature in hot pressing to a temperature higher than the melting point. Furthermore, it can be seen that the bonding strength is significantly improved by increasing the bonding temperature by 50° C. or more above the melting point.
- FIG. 11 shows a table summarizing the experimental results of verifying the bonding temperature for each type of resin base material RM.
- a polymer solution PAA was applied to a metal base material MM made of A5052 to form a chemical bonding layer, and a resin base material RM shown in the table was fused by hot pressing.
- "0" means a good result in which a bonding strength equal to or higher than the reference value was obtained.
- x means an unsatisfactory result in which the bonding strength above the standard value was not obtained.
- "-” means a combination that has not yet been implemented.
- PA6, PA66, PBT, and PPS were used as the resin base material RM.
- the melting point of PA6 is 225°C
- the melting point of PA66 is 265°C
- the melting point of PBT is within the range of 232°C to 267°C
- the melting point of PPS is 275°C. From the results shown in the table of FIG. 11, it can be seen that hot pressing is preferably performed at a bonding temperature approximately 20 to 30° C. higher than the melting point of the resin base material RM.
- FIGS. 12(a) to 12(c) are schematic diagrams showing each step of the joining method of the second embodiment in order.
- the two metal base materials 10a and 10b are joined using the method of joining metal and resin described in the first embodiment.
- a first metal base material 10a and a second metal base material 10b to be joined are prepared.
- a resin base material 20 is bonded to the first metal base material 10a by the bonding method described in the first embodiment.
- a bonding layer 35 is formed between the first metal base material 10a and the resin base material 20, in which a part of the molten resin base material 20 is mixed with the chemical bonding layer 32.
- a chemical bonding layer 32 is formed on the second metal base material 10b by applying a polymer solution.
- the chemical bonding layer 32 formed on the second metal base material 10b is brought into contact with the resin base material 20 joined to the first metal base material 10a, and the resin base material 20 is melted to form a second metal base material.
- the resin base material 20 joined to the first metal base material 10a is fused to the chemical bonding layer 32 of 10b.
- This fusion step can be performed by hot pressing the chemically bonded layer 32 of the second metal base material 10b laminated on the resin base material 20 of the first metal base material 10a.
- the first metal base material 10a and the second metal base material 10b are bonded with the layer of the resin base material 20 having the bonding layer 35 formed on both sides sandwiched therebetween. A zygote is formed.
- the two metal base materials 10a and 10b can be easily joined. Further, the two metal base materials 10a and 10b can be joined while being electrically insulated by the resin base material 20. In addition, according to the joining method of the second embodiment, various effects described in the first embodiment and its examples can be achieved.
- the bonding methods described in each of the above embodiments and examples may be combined with other bonding methods.
- it may be combined with a method in which a fine uneven structure is formed on the surface of the steel material and a softened resin base material is inserted into the uneven structure to bond the steel material.
- the above-mentioned fine uneven structure of the steel material can be obtained by disposing metal powder containing at least titanium, carbon, nickel, and tin on the surface of the steel material, and melting the metal powder by laser irradiation. It may be formed by The details are disclosed in, for example, Japanese Patent Laid-Open No. 2022-187439.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
A bonding method for bonding a metal base material and a resin base material together, the method comprising: a step for applying a polymer solution containing a water-soluble polymer having a functional group to a surface of the metal base material, to form a chemical bond layer that is attached and fixed to the surface of the metal base material by a covalent bond between the water-soluble polymer and a group present on the surface of the metal base material; and a step for melting the resin base material so that resin base material is fusion-bonded to the chemical bond layer attached and fixed to the metal base material.
Description
本発明は、金属と樹脂とを接合する接合方法に関する。
The present invention relates to a joining method for joining metal and resin.
従来から金属と樹脂とを接合する接合方法について様々な技術が提案されている。例えば、下記の特許文献1には、いわゆるレーザークラッディングによって金属基材の表面に微細な突起部を形成し、その突起部の上に配置した樹脂基材をレーザー照射により溶融させて、アンカー効果によって樹脂基材を接合する方法が開示されている。
Various techniques have been proposed for joining methods for joining metal and resin. For example, in Patent Document 1 below, fine protrusions are formed on the surface of a metal base material by so-called laser cladding, and a resin base material placed on the protrusions is melted by laser irradiation to create an anchor effect. discloses a method for joining resin base materials.
しかしながら、上記の特許文献1の技術では、レーザークラッディングのための大掛かりな準備や設備が必要になる場合があり、決して容易とは言えなかった。また、上記の特許文献1の技術では、成形済みのプラスチック基材を接合する場合、アンカー効果を発揮させるための押圧力を当該プラスチック基材に付与することができず、プラスチック基材と金属基材との間に空隙が生じ、接合強度が低下する可能性もあった。
However, the technique of Patent Document 1 described above may require large-scale preparations and equipment for laser cladding, and cannot be said to be easy. Furthermore, in the technique of Patent Document 1 mentioned above, when joining molded plastic base materials, it is not possible to apply a pressing force to the plastic base materials to exhibit an anchor effect, and the plastic base material and the metal base material cannot be bonded. There was also the possibility that voids would form between the materials and the joint strength would decrease.
本願は、従来のアンカー効果を利用した接合や有機溶剤を使用した接着剤とは異なる方法により、金属と樹脂とをより簡易な方法で接合できる技術を提供することを課題とする。
The purpose of this application is to provide a technology that can bond metal and resin in a simpler way than conventional bonding using anchor effects or adhesives using organic solvents.
本発明は、以下の形態として実現することが可能である。
The present invention can be realized as the following forms.
[第1形態]第1形態の接合方法は、金属素材の接合面に脱脂洗浄およびプラズマ処理による表面改質の少なくとも一方を行う第1の工程と、加熱により、前記第1の工程を経た前記金属素材の接合面と化学結合を生じる樹脂成分を含有するポリマー溶液を準備し、当該接合面の上に塗布して化学結合層を形成する第2の工程と、加熱により、前記化学結合層と溶融混合して結合する樹脂成分を含有する樹脂素材を準備する第3の工程と、前記第2の工程で塗布した前記ポリマー溶液の上に、前記第3の工程で準備した前記樹脂素材を積層して加熱押圧することにより、或いは、前記樹脂素材を射出成形することにより、前記金属素材と前記樹脂素材とを接合させることを特徴とする。
第1形態の接合方法によると、レーザー等の大掛かりな設備を用いることなく、簡易に低コストで接合することが可能となる。 [First form] The joining method of the first form includes a first step of performing at least one of degreasing and cleaning and surface modification by plasma treatment on the joining surface of the metal material, and heating the bonding surface of the metal material after the first step. A second step of preparing a polymer solution containing a resin component that forms a chemical bond with the bonding surface of the metal material and coating it on the bonding surface to form a chemical bonding layer; and heating to form a chemical bonding layer. a third step of preparing a resin material containing resin components to be melt-mixed and bonded; and laminating the resin material prepared in the third step on the polymer solution applied in the second step. The metal material and the resin material are joined by heating and pressing or by injection molding the resin material.
According to the joining method of the first embodiment, joining can be easily performed at low cost without using large-scale equipment such as a laser.
第1形態の接合方法によると、レーザー等の大掛かりな設備を用いることなく、簡易に低コストで接合することが可能となる。 [First form] The joining method of the first form includes a first step of performing at least one of degreasing and cleaning and surface modification by plasma treatment on the joining surface of the metal material, and heating the bonding surface of the metal material after the first step. A second step of preparing a polymer solution containing a resin component that forms a chemical bond with the bonding surface of the metal material and coating it on the bonding surface to form a chemical bonding layer; and heating to form a chemical bonding layer. a third step of preparing a resin material containing resin components to be melt-mixed and bonded; and laminating the resin material prepared in the third step on the polymer solution applied in the second step. The metal material and the resin material are joined by heating and pressing or by injection molding the resin material.
According to the joining method of the first embodiment, joining can be easily performed at low cost without using large-scale equipment such as a laser.
[第2形態]上記第1形態の接合方法で用いる前記ポリマー溶液は、接合時の温度で溶融
する無機粉体を含有する構成としてもよい。
ポリマー溶液に無機粉体を含有させることで、接合強度を高めることが可能となる。 [Second Embodiment] The polymer solution used in the bonding method of the first embodiment may contain an inorganic powder that melts at the temperature during bonding.
By including inorganic powder in the polymer solution, it is possible to increase the bonding strength.
する無機粉体を含有する構成としてもよい。
ポリマー溶液に無機粉体を含有させることで、接合強度を高めることが可能となる。 [Second Embodiment] The polymer solution used in the bonding method of the first embodiment may contain an inorganic powder that melts at the temperature during bonding.
By including inorganic powder in the polymer solution, it is possible to increase the bonding strength.
[第3形態]第3形態は、金属基材と樹脂基材とを接合する接合方法として提供される。第3形態の接合方法は、前記金属基材の表面に、官能基を有する水溶性ポリマーを含有するポリマー溶液を塗布し、前記水溶性ポリマーと前記金属基材の表面に存在する基との共有結合により前記金属基材の表面に固着する化学結合層を形成する工程と、前記樹脂基材を溶融させて前記金属基材に固着している前記化学結合層に融着させる工程と、を備える。
第3形態の接合方法によれば、ポリマー溶液の塗布によって金属基材に化学結合によって固着する化学結合層を簡易に形成することができる。また、金属基材に固着している化学結合層に溶融した樹脂基材が進入して混合されることによって、樹脂基材と金属基材との間の高い接合強度を得ることができる。よって、金属基材と樹脂基材との接合を容易化できる。 [Third Embodiment] The third embodiment is provided as a joining method for joining a metal base material and a resin base material. The third embodiment of the bonding method includes applying a polymer solution containing a water-soluble polymer having a functional group to the surface of the metal base material, and bonding the water-soluble polymer with the groups present on the surface of the metal base material. The method includes the steps of: forming a chemically bonded layer that is fixed to the surface of the metal base material by bonding; and melting the resin base material and fusing it to the chemically bonded layer that is fixed to the metal base material. .
According to the third embodiment of the bonding method, it is possible to easily form a chemical bonding layer that adheres to the metal base material by chemical bonding by applying a polymer solution. In addition, high bonding strength between the resin base material and the metal base material can be obtained by the molten resin base material entering and being mixed with the chemical bonding layer fixed to the metal base material. Therefore, joining the metal base material and the resin base material can be facilitated.
第3形態の接合方法によれば、ポリマー溶液の塗布によって金属基材に化学結合によって固着する化学結合層を簡易に形成することができる。また、金属基材に固着している化学結合層に溶融した樹脂基材が進入して混合されることによって、樹脂基材と金属基材との間の高い接合強度を得ることができる。よって、金属基材と樹脂基材との接合を容易化できる。 [Third Embodiment] The third embodiment is provided as a joining method for joining a metal base material and a resin base material. The third embodiment of the bonding method includes applying a polymer solution containing a water-soluble polymer having a functional group to the surface of the metal base material, and bonding the water-soluble polymer with the groups present on the surface of the metal base material. The method includes the steps of: forming a chemically bonded layer that is fixed to the surface of the metal base material by bonding; and melting the resin base material and fusing it to the chemically bonded layer that is fixed to the metal base material. .
According to the third embodiment of the bonding method, it is possible to easily form a chemical bonding layer that adheres to the metal base material by chemical bonding by applying a polymer solution. In addition, high bonding strength between the resin base material and the metal base material can be obtained by the molten resin base material entering and being mixed with the chemical bonding layer fixed to the metal base material. Therefore, joining the metal base material and the resin base material can be facilitated.
[第4形態]上記第4形態の接合方法は、さらに、前記金属基材に前記ポリマー溶液を塗布する前に、前記金属基材の表面における前記ポリマー溶液の塗布領域を脱脂洗浄する工程を備えてよい。
第4形態の接合方法によれば、金属基材と樹脂基材との接合強度をより高めることができる。 [Fourth Embodiment] The bonding method of the fourth embodiment further includes a step of degreasing and cleaning an area to which the polymer solution is applied on the surface of the metal base material, before applying the polymer solution to the metal base material. It's okay.
According to the joining method of the fourth embodiment, the joining strength between the metal base material and the resin base material can be further increased.
第4形態の接合方法によれば、金属基材と樹脂基材との接合強度をより高めることができる。 [Fourth Embodiment] The bonding method of the fourth embodiment further includes a step of degreasing and cleaning an area to which the polymer solution is applied on the surface of the metal base material, before applying the polymer solution to the metal base material. It's okay.
According to the joining method of the fourth embodiment, the joining strength between the metal base material and the resin base material can be further increased.
[第5形態]上記第3形態、または、第4形態の接合方法は、前記金属基材に前記ポリマー溶液を塗布する前に、前記塗布領域に対してプラズマ処理を実施する工程を備えてよい。
第5形態の接合方法によれば、金属基材と樹脂基材との接合強度をさらに高めることができる。 [Fifth Embodiment] The bonding method of the third or fourth embodiment may include a step of performing plasma treatment on the application area before applying the polymer solution to the metal base material. .
According to the joining method of the fifth embodiment, the joining strength between the metal base material and the resin base material can be further increased.
第5形態の接合方法によれば、金属基材と樹脂基材との接合強度をさらに高めることができる。 [Fifth Embodiment] The bonding method of the third or fourth embodiment may include a step of performing plasma treatment on the application area before applying the polymer solution to the metal base material. .
According to the joining method of the fifth embodiment, the joining strength between the metal base material and the resin base material can be further increased.
[第6形態]上記第3形態、第4形態、および、第5形態のいずれかに記載の接合方法は、さらに、前記金属基材に前記ポリマー溶液を塗布する前に、前記金属基材の表面における前記ポリマー溶液の塗布領域の酸化膜を除去する工程を備えてよい。
第6形態の接合方法によれば、金属基材と樹脂基材との接合強度をさらに高めることができる。 [Sixth Embodiment] The bonding method according to any one of the third, fourth, and fifth embodiments further includes the step of applying the polymer solution to the metal base material. The method may include a step of removing an oxide film on the surface where the polymer solution is applied.
According to the joining method of the sixth embodiment, the joining strength between the metal base material and the resin base material can be further increased.
第6形態の接合方法によれば、金属基材と樹脂基材との接合強度をさらに高めることができる。 [Sixth Embodiment] The bonding method according to any one of the third, fourth, and fifth embodiments further includes the step of applying the polymer solution to the metal base material. The method may include a step of removing an oxide film on the surface where the polymer solution is applied.
According to the joining method of the sixth embodiment, the joining strength between the metal base material and the resin base material can be further increased.
[第7形態]上記第3形態、第4形態、第5形態、および、第6形態のいずれか一つの接合方法において、前記ポリマー溶液は、前記化学結合層を前記樹脂基材に融着する際の温度で溶融する無機粉体を含んでよい。
第7形態の接合方法によれば、無機粉体の融着により、金属基材と樹脂基材との接合強度を、さらに高めることができる。 [Seventh Embodiment] In the bonding method according to any one of the third, fourth, fifth, and sixth embodiments, the polymer solution fuses the chemically bonded layer to the resin base material. may include inorganic powders that melt at ambient temperatures.
According to the bonding method of the seventh embodiment, the bonding strength between the metal base material and the resin base material can be further increased by fusion of the inorganic powder.
第7形態の接合方法によれば、無機粉体の融着により、金属基材と樹脂基材との接合強度を、さらに高めることができる。 [Seventh Embodiment] In the bonding method according to any one of the third, fourth, fifth, and sixth embodiments, the polymer solution fuses the chemically bonded layer to the resin base material. may include inorganic powders that melt at ambient temperatures.
According to the bonding method of the seventh embodiment, the bonding strength between the metal base material and the resin base material can be further increased by fusion of the inorganic powder.
[第8形態]上記第3形態、第4形態、第5形態、第6形態、および、第7形態のいずれか一つの接合方法は、前記接合層を介して前記樹脂基材が接合された前記金属基材を第1金属基材として準備する工程と、第2金属基材に前記ポリマー溶液を塗布して形成した前記第2金属基材の前記化学結合層に、前記樹脂基材を溶融させて融着させる工程と、を備えてよい。
第8形態の接合方法によれば、2つの金属基材を、樹脂基材を介して簡易に接着することができる。 [Eighth Embodiment] In the joining method of any one of the third, fourth, fifth, sixth, and seventh embodiments, the resin base material is joined via the joining layer. preparing the metal base material as a first metal base material; and melting the resin base material onto the chemical bonding layer of the second metal base material formed by applying the polymer solution to a second metal base material. and fusion bonding.
According to the bonding method of the eighth embodiment, two metal base materials can be easily bonded via a resin base material.
第8形態の接合方法によれば、2つの金属基材を、樹脂基材を介して簡易に接着することができる。 [Eighth Embodiment] In the joining method of any one of the third, fourth, fifth, sixth, and seventh embodiments, the resin base material is joined via the joining layer. preparing the metal base material as a first metal base material; and melting the resin base material onto the chemical bonding layer of the second metal base material formed by applying the polymer solution to a second metal base material. and fusion bonding.
According to the bonding method of the eighth embodiment, two metal base materials can be easily bonded via a resin base material.
本発明は、接合方法以外の種々の形態で実現することも可能である。例えば、その接合方法に用いられるポリマー溶液や、そのポリマー溶液によって形成された化学結合層を有する金属基材、その金属基材と樹脂基材の接合体、その接合体を用いた様々な製品、それらの接合体や製品の製造方法、前記の接合方法や製造方法を実施する装置、その装置の制御ユニットや制御プログラム等の形態で実現することができる。
The present invention can also be realized in various forms other than the bonding method. For example, the polymer solution used in the bonding method, a metal base material having a chemically bonded layer formed by the polymer solution, a bonded body of the metal base material and a resin base material, various products using the bonded body, It can be realized in the form of a method for manufacturing these joined bodies or products, an apparatus for implementing the above-mentioned joining method or manufacturing method, a control unit or a control program for the apparatus, and the like.
以下、本発明の好適な実施形態および実施例を、図面を参照しながら説明する。
Hereinafter, preferred embodiments and examples of the present invention will be described with reference to the drawings.
1.第1実施形態:
図1には、第1実施形態の接合方法の工程を示すフローチャートが図示されている。図2(a)~(e)には、第1実施形態の接合方法における各工程S10~S40の内容を示す模式図が工程順に図示されている。図2(a)は、工程S10の参照図であり、図2(b)は、工程S20の参照図であり、図2(c)は、工程S30の参照図であり、図2(d),(e)は、工程S40の参照図である。 1. First embodiment:
FIG. 1 shows a flowchart showing the steps of the joining method of the first embodiment. FIGS. 2A to 2E are schematic diagrams showing the contents of each step S10 to S40 in the joining method of the first embodiment in the order of the steps. 2(a) is a reference diagram of step S10, FIG. 2(b) is a reference diagram of step S20, FIG. 2(c) is a reference diagram of step S30, and FIG. 2(d) is a reference diagram of step S30. , (e) are reference diagrams of step S40.
図1には、第1実施形態の接合方法の工程を示すフローチャートが図示されている。図2(a)~(e)には、第1実施形態の接合方法における各工程S10~S40の内容を示す模式図が工程順に図示されている。図2(a)は、工程S10の参照図であり、図2(b)は、工程S20の参照図であり、図2(c)は、工程S30の参照図であり、図2(d),(e)は、工程S40の参照図である。 1. First embodiment:
FIG. 1 shows a flowchart showing the steps of the joining method of the first embodiment. FIGS. 2A to 2E are schematic diagrams showing the contents of each step S10 to S40 in the joining method of the first embodiment in the order of the steps. 2(a) is a reference diagram of step S10, FIG. 2(b) is a reference diagram of step S20, FIG. 2(c) is a reference diagram of step S30, and FIG. 2(d) is a reference diagram of step S30. , (e) are reference diagrams of step S40.
第1実施形態の接合方法では、金属基材10と樹脂基材20とが接合される。本明細書においては、「基材」は、加工対象となる部材や製品を構成する部材等を広く意味する用語として用いており、「素材」と呼ぶこともできる。金属基材10や樹脂基材20の種類は、特に限定されないが、好適なものとしては、例えば、下記のものが挙げられる。
In the joining method of the first embodiment, the metal base material 10 and the resin base material 20 are joined. In this specification, the term "base material" is used to broadly mean members to be processed, members constituting products, etc., and can also be referred to as "raw material." The types of metal base material 10 and resin base material 20 are not particularly limited, but suitable examples include the following.
<金属基材の好適例>
アルミニウム(Al)、Al合金、銅(Cu)、Cu合金、ニッケル(Ni)、Ni合金、鉄(Fe)、冷間圧延鋼板(SPCC)、亜鉛めっき鋼板(SECC、SGCC、SEHC等)、炭素工具鋼(SK材)、機械構造用炭素鋼(SC材)、ステンレス鋼、一般軟鋼材、超高張力鋼、その他の種々の金属、合金、鋼材等 <Suitable example of metal base material>
Aluminum (Al), Al alloy, copper (Cu), Cu alloy, nickel (Ni), Ni alloy, iron (Fe), cold rolled steel sheet (SPCC), galvanized steel sheet (SECC, SGCC, SEHC, etc.), carbon Tool steel (SK material), carbon steel for machine structures (SC material), stainless steel, general mild steel material, ultra-high tensile strength steel, and various other metals, alloys, steel materials, etc.
アルミニウム(Al)、Al合金、銅(Cu)、Cu合金、ニッケル(Ni)、Ni合金、鉄(Fe)、冷間圧延鋼板(SPCC)、亜鉛めっき鋼板(SECC、SGCC、SEHC等)、炭素工具鋼(SK材)、機械構造用炭素鋼(SC材)、ステンレス鋼、一般軟鋼材、超高張力鋼、その他の種々の金属、合金、鋼材等 <Suitable example of metal base material>
Aluminum (Al), Al alloy, copper (Cu), Cu alloy, nickel (Ni), Ni alloy, iron (Fe), cold rolled steel sheet (SPCC), galvanized steel sheet (SECC, SGCC, SEHC, etc.), carbon Tool steel (SK material), carbon steel for machine structures (SC material), stainless steel, general mild steel material, ultra-high tensile strength steel, and various other metals, alloys, steel materials, etc.
<樹脂基材の好適例>
PA6やPA66等のポリアミド(PA)系樹脂、ポリブチレンテフタレート(PBT)、ポリフェニレンサルファイド(PPS)、ポリエチレンテフタレート(PET)、炭素繊維強化熱可塑性樹脂(CFRTP)、ABS樹脂、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアセタール(POM)、塩化ビニール(PVC)、その他のプラスチックやゴム、熱可塑性樹脂等、加熱によって軟化する合成樹脂 <Suitable example of resin base material>
Polyamide (PA) resins such as PA6 and PA66, polybutylene tephthalate (PBT), polyphenylene sulfide (PPS), polyethylene terephthalate (PET), carbon fiber reinforced thermoplastic resin (CFRTP), ABS resin, polyethylene (PE) , polypropylene (PP), polyacetal (POM), vinyl chloride (PVC), other plastics, rubber, thermoplastic resins, and other synthetic resins that soften when heated.
PA6やPA66等のポリアミド(PA)系樹脂、ポリブチレンテフタレート(PBT)、ポリフェニレンサルファイド(PPS)、ポリエチレンテフタレート(PET)、炭素繊維強化熱可塑性樹脂(CFRTP)、ABS樹脂、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアセタール(POM)、塩化ビニール(PVC)、その他のプラスチックやゴム、熱可塑性樹脂等、加熱によって軟化する合成樹脂 <Suitable example of resin base material>
Polyamide (PA) resins such as PA6 and PA66, polybutylene tephthalate (PBT), polyphenylene sulfide (PPS), polyethylene terephthalate (PET), carbon fiber reinforced thermoplastic resin (CFRTP), ABS resin, polyethylene (PE) , polypropylene (PP), polyacetal (POM), vinyl chloride (PVC), other plastics, rubber, thermoplastic resins, and other synthetic resins that soften when heated.
工程S10では、接合のための下準備として、金属基材10の接合面を表面処理する。この表面処理は、少なくとも、接合面のうちの後述するポリマー溶液が塗布される塗布領域CAに対して実施される。図2(a)では、便宜上、塗布領域CAを破線で示してある。
In step S10, the bonding surface of the metal base material 10 is surface-treated as a preparation for bonding. This surface treatment is performed at least on a coating area CA of the joint surface to which a polymer solution to be described later is applied. In FIG. 2(a), the application area CA is shown by a broken line for convenience.
表面処理としては、例えば、脱脂洗浄や、プラズマ処理による表面改質等を採用できる。この表面処理により、金属基材10に対する図2(d)に示す後述の化学結合層32の固着性を高めることができ、金属基材10と樹脂基材20との接合強度を高めることができる。
As the surface treatment, for example, degreasing and cleaning, surface modification by plasma treatment, etc. can be adopted. This surface treatment can improve the adhesion of the chemical bonding layer 32 shown in FIG. 2(d), which will be described later, to the metal base material 10, and can increase the bonding strength between the metal base material 10 and the resin base material 20. .
金属基材10と樹脂基材20との接合強度を高める観点からは、工程S10の表面処理として、脱脂洗浄とプラズマ処理の少なくとも一方が行われることが好ましい。また、工程S10では、脱脂洗浄を実行した後に、プラズマ処理を実行することが、より好ましい。プラズマ処理が好適である理由については後述する。
From the viewpoint of increasing the bonding strength between the metal base material 10 and the resin base material 20, it is preferable that at least one of degreasing cleaning and plasma treatment is performed as the surface treatment in step S10. Moreover, in step S10, it is more preferable to perform plasma treatment after degreasing and cleaning. The reason why plasma treatment is suitable will be described later.
工程S10では、表面処理として、脱脂洗浄やプラズマ処理に加えて、あるいは、それらの代わりに、塗布領域の酸化膜を除去する酸化膜除去処理が実行されてもよい。表面処理としての酸化膜除去処理は、脱脂洗浄やプラズマ処理と組み合わされることが好ましい。酸化膜除去処理は、例えば、金属基材10の塗布領域CAに、硫酸や塩酸等の酸化被膜除去剤を塗布することにより行われる。酸化膜除去処理を行うことにより、金属基材10に対する化学結合層32の固着性をさらに高めることができる。
In step S10, in addition to or instead of degreasing and plasma treatment, an oxide film removal process for removing an oxide film in the coating area may be performed as the surface treatment. The oxide film removal treatment as surface treatment is preferably combined with degreasing cleaning and plasma treatment. The oxide film removal process is performed, for example, by applying an oxide film removing agent such as sulfuric acid or hydrochloric acid to the application area CA of the metal base material 10. By performing the oxide film removal treatment, the adhesion of the chemical bonding layer 32 to the metal base material 10 can be further improved.
工程S10の表面処理としては、上述したもの以外に、例えば、ブラシ等によって金属基材10の接合面の異物を除去する処理が実行されてもよい。なお、金属基材10の種類や、接合面の表面性状や状態等によっては、工程S10の表面処理は省略されていてもよい。
In addition to the above-mentioned surface treatment in step S10, for example, a process of removing foreign matter from the joint surface of the metal base material 10 using a brush or the like may be performed. Note that the surface treatment in step S10 may be omitted depending on the type of metal base material 10, the surface quality and condition of the bonding surface, etc.
工程S20では、金属基材10の接合面の塗布領域CAにポリマー溶液30を塗布する。ポリマー溶液30は、金属基材10の接合面と化学結合を生じる樹脂成分を含有する液体によって構成される。ポリマー溶液30は、前記の樹脂成分に相当する、官能基を有する水溶性ポリマーを含有する。本明細書において、「液体」には、粘度が高いペースト状のものも含まれる。
In step S20, the polymer solution 30 is applied to the application area CA of the joint surface of the metal base material 10. The polymer solution 30 is composed of a liquid containing a resin component that forms a chemical bond with the bonding surface of the metal base material 10 . The polymer solution 30 contains a water-soluble polymer having a functional group, which corresponds to the resin component described above. In this specification, "liquid" also includes a paste-like liquid with high viscosity.
水溶性ポリマーとしては、例えば、ポリアクリル酸アミドや、ポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウム等を用いることができる。水溶性ポリマーとしては、前記のポリマーに限定されず、工程S30において化学結合層32を形成可能なポリマーであればよい。
As the water-soluble polymer, for example, polyacrylic acid amide, sodium polyacrylate, sodium carboxymethyl cellulose, etc. can be used. The water-soluble polymer is not limited to the above-mentioned polymers, and any polymer that can form the chemically bonded layer 32 in step S30 may be used.
ポリマー溶液30は、無機溶媒を含有することが好ましい。無機溶媒は、例えば水等でよい。ポリマー溶液30に無機溶媒を用いないことも可能であるが、この場合には、ポリマー溶液30の塗布性が低下する可能性がある。水溶性ポリマーと無機溶媒の質量パーセント濃度の比は、例えば、1:0.01~99の範囲内で、適宜に設定することができる。水溶性ポリマーと無機溶媒の質量パーセント濃度の比は、例えば、1:0.02としてもよいし、1:0.5としてもよいし、1:1としてもよい。水溶性ポリマーと無機溶媒の質量パーセント濃度の比は、例えば、1:10としてもよいし、1:20としてもよいし、1:50としてもよいし、1:70としてもよいし、1:90としてもよい。なお、前記の比の数値は、±20%の範囲の誤差を許容する。
It is preferable that the polymer solution 30 contains an inorganic solvent. The inorganic solvent may be, for example, water. Although it is possible not to use an inorganic solvent in the polymer solution 30, in this case, the applicability of the polymer solution 30 may deteriorate. The ratio of the mass percent concentration of the water-soluble polymer and the inorganic solvent can be set as appropriate, for example, within the range of 1:0.01 to 99. The ratio of the mass percent concentrations of the water-soluble polymer and the inorganic solvent may be, for example, 1:0.02, 1:0.5, or 1:1. The ratio of the mass percent concentration of the water-soluble polymer and the inorganic solvent may be, for example, 1:10, 1:20, 1:50, 1:70, or 1: It may be set to 90. Note that the above ratio values allow an error within a range of ±20%.
ポリマー溶液30には、水溶性ポリマーに加えて、適宜、流動パラフィンや、界面活性剤、アルコール等を添加剤として添加してもよい。流動パラフィンを添加すれば、ポリマー溶液30を白濁化させてその視認性を向上させることができ、ポリマー溶液30の塗布性を向上させることができる。界面活性剤は、その添加量によってポリマー溶液30の粘度を調整することができる。アルコールを添加することにより、ポリマー溶液30の酸化を防止できる。アルコールとしては、例えば、エタノールやポリビニルアルコール(PVA)等を用いることができる。なお、ポリマー溶液30には、有機溶剤が使用されないことが好ましい。
In addition to the water-soluble polymer, liquid paraffin, surfactant, alcohol, etc. may be added to the polymer solution 30 as appropriate additives. If liquid paraffin is added, the polymer solution 30 can be made cloudy to improve its visibility, and the coatability of the polymer solution 30 can be improved. The viscosity of the polymer solution 30 can be adjusted by adjusting the amount of the surfactant added. By adding alcohol, oxidation of the polymer solution 30 can be prevented. As the alcohol, for example, ethanol, polyvinyl alcohol (PVA), etc. can be used. Note that it is preferable that no organic solvent be used in the polymer solution 30.
ポリマー溶液30には、後述する工程S40での樹脂基材20の融着工程において樹脂成分とともに溶融する無機粉末が添加されていてもよい。例えば、工程S40での樹脂基材20の加熱温度で溶融する無機粉末が添加されていてもよい。この場合、無機粉末は、樹脂基材20の融点以下の融点を有していることが好ましい。ポリマー溶液30にそのような無機粉末を添加しておけば、無機粉末の融着の効果が加わり、金属基材10と樹脂基材20との接合強度の向上が可能である。無機粉末としては、例えば、スズ(Sn)の粉末を用いることができる。
The polymer solution 30 may contain an inorganic powder that will be melted together with the resin component in the step of fusing the resin base material 20 in step S40, which will be described later. For example, an inorganic powder that melts at the heating temperature of the resin base material 20 in step S40 may be added. In this case, the inorganic powder preferably has a melting point lower than the melting point of the resin base material 20. If such an inorganic powder is added to the polymer solution 30, the effect of fusion of the inorganic powder is added, and the bonding strength between the metal base material 10 and the resin base material 20 can be improved. As the inorganic powder, for example, tin (Sn) powder can be used.
本実施形態の工程S20では、図2(b)に示すように、ペースト状にしたポリマー溶液30を、例えば、ダイコータ等の塗工装置によって金属基材10の接合面に塗布する。他の実施形態では、ポリマー溶液30は、金属基材10の接合面に滴下して押し広げることによって塗布されてもよい。ポリマー溶液30は、金属基材10の接合面をポリマー溶液30中に浸漬させるディッピングによって塗布されてもよい。また、ポリマー溶液30は、粘度を低くして、スプレー等によって噴霧することにより金属基材10の接合面に塗布されてもよい。
In step S20 of this embodiment, as shown in FIG. 2(b), a paste-like polymer solution 30 is applied to the bonding surface of the metal base material 10 using a coating device such as a die coater. In other embodiments, the polymer solution 30 may be applied by dropping and spreading onto the bonding surface of the metal substrate 10. The polymer solution 30 may be applied by dipping, in which the joint surface of the metal substrate 10 is immersed in the polymer solution 30. Alternatively, the polymer solution 30 may have a low viscosity and be applied to the joint surface of the metal base material 10 by spraying or the like.
ポリマー溶液30の塗布層の厚みは、例えば、10μm以上150μm以下であることが好ましい。ポリマー溶液30の塗布層の厚みは、50μm以上であることがより好ましく、80μm以上であることがさらに好ましい。ポリマー溶液30の塗布層の厚みは、130μm以下であることがより好ましく、110μm以下であることがさらに好ましい。
The thickness of the coating layer of the polymer solution 30 is preferably, for example, 10 μm or more and 150 μm or less. The thickness of the coating layer of the polymer solution 30 is more preferably 50 μm or more, and even more preferably 80 μm or more. The thickness of the coating layer of the polymer solution 30 is more preferably 130 μm or less, and even more preferably 110 μm or less.
工程S30では、金属基材10に塗布されたポリマー溶液30を乾燥させる。これにより、金属基材10の表面に化学結合により固着する化学結合層32が形成される。本発明の発明者の知見によれば、ポリマー溶液30を乾燥させる際に、脱水縮合反応が起こり、水溶性ポリマーの官能基が、金属基材10の表面の全体に存在している基と共有結合して水溶性ポリマーの化学結合層32が形成されていることが推察される。また、水溶性ポリマーの官能基は、金属基材10の表面に定着している水酸基(OH基)に対しては、エステル結合によって結合すると考えられる。
In step S30, the polymer solution 30 applied to the metal base material 10 is dried. As a result, a chemical bonding layer 32 that is fixed to the surface of the metal base material 10 by chemical bonding is formed. According to the findings of the inventor of the present invention, when the polymer solution 30 is dried, a dehydration condensation reaction occurs, and the functional groups of the water-soluble polymer are shared with the groups present on the entire surface of the metal base material 10. It is presumed that they are combined to form a chemically bonded layer 32 of water-soluble polymer. Further, the functional groups of the water-soluble polymer are considered to be bonded to the hydroxyl groups (OH groups) fixed on the surface of the metal base material 10 through ester bonds.
なお、上述した工程S10の表面処理において、プラズマ処理を実行すれば、金属基材10の接合面のOH基を増加させることができる。そのため、金属基材10に対する化学結合層32の固着性を効果的に高めることが可能である。
Note that in the surface treatment in step S10 described above, if plasma treatment is performed, the number of OH groups on the bonding surface of the metal base material 10 can be increased. Therefore, it is possible to effectively improve the adhesion of the chemical bonding layer 32 to the metal base material 10.
工程S40では、樹脂基材20を溶融させて化学結合層32に融着させる。本実施形態の工程S40では、図2(d)に示すように、樹脂基材20を、その融点以上の温度で加熱して溶融させ、化学結合層32に押圧することによって融着する。この工程は、例えば、ホットプレスによって実行可能である。これにより、図2(e)に示すように、樹脂基材20の樹脂成分が溶融して化学結合層32に進入して混合され、接合部位を構成する接合層35が形成され、金属基材10と樹脂基材20の接合体が完成する。
In step S40, the resin base material 20 is melted and fused to the chemical bonding layer 32. In step S40 of this embodiment, as shown in FIG. 2D, the resin base material 20 is heated to a temperature equal to or higher than its melting point to melt it, and is pressed onto the chemical bonding layer 32 to fuse it. This step can be performed, for example, by hot pressing. As a result, as shown in FIG. 2(e), the resin component of the resin base material 20 melts and enters the chemical bonding layer 32 and is mixed, forming a bonding layer 35 that constitutes a bonding site, and A joined body of 10 and the resin base material 20 is completed.
工程S40での加熱温度は、例えば、200℃以上350℃以下であることが好ましい。加熱温度を200℃以上とすれば、様々な樹脂材料を溶融することが可能である。様々な種類の樹脂基材20をより溶融させやすくするためには、加熱温度は、250℃以上であることが好ましく、280℃以上であることがより好ましい。加熱温度は、330℃以上であることがさらに好ましい。加熱温度を330℃以下とすれば、加熱のためのエネルギー消費量の増加を抑制しながら効率的に樹脂基材20を溶融させることができる。
The heating temperature in step S40 is preferably, for example, 200°C or more and 350°C or less. If the heating temperature is 200° C. or higher, it is possible to melt various resin materials. In order to more easily melt various types of resin base materials 20, the heating temperature is preferably 250°C or higher, more preferably 280°C or higher. It is more preferable that the heating temperature is 330°C or higher. When the heating temperature is set to 330° C. or lower, the resin base material 20 can be efficiently melted while suppressing an increase in energy consumption for heating.
なお、上記の工程S30と工程S40とは以下に説明するように並行して実行されてもよい。工程S20で金属基材10にポリマー溶液30を塗布した後、ポリマー溶液30が完全に乾燥する前に、ポリマー溶液30の上に樹脂基材20を配置する。この状態で、ポリマー溶液30と樹脂基材20とをともに加熱すれば、ポリマー溶液30が乾燥して化学結合層32が形成され、並行して、樹脂基材20が溶融して化学結合層32に樹脂成分が混合される。この方法であれば、金属基材10と樹脂基材20を接合する接合工程の時間の短縮が可能である。
Note that the above steps S30 and S40 may be performed in parallel as described below. After the polymer solution 30 is applied to the metal base material 10 in step S20, the resin base material 20 is placed on top of the polymer solution 30 before the polymer solution 30 is completely dried. If the polymer solution 30 and the resin base material 20 are heated together in this state, the polymer solution 30 dries and the chemically bonded layer 32 is formed, and in parallel, the resin base material 20 is melted and the chemically bonded layer 32 is formed. A resin component is mixed into the mixture. With this method, it is possible to shorten the time required for the joining process of joining the metal base material 10 and the resin base material 20.
また、上記の工程S40では、樹脂基材20を化学結合層32の上に配置した後に加熱により溶融させる代わりに、加熱によって溶融した後の樹脂基材20を化学結合層32の上に配置して硬化させて融着させてもよい。この方法であれば、化学結合層32の上に射出成形によって樹脂基材20の成形品を形成することが可能である。よって、成形済みの樹脂基材20を金属基材10に接合する場合に比較して、接合工程を考慮した設計の必要性が低減され、樹脂基材20の設計の自由度を高めることができる。また、接合工程における樹脂基材20の変形の発生を回避することができる。
Moreover, in the above step S40, instead of disposing the resin base material 20 on the chemical bonding layer 32 and then melting it by heating, the resin base material 20 after being melted by heating is disposed on the chemical bonding layer 32. It may also be cured and fused. With this method, it is possible to form a molded article of the resin base material 20 on the chemical bonding layer 32 by injection molding. Therefore, compared to the case where the molded resin base material 20 is joined to the metal base material 10, the need for a design that takes the joining process into consideration is reduced, and the degree of freedom in designing the resin base material 20 can be increased. . Furthermore, deformation of the resin base material 20 during the bonding process can be avoided.
工程S40では、ヒーター等の加熱手段による昇温以外の方法で樹脂基材20を溶融させてもよい。樹脂基材20は、例えば、レーザー照射や、超音波の照射、摩擦等によって溶融されてもよい。
In step S40, the resin base material 20 may be melted by a method other than raising the temperature using a heating means such as a heater. The resin base material 20 may be melted by, for example, laser irradiation, ultrasonic irradiation, friction, or the like.
以上のように、本実施形態の接合方法によれば、金属基材10に対するポリマー溶液30の塗布および乾燥と、樹脂基材20の溶融・硬化によって、金属基材10と樹脂基材20とを簡易に接合することが可能である。また、金属基材10に対する水溶性ポリマーの化学結合と化学結合層32に対する樹脂基材20の融着とによって、金属基材10と樹脂基材20との間の高い接合強度が実現される。さらに、本実施形態の接合方法によれば、ポリマー溶液30の塗布前の金属基材10の接合面に対する表面処理という簡便な準備工程によって、金属基材10と樹脂基材20との接合強度を効果的に高めることができる。
As described above, according to the joining method of the present embodiment, the metal base material 10 and the resin base material 20 are bonded by applying and drying the polymer solution 30 to the metal base material 10 and melting and curing the resin base material 20. It is possible to join easily. Moreover, high bonding strength between the metal base material 10 and the resin base material 20 is realized by the chemical bonding of the water-soluble polymer to the metal base material 10 and the fusion of the resin base material 20 to the chemical bonding layer 32. Furthermore, according to the bonding method of the present embodiment, the bonding strength between the metal base material 10 and the resin base material 20 can be increased by a simple preparation step of surface treatment of the bonding surface of the metal base material 10 before applying the polymer solution 30. can be effectively increased.
加えて、本実施形態の接合方法によって形成された接合体では、接合層35がシール性を発揮するため、浸水や外気の進入による接合界面の劣化が抑制され、接合強度の経年劣化を抑制することが可能である。また、本実施形態の接合方法に用いられるポリマー溶液30であれば、有機溶剤を用いなくても作製できるため、取り扱いが容易であり、廃棄された場合であっても地球環境への影響が小さい。
In addition, in the bonded body formed by the bonding method of this embodiment, since the bonding layer 35 exhibits sealing properties, deterioration of the bonded interface due to water intrusion or entry of outside air is suppressed, and aging deterioration of bond strength is suppressed. Is possible. In addition, the polymer solution 30 used in the bonding method of this embodiment can be prepared without using an organic solvent, so it is easy to handle and has a small impact on the global environment even if it is discarded. .
以下、図3~図11を参照して、第1実施形態の接合方法の実施例を詳細に説明する。本実施例では、上記の第1実施形態で説明した接合方法により、金属基材と樹脂基材とを接合し、後述する引張試験によって、金属基材と樹脂基材との接合強度を測定した。
Hereinafter, examples of the joining method of the first embodiment will be described in detail with reference to FIGS. 3 to 11. In this example, a metal base material and a resin base material were joined by the joining method described in the first embodiment above, and the joint strength between the metal base material and the resin base material was measured by a tensile test described below. .
<ポリマー溶液の製造例>
図3の表には、本実施例で用いた4種類のポリマー溶液の製造例をまとめてある。なお、以下の説明および参照図では、ポリマー溶液の種類を、図3の表に示された符号PAA、PAAs、PAN、CMCで表示する。 <Production example of polymer solution>
The table in FIG. 3 summarizes production examples of the four types of polymer solutions used in this example. In the following description and reference figures, the types of polymer solutions are indicated by the symbols PAA, PAAs, PAN, and CMC shown in the table of FIG.
図3の表には、本実施例で用いた4種類のポリマー溶液の製造例をまとめてある。なお、以下の説明および参照図では、ポリマー溶液の種類を、図3の表に示された符号PAA、PAAs、PAN、CMCで表示する。 <Production example of polymer solution>
The table in FIG. 3 summarizes production examples of the four types of polymer solutions used in this example. In the following description and reference figures, the types of polymer solutions are indicated by the symbols PAA, PAAs, PAN, and CMC shown in the table of FIG.
ポリマー溶液PAAは、水溶性ポリマーとしてのポリアクリル酸アミドと、無機溶媒としての精製水と、を混合して作製した。ポリマー溶液PAAsは、水溶性ポリマーとしてのポリアクリル酸アミドと、無機溶媒としての精製水と、を混合し、さらに、無機粉末としてSn粉末を添加することにより作製した。ポリマー溶液PANは、水溶性ポリマーとしてのポリアクリル酸ナトリウムと、無機溶媒としての精製水と、を混合して作製した。ポリマー溶液CMCは、水溶性ポリマーとしてのカルボキシルメチルセルロースナトリウムと、無機溶媒としての精製水と、を混合して作製した。
Polymer solution PAA was prepared by mixing polyacrylic acid amide as a water-soluble polymer and purified water as an inorganic solvent. The polymer solution PAAs was prepared by mixing polyacrylic acid amide as a water-soluble polymer and purified water as an inorganic solvent, and further adding Sn powder as an inorganic powder. Polymer solution PAN was prepared by mixing sodium polyacrylate as a water-soluble polymer and purified water as an inorganic solvent. Polymer solution CMC was prepared by mixing sodium carboxymethylcellulose as a water-soluble polymer and purified water as an inorganic solvent.
各ポリマー溶液PAA,PAAs,PAN,CMCでは、その取扱い性を向上させるために、流動パラフィン、界面活性剤、アルコール等の添加剤を、適宜、添加した。ただし、それらの添加剤の接合強度への影響は小さいため、具体的な種類や添加量等の詳細については省略する。
In each of the polymer solutions PAA, PAAs, PAN, and CMC, additives such as liquid paraffin, surfactant, and alcohol were appropriately added in order to improve their handling properties. However, since the influence of these additives on the bonding strength is small, details such as specific types and amounts added will be omitted.
<引張試験>
図4を参照して、本実施例で行った引張試験を説明する。図4では、便宜上、試験対象の金属基材MMと樹脂基材RMとをそれぞれ実線と一点鎖線とで区別して図示してあり、金属基材MM上のポリマー溶液の塗布領域CAにハッチングを付してある。また、図4では、塗布領域CAの横幅がxで示され、縦幅がyで示されている。塗布領域CAは、金属基材MMと樹脂基材RMの間の接合領域に相当する。 <Tensile test>
The tensile test conducted in this example will be explained with reference to FIG. 4. In FIG. 4, for convenience, the metal base material MM and the resin base material RM to be tested are shown separated by solid lines and dashed lines, respectively, and the application area CA of the polymer solution on the metal base material MM is hatched. It has been done. Further, in FIG. 4, the horizontal width of the application area CA is indicated by x, and the vertical width is indicated by y. The application area CA corresponds to the bonding area between the metal base material MM and the resin base material RM.
図4を参照して、本実施例で行った引張試験を説明する。図4では、便宜上、試験対象の金属基材MMと樹脂基材RMとをそれぞれ実線と一点鎖線とで区別して図示してあり、金属基材MM上のポリマー溶液の塗布領域CAにハッチングを付してある。また、図4では、塗布領域CAの横幅がxで示され、縦幅がyで示されている。塗布領域CAは、金属基材MMと樹脂基材RMの間の接合領域に相当する。 <Tensile test>
The tensile test conducted in this example will be explained with reference to FIG. 4. In FIG. 4, for convenience, the metal base material MM and the resin base material RM to be tested are shown separated by solid lines and dashed lines, respectively, and the application area CA of the polymer solution on the metal base material MM is hatched. It has been done. Further, in FIG. 4, the horizontal width of the application area CA is indicated by x, and the vertical width is indicated by y. The application area CA corresponds to the bonding area between the metal base material MM and the resin base material RM.
長方形形状の板面を有する板状の金属基材MMの一端の塗布領域CAにポリマー溶液を塗布して、化学結合層を形成した。長方形形状の板面を有する板状の樹脂基材RMを、その長手方向が金属基材MMの長手方向と一致し、その一端が化学結合層の上に配置され、その他端側が金属基材MMの上から延び出る状態で積層し、ホットプレスによって融着させた。得られた金属基材と樹脂基材の接合体に対して長手方向の引張力を、金属基材と樹脂基材の接合部位接合層が破断するまで付与することにより、接合強度(MPa)、および、接合力(N)を計測した。
A chemical bonding layer was formed by applying a polymer solution to the application area CA at one end of the plate-shaped metal base material MM having a rectangular plate surface. A plate-shaped resin base material RM having a rectangular plate surface is arranged such that its longitudinal direction coincides with the longitudinal direction of the metal base material MM, one end thereof is placed on the chemical bonding layer, and the other end side is placed on the metal base material MM. They were laminated in such a way that they extended from above, and were fused together by hot pressing. By applying a tensile force in the longitudinal direction to the obtained joined body of the metal base material and the resin base material until the joint layer of the joint portion of the metal base material and the resin base material breaks, the joint strength (MPa), And the bonding force (N) was measured.
<第1実験例>
図5(a)には、実施例E1,E2と比較例C1,C2の構成をまとめた表が示されている。図5(b)には、実施例E1,E2と比較例C1,C2の接合強度の測定結果を示す棒グラフが示されている。 <First experimental example>
FIG. 5A shows a table summarizing the configurations of Examples E1 and E2 and Comparative Examples C1 and C2. FIG. 5(b) shows a bar graph showing the measurement results of the bonding strengths of Examples E1 and E2 and Comparative Examples C1 and C2.
図5(a)には、実施例E1,E2と比較例C1,C2の構成をまとめた表が示されている。図5(b)には、実施例E1,E2と比較例C1,C2の接合強度の測定結果を示す棒グラフが示されている。 <First experimental example>
FIG. 5A shows a table summarizing the configurations of Examples E1 and E2 and Comparative Examples C1 and C2. FIG. 5(b) shows a bar graph showing the measurement results of the bonding strengths of Examples E1 and E2 and Comparative Examples C1 and C2.
図5(a)に示すように、実施例E1,E2および比較例C1,C2では、金属基材MMとして、Alとマグネシウム(Mg)の合金であるA5052を用い、樹脂基材RMとして、ポリアミド系樹脂であるPA6を用いた。また、実施例E1,E2および比較例C1,C2での接合領域の横幅xは20mmとし、縦幅yは3mmとした。
As shown in FIG. 5(a), in Examples E1 and E2 and Comparative Examples C1 and C2, A5052, which is an alloy of Al and magnesium (Mg), was used as the metal base material MM, and polyamide was used as the resin base material RM. A PA6 resin was used. Moreover, the horizontal width x of the bonding region in Examples E1 and E2 and Comparative Examples C1 and C2 was 20 mm, and the vertical width y was 3 mm.
実施例E1では、ポリマー溶液PAAsによって金属基材MMに化学結合層を形成し、ホットプレスにより化学結合層に対して樹脂基材RMを融着した。実施例E2では、ポリマー溶液PAAによって金属基材MMに化学結合層を形成し、ホットプレスにより化学結合層に対して樹脂基材RMを融着した。実施例E1,E2ではいずれも、ポリマー溶液を塗布する前の金属基材MMの塗布領域CAに対して、脱脂洗浄とプラズマ処理とを実施した。また、実施例E1,E2ではいずれも、ポリマー溶液は、膜厚が約50μmとなるように塗布した。
In Example E1, a chemical bonding layer was formed on the metal base material MM using a polymer solution PAAs, and a resin base material RM was fused to the chemical bonding layer by hot pressing. In Example E2, a chemical bonding layer was formed on the metal base material MM using the polymer solution PAA, and the resin base material RM was fused to the chemical bonding layer by hot pressing. In both Examples E1 and E2, the application area CA of the metal base material MM before the polymer solution was applied was subjected to degreasing cleaning and plasma treatment. Further, in both Examples E1 and E2, the polymer solution was applied to a film thickness of approximately 50 μm.
比較例C1では、金属基材MMの接合領域に対するプラズマ処理のみを実施し、ポリマー溶液を用いて化学結合層を形成することなく、ホットプレスにより金属基材MMに樹脂基材RMを融着した。比較例C2では、金属基材MMの接合領域に対する脱脂洗浄のみを実施し、ポリマー溶液を用いて化学結合層を形成することなく、ホットプレスにより金属基材MMに樹脂基材RMを融着した。脱脂洗浄にはエタノールを用いた。
In Comparative Example C1, only plasma treatment was performed on the bonding region of the metal base material MM, and the resin base material RM was fused to the metal base material MM by hot pressing without forming a chemical bonding layer using a polymer solution. . In Comparative Example C2, only the bonding area of the metal base material MM was degreased and cleaned, and the resin base material RM was fused to the metal base material MM by hot pressing without forming a chemical bonding layer using a polymer solution. . Ethanol was used for degreasing and cleaning.
実施例E1,E2,C1,C2でのホットプレスの条件は同じである。ホットプレスでの加熱温度は、PA6およびSnの融点よりも高い温度であった。
The hot pressing conditions in Examples E1, E2, C1, and C2 are the same. The heating temperature in the hot press was higher than the melting points of PA6 and Sn.
図5(b)に示すように、2つの実施例E1,E2はいずれも、2つの比較例C1,C2よりも高い接合強度を得ることができた。この結果から、実施例E1,E2での接合強度の向上は、ポリマー溶液によって形成された化学結合層によって得られたものであることがわかる。また、従来の接着剤での接合強度が数MPa程度であることを考慮すると、実施例E1,E2で得られた接合強度は12.0MPaを超えており、接合性が著しく向上していることがわかる。
As shown in FIG. 5(b), both Examples E1 and E2 were able to obtain higher bonding strength than the two Comparative Examples C1 and C2. This result shows that the improvement in bonding strength in Examples E1 and E2 was achieved by the chemical bonding layer formed by the polymer solution. Furthermore, considering that the bonding strength with conventional adhesives is approximately several MPa, the bonding strengths obtained in Examples E1 and E2 exceeded 12.0 MPa, indicating that the bonding properties were significantly improved. I understand.
特に、実施例E1は、実施例E2よりも高い接合強度を得ることができた。実施例E1の接合強度が向上したのは、ホットプレスの際の加熱によって、ポリマー溶液中に添加されていたSn粉末が溶融して金属基材MMと樹脂基材RMとに融着したためであると考えられる。
In particular, Example E1 was able to obtain higher bonding strength than Example E2. The bonding strength of Example E1 was improved because the Sn powder added to the polymer solution was melted by heating during hot pressing and fused to the metal base material MM and the resin base material RM. it is conceivable that.
<第2実験例>
図6には、実施例E3,E4,E5,E6,E6a,E7,E7a,E8,E9の接合強度の測定結果をまとめた表を示してある。実施例E3,E4,E5,E6,E6a,E7,E7a,E8,E9ではいずれも、ポリマー溶液を塗布する前の金属基材MMの塗布領域CAに対して、脱脂洗浄とプラズマ処理とを実施した。ホットプレスは、いずれも同じ加圧力で、樹脂基材RMの融点より高い加熱温度で行った。 <Second experimental example>
FIG. 6 shows a table summarizing the measurement results of the bonding strengths of Examples E3, E4, E5, E6, E6a, E7, E7a, E8, and E9. In Examples E3, E4, E5, E6, E6a, E7, E7a, E8, and E9, degreasing cleaning and plasma treatment were performed on the application area CA of the metal base material MM before applying the polymer solution. did. The hot pressing was performed under the same pressure and at a heating temperature higher than the melting point of the resin base material RM.
図6には、実施例E3,E4,E5,E6,E6a,E7,E7a,E8,E9の接合強度の測定結果をまとめた表を示してある。実施例E3,E4,E5,E6,E6a,E7,E7a,E8,E9ではいずれも、ポリマー溶液を塗布する前の金属基材MMの塗布領域CAに対して、脱脂洗浄とプラズマ処理とを実施した。ホットプレスは、いずれも同じ加圧力で、樹脂基材RMの融点より高い加熱温度で行った。 <Second experimental example>
FIG. 6 shows a table summarizing the measurement results of the bonding strengths of Examples E3, E4, E5, E6, E6a, E7, E7a, E8, and E9. In Examples E3, E4, E5, E6, E6a, E7, E7a, E8, and E9, degreasing cleaning and plasma treatment were performed on the application area CA of the metal base material MM before applying the polymer solution. did. The hot pressing was performed under the same pressure and at a heating temperature higher than the melting point of the resin base material RM.
実施例E3,E4,E5ではそれぞれ、ポリマー溶液PAA,PAN,CMCを用いた点以外は同じ条件で行った。実施例E3,E4,E5では、金属基材MMにA5052を用い、樹脂基材RMにPA6を用いた。また、接合領域の横幅xを20mmとし、縦幅yを5mmとした。実施例E3,E4,E5ではいずれも1000Nを超える接合力が得られた。特に、実施例E4では、2000Nを超える接合強度が得られた。
Examples E3, E4, and E5 were conducted under the same conditions except that polymer solutions PAA, PAN, and CMC were used, respectively. In Examples E3, E4, and E5, A5052 was used for the metal base material MM, and PA6 was used for the resin base material RM. Further, the horizontal width x of the bonding area was 20 mm, and the vertical width y was 5 mm. In Examples E3, E4, and E5, bonding forces exceeding 1000 N were obtained. In particular, in Example E4, a bonding strength exceeding 2000N was obtained.
実施例E6では、ポリマー溶液PAAを用い、金属基材MMとしてCuを用い、樹脂基材RMとしてPA6を用いた。実施例E7では、ポリマー溶液PANを用い、金属基材MMとしてSPCCを用い、樹脂基材RMとしてPA6を用いた。実施例E6,E7では、接合領域の横幅xを20mmとし、縦幅yを10mmとした。実施例E6,E7ではいずれも1000Nを超える接合力が得られた。特に、実施例E6では、2000Nを超える接合力が得られた。
In Example E6, polymer solution PAA was used, Cu was used as the metal base material MM, and PA6 was used as the resin base material RM. In Example E7, polymer solution PAN was used, SPCC was used as the metal base material MM, and PA6 was used as the resin base material RM. In Examples E6 and E7, the horizontal width x of the bonding area was 20 mm, and the vertical width y was 10 mm. In both Examples E6 and E7, bonding forces exceeding 1000N were obtained. In particular, in Example E6, a bonding force exceeding 2000N was obtained.
実施例E6a,E7aはそれぞれ、ポリマー溶液を塗布する前に塗布領域CAの酸化膜を除去する処理を実施した点以外は、実施例E6,E7とほぼ同じ条件で行った。この結果、実施例E6aでは、実施例E6より接合力が900N以上向上し、実施例E7aでは、実施例E7より接合力が1800N以上向上した。この結果から、本発明の接合方法によれば、ポリマー溶液の塗布前に塗布領域CAの酸化膜を除去する処理を実行するだけで、金属基材と樹脂基材の接合強度を簡易に向上させることができることがわかる。
Examples E6a and E7a were conducted under almost the same conditions as Examples E6 and E7, except that the oxide film in the coating area CA was removed before applying the polymer solution. As a result, in Example E6a, the bonding force was improved by 900 N or more compared to Example E6, and in Example E7a, the bonding force was improved by 1800 N or more compared to Example E7. From this result, according to the bonding method of the present invention, the bonding strength between the metal base material and the resin base material can be easily improved by simply performing the process of removing the oxide film in the application area CA before applying the polymer solution. It turns out that you can do it.
実施例E8,E9はそれぞれ、金属基材MMとしてSUSとSGCCとを用いた点以外は、同じ条件で行った。実施例E8,E9では、ポリマー溶液PANを用い、樹脂基材RMとしてPA6を用いた。実施例E6,E7では、接合領域の横幅xを20mmとし、縦幅yを10mmとした。実施例E8,E9でもいずれも、1000N以上の接合力が得られた。特に、実施例E8では1800N以上の接合力が得られた。
Examples E8 and E9 were conducted under the same conditions except that SUS and SGCC were used as the metal base material MM. In Examples E8 and E9, polymer solution PAN was used and PA6 was used as the resin base material RM. In Examples E6 and E7, the horizontal width x of the bonding area was 20 mm, and the vertical width y was 10 mm. In both Examples E8 and E9, a bonding force of 1000 N or more was obtained. In particular, in Example E8, a bonding force of 1800N or more was obtained.
以上、実施例E3,E4,E5,E6,E6a,E7,E7a,E8,E9によれば、ポリアミド系樹脂と、Al合金や、Cu、鋼材等の金属とを、接合力が1000Nを超える接合強度で接合することができた。また、ポリマー溶液PAA,PAN,CMCのいずれを用いた場合でも、高い接合強度を得ることができた。
As described above, according to Examples E3, E4, E5, E6, E6a, E7, E7a, E8, and E9, polyamide resin and metal such as Al alloy, Cu, and steel are bonded with a bonding force exceeding 1000 N. I was able to join it with strength. Moreover, high bonding strength could be obtained regardless of whether polymer solution PAA, PAN, or CMC was used.
図7には、実施例E10で用いた基材やポリマー溶液の種類と引張試験後の金属基材MMと樹脂基材RMの状態を示す撮影画像とをまとめた表を示してある。実施例E10では、金属基材MMとしてA5052を用い、樹脂基材RMとして、PBTを用いた。実施例E10では、金属基材MMにポリマー溶液PAAを塗布して化学結合層を形成した。化学結合層への樹脂基材RMの融着は、PBTの融点より高い加熱温度でのホットプレスによって行った。実施例E10では、ポリマー溶液を塗布する前の金属基材MMの塗布領域CAに対して、脱脂洗浄とプラズマ処理とを実施した。
FIG. 7 shows a table summarizing the types of base materials and polymer solutions used in Example E10 and photographed images showing the states of the metal base material MM and resin base material RM after the tensile test. In Example E10, A5052 was used as the metal base material MM, and PBT was used as the resin base material RM. In Example E10, a chemically bonded layer was formed by applying the polymer solution PAA to the metal substrate MM. The resin base material RM was fused to the chemical bonding layer by hot pressing at a heating temperature higher than the melting point of PBT. In Example E10, the application area CA of the metal base material MM before the polymer solution was applied was subjected to degreasing cleaning and plasma treatment.
実施例E10の撮影画像に示されているように、金属基材MMの破断した接合部位には、樹脂基材RMの一部が残留していた。この撮影画像から、実施例E10では、実用に耐え得る十分な接合強度が得られていたことがわかる。
As shown in the photographed image of Example E10, a portion of the resin base material RM remained at the fractured joint site of the metal base material MM. From this photographed image, it can be seen that in Example E10, sufficient bonding strength to withstand practical use was obtained.
図8には、実施例E11で用いた基材やポリマー溶液の種類と引張試験後の金属基材MMと樹脂基材RMの状態を示す撮影画像とをまとめた表を示してある。実施例E11では、金属基材MMとして980MPa級の高張力鋼板(ハイテン鋼板)を用い、樹脂基材RMとして、PA66を用いた。実施例E11では、金属基材MMにポリマー溶液PAAを塗布して化学結合層を形成した。化学結合層への樹脂基材RMの融着は、PA66の融点より高い加熱温度でのホットプレスによって行った。実施例E11では、ポリマー溶液を塗布する前の金属基材MMの塗布領域CAに対して、脱脂洗浄とプラズマ処理とを実施した。
FIG. 8 shows a table summarizing the types of base materials and polymer solutions used in Example E11 and photographed images showing the states of the metal base material MM and resin base material RM after the tensile test. In Example E11, a 980 MPa class high tensile strength steel plate (high tensile steel plate) was used as the metal base material MM, and PA66 was used as the resin base material RM. In Example E11, the polymer solution PAA was applied to the metal base material MM to form a chemically bonded layer. The resin base material RM was fused to the chemical bonding layer by hot pressing at a heating temperature higher than the melting point of PA66. In Example E11, the application area CA of the metal base material MM before the polymer solution was applied was subjected to degreasing cleaning and plasma treatment.
実施例E11の撮影画像に示されているように、金属基材MMの破断した接合部位には、樹脂基材RMの一部が残留していた。この撮影画像から、実施例E11でも、実用に耐え得る十分な接合強度が得られていたことがわかる。
As shown in the photographed image of Example E11, a portion of the resin base material RM remained at the fractured joint site of the metal base material MM. From this photographed image, it can be seen that sufficient bonding strength for practical use was obtained in Example E11 as well.
図9には、上記の実施例についての接合対象とした基材の組み合わせと接合結果とをまとめた表を示してある。また、図9には、比較例の接合結果についての表を右側に追加してある。比較例は、ポリマー溶液を用いて金属基材同士を接合できるか否かを検証したものである。図9の表において、「〇」は基準値以上の接合強度が得られた良好な結果を意味している。「×」は基準値以上の接合強度が得られなかった良好ではない結果を意味している。「-」は、未実施の組み合わせを意味している。
FIG. 9 shows a table summarizing the combinations of base materials to be bonded and the bonding results for the above examples. Further, in FIG. 9, a table regarding the joining results of the comparative example is added on the right side. In the comparative example, it was verified whether or not metal substrates could be bonded together using a polymer solution. In the table of FIG. 9, "0" means a good result in which a bonding strength equal to or higher than the reference value was obtained. "x" means an unsatisfactory result in which the bonding strength above the standard value was not obtained. "-" means a combination that has not yet been implemented.
図9に示されているように、本発明の接合方法によれば、様々な合金や鋼を含む金属と樹脂とを接合することが可能であった。また、比較例の結果が示しているように、金属同士では接合強度を得ることができなかった。この結果は、本発明におけるポリマー溶液は、乾燥させて硬化させることにより接着対象に固着する従来の一般的な接着剤とは異なるものであることを示している。本発明において接合強度が得られる理由は、金属基材に対する化学結合層の固着と、化学結合層に樹脂成分が混合されることによる樹脂の融着との組み合わせが重要であると言える。
As shown in FIG. 9, according to the joining method of the present invention, it was possible to join metals including various alloys and steels to resin. Further, as shown in the results of the comparative example, it was not possible to obtain bonding strength between metals. This result shows that the polymer solution of the present invention is different from conventional general adhesives, which adhere to objects by drying and curing. The reason why the bonding strength is obtained in the present invention is that the combination of the adhesion of the chemical bonding layer to the metal base material and the fusion of the resin by mixing the resin component in the chemical bonding layer is important.
<第3実験例>
図10には、工程S40での加熱温度である接合温度ごとの接合強度を検証した実験によって得られた棒グラフを示してある。 <Third experimental example>
FIG. 10 shows a bar graph obtained by an experiment that verified the bonding strength at each bonding temperature, which is the heating temperature in step S40.
図10には、工程S40での加熱温度である接合温度ごとの接合強度を検証した実験によって得られた棒グラフを示してある。 <Third experimental example>
FIG. 10 shows a bar graph obtained by an experiment that verified the bonding strength at each bonding temperature, which is the heating temperature in step S40.
この実験例では、金属基材MMとしてA5052を用い、樹脂基材RMとしてPA6を用いた。また、ポリマー溶液PAAを、横幅20mm、縦幅3mmの塗布領域CAに塗布して化学結合層を形成し、ホットプレスにより、樹脂基材RMを化学結合層に融着させた。なお、ポリマー溶液PAAの塗布前に、塗布領域CAには、接合面の表面処理として、エタノール洗浄とプラズマ処理とを実施した。
In this experimental example, A5052 was used as the metal base material MM, and PA6 was used as the resin base material RM. Further, a chemical bonding layer was formed by applying the polymer solution PAA to a coating area CA having a width of 20 mm and a width of 3 mm, and the resin base material RM was fused to the chemical bonding layer by hot pressing. Note that, before applying the polymer solution PAA, the application area CA was subjected to ethanol cleaning and plasma treatment as surface treatment of the bonding surface.
ここで、樹脂基材RMであるPA6の融点は225℃である。図10のグラフから、ホットプレスでの接合温度を、その融点より高い温度とすることにより、高い接合強度が得られていることがわかる。また、接合温度を、融点より50℃以上高くすることにより、接合強度が段違いに向上することがわかる。
Here, the melting point of PA6, which is the resin base material RM, is 225°C. From the graph of FIG. 10, it can be seen that high bonding strength is obtained by setting the bonding temperature in hot pressing to a temperature higher than the melting point. Furthermore, it can be seen that the bonding strength is significantly improved by increasing the bonding temperature by 50° C. or more above the melting point.
図11には、樹脂基材RMの種類ごとの接合温度を検証した実験結果をまとめた表を示してある。この実験例では、A5052によって構成した金属基材MMにポリマー溶液PAAを塗布して化学結合層を形成し、ホットプレスにより、表中に示す樹脂基材RMを融着した。図11の表において、「〇」は基準値以上の接合強度が得られた良好な結果を意味している。「×」は基準値以上の接合強度が得られなかった良好ではない結果を意味している。「-」は、未実施の組み合わせを意味している。
FIG. 11 shows a table summarizing the experimental results of verifying the bonding temperature for each type of resin base material RM. In this experimental example, a polymer solution PAA was applied to a metal base material MM made of A5052 to form a chemical bonding layer, and a resin base material RM shown in the table was fused by hot pressing. In the table of FIG. 11, "0" means a good result in which a bonding strength equal to or higher than the reference value was obtained. "x" means an unsatisfactory result in which the bonding strength above the standard value was not obtained. "-" means a combination that has not yet been implemented.
この実験例では、樹脂基材RMとして、PA6、PA66、PBT、PPSを用いた。PA6の融点は上述したように、225℃であり、PA66の融点は265℃であり、PBTの融点は、232℃以上267℃以下の範囲内であり、PPSの融点は275℃である。図11の表に示す結果から、樹脂基材RMの融点よりも20~30℃程度高い接合温度でホットプレスを実行することが好ましいことがわかる。
In this experimental example, PA6, PA66, PBT, and PPS were used as the resin base material RM. As mentioned above, the melting point of PA6 is 225°C, the melting point of PA66 is 265°C, the melting point of PBT is within the range of 232°C to 267°C, and the melting point of PPS is 275°C. From the results shown in the table of FIG. 11, it can be seen that hot pressing is preferably performed at a bonding temperature approximately 20 to 30° C. higher than the melting point of the resin base material RM.
<まとめ>
以上のように、上記の各実験例によって、本発明の接合方法によれば、ポリマー溶液の塗布による金属基材に対する化学結合層の形成および化学結合層に対する樹脂基材の融着によって、金属基材と樹脂基材とを高い接合強度で接合できることが示された。 <Summary>
As described above, the above experimental examples show that according to the bonding method of the present invention, a chemical bonding layer is formed on a metal substrate by applying a polymer solution and a resin substrate is fused to the chemical bonding layer. It was shown that the material and the resin base material can be bonded with high bonding strength.
以上のように、上記の各実験例によって、本発明の接合方法によれば、ポリマー溶液の塗布による金属基材に対する化学結合層の形成および化学結合層に対する樹脂基材の融着によって、金属基材と樹脂基材とを高い接合強度で接合できることが示された。 <Summary>
As described above, the above experimental examples show that according to the bonding method of the present invention, a chemical bonding layer is formed on a metal substrate by applying a polymer solution and a resin substrate is fused to the chemical bonding layer. It was shown that the material and the resin base material can be bonded with high bonding strength.
2.第2実施形態:
図12(a)~(c)は、第2実施形態の接合方法の各工程を工程順に示す模式図である。第2実施形態の接合方法では、第1実施形態で説明した金属と樹脂との接合方法を利用して、2つの金属基材10a,10bを接合する。 2. Second embodiment:
FIGS. 12(a) to 12(c) are schematic diagrams showing each step of the joining method of the second embodiment in order. In the joining method of the second embodiment, the two metal base materials 10a and 10b are joined using the method of joining metal and resin described in the first embodiment.
図12(a)~(c)は、第2実施形態の接合方法の各工程を工程順に示す模式図である。第2実施形態の接合方法では、第1実施形態で説明した金属と樹脂との接合方法を利用して、2つの金属基材10a,10bを接合する。 2. Second embodiment:
FIGS. 12(a) to 12(c) are schematic diagrams showing each step of the joining method of the second embodiment in order. In the joining method of the second embodiment, the two
図12(a)を参照する。第2実施形態の接合方法では、まず、接合対象となる第1金属基材10aと第2金属基材10bとを準備する。
Refer to FIG. 12(a). In the joining method of the second embodiment, first, a first metal base material 10a and a second metal base material 10b to be joined are prepared.
第1金属基材10aには、第1実施形態で説明した接合方法によって、樹脂基材20が接合されている。第1金属基材10aと樹脂基材20との間には、化学結合層32に溶融した樹脂基材20の一部が混合された接合層35が形成されている。第2金属基材10bには、ポリマー溶液を塗布して化学結合層32を形成する。
A resin base material 20 is bonded to the first metal base material 10a by the bonding method described in the first embodiment. A bonding layer 35 is formed between the first metal base material 10a and the resin base material 20, in which a part of the molten resin base material 20 is mixed with the chemical bonding layer 32. A chemical bonding layer 32 is formed on the second metal base material 10b by applying a polymer solution.
図12(b)を参照する。次に、第2金属基材10bに形成した化学結合層32を第1金属基材10aに接合された樹脂基材20に接触させ、樹脂基材20を溶融させることにより、第2金属基材10bの化学結合層32に第1金属基材10aに接合された樹脂基材20を融着させる。この融着工程は、第1金属基材10aの樹脂基材20の上に第2金属基材10bの化学結合層32を積層した状態でホットプレスすることにより可能である。
Refer to FIG. 12(b). Next, the chemical bonding layer 32 formed on the second metal base material 10b is brought into contact with the resin base material 20 joined to the first metal base material 10a, and the resin base material 20 is melted to form a second metal base material. The resin base material 20 joined to the first metal base material 10a is fused to the chemical bonding layer 32 of 10b. This fusion step can be performed by hot pressing the chemically bonded layer 32 of the second metal base material 10b laminated on the resin base material 20 of the first metal base material 10a.
以上の工程により、図2(c)に示すように、両側に接合層35が形成された樹脂基材20の層を挟んで第1金属基材10aと第2金属基材10bとが接合された接合体が形成される。
Through the above steps, as shown in FIG. 2(c), the first metal base material 10a and the second metal base material 10b are bonded with the layer of the resin base material 20 having the bonding layer 35 formed on both sides sandwiched therebetween. A zygote is formed.
第2実施形態の接合方法によれば、2つの金属基材10a,10bを簡易に接合することができる。また、2つの金属基材10a,10bを、樹脂基材20によって電気的に絶縁した状態で接合することができる。その他に、第2実施形態の接合方法によれば、第1実施形態やその実施例で説明した種々の効果を奏することができる。
According to the joining method of the second embodiment, the two metal base materials 10a and 10b can be easily joined. Further, the two metal base materials 10a and 10b can be joined while being electrically insulated by the resin base material 20. In addition, according to the joining method of the second embodiment, various effects described in the first embodiment and its examples can be achieved.
3.他の実施形態:
本発明は、上記の各実施形態や実施例で説明した構成に限定されることはなく、本発明の趣旨を逸脱しない範囲において適宜、改変可能である。上記の各実施形態において他の実施形態として説明した構成や、以下に説明する構成はいずれも、上記の各実施形態および実施例と同様に、本発明を実施するための一形態として位置づけられる。 3. Other embodiments:
The present invention is not limited to the configurations described in the above embodiments and examples, and can be modified as appropriate without departing from the spirit of the present invention. The configurations described as other embodiments in each of the above embodiments and the configurations described below are positioned as one form for implementing the present invention, similarly to each of the above embodiments and examples.
本発明は、上記の各実施形態や実施例で説明した構成に限定されることはなく、本発明の趣旨を逸脱しない範囲において適宜、改変可能である。上記の各実施形態において他の実施形態として説明した構成や、以下に説明する構成はいずれも、上記の各実施形態および実施例と同様に、本発明を実施するための一形態として位置づけられる。 3. Other embodiments:
The present invention is not limited to the configurations described in the above embodiments and examples, and can be modified as appropriate without departing from the spirit of the present invention. The configurations described as other embodiments in each of the above embodiments and the configurations described below are positioned as one form for implementing the present invention, similarly to each of the above embodiments and examples.
上記の各実施形態や実施例で説明した接合方法は、他の接合方法と組み合わされてもよい。例えば、鋼材の表面に微細な凹凸構造を形成し、その凹凸構造に軟化させた樹脂基材を入り込ませることによって接合する方法と組み合わされてもよい。なお、前記の鋼材の微細な凹凸構造は、鋼材の表面に、少なくとも、チタンと、炭素と、ニッケルと、スズと、を含む金属粉末を配置し、その金属粉末をレーザーの照射によって溶融させることにより形成してもよい。その詳細については、例えば、特開2022-187439号公報に開示されている。
The bonding methods described in each of the above embodiments and examples may be combined with other bonding methods. For example, it may be combined with a method in which a fine uneven structure is formed on the surface of the steel material and a softened resin base material is inserted into the uneven structure to bond the steel material. The above-mentioned fine uneven structure of the steel material can be obtained by disposing metal powder containing at least titanium, carbon, nickel, and tin on the surface of the steel material, and melting the metal powder by laser irradiation. It may be formed by The details are disclosed in, for example, Japanese Patent Laid-Open No. 2022-187439.
The bonding methods described in each of the above embodiments and examples may be combined with other bonding methods. For example, it may be combined with a method in which a fine uneven structure is formed on the surface of the steel material and a softened resin base material is inserted into the uneven structure to bond the steel material. The above-mentioned fine uneven structure of the steel material can be obtained by disposing metal powder containing at least titanium, carbon, nickel, and tin on the surface of the steel material, and melting the metal powder by laser irradiation. It may be formed by The details are disclosed in, for example, Japanese Patent Laid-Open No. 2022-187439.
Claims (8)
- 金属素材の接合面に脱脂洗浄およびプラズマ処理による表面改質の少なくとも一方を行う第1の工程と、
加熱により、前記第1の工程を経た前記金属素材の接合面と化学結合を生じる樹脂成分を含有するポリマー溶液を準備し、当該接合面の上に塗布して化学結合層を形成する第2の工程と、
加熱により、前記化学結合層と溶融混合して結合する樹脂成分を含有する樹脂素材を準備する第3の工程と、
前記第2の工程で塗布した前記ポリマー溶液の上に、前記第3の工程で準備した前記樹脂素材を積層して加熱押圧することにより、或いは、前記樹脂素材を射出成形することにより、前記金属素材と前記樹脂素材とを接合させる、接合方法。 a first step of performing at least one of degreasing and cleaning and surface modification by plasma treatment on the joint surface of the metal material;
A second step of preparing a polymer solution containing a resin component that forms a chemical bond with the bonding surface of the metal material that has undergone the first step by heating, and applying it onto the bonding surface to form a chemical bonding layer. process and
a third step of preparing a resin material containing a resin component that melts and mixes and bonds with the chemical bonding layer by heating;
The resin material prepared in the third step is laminated on the polymer solution applied in the second step and heated and pressed, or the resin material is injection molded to form the metal. A joining method of joining a material and the resin material. - 請求項1記載の接合方法であって、
前記ポリマー溶液は、接合時の温度で溶融する無機粉体を含有することを特徴とする、接合方法。 The joining method according to claim 1, comprising:
A bonding method characterized in that the polymer solution contains an inorganic powder that melts at a temperature during bonding. - 金属基材と樹脂基材とを接合する接合方法であって、
前記金属基材の表面に、官能基を有する水溶性ポリマーを含有するポリマー溶液を塗布し、前記水溶性ポリマーと前記金属基材の表面に存在する基との共有結合により前記金属基材の表面に固着する化学結合層を形成する工程と、
前記樹脂基材を溶融させて前記金属基材に固着している前記化学結合層に融着させる工程と、
を備える、接合方法。 A joining method for joining a metal base material and a resin base material, the method comprising:
A polymer solution containing a water-soluble polymer having a functional group is applied to the surface of the metal base material, and the surface of the metal base material is formed by covalent bonding between the water-soluble polymer and the group present on the surface of the metal base material. forming a chemical bonding layer that adheres to the
melting the resin base material and fusing it to the chemical bonding layer fixed to the metal base material;
A joining method comprising: - 請求項3記載の接合方法であって、さらに、
前記金属基材に前記ポリマー溶液を塗布する前に、前記金属基材の表面における前記ポリマー溶液の塗布領域を脱脂洗浄する工程を備える、接合方法。 4. The joining method according to claim 3, further comprising:
A joining method comprising the step of degreasing and cleaning an area to which the polymer solution is applied on the surface of the metal base before applying the polymer solution to the metal base. - 請求項3記載の接合方法であって、
前記金属基材に前記ポリマー溶液を塗布する前に、前記塗布領域に対してプラズマ処理を実施する工程と、
を備える、接合方法。 The joining method according to claim 3,
Before applying the polymer solution to the metal substrate, performing plasma treatment on the application area;
A joining method comprising: - 請求項3記載の接合方法であって、さらに、
前記金属基材に前記ポリマー溶液を塗布する前に、前記金属基材の表面における前記ポリマー溶液の塗布領域の酸化膜を除去する工程を備える、接合方法。 4. The joining method according to claim 3, further comprising:
A joining method comprising, before applying the polymer solution to the metal base material, removing an oxide film in an area where the polymer solution is applied on the surface of the metal base material. - 請求項3記載の接合方法であって、
前記ポリマー溶液は、前記樹脂基材を前記化学結合層に融着する際の加熱温度で溶融する無機粉体を含む、接合方法。 The joining method according to claim 3,
The bonding method, wherein the polymer solution includes an inorganic powder that melts at a heating temperature when fusing the resin base material to the chemical bonding layer. - 請求項3から請求項7のいずれか一項に記載の接合方法であって、
前記接合層を介して前記樹脂基材が接合された前記金属基材を第1金属基材として準備する工程と、
第2金属基材に前記ポリマー溶液を塗布して形成した前記第2金属基材の前記化学結合層に、前記樹脂基材を溶融させて融着させる工程と、
を備える、接合方法。
The joining method according to any one of claims 3 to 7,
preparing the metal base material to which the resin base material is bonded via the bonding layer as a first metal base material;
Melting and fusing the resin base material to the chemical bonding layer of the second metal base material formed by applying the polymer solution to the second metal base material;
A joining method comprising:
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022110084 | 2022-07-07 | ||
JP2022-110084 | 2022-07-07 | ||
JP2023002655A JP2024008799A (en) | 2022-07-07 | 2023-01-11 | Joining method |
JP2023-002655 | 2023-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024010037A1 true WO2024010037A1 (en) | 2024-01-11 |
Family
ID=89453495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/024956 WO2024010037A1 (en) | 2022-07-07 | 2023-07-05 | Bonding method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024010037A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59225776A (en) * | 1983-06-08 | 1984-12-18 | Kishimoto Akira | Surface treatment of aluminum material |
JP2001293781A (en) * | 2000-04-12 | 2001-10-23 | Nissha Printing Co Ltd | Method for producing metal molding laminated with decorative sheet |
WO2016158516A1 (en) * | 2015-03-27 | 2016-10-06 | 三井化学株式会社 | Metal/resin composite structure, metal member, and method for manufacturing metal/resin composite structure |
JP2019123228A (en) * | 2018-01-17 | 2019-07-25 | メック株式会社 | Integrated molding and method for producing the same, and primer composition |
-
2023
- 2023-07-05 WO PCT/JP2023/024956 patent/WO2024010037A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59225776A (en) * | 1983-06-08 | 1984-12-18 | Kishimoto Akira | Surface treatment of aluminum material |
JP2001293781A (en) * | 2000-04-12 | 2001-10-23 | Nissha Printing Co Ltd | Method for producing metal molding laminated with decorative sheet |
WO2016158516A1 (en) * | 2015-03-27 | 2016-10-06 | 三井化学株式会社 | Metal/resin composite structure, metal member, and method for manufacturing metal/resin composite structure |
JP2019123228A (en) * | 2018-01-17 | 2019-07-25 | メック株式会社 | Integrated molding and method for producing the same, and primer composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5554483B2 (en) | Metal-resin composite and method for producing the same | |
CN107709002B (en) | Metal resin composite molded body and method for producing same | |
US8696923B2 (en) | Composite of steel and resin and method for manufacturing same | |
JP4903897B2 (en) | Zinc-based plated steel sheet and adherend bonded body and method for producing the same | |
KR101216800B1 (en) | Steel product composite and process for producing the steel product composite | |
JP5560565B2 (en) | Composite of metal and resin and method for producing the same | |
WO2014112506A1 (en) | Process for producing metal-resin bonded object, and metal-resin bonded object | |
JP6993086B2 (en) | Manufacturing method of bonded structure, thermal transfer surface modification sheet, and thermoplastic resin with thermal transfer surface modification sheet | |
JPWO2008133096A1 (en) | Magnesium alloy composite and manufacturing method thereof | |
JPWO2009078466A1 (en) | Metal-resin composite and method for producing the same | |
JPWO2015152101A1 (en) | Laminated composite of metal and polypropylene resin composition and method for producing the same | |
Reincke et al. | Improvement of the adhesion of continuously manufactured multi-material joints by application of thermoplastic adhesive film | |
JP2016221784A (en) | Integrally assembled product of cfrp pipe and metal part, and bonding method therefor | |
CN114865177A (en) | Battery packaging material, method for producing same, battery, and aluminum alloy foil | |
WO2024010037A1 (en) | Bonding method | |
Liu et al. | Enhancing the ultrasonic plastic welding strength of Al/CFRTP joint via coated metal surface and structured composite surface | |
JP2024008799A (en) | Joining method | |
JP2015196878A (en) | Surface-treated steel sheet and composite member | |
JP5834345B2 (en) | Aluminum alloy article, aluminum alloy member and manufacturing method thereof | |
JP6640638B2 (en) | Chemical treatment metal plate | |
WO2017064228A1 (en) | Method for welding a polyolefin plastic and a plastic based on a polymer containing carbonyl groups | |
WO2016199339A1 (en) | Metal resin composite molded body and method for producing same | |
JP6268080B2 (en) | Laminated composite of metal and polypropylene resin composition and method for producing the same | |
JP4233342B2 (en) | Joining method of thermoplastic resin materials | |
JP2020040368A (en) | Method for manufacturing composite body of coated metal contouring material and resin material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23835568 Country of ref document: EP Kind code of ref document: A1 |