JP2004243384A - Method of manufacturing hot steel strip - Google Patents

Method of manufacturing hot steel strip Download PDF

Info

Publication number
JP2004243384A
JP2004243384A JP2003036814A JP2003036814A JP2004243384A JP 2004243384 A JP2004243384 A JP 2004243384A JP 2003036814 A JP2003036814 A JP 2003036814A JP 2003036814 A JP2003036814 A JP 2003036814A JP 2004243384 A JP2004243384 A JP 2004243384A
Authority
JP
Japan
Prior art keywords
width
reduction
sheet
rolling mill
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003036814A
Other languages
Japanese (ja)
Other versions
JP4275964B2 (en
Inventor
Eisei Matsuzawa
永晴 松澤
Masaru Miyake
勝 三宅
Yasuhiro Sotani
保博 曽谷
Shiro Osada
史郎 長田
Takashi Nishii
崇 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
IHI Corp
Original Assignee
JFE Steel Corp
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, IHI Corp filed Critical JFE Steel Corp
Priority to JP2003036814A priority Critical patent/JP4275964B2/en
Publication of JP2004243384A publication Critical patent/JP2004243384A/en
Application granted granted Critical
Publication of JP4275964B2 publication Critical patent/JP4275964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a hot steel strip by which a variation in width and a variation in thickness in the longitudinal direction of the steel strip are corrected in high accuracy. <P>SOLUTION: In the method of manufacturing the hot strip, edging is performed by setting the opening degree of the rolls of a vertical rolling mill (7) on the basis of the rate of a change in width which is a change in width per unit length in the longitudinal direction of a hot slab (11) or a rough bar (12). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は熱間鋼帯の製造方法に関し、特に板幅変動が修正された熱間鋼帯を製造する方法に関する。
【0002】
【従来の技術】
近年、熱間鋼帯の製造設備列に板厚圧下プレスを配し、スラブを板厚方向に高圧下することにより熱間鋼帯を製造する熱間鋼帯の製造技術が考案されている。
【0003】
本技術で使用される板厚圧下プレスでは、従来のロール圧延機に比べ大きな圧下量が1パスで得られ、プレス1台で粗圧延機複数台分の能力がある。このため設備費の低減が図れ、また大圧下を施すため設備列が短くなるのでスラブ、粗バーおよび熱間鋼帯の温度降下が小さいなどの長所がある。
【0004】
また、板厚圧下プレスで用いられる金型はスラブと接触・離反を繰り返すためスラブとの接触時間が短く、ロールほど長時間高温・高負荷にさらされることはないため金型の疲労が少ないという利点もある。
【0005】
しかしながら板厚圧下プレスではスラブの圧下が圧延機のように連続的ではなく断続的であるため、プレスサイクルに応じて、図1に示すような「板幅変動長さ」100mm〜20m、「板幅変動量」1〜25mmの、圧延方向の板中心線を対称軸として上下対称な板幅変動が生ずる。なお、「板幅変動長さ」とは、長手方向に周期的に変動する板幅変動の1単位長さをいう。
【0006】
板幅が長手方向に一定でない場合、通常、一定板幅の鋼帯とするために後の行程において板幅端部はトリムされる。しかし、このトリミングにおいては、長手方向に最小板幅にあわせてトリムされるため、板幅の変化量である板幅変動量が大きい場合にはトリム代が大きくなり歩留りが低下する。したがって、この長手方向に周期的な板幅変動量が最小になるように修正することが望まれる。
【0007】
このような長手方向に周期的な板幅変動に対して、従来、開示された技術では板厚圧下プレスの下流側に竪圧延機と水平圧延機とを設けて板幅変動の修正を図っている(例えば、特許文献1参照。)。
【0008】
また、板厚圧下プレスの下流側に板幅圧下プレスと水平圧延機を設けて板幅変動の修正を図っているものもある(例えば、特許文献2参照。)。
【0009】
特許文献2に示されている板幅変動修正方法を以下に説明する。まず板幅圧下プレスの開度を、水平圧延後の板幅が所望の板幅になるように設定する(ステップ1)。しかし、所望の板幅になるように開度を設定して板幅圧下プレスを行っても、その後の工程である水平圧延時に生じる幅戻りのため所望の板幅は得られない。この幅戻りは、スラブの材質、寸法、温度、板厚圧下プレスの圧下量、スラブの送り速度および目標板幅が影響する。この幅戻りに影響する条件を初期条件と称する。
【0010】
制御装置では入力されたこれらの初期条件から板幅圧下プレスの開度を演算する(ステップ2)。そして、この開度を板幅圧下プレスに指示する(ステップ3)。
【0011】
板幅圧下プレスはこの開度で板幅圧下を行い、その後に水平圧延機によって圧延が行われる。水平圧延機で圧延されたスラブは水平圧延機の下流側に設置された板幅計測器で板幅が計測される。その板幅計測値は制御装置に送られる(ステップ4)。制御装置では所望の板幅と板幅計測値との差を算出し(ステップ5)、この差と初期条件とから正しい板幅圧下プレスの開度を算出する(ステップ6)。ステップ3〜ステップ6を繰り返すことにより、所望の目標板幅を得る。
【0012】
またこの他に、あらかじめ竪圧延機あるいは板幅圧下プレスによってスラブに板幅変動を与える予成形を行うことにより、板厚圧下プレスによる減厚によって発生する板幅変動を相殺する板幅変動修正方法が創案されている(例えば、特許文献3参照。)。
【0013】
【特許文献1】
特開昭61−235002号公報
【0014】
【特許文献2】
特開2001−9502号公報
【0015】
【特許文献3】
特開2000−254708号公報
【0016】
【発明が解決しようとする課題】
ところで、長手方向の板幅変動を修正する場合、竪圧延機のロール開度を一定で圧延を行うと、竪圧延を行った後の鋼帯である粗バーの板幅端部にはドッグボーンと呼ばれる局所的に板厚が大きい部分が形成される。そして、板幅の広い部分の圧下量は大きく、板幅の狭い部分の圧下量は小さくなるが、板幅の圧下量が大きいほどドッグボーンの大きさは大きくなるため、板幅変動のうち板幅が広い部分のドッグボーンは大きくなり、逆に板幅が狭い部分のドッグボーンは小さくなる。この結果、板幅方向、長手方向共に板厚変動が生ずることになる。
【0017】
ドッグボーンを平坦にして板厚変動のない熱間鋼帯とするためには水平圧延を行う必要があるが、大きいドッグボーンが存在する部分の水平圧延を行うと水平圧延後の板幅の戻り量は大きくなり、逆に小さいドッグボーンが存在する部分の水平圧延を行うと水平圧延後の板幅の戻り量は小さくなり、板幅変動が生ずる。即ち、板厚圧下プレスの下流側に板幅圧下プレスと水平圧延機を設けた構成であっても、竪圧延機のロール開度を一定で圧延し水平圧延を行ったのでは、板幅変動は修正されない。
【0018】
しかしながら、特許文献1には、板厚圧下プレスによって発生した板幅変動の計測方法や竪圧延機のロール開度の設定方法について明確には記載されていない。このため板幅変動を助長するような竪圧延機のロール開度設定で板幅圧下を行い、板幅変動を逆に増大させることも有り得る。
【0019】
また特許文献2では、長手方向に周期的に存在する板幅変動に対して板幅圧下プレスの金型の開度変更をどのように行うのか明確にされていない。またステップ3〜ステップ6を繰り返すことにより所望の板幅を得る方式を採用しているため、粗バーの先端から所定長さは目標の板幅が得られない場合もある。
【0020】
また特許文献3に記載された技術では板厚圧下プレスの前に板幅の圧下を行う。ここで、この予成形について検討すると、板厚250mmのスラブを板厚圧下プレスにより90mmまで減厚を行った後の板幅変動長さが200mmとすると予成形を行うべき板幅変動長さは72mmとなる。圧延機によって板幅圧下を行う場合、圧下量20mm、板幅変動長さ72mmの板幅予成形を行うとすると幾何学的関係より圧延に用いられるロール半径は70mm以下となり、一般の圧延用ロールとしては極めてロール径が小さい。径が小さいロールを用いる場合には、圧延荷重によってロールにたわみが発生するため精度の高い圧延が行うことができない。このため圧下を行うロールを補強するためのバックアップロールが必要となり、圧延設備が大型化するとともに設備費が大きくなるという問題が生ずる。
【0021】
本発明は、かかる事情に鑑みてなされたものであって、鋼帯の長手方向の板幅変動や板厚変動が高い精度で修正された熱間鋼帯の製造方法を提供することを目的とする。
【0022】
【課題を解決するための手段】
上記課題を解決するための本発明は、熱間スラブあるいは粗バーの、長手方向の単位長さあたりの板幅変化である板幅変化率に基づいて竪圧延機のロール開度を設定して板幅圧下を行う熱間鋼帯の製造方法である。
【0023】
また本発明は、上記記載の発明である熱間鋼帯の製造方法において、熱間スラブあるいは粗バーの、長手方向の単位長さあたりの板幅変化である板幅変化率と、板幅圧下過程での搬送速度に対する前記竪圧延機の圧下速度の比である圧下速度比とに基づいて前記竪圧延機のロール開度を設定して板幅圧下を行う熱間鋼帯の製造方法である。
【0024】
また本発明は、上記記載の発明である熱間鋼帯の製造方法において、熱間スラブあるいは粗バーの板幅を予め板幅計測手段により測定し、この測定された板幅から板幅変化率を算出する熱間鋼帯の製造方法である。
【0025】
また本発明は、上記記載の発明である熱間鋼帯の製造方法において、粗バーは、粗圧延機群による減厚を行った後の粗バーである熱間鋼帯の製造方法である。
【0026】
また本発明は、上記記載の発明である熱間鋼帯の製造方法において、粗バーは、板厚圧下プレスによる減厚を行った後の粗バーである熱間鋼帯の製造方法である。
【0027】
【発明の実施の形態】
本発明に係る熱間鋼帯の製造方法に使用される板幅変動修正方法について説明する。
図1は、板幅変動修正方法が適用される粗バーの板幅変動を示す図である。想定される板幅変動は板幅変動長さ100mm〜20m、板幅変動量1〜25mmであって、粗バーは中心線に対して対称な形状である。なお板幅変化率を図2に示すように長手方向の単位長さあたりの板幅の変化として定義する。
【0028】
前述したように、板幅変動を修正するためには板幅圧下条件と水平圧延条件から水平圧延後の板幅を予測する必要がある。そうすれば、この予測方法に基づいて水平圧延後に板幅変動が修正されるように竪圧延機のロール開度を変更することが可能となる。
【0029】
板幅圧下とそれに引き続く水平圧延を行ったあとの板幅に影響する因子としては、これまで以下のものが知られている。即ち、板厚:t、板幅:W、板幅圧下量:△W、板厚圧下量:△t、竪圧延機ロール径:De、水平圧延機ロール径:Dh、粗バーの温度:Tである。
【0030】
竪圧延機のロール径が板幅に影響する理由は、圧下中の竪圧延機のロールと粗バーとの接触長さ(以下、接触弧長と呼ぶ)がドッグボーンの形状に影響するためである。即ちロール径が大きいほど接触弧長は大きくなるが、接触弧長が大きいほどドッグボーンのうち最も板厚の厚い部分は板幅方向の中央部に寄り、その高さも小さくなる。またドッグボーンの存在する範囲も広くなる。そしてこのようなドッグボーンが形成された粗バーを水平圧延した場合、水平圧延時の幅広がりは比較的小さなものとなる。
【0031】
これまで板幅圧下とそれに続く水平圧延を行った後の板幅の予測方法においては、板幅圧下前の粗バーの板幅変動形状や、板幅圧下の過程については考慮されていなかった。
【0032】
本発明者らは板幅変形とこれらの関係について鋭意研究した結果、板幅圧下前の粗バーの板幅変動形状を表わす長手方向の板幅変化率、板幅圧下の過程を表わす長手方向の粗バーの搬送速度に対する竪圧延機の圧下速度(以下、「圧下速度比」という)が水平圧延後の板幅に影響することを見出した。以下にその詳細を示す。
【0033】
図3は、板幅変動及び圧下パターンによる接触弧長を示す模式図である。図3の(A)は、板幅変化率および圧下速度比がゼロの場合の接触弧長を示している。図3の(B)に示すように板幅が長手方向後端部に向かって増加し(板幅変化率が正とする)かつ竪圧延機のロール開度が減少する(圧下速度が正とする)場合、接触弧長は大きくなる。逆に図3の(C)のように板幅が長手方向後端部に向かって増加し、竪圧延機のロール開度が増加する場合では接触弧長は小さくなる。従って前述したように、接触弧長がドッグボーンの形状に影響するため、長手方向の板幅変化率および圧下速度比が水平圧延後の板幅に影響することが結論付けられた。
【0034】
そこで発明者らは、この理論を実証するための実験を行った。実験には竪圧延モデル試験機と水平圧延モデル試験機を用いて、板厚11mm、板幅140〜160mm、長さ400mmの純鉛を竪圧延モデル試験機により0.1〜10mmの板幅圧下を行い、水平圧延モデル試験機により圧下量3.5mmの水平圧延を行った。その際、板幅変化率および圧下速度比を種々変更して実験を行うことにより、板幅圧下量と幅戻り量の関係に及ぼす板幅変化率と圧下速度比の影響を調査した。
【0035】
図4は、実験から得た板幅圧下量と幅戻り量の関係を示す図である。なお幅戻り量とは水平圧延後の板幅から板幅圧下後の板幅を減じたものである。
【0036】
水平圧延後の板幅は板幅圧下前の板幅、板幅圧下量および幅戻り量とから式(1)で表される関係にある。
Wh=W0−△W+Wr ・・・(1)
ここで、Wh:水平圧延後の板幅、W0:板幅圧下前の板幅
ΔW:板幅圧下量、Wr:幅戻り量
尚、前述の水平圧延後の板幅に影響する因子および板幅変化率および圧下速度比は上式のWrの項に関するものである。
【0037】
図4に示す実験結果より、幅戻り量に板幅変化率および圧下速度比が影響することは明白である。したがって、水平圧延後の板幅を予測するためには板幅変化率および圧下速度比を考慮する必要があることが実証された。
【0038】
本発明者らはさらに幅戻り量に及ぼす竪圧延前の板幅、竪圧延前の板厚、竪圧延機のロール径、水平圧延機のロール径および粗バー温度の影響について詳細に研究を行った結果、式(2)で表される水平圧延後の板幅予測式を完成させた。
【0039】

Figure 2004243384
ここで、W0:板幅圧下前の板幅、Wh:水平圧延後の板幅、
W0min:板幅圧下前の最小板幅
ΔWmin:最小板幅圧下量、t0:板幅圧下前の板厚、
th:水平圧延後の板厚、De:竪圧延機ロール径、
Dh:水平圧延機ロール径、T:粗バー温度、
S:板幅変化率、V:圧下速度比、x:粗バーの長手方向位置
式(2)より板幅変化率および圧下速度比を考慮した水平圧延後の板幅が予測可能である。ここで、式(2)において、従来の板幅予測式と異なる諸量を用いている点について説明する。
【0040】
板幅圧下前の板幅をW0、板幅圧下後の板幅をW1とすると、板幅変動がない場合は、W0、W1は長手方向によらず一定であるが、板幅変動が存在する場合には、粗バーの長手方向位置をxとすると、W0、W1はxの関数として表わされる。そこで、W0、W1を板幅変化率S、圧下速度比V、板幅圧下前の最小板幅W0min、最小板幅圧下量をΔWminで表わす。
【0041】
図5は、各諸量の関係を示す図である。
W0、W1は式(3)、(4)で表わされる。
【0042】
W0=Sx + W0min …(3)
W1=Vx + (W0min−ΔWmin) …(4)
ここで、板幅変化率S、圧下速度比Vは図5に示すように形状の変化をxの一次関数として近似している。
【0043】
すると、板幅圧下量ΔWは式(5)で表わされる。
ΔW=W0−W1=(S−V)x +ΔWmin …(5)
従来は板幅に影響する因子として板幅圧下量ΔWが用いられていたが、本発明においては以上の考察から導かれる式(5)に基き、目標板幅を調整することとした。
【0044】
式(2)に基づいて、板幅変動を修正して長手方向の位置xによらず水平圧延後に一定の板幅Whを得るための最小板幅圧下量△Wminと竪圧延機の圧下速度比Vを求める方法について説明する。
【0045】
図4に示すように、幅戻り量Wrは板幅圧下量ΔWに比例し、式(6)で表わされる。
Wr =aΔW +b …(6)
ここで係数a、bに影響を及ぼす因子は発明者らの研究によれば以下のとおりである。
a:t、W0、De、T、S、V
b:t、Δt、W1、De、T、S、V
式(5)と式(6)を、式(1)に代入すると式(7)を得る。
【0046】
Figure 2004243384
尚、式(7)を変形して得られる式(8)は、上述の式(2)に対応するものである。
【0047】
Figure 2004243384
そこで、式(7)において、水平圧延後の板幅Whが長手方向位置xによらず一定となるためには式(9)、(10)が成立することが条件である。
【0048】
{S−(1−a)(S−V)}= 0 …(9)
Wh−{W0min−(1−a)ΔWmin+b}=0 …(10)
この式(9)、(10)を変形して一般的な関数の形式で表現するとそれぞれ式(11)、(12)を得る。
【0049】
Figure 2004243384
このようにして求めた、最小板幅圧下量△Wminによって竪圧延機の開度の最大値が決定され、竪圧延機の圧下速度比Vによって竪圧延機の開度変更方法が決定される。従って、これらによって板幅変動を修正するための竪圧延機の開度設定方法が決定される。
【0050】
次に、板幅変動を修正する場合の手順を説明する。
本板幅変動修正方法では、熱間スラブ、粗バーあるいは板厚圧下プレス後の粗バーの板幅を板幅計測器で計測し、計測した板幅に基づいて長手方向の板幅変化率を算出する。そして、板幅変化率、スラブ寸法、スラブ温度、板厚圧下プレスの圧下条件、板幅圧下後の水平圧延条件に基づいて、竪圧延機のロール開度および板幅圧下速度を決定する。
【0051】
まず板厚圧下プレスにより減厚された粗バーの板幅を、板厚圧下プレスの下流側に配置された板幅計測器により長手方向に連続的に測定する。そして、この測定結果に基づいて、板幅圧下前の板幅W0と板幅変化率Sを算出する。
【0052】
次に板厚圧下プレスの圧下条件から、板厚圧下プレス後すなわち板幅圧下前の板厚t0を得る。また加熱炉でのスラブの加熱条件および板厚圧下プレスの圧下条件等から板厚圧下プレス後の粗バーの温度T、水平圧延後の板厚thを得る。さらに操業データから竪圧延機および水平圧延機のロール径De、Dhを得る。
【0053】
そして、これらの情報と式(11)より板幅変動を修正するための圧下速度比Vを計算し、圧下速度比Vと粗バーの搬送速度から竪圧延機の竪圧延機の圧下速度を計算する。また式(11)で計算された圧下速度比Vと式(11)の計算に使用した情報から式(12)により最小板幅圧下量△Wminを計算する。
【0054】
以上の手順により、最小板幅圧下量から竪圧延機の初期開度が計算でき、また圧下速度比から竪圧延機の開閉圧下速度を決定することができる。即ち、圧下速度比Vにより振幅変動を修正し、ΔWminにより目標幅に合せ込み板幅の絶対値を決定することができる。
【0055】
続いて、板幅予測式をもとに板厚圧下プレス後の板幅変動を修正する実験を行った。板幅変動量約20mm、板幅変動長さ約300mmの板幅変動がある板厚90mmの熱間鋼を板幅予測式に基づいて水平圧延によって板幅変動が修正されるように最大圧下量40mmの竪圧延を行い、圧下量30mmの水平圧延を行った。
【0056】
図6は、粗バーの長手方向のある一部分における竪圧延前、竪圧延後、水平圧延後の長手方向板幅プロファイルを示す図である。水平圧延後は板厚減少分長さが長くなるが、図6では比較しやすいように板厚減少分を計算で割り戻し、竪圧延前後と並べて表示した。竪圧延前に約20mmあった板幅変動は水平圧延後1mm以下に修正され、この予測式により歩留まりが大きく向上することが確認された。
【0057】
本実施の形態では、板幅圧下条件と水平圧延条件から水平圧延後の板幅を予測し、この予測に基づいて水平圧延後に板幅変動が修正されるように板幅変動に応じて竪圧延機のロール開度を変更している。
【0058】
修正すべき板幅変動形状を予め板幅計測器により測定しているため、プレスサイクルやプレスピッチなどの板厚圧下プレスの圧下条件の変化、スラブあるいは板厚圧下プレス後の粗バーの温度変化によって長手方向の板幅変動の周期が変化した場合であっても、高い精度で板幅変動を修正することができる。
【0059】
尚、本実施の形態では、粗バーの板幅変動を修正するための竪圧延機のロール開度の設定方法について述べたが、本発明はこの実施形態に限定されず、熱間スラブの長手方向の板幅変動を修正する場合においても同様に適用することができる。
【0060】
続いて、本発明の板幅変動修正方法の実施例について説明する。
図7は、本発明の板幅変動修正方法が適用される設備構成を示す図である。
【0061】
連続鋳造設備1あるいは加熱炉2から搬送された板厚300mm以下、板幅500〜2500mmのスラブ11は板幅圧下プレス3により板幅方向に圧下調整された後、板厚圧下プレス4により板厚方向に圧下されて板厚100mm以下の粗バー12に成形される。
【0062】
粗バー12の幅端部には波形の板幅変動が生ずるが、この板幅変動は板厚圧下プレスの下流側に配置された板幅計測器5により計測される。板幅計測器5の計測(サンプリング)周期は、例えば板幅変動長さが500mm、粗バーの搬送速度を30m/minとすると最低でも0、5秒以下、好ましくは0.1秒以下である。計測された板幅情報は制御装置6に送られ板幅変化率が計算され、さらに上述した板幅予測式にもとづき竪圧延機7の初期開度および開閉圧下速度が設定される。
【0063】
竪圧延機7により板幅圧下された粗バー12はその後水平圧延機8によって板厚80mm以下に減厚され、さらに次工程で種々の加工および冷却が行われ熱間鋼帯として巻き取られる。
【0064】
なお図7では板厚圧下プレス4の前の板幅調整手段を板幅圧下プレス3としたが、この実施形態に限定されずVSB(バーティカルスケールブレーカー)等の竪圧延機を用いて構成しても良い。
【0065】
なお水平圧延機8の下流側に板幅計測器5を設置し、水平圧延後の長手方向の板幅を制御装置6にフィードバックし、竪圧延機7のロール開度および圧下速度を修正することにより、さらに板幅精度を向上させることができる。
【0066】
また板厚圧下プレス4の下流側に配置され、粗バーの幅圧下を行う竪圧延機7のロールにカリバーとよばれる孔型を有するロールを用いても良い。
【0067】
本実施の形態によれば熱間スラブや粗バーの板幅変動の修正が効果的に行え、熱間鋼帯の製造を歩留り良く行うことが可能になる。
【0068】
【発明の効果】
以上説明したように、本発明によれば鋼帯の長手方向の板幅変動や板厚変動が高い精度で修正された熱間鋼帯を製造することができる。
【図面の簡単な説明】
【図1】板幅変動修正方法が適用される粗バーの板幅変動を示す図。
【図2】板幅変化率の定義を示す図。
【図3】板幅変動及び圧下パターンによる接触弧長を示す模式図。
【図4】板幅圧下量と幅戻り量の関係を示す図。
【図5】各諸量の関係を示す図。
【図6】本発明に係る板幅予測式を用いて板幅変動を修正した結果を示す図。
【図7】本発明の板幅変動修正方法が適用される設備構成を示す図。
【符号の説明】
1…連続鋳造設備
2…加熱炉
3…板幅圧下プレス
4…板厚圧下プレス
5…板幅計測器
6…制御装置
7…竪圧延機
8…水平圧延機
11…スラブ
12…粗バー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a hot steel strip, and more particularly, to a method of manufacturing a hot steel strip with a corrected width variation.
[0002]
[Prior art]
2. Description of the Related Art In recent years, a hot strip manufacturing technology has been devised in which a strip thickness reduction press is arranged in a row of hot steel strip manufacturing equipment, and a slab is reduced in pressure in the strip thickness direction to manufacture a hot strip.
[0003]
In the thickness reduction press used in the present technology, a large reduction amount can be obtained in one pass as compared with a conventional roll rolling mill, and one press has a capability of a plurality of rough rolling mills. For this reason, there is an advantage that the equipment cost can be reduced, and the equipment row is shortened to apply a large pressure reduction, so that the temperature drop of the slab, the rough bar and the hot steel strip is small.
[0004]
In addition, the die used in the thickness reduction press repeats contact and separation with the slab, so the contact time with the slab is short, and the roll is not exposed to high temperature and high load for as long as a roll, so the die has less fatigue. There are benefits too.
[0005]
However, in the thickness reduction press, the reduction of the slab is not continuous as in a rolling mill, but is intermittent. Therefore, depending on the press cycle, the “plate width variation length” as shown in FIG. A vertically symmetrical sheet width fluctuation of the width fluctuation amount of 1 to 25 mm with respect to the sheet center line in the rolling direction as a symmetric axis is generated. The “plate width variation length” refers to one unit length of the plate width variation that periodically fluctuates in the longitudinal direction.
[0006]
If the strip width is not constant in the longitudinal direction, the strip width end is usually trimmed in a later step to obtain a steel strip having a constant strip width. However, in this trimming, trimming is performed in the longitudinal direction in accordance with the minimum plate width. Therefore, when the plate width variation, which is the amount of change in the plate width, is large, the trim margin becomes large and the yield decreases. Therefore, it is desired to make a correction so as to minimize the amount of the periodic plate width fluctuation in the longitudinal direction.
[0007]
Conventionally, with respect to such a plate width fluctuation in the longitudinal direction, in the disclosed technology, a vertical rolling mill and a horizontal rolling mill are provided on the downstream side of the plate thickness reduction press to correct the plate width fluctuation. (For example, see Patent Document 1).
[0008]
In addition, there is also a method in which a width reduction press and a horizontal rolling mill are provided downstream of the thickness reduction press to correct variations in width (for example, see Patent Document 2).
[0009]
The method of correcting the plate width fluctuation shown in Patent Document 2 will be described below. First, the opening of the sheet width reduction press is set so that the sheet width after horizontal rolling becomes a desired sheet width (step 1). However, even if the sheet width reduction press is performed with the opening set to a desired sheet width, the desired sheet width cannot be obtained because of the width return that occurs during horizontal rolling, which is a subsequent step. The width return is affected by the material, dimensions, and temperature of the slab, the amount of reduction in the thickness reduction press, the feed speed of the slab, and the target width of the slab. Conditions that affect this width return are referred to as initial conditions.
[0010]
The controller calculates the opening degree of the plate width reduction press from these input initial conditions (step 2). Then, the opening degree is instructed to the plate width reduction press (step 3).
[0011]
The sheet width reduction press performs the sheet width reduction at this opening, and thereafter, rolling is performed by a horizontal rolling mill. The width of the slab rolled by the horizontal rolling mill is measured by a strip width measuring instrument installed downstream of the horizontal rolling mill. The board width measurement value is sent to the control device (step 4). The controller calculates the difference between the desired plate width and the measured plate width (step 5), and calculates the correct opening of the plate width reduction press from this difference and the initial conditions (step 6). By repeating steps 3 to 6, a desired target plate width is obtained.
[0012]
In addition to this, a method of correcting a sheet width variation which cancels a sheet width variation caused by a thickness reduction by a thickness reduction press by performing a preforming in which a slab is subjected to a sheet width variation by a vertical rolling mill or a sheet width reduction press in advance. (See, for example, Patent Document 3).
[0013]
[Patent Document 1]
JP-A-61-235002
[Patent Document 2]
JP 2001-9502 A
[Patent Document 3]
JP 2000-254708 A
[Problems to be solved by the invention]
By the way, when correcting the fluctuation of the strip width in the longitudinal direction, if the rolling is performed while the roll opening of the vertical rolling mill is constant, a dog bone is formed at the end of the strip width of the rough bar which is the steel strip after the vertical rolling. A locally thickened portion called a plate thickness is formed. The reduction amount of the wide part is large and the reduction amount of the narrow part is small, but the larger the reduction amount of the width is, the larger the dog bone becomes. The dogbone in the wide part becomes large, and conversely, the dogbone in the narrow part becomes small. As a result, thickness variations occur in both the width direction and the longitudinal direction.
[0017]
Horizontal rolling must be performed to flatten the dog bone and produce a hot steel strip with no thickness variation.However, if horizontal rolling is performed on a portion where a large dog bone is present, the width of the strip after horizontal rolling will return. Conversely, when horizontal rolling is performed in a portion where a small dog bone is present, the amount of return of the sheet width after horizontal rolling becomes small, and a sheet width fluctuation occurs. That is, even if the width reduction press and the horizontal rolling mill are provided on the downstream side of the thickness reduction press, if the horizontal rolling is performed while the roll opening degree of the vertical rolling mill is kept constant, the width variation of the width may occur. Is not modified.
[0018]
However, Patent Document 1 does not clearly describe a method of measuring a sheet width variation generated by a sheet thickness reduction press or a method of setting a roll opening of a vertical rolling mill. For this reason, it is possible that the sheet width reduction is performed by setting the roll opening of the vertical rolling mill so as to promote the sheet width fluctuation, and conversely, the sheet width fluctuation may be increased.
[0019]
Further, Patent Document 2 does not clarify how to change the opening degree of the die of the plate width reduction press with respect to the plate width fluctuation that periodically exists in the longitudinal direction. Further, since a method of obtaining a desired plate width by repeating Steps 3 to 6 is employed, a target plate width may not be obtained for a predetermined length from the leading end of the coarse bar.
[0020]
In the technology described in Patent Document 3, the sheet width is reduced before the sheet thickness reduction press. Here, when examining this preforming, assuming that the slab having a thickness of 250 mm is reduced to 90 mm by a thickness reduction press and the length of the width variation of the slab is 200 mm, the length of the width variation to be preformed is: 72 mm. If the rolling width is reduced by a rolling mill, if the rolling width is reduced to 20 mm and the width of the rolling width is changed to 72 mm, the roll radius used for rolling is reduced to 70 mm or less from a geometrical relationship. Has a very small roll diameter. When a roll having a small diameter is used, high-precision rolling cannot be performed because the roll is bent by the rolling load. For this reason, a backup roll is required to reinforce the roll that performs the reduction, which causes a problem that the rolling equipment becomes large and the equipment cost increases.
[0021]
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a method for manufacturing a hot steel strip in which a width variation and a thickness variation in a longitudinal direction of a steel strip are corrected with high accuracy. I do.
[0022]
[Means for Solving the Problems]
The present invention for solving the above problems, the hot slab or coarse bar, by setting the roll opening degree of the vertical rolling mill based on the sheet width change rate which is the sheet width change per unit length in the longitudinal direction. This is a method for producing a hot steel strip in which the sheet width is reduced.
[0023]
Further, the present invention provides the method for manufacturing a hot steel strip according to the above-described invention, wherein the hot slab or the rough bar has a sheet width change rate, which is a sheet width change per unit length in a longitudinal direction, and a sheet width reduction. A method of manufacturing a hot steel strip in which a roll opening of the vertical rolling mill is set based on a rolling speed ratio which is a ratio of a rolling speed of the vertical rolling mill to a conveying speed in a process to reduce a sheet width. .
[0024]
Further, the present invention provides the method for manufacturing a hot steel strip according to the above-described invention, wherein the sheet width of the hot slab or the rough bar is measured in advance by a sheet width measuring unit, and the sheet width change rate is calculated from the measured sheet width. Is a method for manufacturing a hot steel strip.
[0025]
Further, the present invention is the method for producing a hot steel strip according to the above-described invention, wherein the coarse bar is a coarse bar after a thickness reduction by a group of rough rolling mills.
[0026]
Further, the present invention is the method for manufacturing a hot steel strip according to the above-described invention, wherein the rough bar is a rough bar after reducing the thickness by a thickness reduction press.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
A description will be given of a method of correcting a width variation of a sheet used in the method of manufacturing a hot steel strip according to the present invention.
FIG. 1 is a diagram showing a plate width variation of a rough bar to which the plate width variation correction method is applied. Assumed plate width fluctuations are a plate width fluctuation length of 100 mm to 20 m and a plate width fluctuation amount of 1 to 25 mm, and the coarse bar has a symmetrical shape with respect to the center line. It should be noted that the plate width change rate is defined as a change in the plate width per unit length in the longitudinal direction as shown in FIG.
[0028]
As described above, in order to correct the variation in the sheet width, it is necessary to predict the sheet width after the horizontal rolling from the sheet width reduction conditions and the horizontal rolling conditions. Then, based on this prediction method, it is possible to change the roll opening of the vertical rolling mill so that the sheet width fluctuation is corrected after horizontal rolling.
[0029]
The following factors are known as factors affecting the sheet width after the sheet width reduction and subsequent horizontal rolling are performed. That is, sheet thickness: t, sheet width: W, sheet width reduction: ΔW, sheet thickness reduction: Δt, vertical rolling mill roll diameter: De, horizontal rolling mill roll diameter: Dh, coarse bar temperature: T It is.
[0030]
The reason why the roll diameter of the vertical rolling mill affects the sheet width is that the length of contact between the roll of the vertical rolling mill and the rough bar during rolling (hereinafter referred to as the contact arc length) affects the shape of the dog bone. is there. That is, the larger the roll diameter is, the larger the contact arc length is. However, as the contact arc length is larger, the thickest part of the dog bone is closer to the center in the plate width direction and the height is also smaller. In addition, the range in which the dog bone exists is also widened. When the rough bar on which such a dog bone is formed is horizontally rolled, the width spread during the horizontal rolling is relatively small.
[0031]
Until now, in the method of predicting the sheet width after performing the sheet width reduction and the subsequent horizontal rolling, the sheet width fluctuation shape of the rough bar before the sheet width reduction and the process of the sheet width reduction have not been considered.
[0032]
The inventors of the present invention have conducted extensive studies on the deformation of the sheet width and their relationship, and as a result, the rate of change in the sheet width in the longitudinal direction representing the sheet width fluctuation shape of the rough bar before the sheet width reduction, and the longitudinal direction representing the process of the sheet width reduction. It has been found that the rolling speed of the vertical rolling mill with respect to the transport speed of the rough bar (hereinafter, referred to as “rolling speed ratio”) affects the width of the sheet after horizontal rolling. The details are shown below.
[0033]
FIG. 3 is a schematic diagram showing a contact arc length based on a plate width variation and a rolling-down pattern. FIG. 3A shows the contact arc length when the plate width change rate and the reduction speed ratio are zero. As shown in FIG. 3 (B), the sheet width increases toward the rear end in the longitudinal direction (the sheet width change rate is assumed to be positive), and the roll opening of the vertical rolling mill decreases (when the rolling speed is positive). In this case, the contact arc length increases. Conversely, as shown in FIG. 3 (C), when the sheet width increases toward the rear end in the longitudinal direction and the roll opening of the vertical rolling mill increases, the contact arc length decreases. Therefore, as described above, it was concluded that since the contact arc length affects the shape of the dog bone, the rate of change in the strip width in the longitudinal direction and the reduction speed ratio affect the strip width after horizontal rolling.
[0034]
Therefore, the inventors conducted experiments to verify this theory. In the experiment, using a vertical rolling model tester and a horizontal rolling model tester, pure lead having a thickness of 11 mm, a width of 140 to 160 mm, and a length of 400 mm was reduced by 0.1 to 10 mm with a vertical rolling model tester. And horizontal rolling was performed with a rolling reduction of 3.5 mm using a horizontal rolling model tester. At that time, the effect of the sheet width change rate and the reduction speed ratio on the relationship between the sheet width reduction amount and the width return amount was investigated by conducting experiments with variously changing the sheet width change rate and the reduction speed ratio.
[0035]
FIG. 4 is a diagram showing the relationship between the sheet width reduction amount and the width return amount obtained from the experiment. Note that the width return amount is a value obtained by subtracting the sheet width after the sheet width reduction from the sheet width after the horizontal rolling.
[0036]
The plate width after the horizontal rolling is in a relationship represented by the formula (1) from the plate width before the plate width reduction, the plate width reduction amount, and the width return amount.
Wh = W0− △ W + Wr (1)
Here, Wh: strip width after horizontal rolling, W0: strip width before strip width reduction ΔW: strip width reduction amount, Wr: width return amount Note that the above-described factors and strip width affecting strip width after horizontal rolling. The rate of change and the reduction speed ratio relate to the Wr term in the above equation.
[0037]
It is clear from the experimental results shown in FIG. 4 that the width change rate and the reduction speed ratio influence the width return amount. Therefore, it has been proved that it is necessary to consider the sheet width change rate and the rolling reduction ratio in order to predict the sheet width after horizontal rolling.
[0038]
The present inventors further studied in detail the effects of the sheet width before vertical rolling, the sheet thickness before vertical rolling, the roll diameter of the vertical rolling mill, the roll diameter of the horizontal rolling mill, and the coarse bar temperature on the width return amount. As a result, the plate width prediction formula after horizontal rolling represented by the formula (2) was completed.
[0039]
Figure 2004243384
Here, W0: the sheet width before the sheet width reduction, Wh: the sheet width after the horizontal rolling,
W0min: minimum width before reduction of width ΔWmin: minimum reduction amount of width, t0: thickness before reduction of width,
th: thickness after horizontal rolling, De: vertical rolling mill roll diameter,
Dh: roll diameter of horizontal rolling mill, T: coarse bar temperature,
S: Strip width change rate, V: Rolling speed ratio, x: Coarse bar longitudinal position position From formula (2), the strip width after horizontal rolling in consideration of the strip width change rate and the rolling speed ratio can be predicted. Here, a description will be given of the fact that various quantities different from those of the conventional sheet width prediction equation are used in equation (2).
[0040]
Assuming that the sheet width before the sheet width reduction is W0 and the sheet width after the sheet width reduction is W1, if there is no sheet width fluctuation, W0 and W1 are constant regardless of the longitudinal direction, but there is sheet width fluctuation. In this case, if the longitudinal position of the coarse bar is x, W0 and W1 are represented as functions of x. Therefore, W0 and W1 are represented by the sheet width change rate S, the reduction speed ratio V, the minimum sheet width W0min before the sheet width reduction, and the minimum sheet width reduction amount by ΔWmin.
[0041]
FIG. 5 is a diagram showing the relationship between various quantities.
W0 and W1 are represented by equations (3) and (4).
[0042]
W0 = Sx + W0min (3)
W1 = Vx + (W0min−ΔWmin) (4)
Here, the plate width change rate S and the reduction speed ratio V approximate the shape change as a linear function of x as shown in FIG.
[0043]
Then, the sheet width reduction amount ΔW is expressed by Expression (5).
ΔW = W0−W1 = (S−V) x + ΔWmin (5)
Conventionally, the sheet width reduction amount ΔW has been used as a factor affecting the sheet width. However, in the present invention, the target sheet width is adjusted based on Expression (5) derived from the above considerations.
[0044]
Based on equation (2), the minimum sheet width reduction amount △ Wmin and the reduction speed ratio of the vertical rolling mill for correcting the sheet width fluctuation and obtaining a constant sheet width Wh after horizontal rolling regardless of the position x in the longitudinal direction. A method for obtaining V will be described.
[0045]
As shown in FIG. 4, the width return amount Wr is proportional to the plate width reduction amount ΔW and is expressed by equation (6).
Wr = aΔW + b (6)
Here, the factors affecting the coefficients a and b are as follows according to the study of the inventors.
a: t, W0, De, T, S, V
b: t, Δt, W1, De, T, S, V
By substituting Equations (5) and (6) into Equation (1), Equation (7) is obtained.
[0046]
Figure 2004243384
Equation (8) obtained by modifying equation (7) corresponds to equation (2) described above.
[0047]
Figure 2004243384
Therefore, in the equation (7), it is a condition that the equations (9) and (10) are satisfied in order for the plate width Wh after the horizontal rolling to be constant regardless of the longitudinal position x.
[0048]
{S- (1-a) (SV)} = 0 (9)
Wh− {W0min− (1−a) ΔWmin + b} = 0 (10)
When Expressions (9) and (10) are modified and expressed in the form of a general function, Expressions (11) and (12) are obtained, respectively.
[0049]
Figure 2004243384
The maximum value of the opening of the vertical rolling mill is determined by the minimum sheet width reduction amount △ Wmin thus determined, and the method of changing the opening of the vertical rolling mill is determined by the rolling speed ratio V of the vertical rolling mill. Accordingly, a method for setting the opening of the vertical rolling mill for correcting the variation in the sheet width is determined based on these.
[0050]
Next, a description will be given of a procedure for correcting a plate width variation.
In this method, the width of a hot slab, a rough bar or a rough bar after a thickness reduction press is measured with a width measuring instrument, and the longitudinal width change rate is determined based on the measured width. calculate. Then, the roll opening degree and the sheet width reduction speed of the vertical rolling mill are determined based on the sheet width change rate, the slab size, the slab temperature, the rolling conditions of the sheet thickness reduction press, and the horizontal rolling conditions after the reduction of the sheet width.
[0051]
First, the width of the coarse bar reduced in thickness by the thickness reduction press is continuously measured in the longitudinal direction by a width measuring instrument arranged downstream of the thickness reduction press. Then, based on the measurement results, the sheet width W0 and the sheet width change rate S before the sheet width reduction are calculated.
[0052]
Next, the sheet thickness t0 after the sheet thickness reduction press, that is, before the sheet width reduction is obtained from the reduction conditions of the sheet thickness reduction press. Further, the temperature T of the rough bar after the thickness reduction press and the thickness th after the horizontal rolling are obtained from the heating conditions of the slab in the heating furnace and the reduction conditions of the thickness reduction press. Further, roll diameters De and Dh of the vertical rolling mill and the horizontal rolling mill are obtained from the operation data.
[0053]
Then, the reduction speed ratio V for correcting the sheet width variation is calculated from the information and the equation (11), and the reduction speed of the vertical rolling mill of the vertical rolling mill is calculated from the reduction speed ratio V and the conveying speed of the rough bar. I do. Further, the minimum sheet width reduction amount で Wmin is calculated by the equation (12) from the reduction speed ratio V calculated by the equation (11) and the information used in the calculation of the equation (11).
[0054]
By the above procedure, the initial opening of the vertical rolling mill can be calculated from the minimum sheet width reduction amount, and the opening / closing reduction speed of the vertical rolling mill can be determined from the reduction speed ratio. That is, the amplitude fluctuation can be corrected by the reduction speed ratio V, and the absolute value of the plate width can be determined to match the target width by ΔWmin.
[0055]
Subsequently, an experiment was performed to correct the sheet width fluctuation after the sheet thickness reduction press based on the sheet width prediction formula. The maximum rolling amount of hot steel with a thickness of 90 mm, which has a width variation of about 20 mm and a width variation of about 300 mm, is corrected by horizontal rolling of a 90 mm thick steel sheet based on the strip width prediction formula. A vertical rolling of 40 mm was performed, and a horizontal rolling of a rolling reduction of 30 mm was performed.
[0056]
FIG. 6 is a view showing a longitudinal plate width profile before vertical rolling, after vertical rolling, and after horizontal rolling in a part of the coarse bar in the longitudinal direction. After the horizontal rolling, the length of the sheet thickness decrease becomes longer, but in FIG. 6, the sheet thickness decrease is divided back by calculation and displayed side by side before and after the vertical rolling for easy comparison. The fluctuation of the sheet width, which was about 20 mm before the vertical rolling, was corrected to 1 mm or less after the horizontal rolling, and it was confirmed that the yield was greatly improved by this prediction formula.
[0057]
In the present embodiment, the strip width after horizontal rolling is predicted from the strip width reduction conditions and the horizontal rolling conditions, and the vertical rolling is performed according to the strip width variation so that the strip width variation is corrected after the horizontal rolling based on the prediction. The roll opening of the machine has been changed.
[0058]
Since the width variation shape to be corrected is measured in advance by a width measurement device, changes in the rolling conditions of the thickness reduction press, such as the press cycle and press pitch, and the temperature change of the slab or the coarse bar after the thickness reduction press Thus, even if the period of the plate width fluctuation in the longitudinal direction changes, the plate width fluctuation can be corrected with high accuracy.
[0059]
In this embodiment, the method of setting the roll opening of the vertical rolling mill to correct the variation in the width of the coarse bar has been described. However, the present invention is not limited to this embodiment, and the length of the hot slab may be reduced. The same can be applied to the case of correcting the plate width variation in the direction.
[0060]
Next, an embodiment of the method of correcting a width variation of the present invention will be described.
FIG. 7 is a diagram showing a facility configuration to which the method for correcting a plate width variation according to the present invention is applied.
[0061]
The slab 11 having a thickness of 300 mm or less and a width of 500 to 2500 mm conveyed from the continuous casting equipment 1 or the heating furnace 2 is adjusted in the sheet width direction by the sheet width reduction press 3, and then the thickness is reduced by the thickness reduction press 4. It is pressed down in the direction and is formed into a rough bar 12 having a plate thickness of 100 mm or less.
[0062]
A corrugated plate width variation occurs at the width end of the rough bar 12, and the plate width variation is measured by the plate width measuring device 5 arranged downstream of the plate thickness reduction press. The measurement (sampling) cycle of the sheet width measuring device 5 is, for example, at least 0, 5 seconds or less, and preferably 0.1 seconds or less when the sheet width fluctuation length is 500 mm and the conveying speed of the coarse bar is 30 m / min. . The measured strip width information is sent to the controller 6 to calculate the strip width change rate, and based on the above-described strip width prediction formula, the initial opening degree and the opening / closing reduction speed of the vertical rolling mill 7 are set.
[0063]
The coarse bar 12 whose width has been reduced by the vertical rolling mill 7 is then reduced to a thickness of 80 mm or less by the horizontal rolling mill 8, and further processed and cooled in the next step to be wound as a hot steel strip.
[0064]
In FIG. 7, the width adjusting means before the thickness reduction press 4 is the width reduction press 3. However, the invention is not limited to this embodiment, and is configured using a vertical rolling mill such as a VSB (vertical scale breaker). Is also good.
[0065]
It is to be noted that the strip width measuring device 5 is installed downstream of the horizontal rolling mill 8 and the strip width in the longitudinal direction after the horizontal rolling is fed back to the control device 6 to correct the roll opening and the rolling speed of the vertical rolling mill 7. Thereby, the plate width accuracy can be further improved.
[0066]
Further, a roll having a hole type called a caliber may be used as a roll of the vertical rolling mill 7 which is disposed on the downstream side of the thickness reduction press 4 and reduces the width of the coarse bar.
[0067]
According to the present embodiment, it is possible to effectively correct the variation of the plate width of the hot slab and the rough bar, and it is possible to manufacture the hot steel strip with a high yield.
[0068]
【The invention's effect】
As described above, according to the present invention, it is possible to manufacture a hot steel strip in which the variation in the width and thickness of the steel strip in the longitudinal direction is corrected with high accuracy.
[Brief description of the drawings]
FIG. 1 is a diagram showing a plate width variation of a rough bar to which a plate width variation correction method is applied.
FIG. 2 is a diagram showing a definition of a sheet width change rate.
FIG. 3 is a schematic diagram showing a contact arc length based on a plate width variation and a rolling-down pattern.
FIG. 4 is a diagram showing a relationship between a sheet width reduction amount and a width return amount.
FIG. 5 is a diagram showing the relationship between various quantities.
FIG. 6 is a view showing a result of correcting a sheet width fluctuation using the sheet width prediction formula according to the present invention.
FIG. 7 is a diagram showing an equipment configuration to which a sheet width variation correction method according to the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Continuous casting equipment 2 ... Heating furnace 3 ... Strip width reduction press 4 ... Strip thickness reduction press 5 ... Strip width measuring device 6 ... Control device 7 ... Vertical rolling mill 8 ... Horizontal rolling mill 11 ... Slab 12 ... Coarse bar

Claims (5)

連続鋳造設備によって鋳造した熱間スラブ、あるいはスラブを減厚した後の粗バーを竪圧延機で板幅方向に圧下し、続いて水平圧延機で板厚方向に圧下する熱間鋼帯の製造方法において、
前記熱間スラブあるいは前記粗バーの、長手方向の単位長さあたりの板幅変化である板幅変化率に基づいて前記竪圧延機のロール開度を設定して板幅圧下を行うこと
を特徴とする熱間鋼帯の製造方法。
Production of hot steel slabs cast by continuous casting equipment, or hot strips in which the rough bars after the slabs are reduced in thickness are reduced in the sheet width direction by a vertical rolling mill and then reduced in the sheet thickness direction by a horizontal rolling mill. In the method,
The hot slab or the coarse bar is characterized in that the width of the vertical rolling mill is set based on a plate width change rate, which is a plate width change per unit length in a longitudinal direction, and the plate width is reduced. Method of manufacturing hot steel strip.
連続鋳造設備によって鋳造した熱間スラブ、あるいはスラブを減厚した後の粗バーを竪圧延機で板幅方向に圧下し、続いて水平圧延機で板厚方向に圧下する熱間鋼帯の製造方法において、
前記熱間スラブあるいは前記粗バーの、長手方向の単位長さあたりの板幅変化である板幅変化率と、板幅圧下過程での搬送速度に対する前記竪圧延機の圧下速度の比である圧下速度比とに基づいて前記竪圧延機のロール開度を設定して板幅圧下を行うこと
を特徴とする熱間鋼帯の製造方法。
Production of hot steel slabs cast by continuous casting equipment, or hot strips in which the rough bars after the slabs are reduced in thickness are reduced in the sheet width direction by a vertical rolling mill and then reduced in the sheet thickness direction by a horizontal rolling mill. In the method,
The hot slab or the rough bar, a sheet width change rate which is a sheet width change per unit length in a longitudinal direction, and a reduction which is a ratio of a reduction speed of the vertical rolling mill to a conveyance speed in a width reduction process. A method for producing a hot steel strip, comprising setting a roll opening of the vertical rolling mill based on a speed ratio and reducing a sheet width.
前記熱間スラブあるいは前記粗バーの板幅を予め板幅計測手段により測定し、
この測定された板幅から前記板幅変化率を算出すること
を特徴とする請求項1または2に記載の熱間鋼帯の製造方法。
The plate width of the hot slab or the coarse bar is measured in advance by a plate width measuring unit,
The method for manufacturing a hot steel strip according to claim 1, wherein the plate width change rate is calculated from the measured plate width.
前記粗バーは、粗圧延機群による減厚を行った後の粗バーである請求項1乃至3の内いずれか1の請求項に記載の熱間鋼帯の製造方法。The method for manufacturing a hot steel strip according to any one of claims 1 to 3, wherein the rough bar is a rough bar after a thickness reduction by a rough rolling mill group. 前記粗バーは、板厚圧下プレスによる減厚を行った後の粗バーである請求項1乃至3の内いずれか1の請求項に記載の熱間鋼帯の製造方法。The method for manufacturing a hot steel strip according to any one of claims 1 to 3, wherein the rough bar is a rough bar that has been reduced in thickness by a thickness reduction press.
JP2003036814A 2003-02-14 2003-02-14 Manufacturing method of hot steel strip Expired - Fee Related JP4275964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003036814A JP4275964B2 (en) 2003-02-14 2003-02-14 Manufacturing method of hot steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003036814A JP4275964B2 (en) 2003-02-14 2003-02-14 Manufacturing method of hot steel strip

Publications (2)

Publication Number Publication Date
JP2004243384A true JP2004243384A (en) 2004-09-02
JP4275964B2 JP4275964B2 (en) 2009-06-10

Family

ID=33021804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003036814A Expired - Fee Related JP4275964B2 (en) 2003-02-14 2003-02-14 Manufacturing method of hot steel strip

Country Status (1)

Country Link
JP (1) JP4275964B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024417A (en) * 2013-07-25 2015-02-05 Jfeスチール株式会社 Plate width control method and plate width control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024417A (en) * 2013-07-25 2015-02-05 Jfeスチール株式会社 Plate width control method and plate width control device

Also Published As

Publication number Publication date
JP4275964B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP2008511445A (en) Metal strip straightening method and straightening machine
JP2016078057A (en) Slab camber suppression method, camber suppression device, and slab guiding device
JPH05154524A (en) Method and device for narrowing allowable tolerance regarding shaping and dimensional stability of product rolled into line of steel wires and/or rods
JP2004243384A (en) Method of manufacturing hot steel strip
JP6569691B2 (en) Manufacturing method of unequal side unequal thickness angle steel
JP6394625B2 (en) Width reduction device and side guide position control method of width reduction device
KR101879085B1 (en) Apparatus and method for endless hot rolling
JPH08267114A (en) Rolling method for controlling edge drop in cold rolling
JP4162622B2 (en) Edge drop control method in cold rolling
JP3719226B2 (en) Method for producing a metal plate with good plate profile
JP3211709B2 (en) Manufacturing method of section steel
JP4227686B2 (en) Edge drop control method during cold rolling
JP2719216B2 (en) Edge drop control method for sheet rolling
JP6743835B2 (en) Method for rolling shaped steel and method for adjusting leveling amount in rolling shaped steel
JP4102267B2 (en) Sheet width control method in cold tandem rolling
JP3211710B2 (en) Manufacturing method of section steel
JP4091739B2 (en) Sheet width control method
JP3321093B2 (en) Width reduction method of taper slab
JP2719215B2 (en) Edge drop control method for sheet rolling
JPH11207405A (en) Method for controlling thickness of steel sheet
JP2002219507A (en) Method for determining dimension controlled target value
JPH0441010A (en) Method for controlling edge drop in cold rolling
JPH11342411A (en) Plate width control for thick steel plate
JP2950182B2 (en) Manufacturing method of tapered steel plate
JP2000301221A (en) Method for controlling edge drop during cold rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees