JP2004243248A - Nitrogen removing device - Google Patents

Nitrogen removing device Download PDF

Info

Publication number
JP2004243248A
JP2004243248A JP2003037169A JP2003037169A JP2004243248A JP 2004243248 A JP2004243248 A JP 2004243248A JP 2003037169 A JP2003037169 A JP 2003037169A JP 2003037169 A JP2003037169 A JP 2003037169A JP 2004243248 A JP2004243248 A JP 2004243248A
Authority
JP
Japan
Prior art keywords
tank
treated
water
nitrification
membrane separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003037169A
Other languages
Japanese (ja)
Inventor
Kiyokazu Takemura
清和 武村
Kazuhiko Noto
一彦 能登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2003037169A priority Critical patent/JP2004243248A/en
Publication of JP2004243248A publication Critical patent/JP2004243248A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitrogen removing device which can stabilize the removal ratio of T-N (total nitrogen) and maintain good filtration characteristics of water to be treated. <P>SOLUTION: In the nitrogen removing device 10 where the water to be treated, together with activated sludge, is circulated between a denitrification tank 12 and a nitrification tank 14 to biologically remove nitrogen components contained in the water to be treated by denitrifying bacteria and nitrifying bacteria contained in the activated sludge, a membrane separation means 22 having an aeration pipe 28 at the bottom is immersed in the nitrification tank 14, and the volume of the denitrification tank 12 is 1.5 to 10 times the total volume of the membrane separation means 22. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は窒素除去装置に係り、特に被処理水に含まれる窒素成分を活性汚泥によって生物学的に除去するようにした窒素除去装置に関する。
【0002】
【従来の技術】
この種の窒素除去装置として脱窒槽と硝化槽との間に被処理水を活性汚泥とともに循環させるようにしたものが周知である。活性汚泥には硝化菌と脱窒菌が含まれており、硝化槽では好気条件下で被処理水中のアンモニア性窒素が硝化菌の働きによって硝化され硝酸性窒素となる。脱窒槽では嫌気条件下で被処理水中の硝酸性窒素が脱窒菌の働きによって脱窒され窒素ガスとなり、この窒素ガスが大気に放出されて窒素除去が行われる。系内に保持された活性汚泥の濃度が高いほど硝化菌と脱窒菌の濃度も相対的に高くなり、窒素除去の処理効率が向上する。
【0003】
このため、近年では硝化槽内に膜分離手段を浸漬し、この膜分離手段によって処理水を活性汚泥から膜分離することが試みられている。すなわち、膜を透過した被処理水を処理水として系外に排出するとともに、膜によって分離された活性汚泥はそのまま脱窒槽と硝化槽との循環系に残存、保持させる。このような方法を採用すると上記循環系における活性汚泥の濃度を10g/L程度にすることができる。この10g/Lという値は沈殿池を有した標準活性汚泥法における活性汚泥の濃度に比べて約5倍であり、硝化脱窒反応の処理速度を飛躍的に向上させることができる。したがってその分、硝化槽や脱窒槽の容量を小さくすることができ、所要敷地面積の省スペース化にも寄与する。
【0004】
このような硝化槽内に膜分離手段を浸漬した窒素除去装置では活性汚泥の濃度が高濃度である分、硝化槽に供給する空気量も多くなる。しかしながら、この種の窒素除去装置では流入する被処理水の性状の変動が大きい。このため、硝化槽での酸素消費量が当初の予定よりも少ない運転条件では、本来、溶存酸素がない嫌気条件であるべき脱窒槽に硝化槽で消費し切れなかった空気中の酸素が持ち込まれ、脱窒槽での脱窒反応に悪影響を与える場合があった。したがって、このような硝化槽から酸素の持ち込みを予め想定した上で脱窒槽の容量を設定する必要がある。脱窒槽の容量を設定する際には硝化槽内に浸漬した膜分離手段の容積が関係してくると思われる。特許文献1には浸漬型膜分離手段を設置した曝気槽に関して、曝気槽の容量と膜分離手段の大きさとの関係を究明した結果が記載されている。
【0005】
【特許文献1】
特開平8−267083号公報
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載された内容は窒素除去装置に関するものではないので、脱窒槽の容量を設定する場合の参考にはならない。本発明は上記の背景のもとに創案されたものであり、本発明の目的は硝化槽内に浸漬した膜分離手段の容積に対応して脱窒槽の容量が適切に設定された窒素除去装置を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するために,本発明に係る窒素除去装置は、脱窒槽と硝化槽との間に被処理水を活性汚泥とともに循環させ、前記被処理水に含まれる窒素成分を除去するようにした窒素除去装置において、前記硝化槽に膜分離手段を浸漬するとともに、前記脱窒槽の容量を前記膜分離手段の総容積の1.5〜10倍としたことを特徴とする。
【0008】
【発明の実施の形態】
図1は本発明に係る窒素除去装置の実施形態を示す装置系統図である。窒素除去装置10は主に脱窒槽12と硝化槽14によって構成される。脱窒槽12には窒素成分を含む有機性の排水が管路16から供給される。また、脱窒槽12には硝化槽14からの被処理水である硝化液が管路18から流入する。脱窒槽12を経た被処理水は管路20から硝化槽14に送られる。硝化槽14には膜分離手段22が浸漬されている。膜分離手段22の下部にはブロワ24から供給した圧縮空気が管路26を介して散気管28より散気される。膜分離手段22の膜エレメント30の二次側には管路32が接続し、この管路32には吸引ポンプ34が配設されている。硝化槽14の下部には槽内の硝化液を脱窒槽12に循環させるための循環ポンプ36が接続され、この循環ポンプ36により抜き出された硝化液は管路18を介して脱窒槽12に循環される。なお、脱窒槽12及び硝化槽14には活性汚泥が高濃度(10g/L程度)に保持され、脱窒槽12と硝化槽14との間を硝化液に随伴して循環している。なお、循環ポンプ36の吐出側には増殖して過剰になった活性汚泥を抜き出すための管路38が分岐している。この管路38から抜き出された余剰汚泥は、通常図示しない脱水設備によって減量化された後、系外に排出される。
【0009】
上記の構成において、脱窒槽12に供給された被処理水は管路18から循環された硝化液と混合される。この脱窒槽12では主に硝化液に起因する硝酸性窒素が活性汚泥中の脱窒菌の働きによって脱窒され窒素ガスとなり、窒素ガスは大気に放出されて窒素除去が行われる。この脱窒菌による脱窒反応は液中の溶存酸素が実質的に零である嫌気条件下で活発に進行し、溶存酸素が多いと進行しない。脱窒槽12を出た被処理水は管路20から硝化槽14に送られる。硝化槽14では被処理水中のアンモニア性窒素が活性汚泥中の硝化菌の働きによって硝化され硝酸性窒素となる。この硝化菌による硝化反応は液中の溶存酸素が多い好気条件下で活発に進行する。液中の酸素を供給する手段として散気管28からの散気が利用される。すなわち、散気した空気中の酸素が液中に溶け込んで溶存酸素が多い好気条件を維持する。硝化槽14で硝化処理を受けた被処理水は膜分離手段22を通過する過程で膜分離を受ける。膜を透過した被処理水は膜エレメント30の二次側から管路32を経て吸引ポンプ34に吸引され、清澄な処理水として系外に排出される。また、硝化槽14で硝化処理を受けた被処理水は硝化液として循環ポンプ36から抜き出され、管路18を介して脱窒槽12に循環される。硝化液の脱窒槽12への循環量と管路16から脱窒槽12に供給される被処理水の流量との比を硝化液循環比と称しており、硝化液循環比は通常2〜3程度に設定される。
【0010】
一方、膜分離手段22での膜分離によって膜エレメント30の一次側に分離された活性汚泥を主体とする固形物は膜エレメント30の膜面に付着、堆積して膜面閉塞の原因となる。したがって、膜面に付着、堆積した固形物を剥離し洗浄する目的にも散気管28からの散気が利用される。すなわち、散気された空気の気泡はその浮力によって浮上する過程で膜エレメント30の膜面に剪断力を付与する。この気泡による剪断力によって膜面に付着、堆積した固形物が剥離する。また、散気管28からの散気はそのエアリフト作用によって硝化槽14内に被処理水の循環流を形成させ、被処理水と活性汚泥との混合状態を良好に維持する役目も果たす。
【0011】
このように散気管28からの散気は、被処理水中の溶存酸素を維持するための酸素供給源としての機能と、膜エレメント30の膜面を洗浄する機能と、被処理水の循環流を形成する機能とを有しており、これらの3つの機能を同時に達成するために、過剰気味の散気が行われる傾向にある。このため、硝化槽14の被処理水中の溶存酸素が必要以上に高くなるケースがしばしば発生する。この溶存酸素が比較的高い被処理水は、前記したように硝化液として循環ポンプ36から抜き出され、管路18を介して脱窒槽12に循環される。この結果、硝化液中の溶存酸素が脱窒槽12に持ち込まれることになり、脱窒槽12での脱窒反応に悪影響を与える場合がある。したがって、このような硝化槽14から硝化液を介して持ち込まれる溶存酸素を予め想定した上で脱窒槽12の容量を設定する必要がある。
【0012】
本実施形態では、脱窒槽12の容量が硝化槽14内に浸漬した膜分離手段22の容積と密接に関係することに着目して、脱窒槽12の容量を膜分離手段22の総容積の1.5〜10倍に設定している。なお、膜分離手段22の総容積とは、膜分離手段22を構成する膜エレメントや下方の散気部を含む容積であり、膜分離手段22が硝化槽14内に複数ユニット配置されている場合には、各ユニットの容積を合算した値である。すなわち、図2に示したように硝化槽14内に幅W,長さL,高さHの膜分離手段22のユニットが3基,配設されているときには、各ユニットの容積はW×L×Hであるから、膜分離手段22の総容積Vは3×W×L×Hとなる。したがって、脱窒槽12の容量を計算されたこの総容積Vに対して1.5〜10倍に設定する。
【0013】
以下に、上記1.5〜10倍に設定する理由を説明する。図3,図4は本発明者による一実験結果を示したものである。図3は脱窒槽12の容量と膜分離手段22の総容積との比を容量比Rと定義し、この容量比Rをパラメ−タとしてトータル窒素除去率(以下T−N除去率という。)を調べた結果である。同図によれば、容量比Rが1.5倍以上ではT−N除去率が80%以上と安定している。しかしながら、容量比Rが1.5倍未満ではT−N除去率が急激に低下している。この結果から容量比Rを1.5倍以上にするべきであることが理解できる。容量比Rが1.5倍未満の場合にT−N除去率が急激に低下する理由としては、硝化液中の溶存酸素が脱窒槽に持ち込まれることによって脱窒反応が阻害され、反応時間が不足したためと考えられる。容量比Rが1.5倍以上では、硝化液中の溶存酸素による悪影響を滞留時間(反応時間)の増加によってカバーするのでT−N除去率が安定すると考えられる。
【0014】
図4は容量比Rをパラメ−タとして被処理水のろ過特性を調べた結果である。実験は硝化槽14内の被処理水(活性汚泥の濃度,約10g/L)を採取し、この被処理水50mLをJISで規定されたNo.5のろ紙によってろ過した。縦軸に示した値は、ろ過開始から5分間経過後のろ液量である。同図によれば、容量比Rが10倍以下ではろ液量は20mL前後であり、比較的安定している。しかしながら、容量比Rが10倍を越えるとろ液量が急激に減少し始める。ろ液量の急激に減少は、膜分離手段22での膜分離に際して膜エレメント30の膜面が目詰まりを起こし易いことを意味しており、安定運転を維持する上で致命的な現象となる。このような現象が起きる原因は十分には解明されていない。活性汚泥が脱窒槽12内の嫌気条件下で必要以上に長時間滞留する結果、異常に増殖した嫌気性菌が粘性物質を盛んに分泌し、ろ過性を低下させるとも推察される。
【0015】
ともあれ,本実施形態では脱窒槽12の容量が膜分離手段22の総容積に対して1.5〜10倍に設定されているので、窒素除去装置10としてT−N除去率が安定している。また、被処理水のろ過特性が良好に維持されるので、膜分離手段22での膜分離を安定に継続させることができる。
【0016】
【発明の効果】
上述のとおり、本発明に係る窒素除去装置によれば、脱窒槽の容量を膜分離手段の総容積の1.5〜10倍としたので、T−N除去率が安定している。また、被処理水のろ過特性が良好に維持されるので、膜分離手段での膜分離を安定に継続させることができ、装置の運転管理が容易である。
【図面の簡単な説明】
【図1】本発明に係る窒素除去装置の実施形態を示す装置系統図である。
【図2】硝化槽内に浸漬した膜分離手段の配置状況を例示し、(1)は平面図、(2)は正面図である。
【図3】容量比RとT−N除去率の関係を示した実験結果図である。
【図4】容量比Rと被処理水のろ過特性の関係を示した実験結果図である。
【符号の説明】
10………窒素除去装置、12………脱窒槽、14………硝化槽、22………膜分離手段、24………ブロア、28………散気管、30………膜エレメント、34………吸引ポンプ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nitrogen removing apparatus, and more particularly to a nitrogen removing apparatus configured to biologically remove nitrogen components contained in water to be treated by activated sludge.
[0002]
[Prior art]
As this type of nitrogen removing device, there is known a device in which water to be treated is circulated together with activated sludge between a denitrification tank and a nitrification tank. Activated sludge contains nitrifying bacteria and denitrifying bacteria, and in a nitrification tank, ammonia nitrogen in the water to be treated is nitrified by nitrifying bacteria into nitrate nitrogen under aerobic conditions. In the denitrification tank, nitrate nitrogen in the water to be treated is denitrified under the anaerobic condition by the action of denitrifying bacteria to form nitrogen gas, and this nitrogen gas is released to the atmosphere to remove nitrogen. As the concentration of activated sludge retained in the system is higher, the concentrations of nitrifying bacteria and denitrifying bacteria are relatively higher, and the treatment efficiency of nitrogen removal is improved.
[0003]
For this reason, in recent years, attempts have been made to immerse the membrane separation means in a nitrification tank and to separate the treated water from the activated sludge by this membrane separation means. That is, the water to be treated that has passed through the membrane is discharged out of the system as treated water, and the activated sludge separated by the membrane remains as it is in the circulation system between the denitrification tank and the nitrification tank. By employing such a method, the concentration of activated sludge in the circulation system can be reduced to about 10 g / L. This value of 10 g / L is about 5 times the concentration of activated sludge in the standard activated sludge method having a sedimentation basin, so that the treatment speed of the nitrification and denitrification reaction can be dramatically improved. Therefore, the capacity of the nitrification tank and the denitrification tank can be reduced accordingly, which contributes to the space saving of the required site area.
[0004]
In the nitrogen removing apparatus in which the membrane separation means is immersed in such a nitrification tank, the amount of air supplied to the nitrification tank increases because the concentration of the activated sludge is high. However, in this type of nitrogen removal apparatus, the properties of the inflowing water to be treated vary greatly. For this reason, under the operating conditions in which the oxygen consumption in the nitrification tank is smaller than originally planned, oxygen in the air that could not be completely consumed in the nitrification tank is brought into the denitrification tank, which should be an anaerobic condition without dissolved oxygen. In some cases, the denitrification reaction in the denitrification tank was adversely affected. Therefore, it is necessary to set the capacity of the denitrification tank on the assumption that oxygen is brought in from such a nitrification tank in advance. When setting the capacity of the denitrification tank, the capacity of the membrane separation means immersed in the nitrification tank seems to be related. Patent Literature 1 describes the results of an investigation on the relationship between the capacity of an aeration tank and the size of the membrane separation means for an aeration tank provided with a submerged membrane separation means.
[0005]
[Patent Document 1]
JP-A-8-267083
[Problems to be solved by the invention]
However, the contents described in Patent Literature 1 do not relate to the nitrogen removing device, and thus do not serve as a reference when setting the capacity of the denitrification tank. The present invention has been made under the above background, and an object of the present invention is to provide a nitrogen removing apparatus in which the capacity of a denitrification tank is appropriately set in accordance with the volume of a membrane separation means immersed in a nitrification tank. Is to provide.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the nitrogen removing apparatus according to the present invention circulates water to be treated together with activated sludge between a denitrification tank and a nitrification tank to remove nitrogen components contained in the water to be treated. In the nitrogen removal apparatus described above, the membrane separation means is immersed in the nitrification tank, and the capacity of the denitrification tank is set to 1.5 to 10 times the total volume of the membrane separation means.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is an apparatus system diagram showing an embodiment of a nitrogen removing apparatus according to the present invention. The nitrogen removing device 10 mainly includes a denitrification tank 12 and a nitrification tank 14. Organic wastewater containing a nitrogen component is supplied to the denitrification tank 12 from a pipe 16. The nitrification liquid, which is the water to be treated from the nitrification tank 14, flows into the denitrification tank 12 through a pipe 18. The water to be treated that has passed through the denitrification tank 12 is sent from a pipe 20 to a nitrification tank 14. A membrane separation means 22 is immersed in the nitrification tank 14. The compressed air supplied from the blower 24 is diffused below the membrane separation means 22 from the air diffuser 28 through the conduit 26. A pipeline 32 is connected to the secondary side of the membrane element 30 of the membrane separation means 22, and a suction pump 34 is provided in the pipeline 32. A circulation pump 36 for circulating the nitrification liquid in the tank to the denitrification tank 12 is connected to a lower portion of the nitrification tank 14, and the nitrification liquid extracted by the circulation pump 36 is supplied to the denitrification tank 12 via the pipe 18. Circulated. The activated sludge is maintained at a high concentration (about 10 g / L) in the denitrification tank 12 and the nitrification tank 14, and circulates between the denitrification tank 12 and the nitrification tank 14 with the nitrification liquid. In addition, a pipe line 38 for extracting the activated sludge that has multiplied and becomes excessive is branched off on the discharge side of the circulation pump 36. The excess sludge extracted from the pipe 38 is usually reduced by a dehydration facility (not shown) and then discharged out of the system.
[0009]
In the above configuration, the water to be treated supplied to the denitrification tank 12 is mixed with the nitrification liquid circulated from the pipe 18. In the denitrification tank 12, nitrate nitrogen mainly caused by the nitrification liquid is denitrified by the action of denitrifying bacteria in the activated sludge to form nitrogen gas, and the nitrogen gas is released to the atmosphere to remove nitrogen. The denitrification reaction by the denitrifying bacteria actively proceeds under anaerobic conditions in which the dissolved oxygen in the liquid is substantially zero, and does not proceed when the dissolved oxygen is large. The water to be treated that has exited from the denitrification tank 12 is sent to the nitrification tank 14 through a pipe 20. In the nitrification tank 14, the ammonia nitrogen in the water to be treated is nitrified by the action of nitrifying bacteria in the activated sludge to become nitrate nitrogen. The nitrification reaction by the nitrifying bacteria actively proceeds under aerobic conditions in which the dissolved oxygen in the liquid is large. As means for supplying oxygen in the liquid, air from the air diffuser 28 is used. That is, the oxygen in the diffused air dissolves in the liquid, and the aerobic condition with a large amount of dissolved oxygen is maintained. The water to be treated which has been subjected to the nitrification treatment in the nitrification tank 14 undergoes membrane separation in the course of passing through the membrane separation means 22. The water to be treated that has passed through the membrane is sucked into the suction pump 34 from the secondary side of the membrane element 30 via the pipe line 32 and discharged out of the system as clear treated water. Further, the water to be treated, which has been subjected to the nitrification treatment in the nitrification tank 14, is withdrawn from the circulation pump 36 as a nitrification liquid, and circulated to the denitrification tank 12 via the pipe 18. The ratio between the amount of the nitrifying liquid circulated to the denitrification tank 12 and the flow rate of the water to be treated supplied to the denitrification tank 12 from the pipe 16 is called the nitrification liquid circulation ratio, and the nitrification liquid circulation ratio is usually about 2 to 3. Is set to
[0010]
On the other hand, solid matter mainly composed of activated sludge separated on the primary side of the membrane element 30 by the membrane separation by the membrane separation means 22 adheres and accumulates on the membrane surface of the membrane element 30 and causes blockage of the membrane surface. Therefore, the air diffused from the air diffuser 28 is also used for the purpose of separating and washing the solid matter adhered and deposited on the film surface. That is, the diffused air bubbles apply a shearing force to the membrane surface of the membrane element 30 in the process of floating by the buoyancy. The solids attached to and deposited on the film surface are peeled off by the shearing force of the bubbles. Further, the air diffused from the air diffuser 28 forms a circulating flow of the water to be treated in the nitrification tank 14 by the air lift function, and also plays a role of maintaining a good mixed state of the water to be treated and the activated sludge.
[0011]
As described above, the air diffused from the air diffuser 28 serves as a function as an oxygen supply source for maintaining dissolved oxygen in the water to be treated, a function to clean the membrane surface of the membrane element 30, and a circulation flow of the water to be treated. It has a function of forming, and in order to achieve these three functions simultaneously, there is a tendency that excessive diffusion is performed. For this reason, the case where the dissolved oxygen in the water to be treated in the nitrification tank 14 becomes unnecessarily high often occurs. The water to be treated having relatively high dissolved oxygen is withdrawn from the circulation pump 36 as a nitrification liquid as described above, and is circulated to the denitrification tank 12 via the pipe 18. As a result, dissolved oxygen in the nitrification liquid is brought into the denitrification tank 12, which may adversely affect the denitrification reaction in the denitrification tank 12. Therefore, it is necessary to set the capacity of the denitrification tank 12 on the assumption of dissolved oxygen brought in from the nitrification tank 14 via the nitrification liquid in advance.
[0012]
In the present embodiment, paying attention to the fact that the capacity of the denitrification tank 12 is closely related to the capacity of the membrane separation means 22 immersed in the nitrification tank 14, the capacity of the denitrification tank 12 is set to one of the total volume of the membrane separation means 22. It is set to 0.5 to 10 times. In addition, the total volume of the membrane separation unit 22 is a volume including a membrane element constituting the membrane separation unit 22 and an air diffusion unit below, and a case where a plurality of units of the membrane separation unit 22 are arranged in the nitrification tank 14. Is the sum of the volumes of each unit. That is, as shown in FIG. 2, when three units of the membrane separation means 22 having a width W, a length L, and a height H are provided in the nitrification tank 14, the volume of each unit is W × L. Since it is × H, the total volume V of the membrane separation means 22 is 3 × W × L × H. Therefore, the capacity of the denitrification tank 12 is set to 1.5 to 10 times the calculated total volume V.
[0013]
The reason for setting the value to 1.5 to 10 times will be described below. 3 and 4 show the results of one experiment by the present inventors. FIG. 3 defines the ratio of the capacity of the denitrification tank 12 to the total capacity of the membrane separation means 22 as a capacity ratio R, and uses this capacity ratio R as a parameter to obtain a total nitrogen removal rate (hereinafter referred to as a TN removal rate). It is the result of having investigated. According to the figure, when the capacitance ratio R is 1.5 times or more, the TN removal rate is stable at 80% or more. However, when the capacity ratio R is less than 1.5 times, the TN removal rate sharply decreases. From this result, it can be understood that the capacitance ratio R should be 1.5 times or more. When the capacity ratio R is less than 1.5 times, the TN removal rate sharply decreases as the dissolved oxygen in the nitrification solution is brought into the denitrification tank, thereby inhibiting the denitrification reaction, and the reaction time is reduced. Probably because of shortage. When the capacity ratio R is 1.5 times or more, the adverse effect of dissolved oxygen in the nitrification solution is covered by an increase in the residence time (reaction time), so that the TN removal rate is considered to be stable.
[0014]
FIG. 4 shows the results of examining the filtration characteristics of the water to be treated using the volume ratio R as a parameter. In the experiment, the water to be treated (concentration of activated sludge, about 10 g / L) in the nitrification tank 14 was collected, and 50 mL of the water to be treated was used as a No. And filtered through a filter paper of No. 5. The value shown on the vertical axis is the amount of filtrate 5 minutes after the start of filtration. According to the figure, when the volume ratio R is 10 times or less, the filtrate volume is about 20 mL, and is relatively stable. However, when the volume ratio R exceeds 10 times, the amount of filtrate starts to decrease rapidly. The rapid decrease in the amount of filtrate means that the membrane surface of the membrane element 30 is likely to be clogged at the time of membrane separation by the membrane separation means 22, which is a fatal phenomenon in maintaining stable operation. . The cause of this phenomenon is not fully understood. It is presumed that as a result of activated sludge staying for longer than necessary under anaerobic conditions in the denitrification tank 12, abnormally proliferated anaerobic bacteria actively secrete viscous substances and reduce filterability.
[0015]
In any case, in this embodiment, the capacity of the denitrification tank 12 is set to be 1.5 to 10 times the total volume of the membrane separation means 22, so that the TN removal rate of the nitrogen removal device 10 is stable. . In addition, since the filtration characteristics of the water to be treated are favorably maintained, the membrane separation by the membrane separation means 22 can be stably continued.
[0016]
【The invention's effect】
As described above, according to the nitrogen removal apparatus of the present invention, the capacity of the denitrification tank is set to 1.5 to 10 times the total volume of the membrane separation means, so that the TN removal rate is stable. In addition, since the filtration characteristics of the water to be treated are well maintained, the membrane separation by the membrane separation means can be stably continued, and the operation management of the apparatus is easy.
[Brief description of the drawings]
FIG. 1 is an apparatus system diagram showing an embodiment of a nitrogen removing apparatus according to the present invention.
FIGS. 2A and 2B show an example of an arrangement of membrane separation means immersed in a nitrification tank, wherein FIG. 2A is a plan view and FIG.
FIG. 3 is an experimental result diagram showing a relationship between a capacitance ratio R and a TN removal rate.
FIG. 4 is an experimental result diagram showing a relationship between a capacity ratio R and a filtration characteristic of water to be treated.
[Explanation of symbols]
10 nitrogen removal device, 12 denitrification tank, 14 nitrification tank, 22 membrane separation means, 24 blower, 28 diffuser tube, 30 membrane element, 34 ... Suction pump.

Claims (1)

脱窒槽と硝化槽との間に被処理水を活性汚泥とともに循環させ、前記被処理水に含まれる窒素成分を除去するようにした窒素除去装置において、前記硝化槽に膜分離手段を浸漬するとともに、前記脱窒槽の容量を前記膜分離手段の総容積の1.5〜10倍としたことを特徴とする窒素除去装置。In the nitrogen removal device that circulates the water to be treated together with the activated sludge between the denitrification tank and the nitrification tank and removes the nitrogen component contained in the water to be treated, while immersing the membrane separation means in the nitrification tank, A denitrification tank having a capacity of 1.5 to 10 times the total volume of the membrane separation means.
JP2003037169A 2003-02-14 2003-02-14 Nitrogen removing device Pending JP2004243248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037169A JP2004243248A (en) 2003-02-14 2003-02-14 Nitrogen removing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037169A JP2004243248A (en) 2003-02-14 2003-02-14 Nitrogen removing device

Publications (1)

Publication Number Publication Date
JP2004243248A true JP2004243248A (en) 2004-09-02

Family

ID=33022063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037169A Pending JP2004243248A (en) 2003-02-14 2003-02-14 Nitrogen removing device

Country Status (1)

Country Link
JP (1) JP2004243248A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152282A (en) * 2005-12-07 2007-06-21 Mitsubishi Rayon Eng Co Ltd Membrane separation active sludge treatment method
JP2017056447A (en) * 2015-09-18 2017-03-23 王子ホールディングス株式会社 Water treatment system and method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398697A (en) * 1989-09-11 1991-04-24 Kubota Corp Water treatment apparatus
JPH08267083A (en) * 1995-03-30 1996-10-15 Kubota Corp Activated sludge treating device
JPH09117794A (en) * 1995-10-26 1997-05-06 Mitsubishi Kakoki Kaisha Ltd Biological denitrification device
JPH09290286A (en) * 1996-04-25 1997-11-11 Kubota Corp Waste water treating device
JPH09299970A (en) * 1996-05-20 1997-11-25 Kubota Corp Septic tank
JPH1099883A (en) * 1996-09-30 1998-04-21 Kubota Corp Air supply pipe-supporting structure of purifying tank
JP2000117276A (en) * 1998-10-09 2000-04-25 Tokai Kogyo Kk Separation membrane type rectangular septic tank for combined treatment
JP2000246245A (en) * 1999-03-04 2000-09-12 Sekisui Chem Co Ltd Waste water treatment apparatus
JP2000271453A (en) * 1999-03-24 2000-10-03 Sumitomo Heavy Ind Ltd Membrane separation device
JP2001087790A (en) * 1999-09-27 2001-04-03 Hitachi Plant Eng & Constr Co Ltd Apparatus for biological treatment by membrane separation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398697A (en) * 1989-09-11 1991-04-24 Kubota Corp Water treatment apparatus
JPH08267083A (en) * 1995-03-30 1996-10-15 Kubota Corp Activated sludge treating device
JPH09117794A (en) * 1995-10-26 1997-05-06 Mitsubishi Kakoki Kaisha Ltd Biological denitrification device
JPH09290286A (en) * 1996-04-25 1997-11-11 Kubota Corp Waste water treating device
JPH09299970A (en) * 1996-05-20 1997-11-25 Kubota Corp Septic tank
JPH1099883A (en) * 1996-09-30 1998-04-21 Kubota Corp Air supply pipe-supporting structure of purifying tank
JP2000117276A (en) * 1998-10-09 2000-04-25 Tokai Kogyo Kk Separation membrane type rectangular septic tank for combined treatment
JP2000246245A (en) * 1999-03-04 2000-09-12 Sekisui Chem Co Ltd Waste water treatment apparatus
JP2000271453A (en) * 1999-03-24 2000-10-03 Sumitomo Heavy Ind Ltd Membrane separation device
JP2001087790A (en) * 1999-09-27 2001-04-03 Hitachi Plant Eng & Constr Co Ltd Apparatus for biological treatment by membrane separation

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
上坂太一、和泉清司、川上進、鈴木邦康: "高水深対応膜分離装置を利用した窒素除去システムの開発", 第1回環境技術研究協会研究発表会講演集, JPN7009005405, 2001, JP, ISSN: 0001489077 *
佐藤八郎、北井良人、本田和之、西川信彦: "FRP製膜分離高度処理大型合併処理浄化槽の開発", クボタ技報, vol. 第33巻, JPN6009064727, 1997, JP, pages 101 - 107, ISSN: 0001489076 *
佐藤英二: "硝化液循環型・浸漬平膜処理システム", 月刊下水道, vol. Vol.24 No.10(通巻338号) , JPN6009064728, 15 July 2001 (2001-07-15), JP, pages 31, ISSN: 0001489079 *
和泉清司: "浸漬型膜分離活性汚泥法による排水処理システム", 月刊 地球環境, JPN7009005403, June 1997 (1997-06-01), JP, pages 66 - 69, ISSN: 0001489075 *
福原真一、大井裕亮: "クボタ膜分離活性汚泥法", 月刊下水道, vol. Vol.24 No.10(通巻338号), JPN6009064729, 15 July 2001 (2001-07-15), JP, pages 18 - 19, ISSN: 0001489080 *
西森一久、上坂太一、川上進、和泉清司: "高水深対応膜分離装置における高フラックス運転の影響", 第2回環境技術研究協会研究発表会講演集, JPN7009005407, 2002, JP, ISSN: 0001489078 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152282A (en) * 2005-12-07 2007-06-21 Mitsubishi Rayon Eng Co Ltd Membrane separation active sludge treatment method
JP2017056447A (en) * 2015-09-18 2017-03-23 王子ホールディングス株式会社 Water treatment system and method

Similar Documents

Publication Publication Date Title
JP2005279447A (en) Water treatment method and apparatus
JP2003053363A (en) Treatment method and treatment equipment for organic matter-containing water
JP2010253428A (en) Wastewater treatment apparatus and wastewater treatment method
JP2007098368A (en) Immersed-membrane separation apparatus and method therefor
JP2002307088A (en) Wastewater treatment apparatus
KR100453646B1 (en) advanced wastwater treatment system using a submerged type membrane
KR101367229B1 (en) Operating method of advanced treatment process use of submerged membrane and advanced treatment apparatus thereof
JP2016002514A (en) Membrane separation activated sludge treatment apparatus and method of operating the same
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
JP7015117B2 (en) Organic wastewater treatment method and organic wastewater treatment system
JP2005144290A (en) Method for controlling mlss
JP2009220020A (en) Wastewater treatment system and its operation method
JP2004243248A (en) Nitrogen removing device
JP4373871B2 (en) Activated sludge treatment equipment
JP3607088B2 (en) Method and system for continuous simultaneous removal of nitrogen and suspended solids from wastewater
JP4307275B2 (en) Wastewater treatment method
JP3763444B2 (en) Organic wastewater treatment method
JP2002346591A (en) Sewage treatment apparatus and operation method therefor
JP4181501B2 (en) Biofilm filtration apparatus and method
JP2008238042A (en) Method for reducing amount of organic sludge
JP4403704B2 (en) Biofilm filtration apparatus and treatment method
JP2006055849A (en) Apparatus and method for treating organic waste water
JP4360204B2 (en) Organic wastewater treatment method
KR100469641B1 (en) advanced wastwater treatment apparatus using a submerged type membrane
JP4865997B2 (en) Operation method of sewage treatment apparatus and sewage treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100422