JP2000117276A - Separation membrane type rectangular septic tank for combined treatment - Google Patents

Separation membrane type rectangular septic tank for combined treatment

Info

Publication number
JP2000117276A
JP2000117276A JP30173098A JP30173098A JP2000117276A JP 2000117276 A JP2000117276 A JP 2000117276A JP 30173098 A JP30173098 A JP 30173098A JP 30173098 A JP30173098 A JP 30173098A JP 2000117276 A JP2000117276 A JP 2000117276A
Authority
JP
Japan
Prior art keywords
tank
separation membrane
aerobic
treatment
septic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30173098A
Other languages
Japanese (ja)
Inventor
Masayasu Shiba
誠泰 柴
Yoshiomi Matsumoto
佳臣 松本
Hiroshi Otaka
寛 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Kogyo Co Ltd
Original Assignee
Tokai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Kogyo Co Ltd filed Critical Tokai Kogyo Co Ltd
Priority to JP30173098A priority Critical patent/JP2000117276A/en
Publication of JP2000117276A publication Critical patent/JP2000117276A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To incorporate a separation membrane module of high separation efficiency and high installing efficiency by making at least one of treating tanks an anaerobic treating tank and making the other one an aerobic treating tank, and incorporating a separation membrane module for separating sludge in the aerobic treating tank. SOLUTION: A tank body 10 has a bottomed lower than part 15 and an upper tank part 20 made of plastic joined by a flange part 25, and the flange part 25 is normally the same as flanges made of FRP and is firmly fixed by bolts. The tank body 10 is divided by partition walls 40 into plural treating tanks. The one 43, for example of the treating tanks, is an anaerobic treating tank, and the other one 45 is an aerobic tank. In the aerobic treating tank 45, sewage is aerated with air or oxygen to keep the inside of the tank in an aerobic state and to make sludge float. Oxidizing decomposition reaction is performed by aerobic bacteria to nitrify ammoniacal nitrogen in sewage to nitrous acid or nitric acid. One separation membrane module 50 is incorporated, and the number of the modules can be arbitrarily increased according to the treated quantity of sewage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、し尿と生活雑排水
を合併して嫌気的および好気的に処理するための合併処
理用の分離膜式角形浄化槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separation membrane type rectangular septic tank for combined treatment of anaerobic and aerobic treatment by combining human waste and domestic wastewater.

【0002】[0002]

【従来の技術】従来、し尿と生活雑排水を合併して処理
する合併浄化プロセスとして、最もコンパクトでかつ高
度処理可能であり、多くの実績を有するものは、大型の
沈殿槽による汚泥の分離が不要になる分離膜モジュール
を内蔵した浄化槽であり、これに関し種々の提案がなさ
れている。しかしながら、分離膜モジュールを繊維強化
プラスチックス( 以下、FRPと称する。)製の槽本体
に内蔵する場合は、槽本体は現実的に丸形タイプのもの
に限られていた。
2. Description of the Related Art Conventionally, as a combined purification process for treating human waste and domestic wastewater in a combined manner, the most compact and highly-processable process that has a large track record is the separation of sludge using a large sedimentation tank. This is a septic tank incorporating a separation membrane module that becomes unnecessary, and various proposals have been made regarding this. However, when the separation membrane module is incorporated in a tank body made of fiber reinforced plastics (hereinafter, referred to as FRP), the tank body is practically limited to a round type.

【0003】これは、ほとんどの浄化槽が水位差の確保
および環境美化の観点から地中に埋設設置されるのが常
であるところ、浄化槽を地中埋設して処理汚水を満たし
た場合は、浄化槽本体にかなり大きな土圧( 外圧 )や水
圧( 内圧 )が加わるので、槽体はこの土圧や水圧に耐え
うるだけの相当大きな機械的強度を具備する必要があ
り、その点から、必然的に、FRPで形成される浄化槽
本体は、可能な限り球状や円筒状の近い形、すなわち丸
形タイプの槽にせざるを得なかったのである。
[0003] This is because most of the septic tanks are usually buried and installed in the ground from the viewpoint of securing a water level difference and environmental beautification. Since a considerably large earth pressure (external pressure) or water pressure (internal pressure) is applied to the main body, the tank body must have a sufficiently large mechanical strength to withstand this earth pressure and water pressure. Therefore, the septic tank main body formed of FRP had to be as close as possible to a spherical or cylindrical shape, that is, a round type tank.

【0004】特に、数十人〜数百人用のし尿や生活雑排
水を処理する大型・長大な槽については、強度上の大き
な不安があるため、基本的に長い円筒状の槽体の両開口
部を彎曲状の鏡板で閉じた丸型タイプのもの以外は現実
には実施されていない。
[0004] In particular, for a large and long tank for treating human waste and gray water for tens to hundreds of persons, there is a great deal of anxiety in strength, so that both long and cylindrical tanks are basically used. Except for a round type in which the opening is closed by a curved end plate, this is not actually implemented.

【0005】しかしながら、本発明者らの認識によれ
ば、このような丸形タイプの浄化槽は、槽壁面が大きく
彎曲しているため、その形状の点から接触曝気槽の効率
が悪く、また分離膜モジュールの設置効率も低い。従っ
て、デッドスペースができて、必要以上に槽容量が大き
くなり、結局浄化槽の設置面積が極めて大きくならざる
を得ないと云う構造的な問題がある。
However, according to the recognition of the present inventors, in such a round-type septic tank, since the tank wall is greatly curved, the efficiency of the contact aeration tank is inferior in terms of its shape, and the separation is difficult. The installation efficiency of the membrane module is also low. Therefore, there is a structural problem that a dead space is created, the tank capacity becomes larger than necessary, and the installation area of the septic tank must be extremely large after all.

【0006】浄化槽は通常無人運転されるものであり、
地中に埋設した大型の浄化槽が、万一運転中に土圧や水
圧で破裂したり亀裂が入って、大量の汚水が流出し、土
中に浸透したり、汚水が無処理のまま河川に流れ出たよ
うな場合は、環境保全上大きな問題となるため、従来、
強度的に不安がある比較的大型・長大な角形浄化槽はそ
もそも提案さえされなかったと考えられる。
[0006] Septic tanks are usually operated unattended,
A large septic tank buried in the ground should rupture or crack due to earth pressure or water pressure during operation, and large amounts of sewage will flow out and penetrate into the soil, and sewage will be untreated into rivers without treatment If it flows out, it will be a big problem for environmental protection.
It is probable that relatively large and long rectangular septic tanks with uncertainty in strength were not even proposed in the first place.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、曝気
効率が高く、装置設置効率の高い、分離膜モジュールを
格納内蔵した、FRP製の角形合併浄化槽を提供するこ
とである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an FRP-made merged septic tank having a high aeration efficiency and a high installation efficiency, and containing a built-in separation membrane module.

【0008】[0008]

【課題を解決するための手段】本発明に従えば、浄化槽
の槽本体が、縦断面及び横断面形状が略角形の槽体から
なり、前記槽本体は、いずれも繊維強化樹脂により形成
された下槽部と上槽部とが接合して構成され、前記槽本
体内部には、槽内壁を支える角形状の補強体が少なくて
も一か所に設けられ、さらに前記槽本体には、隔壁によ
り区画された複数の処理槽が形成され、少なくともその
処理槽の一つは嫌気的処理槽、他の一つは好気的処理槽
であり、前記好気的処理槽には、汚泥を分離するための
分離膜モジュールが内蔵されていることを特徴とする合
併処理用の分離膜式角形浄化槽、が提供される。
According to the present invention, a tank body of a septic tank is formed of a tank body having a substantially rectangular cross section in a vertical section and a horizontal section, and both of the tank bodies are formed of a fiber reinforced resin. The lower tank part and the upper tank part are joined together, and inside the tank body, at least one corner-shaped reinforcing body for supporting the tank inner wall is provided in at least one place. A plurality of treatment tanks are formed, and at least one of the treatment tanks is an anaerobic treatment tank and the other is an aerobic treatment tank, and the aerobic treatment tank separates sludge. And a separation membrane-type rectangular septic tank for a merger process, wherein a separation membrane module for performing a separation process is incorporated.

【0009】また、本発明に従えば、浄化槽の槽本体
が、縦断面及び横断面形状が略角形の槽体からなり、前
記槽本体は、いずれも繊維強化樹脂により形成された下
槽部と上槽部とが接合して構成され、前記槽本体内部に
は、槽内壁を支える角形状の補強体が少なくても一か所
に設けられている二つの槽本体からなり、前記槽本体の
一つは、嫌気的処理槽、他の一つは好気的処理槽であ
り、両者は流路で接続されるとともに、前記好気的処理
槽には、汚泥を分離するための分離膜モジュールが内蔵
されていることを特徴とする合併処理用の分離膜式角形
浄化槽、が提供される。
Further, according to the present invention, the tank body of the septic tank comprises a tank body having a substantially rectangular vertical and horizontal cross-sectional shape, and the tank main body has a lower tank portion formed of a fiber-reinforced resin. The upper tank portion is configured to be joined, and the inside of the tank body is composed of at least two tank bodies provided with at least one angular reinforcing body for supporting the inner wall of the tank. One is an anaerobic treatment tank, and the other is an aerobic treatment tank. Both are connected by a flow path, and the aerobic treatment tank has a separation membrane module for separating sludge. And a separation membrane-type rectangular septic tank for a merger process, wherein

【0010】[0010]

【発明の実施の形態】以下、図面を参照しながら本発明
の好ましい実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0011】図1および図2は、本発明の浄化槽の槽本
体を一部を切り欠いて透視的に示す斜視図であり、図3
は、本浄化槽に分離膜モジュールを内蔵し処理水を満た
した状態を示す説明図である。
FIGS. 1 and 2 are perspective views showing the tank body of the septic tank of the present invention in a partially cutaway view.
FIG. 3 is an explanatory diagram showing a state in which a separation membrane module is built in the present septic tank and is filled with treated water.

【0012】図1に示すように、浄化槽の槽本体10
は、その縦断面および横断面形状が略角形の槽体であ
る。従って、本発明における角形の槽は、実質的に彎曲
のない平らな壁面からなる槽体である。基本的には槽体
の6面すべてが彎曲の無い平面部からなるものが最も好
ましいが、槽内部に水を満たしたとき、少なくとも水に
接触する部分( 水面下の部分 )が実質的に彎曲のない平
面部からなるものであればよい。従って、図3に示すご
とく、水面に触れない上部( 肩部 )12に多少の彎曲が
存在するものであってもよい。このような槽体上部に彎
曲部を設けておくことにより、槽本体に水を満たしたと
き、水の重量により槽全体が下方に歪むのを有効に抑え
ることができる。なお、隣り合う壁面と壁面との境界線
( 陵線 )は多少の丸み( アール )を保持していてもよ
い。
As shown in FIG. 1, a tank body 10 of a septic tank is provided.
Is a tank body whose longitudinal section and transverse section are substantially square. Accordingly, the rectangular tank according to the present invention is a tank having a flat wall surface having substantially no curvature. Basically, it is most preferable that all six surfaces of the tank body be a flat surface without any curvature. However, when the inside of the tank is filled with water, at least a portion in contact with water (a portion under the water surface) is substantially curved. What is necessary is just to be what consists of a flat part which does not have. Therefore, as shown in FIG. 3, the upper part (shoulder) 12 which does not touch the water surface may have some curvature. By providing such a curved portion on the upper portion of the tank body, it is possible to effectively prevent the entire tank from being distorted downward due to the weight of the water when the tank body is filled with water. The boundary between adjacent walls
(Ring line) may have some roundness.

【0013】この槽本体10は、FRP製の有底の下槽
部15と、上槽部20とを、フランジ部25で接合して
構成されている。通常このフランジ部25は、槽本体と
同じFRP製フランジであって、ボルトで強固に固定さ
れる。フランジ部間にはシーリング材またはパッキング
として、通常ガスケットやパテ等が充填される。その
際、さらに接着剤をフランジ面に塗布することも好まし
い。
The tank body 10 is configured by joining a lower tank part 15 with a bottom made of FRP and an upper tank part 20 with a flange part 25. Usually, this flange portion 25 is the same FRP flange as the tank body, and is firmly fixed with bolts. A gasket, putty, or the like is usually filled between the flange portions as a sealing material or packing. At this time, it is preferable to further apply an adhesive to the flange surface.

【0014】地中に埋設し、処理液を満たした場合の、
槽本体の受ける水圧、土圧に対する強度および作業性を
考慮して、下槽部の高さ、すなわちフランジの位置h1
は、槽本体高さH (下槽部高さh1 +上槽部高さh2 )
の1/2〜3/4であることが好ましく、特に好ましく
は2/3程度である( 図3 )。
When buried underground and filled with a processing solution,
The height of the lower tank, that is, the position of the flange h 1 , is taken into consideration in consideration of the strength of the tank body with respect to water pressure and earth pressure and workability.
Is the tank body height H (the lower tank portion height h 1 + upper tank portion height h 2)
Is preferably 2〜 to の, particularly preferably about / (FIG. 3).

【0015】本発明における槽本体としては、高さ10
00〜3000mmH、幅1000〜3000mmD、
長さ2000〜15000mmL程度のかなりの大容量
ものに適用可能であり、例えば、一例として、高さ27
00mmH×2300mmD×10000mmLのサイ
ズのものが挙げられる。
The tank body in the present invention has a height of 10
00-3000mmH, width 1000-3000mmD,
It can be applied to a considerably large volume having a length of about 2000 to 15000 mmL.
One having a size of 00 mmH × 2300 mmD × 10000 mmL is exemplified.

【0016】槽本体をFRPで形成する手段としては、
通常用いられているものが採用できる。すなわち、下槽
部または上槽部に対応する鋼板製、木製、若しくはFR
P等で形成した型を準備し、離型剤を塗った該型の表面
に、繊維強化材のマットやクロスなどの液状樹脂を含浸
させながら、所望の厚さになるまでハンドレイアップ法
により積層する。または、ガラスロービングを切断して
樹脂とともに吹き付けるスプレーアップ法によってもよ
い。樹脂の硬化後に離型することにより槽体が得られ
る。なお、使用する型の上部の肩( バンク )の部分に積
層した樹脂部分がフランジとなるので、この方法によれ
ばFRP製のフランジを槽体の開口部周縁に一体的に備
えた上槽部および下槽部が容易に形成される。この点に
おいて、従来の丸形タイプのFRP浄化槽が、円筒の型
の回りに樹脂含浸ロービングを巻き付けるフィラメント
ワインデング法で一体的に形成されているのとは大きな
差異がある。
As means for forming the tank body by FRP,
Usually used ones can be adopted. That is, steel, wood, or FR corresponding to the lower tank or upper tank
Prepare a mold formed with P, etc., and impregnate the surface of the mold coated with a release agent with a liquid resin such as a mat or cloth of a fiber reinforcing material, by a hand lay-up method until a desired thickness is obtained. Laminate. Alternatively, a spray-up method in which glass roving is cut and sprayed together with resin may be used. A tank body is obtained by releasing the resin after curing. In addition, since the resin portion laminated on the upper shoulder (bank) portion of the mold to be used becomes a flange, according to this method, an FRP flange is provided integrally with the periphery of the opening of the tank body. And the lower tank part is easily formed. In this respect, there is a great difference from the conventional round type FRP purification tank which is integrally formed by a filament winding method in which a resin impregnated roving is wound around a cylindrical mold.

【0017】槽本体内部には、少なくとも一か所に補強
体が設けられる。補強体としては、該槽本体外部からこ
れを押しつぶすように加わる土圧等の外圧や、内部に処
理水を満たした場合の処理水重量により槽が下方に撓み
変形するのに抗し、槽本体内壁に密着して、この槽形状
を保持するように内部から支えうるものであれば、その
形状は問わないが、好ましくは図1に示すような、角形
状の補強体30,30’,・・・が望ましい。それぞれ
の補強体中には、処理水の自由な流通を確保するための
流路を形成する複数の開口部33,33’,33’’,
・・・が設けられる。
A reinforcing member is provided in at least one place inside the tank body. As the reinforcing member, the tank is prevented from flexing and deforming downward due to external pressure such as earth pressure applied to crush the tank from the outside of the tank main body and the weight of the treated water when the inside is filled with the treated water. Any shape can be used as long as it can be supported from the inside so as to keep the tank shape in close contact with the inner wall, but preferably, as shown in FIG. 1, square reinforcing members 30, 30 ',.・ ・ Is desirable. In each of the reinforcing members, a plurality of openings 33, 33 ′, 33 ″, which form a flow path for ensuring free flow of treated water, are provided.
Are provided.

【0018】このような角形状補強体を形成する材質は
任意であるが、例えばFRPで製造することが好まし
い。この場合、角形の形状に相当する型枠を準備し、こ
の型枠の中に開口部33,33’,33’’,・・・に
相当する部分にそれぞれ柱状体を配置する。該型枠中に
ハンドレイアップ法やスプレーアップ法により樹脂を積
層し、樹脂が硬化後に型枠および柱状体を離型すること
により、複数の開口部を備えた角形状の補強体が得られ
る。FRP樹脂層の厚みは、5〜15mm、好ましくは
7〜12mm程度である。
Although the material for forming such a rectangular reinforcing member is arbitrary, it is preferable to manufacture the reinforcing member by, for example, FRP. In this case, a mold corresponding to a square shape is prepared, and the columnar bodies are arranged in portions corresponding to the openings 33, 33 ′, 33 ″,. By laminating a resin in the mold by a hand lay-up method or a spray-up method, and releasing the mold and the columnar body after the resin is cured, a square reinforcing body having a plurality of openings can be obtained. . The thickness of the FRP resin layer is 5 to 15 mm, preferably about 7 to 12 mm.

【0019】なお所望により、さらに強度を上げるた
め、この角形状補強体の開口部に、棒状ないしは板状の
補強片が、かすがい状にはめ込まれていてもよい。
If desired, in order to further increase the strength, a bar-shaped or plate-shaped reinforcing piece may be fitted into the opening of the square-shaped reinforcing member in a scrambled manner.

【0020】上記補強体は、槽本体内部に槽本体長手方
向に沿って、1200〜1800mm以内に一個は設け
るのが好ましく、最も好ましくは1400〜1600m
m以内に一個を配設することである。
It is preferable that one reinforcing member is provided within the tank main body within a length of 1200 to 1800 mm along the longitudinal direction of the tank main body, most preferably 1400 to 1600 m.
m within one meter.

【0021】また所望により、下槽部外周部にさらに補
強部35を設けてもよい。通常補強部は帯状の補強体で
あり、角形または丸型のパイプを下槽部外周部に巻き付
けることにより形成される。パイプは樹脂製でもよいが
好ましくは鉄製等金属製のパイプである。さらにこのパ
イプの上から、FRP樹脂層を数回重ねて塗って補強す
ることも好ましい。このような帯状の補強部を槽周囲に
設けることにより、槽本体内部に処理液が導入された場
合、処理液の重量により、下槽部の内壁が槽内側から水
圧で外方に加圧され、槽が望まざる態様で膨張するのを
抑えることができる。なお、65はマンホールである。
If desired, a reinforcing portion 35 may be further provided on the outer peripheral portion of the lower tank portion. Usually, the reinforcing portion is a belt-shaped reinforcing member, and is formed by winding a square or round pipe around the outer periphery of the lower tank portion. The pipe may be made of resin, but is preferably made of metal such as iron. Further, it is also preferable to reinforce the pipe by coating the FRP resin layer several times over the pipe. By providing such a band-shaped reinforcing portion around the tank, when the processing liquid is introduced into the tank main body, the inner wall of the lower tank is pressurized outward from the tank by water pressure due to the weight of the processing liquid. The expansion of the tank in an undesired manner can be suppressed. In addition, 65 is a manhole.

【0022】本発明の槽本体は、隔壁により区画されて
複数の処理槽を形成する。図1において、40が隔壁で
あって、これにより複数の処理槽43,45が形成され
る。かくして形成された処理槽の一つ、例えば43は嫌
気的処理槽であり、他の一つ45は好気的処理槽であ
る。
The tank body of the present invention is partitioned by partition walls to form a plurality of processing tanks. In FIG. 1, reference numeral 40 denotes a partition, whereby a plurality of processing tanks 43 and 45 are formed. One of the processing tanks thus formed, for example, 43 is an anaerobic processing tank, and the other 45 is an aerobic processing tank.

【0023】隔壁40は処理プロセスに応じて複数個設
け、より多くの処理槽を形成することも可能である。隔
壁は基本的には、角形状の補強体と同様にして、FRP
で形成することが好ましい。また、隔壁自体が補強手段
を有していてもよく、例えば図示したごとき棒状または
板状等の補強片41,41’,41’’,・・・を複数
個、例えば平行に配設することができる。
A plurality of partitions 40 may be provided according to the processing process to form more processing tanks. The partition walls are basically made of FRP in the same manner as the angular reinforcing body.
It is preferable to form with. Further, the partition wall itself may have a reinforcing means. For example, a plurality of reinforcing pieces 41, 41 ', 41'',... Can be.

【0024】なお、隔壁により処理槽を区画した場合、
隣り合う槽間の処理水の移動は、ポンプ等の機械的送液
手段によってもよいが、通常は隔壁上部に設けられた堰
若しくは開口部(図示せず)等を通して行われる。
When the treatment tank is divided by partition walls,
The movement of the treated water between the adjacent tanks may be performed by a mechanical liquid sending means such as a pump, but is usually performed through a weir or an opening (not shown) provided at the upper part of the partition.

【0025】本発明においては、図1に示すように、か
くして形成した好気的処理槽45に、汚泥を分離するた
めの分離膜モジュール50が内蔵される。
In the present invention, as shown in FIG. 1, a separation membrane module 50 for separating sludge is incorporated in the aerobic treatment tank 45 thus formed.

【0026】好気的処理槽45は、空気または酸素を曝
気して槽内を好気的状態に保持しながら汚泥を浮遊さ
せ、好気性細菌( 例えば硝化細菌 )により酸化分解反応
( この場合は硝化反応 )を行わせる槽である。硝化反応
により、汚水中のアンモニア性窒素は亜硝酸または硝酸
にまで硝化される。曝気装置としては、散気管、ディフ
ューザ、スパージャ等が使用される。この意味で好気的
処理槽は、硝化槽または曝気槽とも称される。硝化反応
後の亜硝酸または硝酸を含有している処理液は、後記す
る脱窒槽に循環される。
The aerobic treatment tank 45 floats sludge while aerating the air or oxygen to keep the inside of the tank in an aerobic state, and oxidative decomposition reaction by aerobic bacteria (for example, nitrifying bacteria).
(In this case, nitrification reaction). By the nitrification reaction, the ammonia nitrogen in the wastewater is nitrified to nitrous acid or nitric acid. A diffuser, a diffuser, a sparger, or the like is used as the aeration device. In this sense, the aerobic treatment tank is also called a nitrification tank or an aeration tank. The treatment solution containing nitrous acid or nitric acid after the nitrification reaction is circulated to a denitrification tank described later.

【0027】分離膜モジュール50としては、特に限定
するものではなく、一般的に使用されているものがいず
れも好適に適用できる。中でも好ましい分離膜モジュー
ルは、表面に濾液の流路となる溝を形成した膜支持体の
両面にスペーサを介して平膜状の濾過膜を接着した平板
状の膜ユニットを複数準備し、これを上下が開口してい
る箱型のケーシング内に、上下方向に適当な間隔をもっ
て並列に配設した外形箱型のものである。この箱型の分
離膜モジュールは、散気装置を備えた好気的処理槽の活
性汚泥を含んだ液中に浸漬される。散気装置は通常分離
膜モジュールの下部に設けられるが、この分離膜モジュ
ールの内部、特にその下部に散気装置をユニットとして
組み込んで散気装置付の分離膜モジュールとすることも
可能である。
The separation membrane module 50 is not particularly limited, and any commonly used one can be suitably applied. Among them, a preferable separation membrane module prepares a plurality of flat membrane units in which flat membrane filtration membranes are adhered via spacers on both sides of a membrane support having a groove formed on the surface thereof as a flow path of a filtrate, and this is prepared. It is a box-shaped outer casing which is arranged in parallel in a box-shaped casing with an open top and bottom at an appropriate interval in the vertical direction. This box-shaped separation membrane module is immersed in a liquid containing activated sludge in an aerobic treatment tank provided with a diffuser. The air diffuser is usually provided below the separation membrane module. However, it is also possible to incorporate the air diffuser as a unit inside the separation membrane module, especially below the module, to form a separation membrane module with an air diffuser.

【0028】図3は、本発明の角形槽10に、処理水が
満たされた状態で分離膜モジュール50を内蔵した状態
を示す説明図である。この場合は、散気装置が該モジュ
ール中に組み込まれた状態を示す。
FIG. 3 is an explanatory view showing a state in which the separation tank module 50 is built in the square tank 10 of the present invention in a state where the tank is filled with the treated water. In this case, a state in which the air diffuser is incorporated in the module is shown.

【0029】モジュール中の各膜ユニットの内側流路は
吸引管に接続されており、減圧ポンプ等で吸引負圧を与
えることにより、処理水は分離膜を透過し、活性汚泥や
凝集汚泥と濾過分離されて透過水として系外に引き出さ
れる。透過水はそのまま、好ましくは消毒されて河川等
に放流される。汚泥と処理液の分離を、従来のごとく重
力を利用した自然沈殿槽により行う場合は、槽体の容積
は相当大きくならざる得なかったが、分離膜モジュール
によれば、固液分離処理が極めて高効率で行えるので、
槽容積はコンパクトとなり、かつ、槽内の汚泥濃度を高
く保持できるので、好気的処理も効率よく行えるという
利点を有する。
The inside flow path of each membrane unit in the module is connected to a suction pipe, and by applying a suction negative pressure by a decompression pump or the like, the treated water permeates the separation membrane, and is filtered by activated sludge or coagulated sludge. It is separated and drawn out of the system as permeated water. The permeated water is preferably disinfected and discharged to a river or the like. When the separation of sludge and the treatment liquid is performed by a conventional natural sedimentation tank using gravity as in the past, the volume of the tank body had to be considerably large, but according to the separation membrane module, the solid-liquid separation treatment was extremely difficult. Because it can be done with high efficiency,
The tank volume is compact and the sludge concentration in the tank can be kept high, so that there is an advantage that aerobic treatment can be performed efficiently.

【0030】分離された活性汚泥すなわち余剰汚泥は、
常用されるエアリフトの如き汚泥移送手段により、後記
する嫌気的処理槽に、またはその沈殿分離槽好ましくは
第一沈殿分離槽に送られる。なお、分離膜モジュールに
使用する分離膜としては、箱型のケーシング内に配設さ
れるものであれば、所謂平膜のみならず中空糸膜でもコ
ルゲート膜でも構わない。
The separated activated sludge or surplus sludge is
The sludge is transferred to an anaerobic treatment tank, which will be described later, or to a sedimentation / separation tank, preferably a first sedimentation / separation tank, by a commonly used sludge transfer means such as an air lift. The separation membrane used for the separation membrane module is not limited to a so-called flat membrane, but may be a hollow fiber membrane or a corrugated membrane as long as it is disposed in a box-shaped casing.

【0031】図1においては、好気的処理槽45には、
一個の分離膜モジュール50が内蔵されているが、モジ
ュールの数は処理汚水量に応じて、任意に増加させるこ
とが可能である。
In FIG. 1, the aerobic treatment tank 45 includes:
Although one separation membrane module 50 is built in, the number of modules can be arbitrarily increased according to the amount of treated sewage.

【0032】図2は、より大きい好気的処理槽45にお
いて、多数の分離膜モジュール50,50’,5
0’’,50''' ,50'''',・・・を並列して配設し
たものである。
FIG. 2 shows that in a larger aerobic treatment tank 45, a number of separation membrane modules 50, 50 ', 5
0 ″, 50 ′ ″, 50 ″ ″,... Are arranged in parallel.

【0033】図1〜図2は一つの槽本体内部を隔壁で区
画し、各区画を、嫌気的処理槽および好気的処理槽とす
るものであるが、処理汚水量がさらに多くなった場合
は、二つの槽本体を準備し、例えば一槽を嫌気的処理
槽、もう一槽を好気的処理槽とすることも可能である。
この場合は、さらに多数の分離膜モジュールが該好気的
処理槽内に内蔵されることになる。
FIGS. 1 and 2 show a case where the inside of one tank body is partitioned by partition walls, and each partition is an anaerobic treatment tank and an aerobic treatment tank. It is also possible to prepare two tank bodies, for example, one tank as an anaerobic processing tank and the other tank as an aerobic processing tank.
In this case, more separation membrane modules are built in the aerobic treatment tank.

【0034】一方、本発明においては、隔壁により好気
的処理槽45とともに、嫌気的処理槽43が形成され
る。
On the other hand, in the present invention, the anaerobic treatment tank 43 is formed together with the aerobic treatment tank 45 by the partition walls.

【0035】嫌気的処理槽は、槽内を無酸素または低酸
素状態( 嫌気的状態 )に保持しながら、嫌気性細菌( 例
えば脱窒素菌 )により分解反応( この場合は脱窒素反応
)を行わせる槽である。脱窒素反応( 以下脱窒反応と云
う )により、亜硝酸または硝酸は、窒素ガスにまで還元
される。嫌気的処理槽には、当然のことながら、曝気装
置は必要なく、通常、嫌気性固定床や嫌気性流動床、ま
たは緩い機械的攪拌若しくはガス攪拌を伴う攪拌槽型と
するが、攪拌手段のない静止型の沈殿分離槽とすること
も可能である。この意味で嫌気性処理槽は脱窒槽または
沈殿分離槽と称される。なお、区画して構成された嫌気
性処理槽を、隔壁により更に区画し、第一槽を第一沈殿
分離槽、第二槽を第二沈殿分離槽とし、この第一沈殿分
離槽では、流入汚水中のチリ紙、糸くず、繊維、泥等の
固形物が、余剰汚泥または好気性処理槽からの返送汚泥
とともに、沈殿分離が行われるようにし、第二沈殿分離
槽では主として脱窒反応等の嫌気性反応を行わせるよう
にしてもよい。この場合は、第二沈殿分離槽においては
緩い攪拌手段を適用することが好ましい。
In the anaerobic treatment tank, a decomposition reaction (in this case, a denitrification reaction) by an anaerobic bacterium (for example, a denitrifying bacterium) is performed while maintaining the inside of the tank in an anoxic or hypoxic state (anaerobic state).
). Nitrite or nitric acid is reduced to nitrogen gas by a denitrification reaction (hereinafter referred to as a denitrification reaction). The anaerobic treatment tank, of course, does not require an aeration device, and is usually an anaerobic fixed bed or an anaerobic fluidized bed, or a stirring tank type with loose mechanical stirring or gas stirring, but without a stirring means. It is also possible to use a stationary sedimentation separation tank. In this sense, the anaerobic treatment tank is called a denitrification tank or a sedimentation separation tank. In addition, the anaerobic treatment tank configured to be partitioned is further partitioned by partition walls, the first tank is a first precipitation separation tank, and the second tank is a second precipitation separation tank. Solid matter such as dust paper, lint, fiber, and mud in the sewage is subjected to sedimentation and separation together with excess sludge or sludge returned from the aerobic treatment tank. May be performed. In this case, it is preferable to apply a gentle stirring means in the second precipitation separation tank.

【0036】すでに述べたように、処理汚水の量が多く
なった場合は、槽本体を二槽準備し、一槽は多数の分離
膜モジュールを格納配置する好気的処理槽とし、もう一
槽は嫌気的処理槽とすることができる。上記したごと
く、この嫌気性処理槽を隔壁により更に区画し、第一槽
を第一沈殿分離槽、第二槽を第二沈殿分離槽としてもよ
い。
As described above, when the amount of treated sewage becomes large, two tank bodies are prepared, one tank is an aerobic treatment tank for storing and arranging a large number of separation membrane modules, and the other tank is provided. Can be an anaerobic treatment tank. As described above, this anaerobic treatment tank may be further partitioned by partition walls, and the first tank may be a first precipitation separation tank and the second tank may be a second precipitation separation tank.

【0037】以下、本発明の浄化槽を使用する実施例に
ついて簡単に述べる。
Hereinafter, an embodiment using the septic tank of the present invention will be briefly described.

【0038】図4は、本発明の角形浄化槽を一槽使用す
る例であり、図5はこれを二槽使用する例である。
FIG. 4 shows an example in which one rectangular septic tank of the present invention is used, and FIG. 5 shows an example in which two rectangular septic tanks are used.

【0039】図4において、10は角形の槽本体であ
り、これを隔壁40により区画し、嫌気的処理槽43お
よび好気的処理槽45が形成されている。本例では嫌気
的処理槽43は主として脱窒槽として、好気的処理槽4
5は硝化槽として作用する。ここでは、嫌気的処理槽を
さらに隔壁40’で区画し、第一沈殿分離槽43−1と
第二沈殿分離槽43−2が形成される。
In FIG. 4, reference numeral 10 denotes a rectangular tank main body, which is divided by a partition wall 40, and an anaerobic processing tank 43 and an aerobic processing tank 45 are formed. In this example, the anaerobic treatment tank 43 is mainly a denitrification tank, and the aerobic treatment tank 4
5 acts as a nitrification tank. Here, the anaerobic treatment tank is further partitioned by a partition 40 ′, and a first precipitation separation tank 43-1 and a second precipitation separation tank 43-2 are formed.

【0040】好気的処理槽45内には、曝気装置47が
設置され、槽内が好気的雰囲気下に保持されており、ま
た、分離膜モジュール50が格納設置されている。
In the aerobic treatment tank 45, an aeration device 47 is installed, the inside of the tank is kept under an aerobic atmosphere, and a separation membrane module 50 is stored and installed.

【0041】処理汚水( 原水 )60は、脱窒槽43の第
一沈殿分離槽43−1に流入し、ここで流入汚水中の固
形物は沈殿する。処理汚水は、隔壁40’上部に設けら
れた堰または開口部等を通して第二沈殿分離槽43−2
に移送される。ただし、汚水中のアンモニア態窒素( N
4 + −N )は脱窒槽では処理されないでこれを素通り
して、さらに隔壁40を越えて硝化槽45に移送され
る。硝化槽45においては、好気性菌の硝酸菌が曝気装
置からの曝気による好気性雰囲気下において活発に働
き、式 (1) 、 (2) 、〔化1〕に示すように、アンモ
ニア態窒素( NH4 + −N )は亜硝酸態窒素( NO2 -
−N) や硝酸態窒素( NO3 - −N) にまで酸化され、
また硝酸菌により汚泥が盛んに形成され、余剰汚泥が生
じる。
The treated sewage (raw water) 60 flows into the first sedimentation / separation tank 43-1 of the denitrification tank 43, where solids in the inflowed sewage settle. The treated sewage is passed through a second sedimentation / separation tank 43-2 through a weir or an opening provided above the partition 40 '.
Is transferred to However, ammonia nitrogen (N
H 4 + -N) is not treated in the denitrification tank, passes through it, and is transferred to the nitrification tank 45 through the partition wall 40. In the nitrification tank 45, a nitric acid bacterium of the aerobic bacterium works actively under the aerobic atmosphere by aeration from the aeration device, and as shown in the formulas (1), (2) and [Chem. NH 4 + -N) is nitrite nitrogen (NO 2 -
-N) and nitrate nitrogen (NO 3 -- N),
In addition, sludge is actively formed by nitric acid bacteria, resulting in excess sludge.

【0042】[0042]

【化1】 NH4 + +1.5O2 →NO2 - +H2 O+2H+ (1) NO2 - +0.5O2 →NO3 - (2) ## STR1 ## NH 4 + + 1.5O 2 → NO 2 - + H 2 O + 2H + (1) NO 2 - + 0.5O 2 → NO 3 - (2)

【0043】余剰汚泥は、エアリフト手段( 図示せず )
等の汚泥移送手段により、硝化槽から流路53により抜
き出され、返送汚泥として、好気的処理槽の第一沈殿分
離槽43−1に戻される。第一沈殿分離槽では、他の固
形物とともに、返送汚泥が沈殿分離され、排出口44か
ら連続的または間欠的に抜き出されて焼却その他の適当
な手段で処理される。
The excess sludge is supplied to an air lift means (not shown).
The sludge is transferred from the nitrification tank through the channel 53 by the sludge transfer means, and returned to the first sedimentation separation tank 43-1 of the aerobic treatment tank as returned sludge. In the first sedimentation separation tank, returned sludge is sedimented and separated together with other solids, and continuously or intermittently withdrawn from the discharge port 44 and treated by incineration or other appropriate means.

【0044】一方、硝化槽中の亜硝酸態窒素( NO2 -
−N) や硝酸態窒素( NO3 - −N) を含んだ硝化液
は、流路55により抜き出され、脱窒槽(第一分離槽)
43−1に循環させられる。この硝化液は原水(処理汚
水)と混合され、脱窒菌は、原水中の有機物を主たる水
素供与体として、式 (3) 、 (4) 、〔化2〕に示すよ
うに、亜硝酸または硝酸を水素と反応させ窒素まで還元
することにより、脱窒が行われる。
[0044] On the other hand, nitrite nitrogen in the nitrification tank (NO 2 -
-N) and nitrification liquid containing nitrate nitrogen (NO 3 -- N) are extracted through the flow path 55 and are denitrified (first separation tank).
43-1. The nitrification solution is mixed with raw water (treated wastewater), and the denitrifying bacteria treat the organic matter in the raw water as the main hydrogen donor, as shown in formulas (3), (4) and (2). Is reacted with hydrogen to reduce it to nitrogen, thereby performing denitrification.

【0045】[0045]

【化2】 2NO2 - +3H2 →N2 +2OH- +2H2 O (3) 2NO3 - +5H2 →N2 +2OH- +4H2 O (4) Embedded image 2NO 2 + 3H 2 → N 2 + 2OH + 2H 2 O (3) 2NO 3 + 5H 2 → N 2 + 2OH + 4H 2 O (4)

【0046】以上のごとくして、脱窒槽と硝化槽を組合
せ、脱窒槽と硝化槽の容量比、処理水の各槽における滞
留時間、硝化槽の汚泥濃度( MLSS(mg/リット
ル))、硝化液の流入汚水量に対する循環量と返送汚泥
比等を最適に制御することにより、特に、硝化液の流入
汚水量に対する循環量と返送汚泥量を最適に制御するこ
とにより、ほぼ完全な硝化、脱窒を行うことができる。
この状態において分離膜モジュール50から、汚泥と分
離されて浄化された処理水57が抜き出される。なお、
処理水は通常そのまま河川に放流可能であるが、必要が
あれば適当に薬液供給装置やUVランプを備えた消毒装
置により消毒してから放流することも可能である。
As described above, the denitrification tank and the nitrification tank are combined, the capacity ratio between the denitrification tank and the nitrification tank, the residence time of the treated water in each tank, the sludge concentration in the nitrification tank (MLSS (mg / liter)), the nitrification Almost complete nitrification and denitrification by optimally controlling the amount of circulating water and the ratio of returned sludge to the amount of wastewater flowing into the liquid, and especially controlling the amount of circulating water and the amount of returned sludge to the amount of wastewater flowing into the nitrifying liquid. Nitriding can be performed.
In this state, the treated water 57 separated and purified from the sludge is extracted from the separation membrane module 50. In addition,
Normally, the treated water can be discharged to the river as it is, but if necessary, it can be discharged after being appropriately disinfected by a disinfecting device equipped with a chemical solution supply device or a UV lamp.

【0047】図5の槽本体を二槽使用する場合も、基本
的には図4の一槽使用の場合と変わらない。ただし、脱
窒槽と硝化槽を区画する隔壁を設ける代わりに、脱窒槽
として一槽、硝化槽として一槽、別々の槽本体を使用す
る点、この二槽の間が、堰等でなく流路63で接続され
ている点、および硝化槽にさらに多数の分離膜モジュー
ル50,50’,50’’,50''' ,・・・が内蔵さ
れている点が異なるだけであるため、詳しい説明は省略
する。
The case of using two tank bodies in FIG. 5 is basically the same as the case of using one tank in FIG. However, instead of providing a partition that separates the denitrification tank and the nitrification tank, one tank is used as the denitrification tank, one tank is used as the nitrification tank, and a separate tank body is used. The only difference is that the connection is made at 63 and that the nitrification tank has more built-in separation membrane modules 50, 50 ', 50 ", 50"',... Is omitted.

【0048】なお、これ以外にも処理汚水の流量や成分
に応じて種々の変形が可能であり、例えば嫌気性槽と好
気性槽の組合せの順序も、第一槽を好気性槽とし第二槽
を嫌気性槽とすることもできる。
In addition, various modifications are possible in accordance with the flow rate and composition of the treated sewage. For example, the order of the combination of the anaerobic tank and the aerobic tank is such that the first tank is an aerobic tank and the second tank is an aerobic tank. The tank may be an anaerobic tank.

【0049】[0049]

【発明の効果】(1) 本発明の角形浄化槽は、槽内に被
処理液が満たされた場合、少なくとも液面まで、すなわ
ち液が接触している槽の内壁部が、すべて実質的に平面
部で構成されている角形槽である。したがって、好まし
くは角形の分離膜モジュールを、同じく角形の槽に内蔵
することができるため、デッドスペースは無く、膜面積
を有効に活用できて、極めて効率的かつコンパクトな合
併処理浄化槽とすることが可能である。
(1) In the rectangular septic tank according to the present invention, when the liquid to be treated is filled in the tank, at least up to the liquid surface, that is, the inner wall portion of the tank in contact with the liquid is substantially flat. It is a rectangular tank composed of parts. Therefore, since a preferably rectangular separation membrane module can be built in the same rectangular tank, there is no dead space, the membrane area can be effectively used, and a very efficient and compact combined treatment / purification tank can be obtained. It is possible.

【0050】(2) 本発明の角形浄化槽の槽本体は、丸
形槽と比較して、地下に埋設する場合に大きな施工上の
差異を生ずる。
(2) The tank body of the rectangular septic tank of the present invention has a large difference in construction when buried underground compared to a round tank.

【0051】基本的に、従来の丸形槽( 例えば横断面径
2500mmφ )と本発明の角形槽( 例えば横断面23
00mmH×2300mmD )に、同水位( 例えば22
50mmH )まで水を満たした場合で比較すると、容易
に理解されるように、本発明の角形槽の槽断面積は約2
0%大きくなる。従ってその分槽長が短くなり、幅も少
ないので、以下のように設置面積および掘削量が少なく
てすむ。
Basically, a conventional round tank (for example, having a cross-sectional diameter of 2500 mmφ) and a rectangular tank of the present invention (for example, having a cross-sectional
00 mmH x 2300 mmD), and the same water level (for example, 22 mm
In comparison with the case where water is filled up to 50 mmH 2), as can be easily understood, the cross-sectional area of the rectangular tank of the present invention is about 2 mm.
0% larger. Therefore, the tank length is shorter and the width is smaller, so that the installation area and the excavation amount can be reduced as described below.

【0052】従来の丸型槽では、設置面積および掘削量
が多いのみならず、きわめて多量の埋め戻しを必要とす
る。すなわち、必要の無い部分を掘った上、再び埋め戻
さざるを得ないので作業量および作業時間上、非常に無
駄な工事となる。しかも、槽底部が丸いため、埋め戻し
ずらく、これを二槽並列に並べる場合はさらに作業は困
難となり、しかも危険を伴う。
The conventional round tank requires not only a large installation area and a large amount of excavation but also a very large amount of backfill. In other words, since unnecessary parts must be dug and then refilled, the work is extremely wasteful in terms of work amount and work time. In addition, since the bottom of the tank is round, it is difficult to backfill the tank, and when two tanks are arranged in parallel, the work becomes more difficult and involves a risk.

【0053】これに対し、本発明の角形槽を地下に埋設
する場合は、この角形槽とほぼ同じ容積・形状の設置穴
を掘削すればよいため、残土や埋め戻し量はほとんど無
く、また丸形槽では必須の底部の台座も不要である等、
丸形槽を設置する場合に比較して、作業量および作業時
間が大幅に短縮される。
On the other hand, when the rectangular tank of the present invention is to be buried underground, installation holes having substantially the same volume and shape as the rectangular tank need only be excavated. In the case of a shaped tank, the essential base is not required.
The work amount and work time are greatly reduced as compared with the case of installing a round tank.

【0054】なお、さらに付け加えれば、マンホール等
が孔設される槽体上部は、曲面がほとんど無いため、機
器の据え付け・点検の際の足場の確保が容易であり、作
業が安全に行える。
In addition, since the upper part of the tank body in which the manholes and the like are formed has almost no curved surface, it is easy to secure a scaffold for installation and inspection of the equipment, and the work can be performed safely.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の浄化槽の槽本体を一部を切り欠いて透
視的に示す斜視図
FIG. 1 is a perspective view showing a tank main body of a septic tank according to the present invention in a partially cutaway view.

【図2】本発明の浄化槽の槽本体を一部を切り欠いて透
視的に示す斜視図
FIG. 2 is a perspective view showing a tank main body of the septic tank of the present invention in a partially cutaway view.

【図3】本発明の角形槽に処理水が満たされた状態で分
離膜モジュールを内蔵した状態を示す説明図
FIG. 3 is an explanatory diagram showing a state in which a separation membrane module is built in a state in which a rectangular tank of the present invention is filled with treated water.

【図4】本発明の浄化槽を一槽使用する排水処理のフロ
ーシート
FIG. 4 is a flow sheet for wastewater treatment using one septic tank according to the present invention.

【図5】本発明の浄化槽を二槽使用する排水処理のフロ
ーシート
FIG. 5 is a flow sheet for wastewater treatment using two septic tanks of the present invention.

【符号の説明】[Explanation of symbols]

10 浄化槽の槽本体 12 肩部 15 下槽部 20 上槽部 25 フランジ部 30,30’・・・角形状の補強体 33,33’,33’’,・・・ 開口部 35 補強部 40,40’ 隔壁 41,41’,41’’,・・・補強片 43 嫌気的処理槽、脱窒槽または沈殿分離槽 43−1 第一沈殿分離槽 43−2 第二沈殿分離槽 44 排出口 45 好気的処理槽または硝化槽 47 曝気装置 50,50' ,50’’,50''' ,・・・ 分離膜モ
ジュール 53 汚泥の返送流路 55 硝化液の循環流路 57 浄化された処理水 60 処理汚水( 原水 ) 63 二槽の連絡流路 65 マンホール H 槽本体高さ h1 下槽部高さ h2 上槽部高さ
DESCRIPTION OF SYMBOLS 10 The tank main body of a septic tank 12 Shoulder part 15 Lower tank part 20 Upper tank part 25 Flange part 30, 30 '... Square-shaped reinforcement body 33, 33', 33 '' ... Opening part 35 Reinforcement part 40, 40 ′ partition 41, 41 ′, 41 ″, reinforcing piece 43 anaerobic treatment tank, denitrification tank or sedimentation separation tank 43-1 first sedimentation separation tank 43-2 second sedimentation separation tank 44 discharge port 45 Pneumatic treatment tank or nitrification tank 47 Aeration device 50, 50 ', 50 ", 50"', ... Separation membrane module 53 Sludge return flow path 55 Nitrification liquid circulation flow path 57 Purified treated water 60 processing wastewater (raw water) 63 double-chamber communication passage 65 manhole H tank body height h 1 lower tank portion height h 2 upper tank portion height

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大高 寛 東京都港区港南二丁目13番31号 東海工業 株式会社内 Fターム(参考) 4D006 GA02 HA01 HA42 HA45 HA93 JA04A JA06Z JB04 KA12 KA67 KA72 KB13 KB23 KB25 KE02Q MA01 MA03 MB02 PA02 PB08 PB70 PC61 PC64 PC65 4D027 AB01 AB07 AB12 AB16 CA01 4D028 AA08 AB00 BA00 BB02 BB07 BC12 BC17 BC18 BC24 BC28 CA01 CA05 CA11 CC01 CC12 4D040 BB54 BB57 BB65 BB66 BB82 BB91  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hiroshi Otaka 2-13-13 Konan, Minato-ku, Tokyo Tokai Kogyo Co., Ltd. F-term (reference) 4D006 GA02 HA01 HA42 HA45 HA93 JA04A JA06Z JB04 KA12 KA67 KA72 KB13 KB23 KB25 KE02Q MA01 MA03 MB02 PA02 PB08 PB70 PC61 PC64 PC65 4D027 AB01 AB07 AB12 AB16 CA01 4D028 AA08 AB00 BA00 BB02 BB07 BC12 BC17 BC18 BC24 BC28 CA01 CA05 CA11 CC01 CC12 4D040 BB54 BB57 BB65 BB66 BB82 BB91

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 浄化槽の槽本体が、縦断面及び横断面形
状が略角形の槽体からなり、 前記槽本体は、いずれも繊維強化樹脂により形成された
下槽部と上槽部とが接合して構成され、 前記槽本体内部には、槽内壁を支える角形状の補強体が
少なくても一か所に設けられ、さらに前記槽本体には、
隔壁により区画された複数の処理槽が形成され、 少なくともその処理槽の一つは嫌気的処理槽、他の一つ
は好気的処理槽であり、前記好気的処理槽には、汚泥を
分離するための分離膜モジュールが内蔵されていること
を特徴とする合併処理用の分離膜式角形浄化槽。
1. A tank body of a septic tank comprises a tank body having a substantially rectangular vertical and horizontal cross-sectional shape, and the tank body is formed by joining a lower tank part and an upper tank part formed of a fiber reinforced resin. In the tank main body, at least one angular reinforcing body supporting the tank inner wall is provided in at least one place, and further in the tank main body,
A plurality of treatment tanks partitioned by partition walls are formed, at least one of the treatment tanks is an anaerobic treatment tank, and the other is an aerobic treatment tank, and the aerobic treatment tank contains sludge. A separation membrane-type rectangular septic tank for merger processing, wherein a separation membrane module for separation is built in.
【請求項2】 浄化槽の槽本体が、縦断面及び横断面形
状が略角形の槽体からなり、 前記槽本体は、いずれも繊維強化樹脂により形成された
下槽部と上槽部とが接合して構成され、 前記槽本体内部には、槽内壁を支える角形状の補強体が
少なくても一か所に設けられている二つの槽本体からな
り、 前記槽本体の一つは、嫌気的処理槽、他の一つは好気的
処理槽であり、両者は流路で接続されるとともに、前記
好気的処理槽には、汚泥を分離するための分離膜モジュ
ールが内蔵されていることを特徴とする合併処理用の分
離膜式角形浄化槽。
2. A tank body of a septic tank comprises a tank body having a substantially rectangular vertical and horizontal cross-sectional shape, and the tank body is formed by joining a lower tank part and an upper tank part formed of a fiber-reinforced resin. The inside of the tank body is composed of at least two tank bodies provided with at least one angular reinforcing body for supporting the tank inner wall, and one of the tank bodies is anaerobic. The treatment tank, the other one is an aerobic treatment tank, both are connected by a flow path, and the aerobic treatment tank has a built-in separation membrane module for separating sludge Separation membrane type septic tank for merger processing characterized by the following.
【請求項3】 下槽部と、上槽部が繊維強化樹脂製のフ
ランジ手段でボルト接合されている請求項1または2記
載の角形浄化槽。
3. The rectangular purifying tank according to claim 1, wherein the lower tank and the upper tank are bolted together by a flange means made of fiber reinforced resin.
【請求項4】 前記下槽部の高さは槽本体高さの1/2
〜3/4の位置にある請求項1または2記載の角形浄化
槽。
4. The height of the lower tank is half the height of the tank body.
The rectangular septic tank according to claim 1 or 2, which is located at a position of about 3/4.
【請求項5】 嫌気的処理槽において脱窒反応が、好気
的処理槽において硝化反応が行われ、好気的処理槽から
硝化された処理液および活性汚泥の一部が嫌気的処理槽
に循環され、さらに脱窒反応が行われる請求項1、2、
3または4記載の角形浄化槽。
5. A denitrification reaction is carried out in an anaerobic treatment tank, and a nitrification reaction is carried out in an aerobic treatment tank. A part of the nitrified treatment liquid and activated sludge from the aerobic treatment tank are transferred to the anaerobic treatment tank. Claims 1, 2, which are circulated and further subjected to a denitrification reaction
3. The rectangular septic tank according to 3 or 4.
JP30173098A 1998-10-09 1998-10-09 Separation membrane type rectangular septic tank for combined treatment Withdrawn JP2000117276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30173098A JP2000117276A (en) 1998-10-09 1998-10-09 Separation membrane type rectangular septic tank for combined treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30173098A JP2000117276A (en) 1998-10-09 1998-10-09 Separation membrane type rectangular septic tank for combined treatment

Publications (1)

Publication Number Publication Date
JP2000117276A true JP2000117276A (en) 2000-04-25

Family

ID=17900476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30173098A Withdrawn JP2000117276A (en) 1998-10-09 1998-10-09 Separation membrane type rectangular septic tank for combined treatment

Country Status (1)

Country Link
JP (1) JP2000117276A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743353B2 (en) * 2000-11-07 2004-06-01 Sharp Kabushiki Kasisha Method and apparatus for neutralizing alkaline wastewater without using mineral acids
JP2004243248A (en) * 2003-02-14 2004-09-02 Hitachi Plant Eng & Constr Co Ltd Nitrogen removing device
US6863817B2 (en) 2002-12-05 2005-03-08 Zenon Environmental Inc. Membrane bioreactor, process and aerator
JP2007152282A (en) * 2005-12-07 2007-06-21 Mitsubishi Rayon Eng Co Ltd Membrane separation active sludge treatment method
JP2007209947A (en) * 2006-02-13 2007-08-23 Mitsubishi Rayon Eng Co Ltd Membrane separation activated sludge process
JPWO2008139618A1 (en) * 2007-05-14 2010-07-29 三菱レイヨン・エンジニアリング株式会社 Water treatment method
JP2016129879A (en) * 2015-01-15 2016-07-21 フジクリーン工業株式会社 Wastewater treatment apparatus
JP2017164729A (en) * 2016-03-18 2017-09-21 株式会社ハウステック Purification tank and storage or transportation method for purification tank
JP2020089839A (en) * 2018-12-06 2020-06-11 株式会社ハウステック Water treatment device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743353B2 (en) * 2000-11-07 2004-06-01 Sharp Kabushiki Kasisha Method and apparatus for neutralizing alkaline wastewater without using mineral acids
US6863817B2 (en) 2002-12-05 2005-03-08 Zenon Environmental Inc. Membrane bioreactor, process and aerator
JP2004243248A (en) * 2003-02-14 2004-09-02 Hitachi Plant Eng & Constr Co Ltd Nitrogen removing device
JP2007152282A (en) * 2005-12-07 2007-06-21 Mitsubishi Rayon Eng Co Ltd Membrane separation active sludge treatment method
JP2007209947A (en) * 2006-02-13 2007-08-23 Mitsubishi Rayon Eng Co Ltd Membrane separation activated sludge process
JPWO2008139618A1 (en) * 2007-05-14 2010-07-29 三菱レイヨン・エンジニアリング株式会社 Water treatment method
JP5366402B2 (en) * 2007-05-14 2013-12-11 三菱レイヨン株式会社 Water treatment method
JP2016129879A (en) * 2015-01-15 2016-07-21 フジクリーン工業株式会社 Wastewater treatment apparatus
JP2017164729A (en) * 2016-03-18 2017-09-21 株式会社ハウステック Purification tank and storage or transportation method for purification tank
JP2020089839A (en) * 2018-12-06 2020-06-11 株式会社ハウステック Water treatment device
JP7313815B2 (en) 2018-12-06 2023-07-25 株式会社ハウステック Water treatment equipment and its manufacturing method

Similar Documents

Publication Publication Date Title
US5578202A (en) Water processing system for highly contaminated water
JP5671061B2 (en) Wastewater treatment system and method
US8871089B2 (en) Wastewater treatment system
AU2002301606B2 (en) Batch Style Wastewater Treatment Apparatus Using Biological Filtering Process and Wastewater Treatment Method Using The Same
CA2132592C (en) A method of treating wastewater
CN101767901A (en) Mobile sewage treatment device and waste water treatment method thereof
JP2000117276A (en) Separation membrane type rectangular septic tank for combined treatment
CA3217446A1 (en) Systems and methods of gas infusion for wastewater treatment
JP2000237791A (en) Method of removing nitrogen in nitrate nitrogen- containing water and denitrification bioreactor
CN108996827B (en) Sewage plant tail water deep denitrification device based on methane oxidation
JP3058291U (en) Separation membrane type septic tank for merger processing
Balmer et al. Upgrading for nitrogen removal under severe site restrictions
US5807484A (en) Waste water treatment
KR101345790B1 (en) Purifying and reusing system of wastewater using microbial permanent cultivation structure and surplus wastes
CN105906151A (en) Sewage treatment device and method of high-density biochemical system in combination with activated carbon filtration system
CN201325918Y (en) Mobile sewage treating device
JPH0839100A (en) Simultaneous treatment of kitchen waste water and garbage
CN103011374A (en) Sewage treatment method by using submersible relaying type liquid membrane catalysis oxidation small unit
KR200303060Y1 (en) Environmentally Friendly Sewage Treatment Equipment With Forced Air Supply And Method Using Thereof
JPH06246281A (en) Wastewater purifying apparatus using box culvert
Syron Innovative energy efficient aerobic bioreactors for sewage treatment
CN217838663U (en) Embedded sewage treatment system
CN106830540A (en) Liquid crystal panel advanced waste treatment apparatus
JP3891950B2 (en) Ground-mounted unit type wastewater treatment apparatus and wastewater treatment method using the same
CN105645696A (en) Novel process for treating sewage of small and medium-sized villages and towns

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110