JP2004240166A - Method for manufacturing image display apparatus - Google Patents

Method for manufacturing image display apparatus Download PDF

Info

Publication number
JP2004240166A
JP2004240166A JP2003029219A JP2003029219A JP2004240166A JP 2004240166 A JP2004240166 A JP 2004240166A JP 2003029219 A JP2003029219 A JP 2003029219A JP 2003029219 A JP2003029219 A JP 2003029219A JP 2004240166 A JP2004240166 A JP 2004240166A
Authority
JP
Japan
Prior art keywords
particles
organic solvent
partition
manufacturing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003029219A
Other languages
Japanese (ja)
Inventor
Mariko Kawaguri
真理子 河栗
Hirofumi Yamakita
裕文 山北
Toshiyasu Oue
利泰 大植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003029219A priority Critical patent/JP2004240166A/en
Publication of JP2004240166A publication Critical patent/JP2004240166A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply manufacturing an image display device to display an image by applying an electric field to move particles. <P>SOLUTION: In a method for manufacturing an apparatus for displaying the image by applying a voltage to an electrode to move the particles in a structure in which a particle group is sealed in a space formed with a pair of substrates and electrodes and partitions, the opposed substrates are adhered to the partitions, after dispersing the particles into an organic solvent to drop them inside the partitions and vaporizing the solvent. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、書き換え可能な画像表示装置の製造方法に関するものである。
【0002】
【従来の技術】
従来、書き換え可能な画像表示装置として、電気泳動を用いたものや、サーマルリライタブルなインクを用いた装置が開発されている。前記技術は、メモリー性には優れているが、表示コントラストを向上するのが難しいという問題がある。
【0003】
そこで、表示コントラストを上げ易い方法としてトナーを用いた表示技術が開発されている。この技術は、特開2002−296623号に開示されているように、対向する電極基板間に色および帯電特性が異なる複数種類の粒子群を封入し、電界をかけて粒子を動かすことにより画像を表示する。粒子相互の帯電量を安定化させることにより、高コントラストで均一な表示が可能である。白色粒子により、紙のような高い反射率も達成できる。
【0004】
【特許文献1】
特開2002−296623号公報
【0005】
【発明が解決しようとする課題】
しかし、高精細の表示をする場合、小さい体積の空間に粒子を封じる必要があるため、スクリーンを通してふるい落とす方法では、各空間に同じ量の粒子を簡易に振り分けることが困難となる。さらに、粒子は微小なため、空気の流れにより飛散したり、スペーサの上に付着すると間隙の高さがばらついたり、仕切り内の粒子量を一定にするのが難しいのでむらの原因となり、均一な画像表示ができる構成を作製する上で問題となる。
【0006】
【課題を解決するための手段】
本発明では、上記目的を達成するため、あらかじめ区切った空間に粒子を有機溶剤に混ぜて定量注液することを特徴とする。
【0007】
請求項1記載の発明は粒子を有機溶剤に混合することにより、粒子の飛散を抑えることができる。さらに細かい仕切り内に定量注液する事により、粒子のままでは困難な粒子量の制御が簡易となる。さらに、注液後に有機溶剤を気化させることにより、粒子が基板表面に付着し、対向基板を設置する際、粒子が仕切り内から飛散するのを避けることができる。これにより、仕切り内に定量の粒子を保持しながら粒子の飛散なしに組み立てられるため、製造工程が簡易となるメリットがある。
【0008】
請求項2記載の発明は、対向する基板それぞれに仕切りを設け、互いに帯電や色の違う粒子をそれぞれ有機溶媒に混合して定量注液することにより、それぞれの基板に別の種類の粒子を付着させることを特徴とする。これにより、複数の粒子で表示する場合、比重が違う粒子を有機溶媒に同時混合すると、それぞれの粒子を定量注液することが難しいが、1種類にすれば簡易に注液出来る。さらに、有機溶媒を気化させたときそれぞれの基板に粒子を付着させているため、粒子が表示素子を組み立てる際に飛散しないので、ロールtoロールの方法で表示素子を組み立てることが可能となり、大量生産に向けて低コスト化が可能となる。
【0009】
請求項3および4記載の発明は、請求項1と2で作製した表示装置を動かす際、上下の基板に超音波をかけて基板に付着した粒子をはがし、かつ複数の粒子の場合は仕切り内でそれぞれの粒子を衝突させて帯電させ、上下の基板に電圧をかけた際、それに応じて各基板に移動して表示できるようにする方法である。超音波をかけることにより、基板に付着した粒子が基板から離れ、さらに凝集した粒子がもとの粒子に解砕されるため、流動性がよくなり、高い表示性能を得ることができる。
【0010】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0011】
(実施の形態1)
図1は第1の実施の形態に係る画像表示装置の製造工程図を示す。基板1にはガラス、アクリル樹脂などを使用する(A)。その上に電極2を形成する(B)。この電極2はITOや、アルミニウム、金などをスパッタまたは蒸着処理により形成する。Cは仕切り3を形成する工程で、融点の低い樹脂材料をスクリーン印刷により一定間隔にパターン印刷して加熱硬化させたり、スピンコートした光感受性の樹脂材料をマスクを介してフォト工程を行い、パターン化した後、硬化させる方式などが使用できる。表示において、ギャップの高さがばらつくと表示むらになるため、高さがそろえられる方式が望ましい。
【0012】
次に、有機溶媒6に白色粒子4および黒色粒子5を混合して各仕切り内に定量注液する(D)。有機溶媒は、アセトンやエタノール、プロパノール、THFなど気化しやすい有機溶剤が好ましい。定量注液については、インクジェットにより同時に複数の仕切り内に注液すれば効率よく多数の仕切り内に粒子を分配することができる。各仕切り内に粒子を定量封入しないと表示する際、同じ白を表示しても、粒子の層の厚みの影響を受けて反射率に差が出るため、不均一な表示となる。粒子の状態でわずか1mg以下の微量を定量としながら仕切り内に入れるのは困難である。さらに、従来例では、粒子を凹部に散布後、余剰の粒子をブレードで摩擦して除去する方法が示されているが、この方式だと、仕切り内からあふれた粒子しか除去できない。表示する場合、仕切り内に粒子を充填する率により、表示速度やコントラストが変化する。80%以上の充填率では、表示特性はよいが、粒子同士の存在が邪魔になって移動を妨げられるため、高い電圧を必要とするという問題が発生した。このため、50%〜70%の充填率が好ましいが、上記のようにブレードで掻きだす方式では制御できない。さらに、粒子が数ミクロンと微粒なため、一度仕切りの上に付着するとなかなか引き剥がすのは困難で残ってしまい、ギャップが50ミクロン以下の場合は残った粒子によりギャップが大きく影響を受ける。
【0013】
これにより、粒子をそのまま扱うのが難しいことは明らかであり、有機溶剤中に分散することによる定量性は、表示および製造上大きな効果が得られると考える。
【0014】
粒子については、白色粒子4と黒色粒子5を用いることにより、黒白の2色表示が可能となる。黒粒子はマイナスに、白粒子はプラスに帯電しやすい材料で作製してある。例えば、スチレンアクリル系共重合体にプラス帯電用として、4級アンモニウム塩化物、マイナス帯電用としてサリチル酸系金属錯体を添加して作製した。または、粒子の外側にあらかじめシリカやアルミナを添加して粒子の流動性を向上させながら、シランカップリング剤で有機物処理を行った粒子を用いることもできる。なお、黒と白の有色粒子を用いたが、R(レッド)、G(グリーン)、B(ブルー)の粒子を用いれば、カラー化も可能となる。それぞれ帯電処理をしておいてもよい。有機溶媒が速やかに仕切り内に広がることにより、各粒子も仕切り内で広がる(E)。
【0015】
有機溶媒は、数マイクロリットルと微量なため、速やかに気化する。この際、混合された粒子は、凝集して基板に付着する(F)。これにより、粒子をそのまま仕切りに入れると、粒子の大きさが数μm〜数10μmと小さいために粒子が飛散するという問題を解決することができた。また、エタノールなどは水分を含みやすいため、加熱を行うと短時間で気化させることができる。ゆっくり気化させると粒子が大きな凝集体を作り、動作させる時に大きな電界が必要となるため、短時間の気化が好ましい。
【0016】
さらに、電極7を形成した透明基板8を仕切り3に接着層を介して付着させることにより、画像表示素子が形成できる(G)。画像は透明基板8側から見るため、電極7には透明電極を用いる必要があり、ITOをスパッタして用いた。
【0017】
上下の電極2と7に電圧をかけると、プラス側にマイナスに帯電した黒色粒子5が移動し、マイナス側にプラスに帯電した白色粒子4が移動する。これにより、白黒の2色表示が可能となる。粒子はあらかじめ帯電処理を行ってもよいし、仕切り内に入れた後に、帯電処理として電界をかけることで帯電させたり、超音波をかけて粒子同士を摩擦、撹拌して帯電させてもよい。
【0018】
(実施の形態2)
実施の形態1では、有機溶媒に複数の種類の粒子を混合したが、1種類の粒子を有機溶媒に混合して気化させ、さらに違う種類の粒子を有機溶媒に混合して上から重ねて注液して気化させてもよい。この方式を用いれば、各粒子をさらに精度よく仕切り内に分配することができる。各粒子の素材が違って比重に差が有る場合、定量注液しても粒子の混合比が変化してしまう場合があり、粒子ごとに注液する方が工程は増えるが精度を向上させることができた。
【0019】
(実施の形態3)
実施の形態1、2では、下の基板1の電極2上に粒子を固定化させたが、白色粒子4と黒色粒子5を上下の基板1、8に分けて保持する場合を図2に示した。
【0020】
Aは各基板1、8上に電極2、7および仕切り3を形成している図を示しており、形成方法は実施の形態1と同様である。基板1は透明である必要はないが、透明基板8と同じものでもよい。
【0021】
Bは、各粒子4、5を上下の基板1、8の仕切り3内に注液する工程を表している。実施の形態2でも説明したが、それぞれの粒子の比重が異なった場合、定量性が悪くなる。さらに、前もって帯電処理をしている場合、混合することにより異種の帯電のため引き合って粒子が凝集し移動しにくくなり、引き離す処理が必要になったり、移動させるために必要な電圧が高くなるという問題が生じた。そこで、粒子を別々に基板に付着させることにより、粒子を表示過程まで別々にしておくことにより工程を簡易にすることができた。
【0022】
Cはそれぞれの基板1、8上に各粒子4、5を保持する工程で、Dにおいてそれぞれの仕切り3を接着させることにより表示素子を作製する(E)。Dの工程において、基板に薄いガラスまたは樹脂を用いることにより、ロールtoロールの方式を採用でき、一度に多数の表示素子を作製することができ、低コスト化を実現できる。粒子が基板に付着していない場合は、作製の際、仕切りから飛散したり、仕切りの上に粒子が付着してその掃除工程が必要であったり手間が多かった。各仕切り内に粒子を混合した有機溶媒を注液することで粒子を簡易に基板に付着させられ、粒子の飛散を防ぐことができた。
【0023】
(実施の形態4)
実施の形態1〜3においては、粒子を各基板に付着させる方法を述べた。この粒子を基板からはがす方法として、電界をかけて基板から引き離す方法もあるが、確実に基板から引き離す方法として、超音波をかければよいことが判明した。5KHzの超音波を上下基板の外部からかけると、粒子が基板から引き離され、振動する。これにより、粒子が粒子同士および仕切りや電極面にぶつかって摩擦され帯電する。また、20KHzの超音波をかけると、粒子同士の凝集が砕けてもとの微粒子に解砕された。
【0024】
粒子が凝集すると電極間を移動させるために必要な電圧が高くなる。150ミクロンの電極間隔において、粒子が凝集していると300V必要なのに比較して、粒子が5ミクロンに粉砕された場合、150Vと半分の電圧で移動が可能となった。また、凝集した粒子の場合、表示の際、ざらざらしたり、むらのある表示となったが、粒子が粉砕されていると、滑らかな均一表示ができた。超音波をかけることで、低電圧化および表示性能向上が可能となった。
【0025】
(実施の形態5)
実施の形態1〜4において、有機溶剤中に粒子を混合する際、シランカップリング剤を含ませることにより、粒子表面の処理を同時にできることを見出した。ポリビニルアルコールにアミノ系のカップリング剤:NHCHCHNHCHCHCHSi(OCHを1%混ぜて、表面にシリカの微粒子を付着させた白色粒子を混合して仕切り内に注液すると、粒子がプラスに帯電し、さらに湿度の影響を受けにくくなった。これは、シリカの表面の活性度をカップリング剤により落として、湿度依存を低減させたと考えられる。黒色粒子の方は、ハロゲン化化合物系カップリング剤:CCHCHCHSi(OCHを1%ポリビニルアルコールに溶解して表面にシリカの微粒子を付着させた黒色粒子を混合して仕切り内に注液すると、粒子がマイナスに帯電し、さらに湿度の影響を受けにくくなった。
【0026】
以上のように、粒子を混合する有機溶剤、粒子の表面処理剤や電極表面のコート剤などを添加して仕切り内に粒子を定量分注すると同時に粒子の表面処理や仕切り内の表面処理ができるため、粒子の帯電特性を制御したり、粒子の凝集が起こりにくい仕切りの表面処理などが簡易にできる。これにより、低コスト化に貢献することができる。
【0027】
【発明の効果】
本発明によれば、一対の基板および電極と仕切りからなる空間に粒子群が封じられた構成で電圧を前記電極に印加することにより粒子を動かして画像を表示する装置において、粒子を有機溶剤に分散して仕切り内に滴下し、前記有機溶剤を気化させた後、対向する基板を仕切りに接着することにより、粒子の飛散を防ぎ、精度よく仕切り内に粒子を封じ込めることが可能となる。さらに、前記有機溶剤の中に粒子の表面を処理する処理剤(シランカップリング剤など)を添加することにより、粒子の表面処理や仕切り内の表面処理が同時にできるというメリットもある。
【0028】
また、粒子を封じ込めた後で、前記表示素子に超音波をかけて、粒子を細かく粉砕することにより、滑らかな表示が低電圧で可能となる。
【図面の簡単な説明】
【図1】画像表示素子の製造工程の模式図
【図2】画像表示素子の製造工程の模式図
【符号の説明】
1 基板
2 電極
3 仕切り
4 白色粒子
5 黒色粒子
6 有機溶媒
7 電極
8 透明基板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a rewritable image display device.
[0002]
[Prior art]
Conventionally, as a rewritable image display device, a device using electrophoresis and a device using thermal rewritable ink have been developed. Although the above technology is excellent in memory properties, it has a problem that it is difficult to improve display contrast.
[0003]
Therefore, a display technique using toner has been developed as a method of easily increasing the display contrast. This technology, as disclosed in Japanese Patent Application Laid-Open No. 2002-296623, encloses a plurality of types of particles having different colors and charging characteristics between opposing electrode substrates and applies an electric field to move the particles to form an image. indicate. By stabilizing the amount of charge between the particles, uniform display with high contrast is possible. The white particles can also achieve a high reflectance like paper.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-296623
[Problems to be solved by the invention]
However, in the case of high-definition display, it is necessary to seal the particles in a space having a small volume. Therefore, it is difficult to easily distribute the same amount of particles to each space by a method of sieving through a screen. Furthermore, since the particles are minute, they are scattered by the flow of air, or if they adhere to the spacers, the height of the gap varies, and it is difficult to keep the amount of particles in the partition constant, causing unevenness and uniformity. This poses a problem in producing a configuration capable of displaying images.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is characterized in that particles are mixed with an organic solvent in a space partitioned in advance and a fixed amount of liquid is injected.
[0007]
According to the first aspect of the invention, scattering of the particles can be suppressed by mixing the particles with the organic solvent. Further, by injecting a fixed amount of liquid into a fine partition, control of the amount of particles, which is difficult with particles as they are, is simplified. Further, by evaporating the organic solvent after the injection, particles can be prevented from adhering to the substrate surface and scattering from the inside of the partition when the opposing substrate is installed. Thereby, since the assembly can be performed without scattering the particles while holding a fixed amount of particles in the partition, there is an advantage that the manufacturing process is simplified.
[0008]
According to the second aspect of the present invention, a partition is provided on each of the opposing substrates, particles of different colors or different colors are mixed with an organic solvent, and a predetermined amount of liquid is injected to attach different types of particles to the respective substrates. It is characterized by making it. Thus, in the case of displaying a plurality of particles, if particles having different specific gravities are simultaneously mixed with an organic solvent, it is difficult to inject each of the particles at a constant rate. Further, since the particles are attached to each substrate when the organic solvent is vaporized, the particles do not scatter when assembling the display element, so that the display element can be assembled by a roll-to-roll method, and mass production is possible. It is possible to reduce the cost.
[0009]
According to the third and fourth aspects of the present invention, when the display device manufactured in the first and second aspects is moved, ultrasonic waves are applied to the upper and lower substrates to remove particles adhered to the substrates, and in the case of a plurality of particles, the inside of the partition is removed. In this method, each particle is caused to collide with each other and charged, and when a voltage is applied to the upper and lower substrates, the particles are moved to each substrate and displayed accordingly. By applying ultrasonic waves, the particles attached to the substrate are separated from the substrate, and the aggregated particles are broken up into the original particles, so that the fluidity is improved and high display performance can be obtained.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0011]
(Embodiment 1)
FIG. 1 shows a manufacturing process diagram of the image display device according to the first embodiment. Glass, acrylic resin, or the like is used for the substrate 1 (A). The electrode 2 is formed thereon (B). The electrode 2 is formed of ITO, aluminum, gold, or the like by sputtering or vapor deposition. C is a process of forming the partition 3 by pattern-printing a resin material having a low melting point at regular intervals by screen printing and heat-curing, or performing a photo process using a spin-coated photosensitive resin material through a mask, After the curing, a method of curing can be used. In display, if the height of the gap varies, the display becomes uneven. Therefore, it is desirable that the height be uniform.
[0012]
Next, the white particles 4 and the black particles 5 are mixed with the organic solvent 6, and a fixed amount is injected into each partition (D). The organic solvent is preferably an organic solvent that is easily vaporized, such as acetone, ethanol, propanol, and THF. In the case of a fixed-rate injection, particles can be efficiently distributed into a large number of partitions by simultaneously injecting into a plurality of partitions by inkjet. When it is displayed that the particles are not quantitatively enclosed in each partition, even if the same white is displayed, a difference occurs in the reflectance due to the influence of the thickness of the layer of the particles, resulting in an uneven display. It is difficult to put a small amount of 1 mg or less in the partition into the partition while quantifying it. Further, in the conventional example, a method has been described in which particles are scattered in the concave portions and excess particles are removed by friction with a blade. However, according to this method, only particles overflowing from inside the partition can be removed. In the case of displaying, the display speed and the contrast change depending on the rate at which particles are filled in the partition. At a filling factor of 80% or more, the display characteristics are good, but the movement of the particles is hindered by the presence of the particles, so that a problem that a high voltage is required arises. For this reason, a filling rate of 50% to 70% is preferable, but cannot be controlled by the method of scraping with a blade as described above. Furthermore, since the particles are as fine as several microns, once they adhere to the partition, it is difficult to peel them off. If the gap is 50 microns or less, the gap is greatly affected by the remaining particles.
[0013]
As a result, it is clear that it is difficult to handle the particles as they are, and it is considered that the quantitativeness by dispersing the particles in an organic solvent has a significant effect on display and production.
[0014]
As for the particles, the use of the white particles 4 and the black particles 5 makes it possible to display black and white in two colors. The black particles are made of a material which is easily charged negatively, and the white particles are made of a material which is easily charged positively. For example, a styrene-acrylic copolymer was prepared by adding a quaternary ammonium chloride for positive charging and a salicylic acid-based metal complex for negative charging. Alternatively, particles that have been treated with an organic substance using a silane coupling agent while improving the fluidity of the particles by previously adding silica or alumina to the outside of the particles can also be used. Although black and white colored particles are used, colorization is possible by using R (red), G (green), and B (blue) particles. Each of them may be subjected to a charging process. When the organic solvent quickly spreads in the partition, each particle also spreads in the partition (E).
[0015]
Since the organic solvent is as small as several microliters, it evaporates quickly. At this time, the mixed particles aggregate and adhere to the substrate (F). As a result, it was possible to solve the problem that the particles scattered when the particles were put into the partition as they were because the size of the particles was as small as several μm to several tens μm. Further, since ethanol or the like easily contains moisture, it can be vaporized in a short time by heating. If the gas is slowly vaporized, the particles form a large aggregate, and a large electric field is required for operation. Therefore, vaporization for a short time is preferable.
[0016]
Further, by attaching the transparent substrate 8 on which the electrodes 7 are formed to the partition 3 via an adhesive layer, an image display element can be formed (G). Since the image is viewed from the transparent substrate 8 side, it is necessary to use a transparent electrode for the electrode 7, and ITO was used by sputtering.
[0017]
When a voltage is applied to the upper and lower electrodes 2 and 7, the negatively charged black particles 5 move to the positive side, and the positively charged white particles 4 move to the negative side. Thereby, two-color display of black and white becomes possible. The particles may be subjected to a charging process in advance, or may be charged by applying an electric field as a charging process after being placed in a partition, or may be charged by friction and stirring of the particles by applying ultrasonic waves.
[0018]
(Embodiment 2)
In the first embodiment, a plurality of types of particles are mixed with an organic solvent. However, one type of particles is mixed with an organic solvent to vaporize, and further different types of particles are mixed with the organic solvent and poured over from above. It may be liquefied and vaporized. If this method is used, each particle can be more accurately distributed in the partition. If the material of each particle is different and there is a difference in specific gravity, the mixing ratio of the particles may change even if a fixed amount of liquid is injected.Injection for each particle increases the process but improves the accuracy. Was completed.
[0019]
(Embodiment 3)
In the first and second embodiments, the particles are fixed on the electrode 2 of the lower substrate 1. FIG. 2 shows a case where the white particles 4 and the black particles 5 are separately held on the upper and lower substrates 1 and 8. Was.
[0020]
A shows a diagram in which the electrodes 2, 7 and the partition 3 are formed on each of the substrates 1, 8, and the forming method is the same as that in the first embodiment. The substrate 1 does not need to be transparent, but may be the same as the transparent substrate 8.
[0021]
B represents a step of injecting the respective particles 4 and 5 into the partitions 3 of the upper and lower substrates 1 and 8. As described in the second embodiment, when the specific gravity of each particle is different, the quantitativeness is deteriorated. Furthermore, if the charging process is performed in advance, the particles are unlikely to move due to aggregation due to different types of charging due to mixing, and it is necessary to perform a separating process or increase the voltage required for moving. A problem arose. Therefore, the steps could be simplified by separately attaching the particles to the substrate and keeping the particles separate until the display process.
[0022]
C is a step of holding the particles 4 and 5 on the substrates 1 and 8 respectively, and a display element is manufactured by bonding the partitions 3 in D (E). In the step D, by using thin glass or resin for the substrate, a roll-to-roll method can be adopted, a large number of display elements can be manufactured at once, and cost reduction can be realized. When the particles did not adhere to the substrate, the particles scattered from the partition during the production, or the particles adhered to the partition, and a cleaning step was necessary or troublesome. By pouring the organic solvent in which the particles were mixed into each partition, the particles could be easily attached to the substrate, and the scattering of the particles could be prevented.
[0023]
(Embodiment 4)
In the first to third embodiments, the method of attaching particles to each substrate has been described. As a method of peeling the particles from the substrate, there is a method of applying an electric field to separate the particles from the substrate. However, it has been found that ultrasonic waves should be applied as a method of reliably separating the particles from the substrate. When 5 KHz ultrasonic waves are applied from the outside of the upper and lower substrates, the particles are separated from the substrate and vibrate. As a result, the particles collide with each other and with the partition and the electrode surface, and are rubbed and charged. When ultrasonic waves of 20 KHz were applied, the aggregation of the particles was broken and the particles were broken down into the original fine particles.
[0024]
When the particles aggregate, the voltage required to move between the electrodes increases. At the electrode spacing of 150 microns, when the particles were crushed to 5 microns, the particles could move at a voltage half as high as 150 V, compared to 300 V required when the particles were agglomerated. In the case of aggregated particles, the display was rough or uneven at the time of display, but when the particles were pulverized, a smooth uniform display was achieved. By applying ultrasonic waves, it was possible to lower the voltage and improve the display performance.
[0025]
(Embodiment 5)
In Embodiments 1 to 4, it has been found that when mixing particles in an organic solvent, the surface of the particles can be treated simultaneously by including a silane coupling agent. An amino-based coupling agent: NH 2 CH 2 CH 2 NHCH 2 CH 2 CH 2 Si (OCH 3 ) 3 is mixed with polyvinyl alcohol at 1%, and white particles having silica fine particles adhered to the surface are mixed and partitioned. When the solution was injected into the inside, the particles became positively charged and became less susceptible to humidity. This is presumably because the activity of the silica surface was reduced by the coupling agent to reduce the dependence on humidity. Towards black particles, halogenated compound-based coupling agent mixed C l CH 2 CH 2 CH 2 Si (OCH 3) black particles 3 deposited a 1% polyvinyl alcohol silica fine particles on the surface was dissolved Then, when the liquid was injected into the partition, the particles became negatively charged and became less susceptible to humidity.
[0026]
As described above, the organic solvent for mixing the particles, the surface treatment agent for the particles, the coating agent for the electrode surface, and the like can be added and the particles can be dispensed into the partition at the same time, and the surface treatment of the particles and the surface treatment in the partition can be performed Therefore, it is possible to easily control the charging characteristics of the particles and to perform a surface treatment of a partition in which aggregation of the particles hardly occurs. This can contribute to cost reduction.
[0027]
【The invention's effect】
According to the present invention, in a device that displays an image by moving a particle by applying a voltage to the electrode in a configuration in which the particle group is sealed in a space formed by a pair of substrates and an electrode and a partition, the particle is converted to an organic solvent. After being dispersed and dropped into the partition to evaporate the organic solvent, the opposing substrate is adhered to the partition, whereby scattering of the particles can be prevented, and the particles can be accurately contained in the partition. Further, by adding a treating agent (such as a silane coupling agent) for treating the surface of the particles to the organic solvent, there is an advantage that the surface treatment of the particles and the surface treatment in the partition can be performed at the same time.
[0028]
Further, after the particles are confined, ultrasonic waves are applied to the display element to finely pulverize the particles, thereby enabling a smooth display at a low voltage.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a manufacturing process of an image display device. FIG. 2 is a schematic diagram of a manufacturing process of an image display device.
DESCRIPTION OF SYMBOLS 1 Substrate 2 Electrode 3 Partition 4 White particle 5 Black particle 6 Organic solvent 7 Electrode 8 Transparent substrate

Claims (7)

一対の基板および電極と仕切りからなる空間に粒子群が封じられた構成で電圧を前記電極に印加することにより粒子を動かして画像を表示する装置の製造方法であって,
粒子を有機溶剤に分散して仕切り内に導入し前記有機溶剤を気化させた後対向する基板で封じることを特徴とする画像表示装置の製造方法。
A method for manufacturing an apparatus for displaying an image by moving particles by applying a voltage to the electrodes in a configuration in which particles are sealed in a space formed by a pair of substrates and electrodes and a partition,
A method for manufacturing an image display device, comprising dispersing particles in an organic solvent, introducing the particles into a partition, vaporizing the organic solvent, and sealing the organic solvent with an opposing substrate.
一対の基板および電極と仕切りからなる空間に粒子群が封じられた構成で電圧を前記電極に印加することにより粒子を動かして画像を表示する装置の製造方法であって、
粒子を有機溶剤に分散してそれぞれの基板の仕切り内に導入し前記有機溶剤を気化させた後対向する基板で封じることを特徴とする画像表示装置の製造方法。
A method for manufacturing an apparatus for displaying an image by moving particles by applying a voltage to the electrodes in a configuration in which particles are sealed in a space formed by a pair of substrates and an electrode and a partition,
A method for manufacturing an image display device, comprising dispersing particles in an organic solvent, introducing the particles into partitions of each substrate, vaporizing the organic solvent, and sealing the organic solvent with an opposing substrate.
一対の基板および電極と仕切りからなる空間に粒子群が封じられた構成で電圧を前記電極に印加することにより粒子を動かして画像を表示する装置の製造方法であって、
粒子を有機溶剤に分散して仕切り内に導入し前記有機溶剤を気化させた後対向する基板で封じ、上下の基板に振動を印加することにより粒子の分散および帯電処理することを特徴とする画像表示装置の製造方法。
A method for manufacturing an apparatus for displaying an image by moving particles by applying a voltage to the electrodes in a configuration in which particles are sealed in a space formed by a pair of substrates and an electrode and a partition,
An image characterized in that particles are dispersed in an organic solvent, introduced into a partition, the organic solvent is vaporized, sealed with a facing substrate, and particles are dispersed and charged by applying vibration to upper and lower substrates. A method for manufacturing a display device.
一対の基板および電極と仕切りからなる空間に粒子群が封じられた構成で電圧を前記電極に印加することにより粒子を動かして画像を表示する装置の製造方法であって、
粒子を有機溶剤に分散して各基板の仕切り内に導入し前記有機溶剤を気化させた後対向する基板で封じ、上下の基板に振動を印加することにより粒子の分散および帯電処理することを特徴とする画像表示装置の製造方法。
A method for manufacturing an apparatus for displaying an image by moving particles by applying a voltage to the electrodes in a configuration in which particles are sealed in a space formed by a pair of substrates and an electrode and a partition,
Particles are dispersed in an organic solvent, introduced into a partition of each substrate, and the organic solvent is vaporized, then sealed with a facing substrate, and the particles are dispersed and charged by applying vibration to upper and lower substrates. Manufacturing method of an image display device.
請求項1〜4のいずれかに記載の製造方法において、前記有機溶剤中にシランカップリング剤を添加することを特徴とする画像表示装置の製造方法。The method according to any one of claims 1 to 4, wherein a silane coupling agent is added to the organic solvent. 請求項1または3に記載の製造方法において、空間に封じる粒子は複数の色からなる粒子から構成され、有機溶剤に同時に混合することを特徴とする画像表示装置の製造方法。4. The method according to claim 1, wherein the particles sealed in the space are composed of particles of a plurality of colors, and are mixed with an organic solvent at the same time. 請求項2または4に記載の製造方法において、空間に封じる粒子は複数の色からなる粒子から構成され、同じ色の粒子を有機溶剤に分散することを特徴とする画像表示装置の製造方法。5. The method according to claim 2, wherein the particles sealed in the space are composed of particles of a plurality of colors, and the particles of the same color are dispersed in an organic solvent.
JP2003029219A 2003-02-06 2003-02-06 Method for manufacturing image display apparatus Pending JP2004240166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003029219A JP2004240166A (en) 2003-02-06 2003-02-06 Method for manufacturing image display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003029219A JP2004240166A (en) 2003-02-06 2003-02-06 Method for manufacturing image display apparatus

Publications (1)

Publication Number Publication Date
JP2004240166A true JP2004240166A (en) 2004-08-26

Family

ID=32956450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029219A Pending JP2004240166A (en) 2003-02-06 2003-02-06 Method for manufacturing image display apparatus

Country Status (1)

Country Link
JP (1) JP2004240166A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006065314A (en) * 2004-07-26 2006-03-09 Bridgestone Corp Method for manufacturing information display panel
JP2009288522A (en) * 2008-05-29 2009-12-10 Bridgestone Corp Panel for information display and method for manufacturing the same
KR101151694B1 (en) 2009-12-21 2012-06-15 에스케이씨 주식회사 Paste and method for manufacturing electronic paper display device
KR101188022B1 (en) * 2010-07-21 2012-10-05 삼성전기주식회사 Method for fabrication e-paper and device thereof
CN103443699A (en) * 2010-12-16 2013-12-11 可隆工业株式会社 Method for fabricating an electrophoretic display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006065314A (en) * 2004-07-26 2006-03-09 Bridgestone Corp Method for manufacturing information display panel
JP2009288522A (en) * 2008-05-29 2009-12-10 Bridgestone Corp Panel for information display and method for manufacturing the same
KR101151694B1 (en) 2009-12-21 2012-06-15 에스케이씨 주식회사 Paste and method for manufacturing electronic paper display device
KR101188022B1 (en) * 2010-07-21 2012-10-05 삼성전기주식회사 Method for fabrication e-paper and device thereof
CN103443699A (en) * 2010-12-16 2013-12-11 可隆工业株式会社 Method for fabricating an electrophoretic display device

Similar Documents

Publication Publication Date Title
US6919003B2 (en) Apparatus and process for producing electrophoretic device
JP5540915B2 (en) Electrophoretic display device
JP2004240166A (en) Method for manufacturing image display apparatus
JP2000322003A (en) Manufacture of display device
JP4565864B2 (en) Manufacturing method of image display panel
JP4571419B2 (en) Image display board manufacturing apparatus and image display board manufacturing method using the same
US7582332B2 (en) Particles having charge-controlling group on outer surface for electronic-paper display device and method for preparing the same
JP3019808B2 (en) Manufacturing method of liquid crystal display device
JP2002169189A (en) Manufacturing method for display device
CN103941511A (en) Pixel division wall, manufacturing method thereof, substrate and display device
JPH04256925A (en) Formation of spacer in liquid crystal display device
JP2005284234A (en) Electrophoretic display element by vertical migration with barrier rib, electrophoretic display method and electrophoretic display apparatus
JPH06347806A (en) Production of liquid crystal display element
JP4553557B2 (en) Image display device manufacturing method and image display device
JP2002099002A (en) Image display medium
JP3948267B2 (en) Image display medium and image display device
JP2761820B2 (en) Spacer spraying device
JP2004317830A (en) Method for manufacturing display device
JP2000191924A (en) Preparation of spacers for liquid crystal display element
KR101188440B1 (en) Electronic paper having particles having particles for barrier rib or spacer and its fabrication method
JP4393102B2 (en) Image display device
CN104765213A (en) Manufacturing method of display substrate, manufacturing method of display panel and display device
JP2004109832A (en) Method of manufacturing image display medium, and image display medium
JP2008152131A (en) Method for manufacturing image display medium, and particle supplying device
JP2021157011A (en) Method of manufacturing liquid crystal display panel