JP2005284234A - Electrophoretic display element by vertical migration with barrier rib, electrophoretic display method and electrophoretic display apparatus - Google Patents

Electrophoretic display element by vertical migration with barrier rib, electrophoretic display method and electrophoretic display apparatus Download PDF

Info

Publication number
JP2005284234A
JP2005284234A JP2004132231A JP2004132231A JP2005284234A JP 2005284234 A JP2005284234 A JP 2005284234A JP 2004132231 A JP2004132231 A JP 2004132231A JP 2004132231 A JP2004132231 A JP 2004132231A JP 2005284234 A JP2005284234 A JP 2005284234A
Authority
JP
Japan
Prior art keywords
fine particles
display
electrode
transparent
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004132231A
Other languages
Japanese (ja)
Inventor
Takao Kawamura
孝夫 河村
Masahiro Okuda
昌宏 奥田
Uchitsugu Minami
内嗣 南
Takayoshi Doumaru
隆祥 堂丸
Shuichi Okuda
修一 奥田
Kunio Oka
邦雄 岡
Kazuki Wakita
和樹 脇田
Takao Kojima
崇夫 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004132231A priority Critical patent/JP2005284234A/en
Publication of JP2005284234A publication Critical patent/JP2005284234A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophoretic display apparatus which uses charged fine particles and charged magnetic fine particles by irradiation with radiation, which suppresses cross talk and which is capable of simple matrix driving. <P>SOLUTION: The electrophoretic display element and the electrophoretic display apparatus are equipped with a first substrate 1, a first driving electrode 6 laid on the first substrate, a second substrate 17 disposed to oppose the first substrate 1, a second driving electrode 12 laid on the second substrate, and a plurality of migration fine particles 8, 9 and 20 dispersed in a transparent insulating liquid 10 filling the space between the first substrate 1 and the second substrate 17. The electrophoretic display apparatus realizes high-definition image display by assembling the electrophoretic display elements each of which has electrodes to apply an AC electric field or an AC magnetic field or to superpose both to agitate the transparent insulating liquid 10 and which vertically moves the migration fine particles. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、放射線照射により、電子トラップまたは、正孔トラップに帯電した荷電微粒子、荷電磁性微粒子等を、交流電場及び交流磁場等で攪拌して、垂直移動させて表示を行う、電気泳動表示素子、電気泳動表示方法及び電気泳動表示装置。  The present invention relates to an electrophoretic display element that performs display by stirring and vertically moving charged fine particles or charged magnetic fine particles charged in an electron trap or hole trap by an irradiation with an AC electric field and an AC magnetic field. , Electrophoretic display method and electrophoretic display device.

表示装置は、100年の歴史を持つブラウン管から出発し、蛍光表示管、エレクトロ・ルミネッセンス表示装置、ライト・エミッタ・ダイオード表示装置、液晶表示装置、及びプラズマ・ディスプレイ・パネル表示装置等が市販されている。しかし、これら市販の表示装置は、何れも発光色や透過光を用い、観るための表示装置(透過型)で物質そのものの色を見るため、長時間凝視に耐えるものではない。
最近のIT化の進展と共に、印刷物のような表示特性を有する、目に優しく、長時間凝視に耐える、読むための次世代表示装置(反射型)の開発が盛んである。特に新聞の電子化技術の進歩が著しく、衛星やブロードバンド通信回線による配信は、印刷、輸送・配送等の一大改革と共に紙消費の削減により、森林資源・地球環境保全等にも貢献が期待されている。
The display device started from a cathode ray tube with a history of 100 years. Fluorescent display tubes, electroluminescence display devices, light emitter diode display devices, liquid crystal display devices, plasma display panel display devices, etc. are commercially available. Yes. However, all of these commercially available display devices do not endure gaze for a long time because they use luminescent color and transmitted light and see the color of the substance itself with a display device (transmission type) for viewing.
With the recent progress in IT, development of a next-generation display device (reflection type) for reading that has display characteristics like printed materials, is easy on the eyes, and can withstand long-time gaze is active. In particular, the progress of electronic technology in newspapers is remarkable, and distribution via satellite and broadband communication lines is expected to contribute to conservation of forest resources and the global environment through major reforms such as printing, transportation and delivery, and reduction of paper consumption. ing.

このような要求を満たすため、次世代表示装置には、大型で低価格、高精細性、省エネルギー性、高速応答性およびフルカラー性等多くの要求がある。このため粒子系、液晶系、リライタブル・マーキング系等多くの方式が開発されている。
最も多用されている液晶表示装置は、高速、カラー化、動画等優れた表示特性を持つが、透過型で表示品位に係わる問題に加えて、その解像度も一般的に最大でも120dpi程度と印刷、プリト・アウト(通常300dpi)等に比較しても相当に低い。
低価格で大型化、高精細性には、荷電微粒子の電気泳動による表示方法が理想的な読むための、次世代表示装置の最適技術と考えられる。このため電気泳動表示装置も、マイクロ・カプセル中の粒子の厚み方向移動法、泳動微粒子の回転法等開発されているが、書籍の電子的表示や、衛星配信による新聞表示の様に、300dpi以上の高精細性の要求には不充分で、数μmの真球状荷電微粒子を用い透明絶縁性液体に分散した電気泳動表示装置が最適である。
In order to satisfy such demands, next generation display devices have many demands such as large size, low price, high definition, energy saving, high speed response and full color. For this reason, many systems such as a particle system, a liquid crystal system, and a rewritable marking system have been developed.
The most frequently used liquid crystal display devices have excellent display characteristics such as high speed, colorization, and moving images. However, in addition to the problems related to the display quality of the transmission type, the resolution is generally about 120 dpi at the maximum. It is considerably low even when compared to PRINT OUT (usually 300 dpi).
For low price, large size, and high definition, the display method by electrophoresis of charged fine particles is considered to be the optimum technology for next generation display devices for ideal reading. For this reason, electrophoretic display devices have been developed, such as a method for moving particles in a microcapsule in the thickness direction and a method for rotating electrophoretic fine particles, but more than 300 dpi, such as electronic display of books and newspaper display by satellite distribution. Therefore, an electrophoretic display device in which spherical charged fine particles of several μm are dispersed in a transparent insulating liquid is insufficient.

荷電微粒子を電界によって泳動し、表示または記憶装置に利用する考え方は、古くから提案(太田:特許公報昭50−15115)されたが、荷電微粒子の形状、帯電電位(ζ電位)が小さく不安定なこと、泳動粒子の二次凝集や沈澱、前歴表示画像の消去及び応答速度等多くの技術的問題があり実現できなかった。  The idea of using charged fine particles for electrophoretic movement and displaying or storing them has been proposed for a long time (Ota: Patent Publication No. 50-15115), but the shape of charged fine particles and the charged potential (ζ potential) are small and unstable. Furthermore, there were many technical problems such as secondary aggregation and precipitation of migrating particles, erasure of previous history display images, and response speed, which could not be realized.

本格的電気泳動表示法としては、荷電微粒子を水平に移動させる、水平移動型電気泳動表示法及び装置の提案(郷田:特開昭49−5598号公報、特開平11−202804号公報)がある。透明絶縁性液体中に分散された泳動粒子の電気泳動を用い、クロストークの発生を押さえる隔壁を設け、単純マトリックス方式駆動法が可能な表示装置である。しかし画素毎に、障壁を設けるため、大型の表示装置は、構成が複雑で、二次凝集、沈澱及び前歴表示画像の消去等の解決がなされていない。  As a full-fledged electrophoretic display method, there is a proposal of a horizontal movement type electrophoretic display method and apparatus for moving charged fine particles horizontally (Gouda: Japanese Patent Laid-Open Nos. 49-5598 and 11-202804). . This is a display device using a electrophoresis of electrophoretic particles dispersed in a transparent insulating liquid and provided with a partition wall that suppresses the occurrence of crosstalk and capable of a simple matrix driving method. However, since a barrier is provided for each pixel, a large display device has a complicated configuration, and solutions such as secondary aggregation, precipitation, and erasure of previous display images have not been made.

発明が解決しようとする課題Problems to be solved by the invention

しかし、本発明者らは、電気泳動表示装置を研究する中で、実用化不可能な重大な欠点を有することを見い出すに至った。即ち、画像表示を繰り返した場合、駆動電極の表面を被覆した透明絶縁層(表示面)に吸着された表示画像は、静電的に強固に付着し、逆極性の直流電界を印加しても、完全に剥離せず、再び表示書込の場合、残像として支障を来すことである。透明絶縁性液体より比重の小さい荷電微粒子を使用しても、二次凝集により泳動粒子は大型化し、長期的には泳動粒子の沈澱が起り、画質の劣化の要因となる。長期使用による透明絶縁性液体中に分散された泳動微粒子の分布の不均一化は、表示画像の画質に影響し、コントラスを低下させる。又一般に電気泳動表示方法は、泳動微粒子が閾値をもたないため、クロストーク現象を起し良好なコントラスがえられない。
以上を総合すると、安定な持続性荷電微粒子の製作、正・負極性の荷電微粒子の分離、泳動微粒子の二次凝集の除去と沈澱の防止、前歴表示画像の消去、透明絶縁性液体中の泳動微粒子の濃度分布の均一化、画像コントラストの向上、クロストークの除去等を同時に解決する手段が必要である。
又最大の欠陥は、泳動微粒子の帯電の持続性にある。電気泳動表示装置に使用する泳動微粒子は、染料やイオン等の発色材料を使用し、新たな電荷の授受をもたらすため、電界により泳動中に不安定要因として作用し、安定性に問題があった。特に、シリコン油、石油系透明絶縁性液体を使用する場合、摩擦帯電等で、帯電電荷の減少を改善することはできない。
However, the present inventors have found that the electrophoretic display device has serious drawbacks that cannot be put into practical use. That is, when the image display is repeated, the display image adsorbed on the transparent insulating layer (display surface) covering the surface of the drive electrode adheres electrostatically strongly, and even if a DC electric field having a reverse polarity is applied. In the case of display writing again without being completely peeled off, there is a problem as an afterimage. Even when charged fine particles having a specific gravity smaller than that of the transparent insulating liquid are used, the electrophoretic particles are enlarged due to secondary aggregation, and the electrophoretic particles are precipitated in the long term, causing deterioration in image quality. The non-uniform distribution of the electrophoretic fine particles dispersed in the transparent insulating liquid due to long-term use affects the image quality of the display image and reduces the contrast. In general, the electrophoretic display method does not have a threshold because the electrophoretic fine particles do not have a threshold value, and a good contrast cannot be obtained.
In summary, the production of stable and sustained charged fine particles, separation of positive and negative charged fine particles, removal of secondary aggregation of electrophoretic fine particles and prevention of precipitation, erasure of previous history display images, migration in transparent insulating liquids There is a need for means that can simultaneously solve the uniform concentration distribution of fine particles, the improvement of image contrast, the elimination of crosstalk, and the like.
The largest defect is the persistence of the charged fine particles. Electrophoretic fine particles used in electrophoretic display devices use coloring materials such as dyes and ions, and bring in new charges. Therefore, they act as instability factors during electrophoresis due to an electric field, and have problems with stability. . In particular, when silicon oil or petroleum-based transparent insulating liquid is used, reduction of the charged charge cannot be improved by frictional charging or the like.

課題を解決するための手段Means for solving the problem

電子トラップをもつ黒色及びカラー色に着色した高分子微粒子材料を真球状微粒子に合成し、これを放射線照射により負荷電微粒子を、正孔トラップをもつ高分子微粒子材を真球状微粒子に合成し、これを放射線照射により白色正荷電微粒子等エレクトレット性荷電微粒子を開発した。これを等を用いた、新規な構成の電気泳動表示素子と電気泳動表示方法及び電気泳動表示装置を創案した。
即ち、第1基板と、第1基板上に配置された第1透明電極、透明絶縁層、第1透明駆動電極、及び透明絶縁層(表示面)と、前記第1基板に対向して配置された第2基板と、該第2基板上に配置された第2電極、絶縁層、第2駆動電極、及び絶縁層(非表示面)と、第1基板と第2基板間に、充填された透明絶縁性液体と、該透明絶縁性液体中に分散された黒色負荷電粒子と、白色正荷電微粒子との正負2種類の泳動微粒子を封入した交流電界方式の電気泳動表示素子、電気泳動表示方法及び電気泳動表示装置等を提案する。
The polymer fine particle material colored with black and color with electron traps is synthesized into true spherical fine particles, and this is synthesized with negatively charged fine particles by irradiation and polymer fine particle material with hole traps into true spherical fine particles. The electret charged fine particles such as white positively charged fine particles were developed by irradiation of this. An electrophoretic display element, an electrophoretic display method, and an electrophoretic display device having a novel configuration using the above were devised.
That is, the first substrate, the first transparent electrode, the transparent insulating layer, the first transparent driving electrode, and the transparent insulating layer (display surface) disposed on the first substrate are disposed to face the first substrate. The second substrate, the second electrode, the insulating layer, the second drive electrode, and the insulating layer (non-display surface) disposed on the second substrate, and the space between the first substrate and the second substrate are filled. AC electric field type electrophoretic display element and electrophoretic display method in which two types of positive and negative electrophoretic fine particles of transparent insulating liquid, black negatively charged particles dispersed in transparent insulating liquid, and white positively charged fine particles are enclosed And an electrophoretic display device.

表示方法は、先ず第1透明電極と第2電極間に交流電界を印加、透明絶縁性液体を攪拌、同時に第1透明駆動電極と第2駆動電極間に表示用直流電界を印加する。正負両泳動粒子は入れ替わり垂直移動して正電界部の表示面には黒色負荷電微粒子が、負電界部の非表示面には白色正荷電微粒子が移動してコントラストを生じる第1過程、画像表示後前記第1透明電極と第2電極間に交流電界を印加して絶縁性液体を攪拌し、前歴表示画像を消去する第2過程と、更に表示画を全面白色にする第3過程により画像表示を行う。白色表示を行うには、第1過程において表示用直流電界を逆転して、白色正荷電微粒子を表示面へ、黒色荷電微粒子を非表示面に垂直移動すればよい。又黒色荷電微粒子を、マゼンタ、イエロー、シアン色等の荷電微粒子とすれば、カラー表示の電気泳動表示素子が実現する。この駆動法を交流電界方式と称す。
電荷を帯びた荷電微粒子を電場で攪拌することにより、正・負の泳動微粒子を分離、表示用直流信号の極性により表示面に黒色、白色及びカラー色の精細な画像表示をする方式である。
In the display method, first, an AC electric field is applied between the first transparent electrode and the second electrode, the transparent insulating liquid is stirred, and simultaneously, a display DC electric field is applied between the first transparent drive electrode and the second drive electrode. The positive and negative electrophoretic particles are switched and vertically moved to move the black negative charged fine particles on the display surface of the positive electric field part and the white positively charged fine particles move to the non-display surface of the negative electric field part. Thereafter, an AC electric field is applied between the first transparent electrode and the second electrode to stir the insulating liquid to erase the previous display image, and a third process to make the display image white. I do. In order to perform white display, the direct current electric field for display is reversed in the first process, and the white positive charged fine particles are moved vertically to the display surface and the black charged fine particles are moved vertically to the non-display surface. If the black charged fine particles are charged fine particles of magenta, yellow, cyan, etc., a color display electrophoretic display element can be realized. This driving method is called an AC electric field method.
In this method, positive and negative electrophoretic fine particles are separated by stirring charged charged fine particles with an electric field, and fine black, white and color images are displayed on the display surface according to the polarity of the DC signal for display.

電子トラップをもつ黒色及びカラー色に着色した高分子微粒子材料に、磁性微粒子を加えて真球状微粒子を合成し、これを放射線照射して製作したエレクトレット性黒色及びカラー色負荷電磁性微粒子を開発した。これと前記白色正荷電微粒子とを用いた、新規な構成の電気泳動表示素子と電気泳動表示方法及び電気泳動表示装置を創案した。
即ち、第1基板と、第1基板上に配置された第1透明電極(薄膜磁気発生コイル状電極)、透明絶縁層、第1透明駆動電極、及び透明絶縁層(表示面)と、前記第1基板に対向して配置された第2基板と、該第2基板上に配置された第2電極(薄膜磁気発生コイル状電極)、絶縁層、第2駆動電極、及び絶縁層(非表示面)と、第1基板と第2基板間に、充填された透明絶縁性液体と、該透明絶縁性液体中に分散された黒色負荷電磁気微粒子と、白色正荷電微粒子との正・負の電荷をもつ2種類の泳動微粒子を封入した磁気誘導方式の電気泳動表示素子と電気泳動表示方法及び電気泳動表示装置を提案する。
Developed electret black and color-loaded electromagnetic fine particles produced by adding magnetic fine particles to black and colored polymer fine particle materials with electron traps to synthesize spherical particles and irradiating them. . An electrophoretic display element, an electrophoretic display method, and an electrophoretic display device having a novel configuration using this and the white positively charged fine particles have been devised.
That is, a first substrate, a first transparent electrode (thin film magnetic generating coil electrode) disposed on the first substrate, a transparent insulating layer, a first transparent driving electrode, a transparent insulating layer (display surface), and the first substrate A second substrate disposed opposite to the first substrate, a second electrode (thin film magnetic coil electrode) disposed on the second substrate, an insulating layer, a second drive electrode, and an insulating layer (non-display surface) ), Positive and negative charges of the transparent insulating liquid filled between the first substrate and the second substrate, the black loaded electromagnetic fine particles dispersed in the transparent insulating liquid, and the white positive charged fine particles. The present invention proposes an electrophoretic display element, an electrophoretic display method, and an electrophoretic display device in which two types of electrophoretic fine particles are encapsulated.

表示方法は、先ず第1透明電極と第2電極間に交流電流を通電し交流磁場を発生、透明絶縁性液体を攪拌、同時に第1透明駆動電極と第2駆動電極間に表示用直流電界を印加する。正負両泳動微粒子は入れ替わり垂直移動して正電界部の表示面には黒色荷電磁性微粒子が、負電界部の非表示面には白色正荷電微粒子が移動してコントラストを生じる第1過程、画像表示後、前記第1透明電極と第2電極間に交流電界を通電して交流磁場を発生して透明絶縁性液体を攪拌し、剥離用直流電界を印加し前歴表示画像を消去する第2過程と、更に表示画面の全面白色表示を行う第3過程により画像表示を行う。白色表示を行うには、第1過程において表示用直流電界を逆転して、白色正荷電微粒子を表示面へ、黒色荷電磁性微粒子を非表示面に垂直移動すればよい。又黒色荷電磁性微粒子を、マゼンタ、イエロー、シアン色の荷電磁性微粒子とすれば、カラー表示の電気泳動表示素子が実現する。この駆動法を磁気誘導方式と称す。
磁性を帯びた荷電磁性微粒子を磁場で攪拌することにより、正・負の泳動微粒子を分離、表示用直流信号により、表示面に所望の黒色・白色の精細な画像を表示する。
In the display method, first, an alternating current is passed between the first transparent electrode and the second electrode to generate an alternating magnetic field, the transparent insulating liquid is stirred, and simultaneously a direct current electric field for display is generated between the first transparent driving electrode and the second driving electrode. Apply. The positive and negative electrophoretic fine particles are switched and vertically moved, and the black charged magnetic fine particles move on the display surface of the positive electric field portion, and the white positive charged fine particles move on the non-display surface of the negative electric field portion, and the first process for generating contrast, image display Then, a second process of passing an alternating electric field between the first transparent electrode and the second electrode to generate an alternating magnetic field to stir the transparent insulating liquid and applying a peeling direct current to erase the previous history display image; Further, image display is performed by a third process of displaying the entire white color of the display screen. In order to perform white display, the direct current electric field for display is reversed in the first process, and the white positively charged fine particles are moved vertically to the display surface and the black charged magnetic fine particles are moved vertically to the non-display surface. If the black charged magnetic fine particles are magenta, yellow and cyan charged magnetic fine particles, a color display electrophoretic display element can be realized. This driving method is called a magnetic induction method.
By stirring magnetically charged magnetic fine particles with a magnetic field, positive and negative electrophoretic fine particles are separated, and a desired black / white fine image is displayed on the display surface by a display DC signal.

前記黒色荷電磁性微粒子と白色正荷電微粒子を用い、泳動微粒子の攪拌に、交流電場及び交流磁場を重畳した新規な構成の電気泳動表示素子と電気泳動表示方法及び電気泳動表示装置を創案した。
即ち、第1基板と、第1基板上に配置された第1透明電極、透明絶縁層、第2透明電極(薄膜磁場発生用コイル状電極)、透明絶縁層、第1透明駆動電極、絶縁層(表示面)と、第1基板に対向して配置された第2基板と、該第2基板上に配置された第2電極、絶縁層、第3電極(薄膜磁場発生用コイル状電極)、絶縁層、第2駆動電極、及び絶縁層(非表示面)と、第1基板と第2基板間に、充填された透明絶縁性液体と、該透明絶縁性液体中に分散された黒色負荷電磁性微粒子と白色正荷電微粒子との正負2種類の泳動微粒子を封入した交流電界・磁気誘導方式の電気泳動表示素子を提案する。
An electrophoretic display element, an electrophoretic display method, and an electrophoretic display device having a novel configuration in which the black charged magnetic fine particles and the white positively charged fine particles are used and an alternating electric field and an alternating magnetic field are superimposed on the stirring of the moving fine particles have been devised.
That is, a first substrate, a first transparent electrode disposed on the first substrate, a transparent insulating layer, a second transparent electrode (coiled electrode for generating a thin film magnetic field), a transparent insulating layer, a first transparent driving electrode, and an insulating layer (Display surface), a second substrate disposed opposite to the first substrate, a second electrode disposed on the second substrate, an insulating layer, a third electrode (coiled electrode for generating a thin film magnetic field), Insulating layer, second drive electrode, insulating layer (non-display surface), transparent insulating liquid filled between first substrate and second substrate, and black load electromagnetic wave dispersed in transparent insulating liquid We propose an alternating current electric field / magnetic induction type electrophoretic display element that encloses two types of positive and negative electrophoretic fine particles, ie, positive and white fine particles.

表示方法は、先ず第1透明電極と第2電極に交流電界を印加して透明絶縁性液体を電場により攪拌、同時に第2透明電極と第3電極間に交流電流を通電して交流磁場を発生、交流電場と交流磁場を重畳して、透明絶縁性液体中の黒色負荷電磁性微粒子と白色正荷電微粒子を攪拌する。更に同時に前記第1透明駆動電極と第2駆動電極間に表示用直流電界を印加する。正負両泳動微粒子は入れ替わり垂直移動して正電界部の表示面には黒色負荷電磁性微粒子が、負電界部の非表示面には白色正荷電微粒子が移動してコントラスを生じる第1過程、画像表示後、前記第1透明電極と第2電極間に交流電場を、第2透明電極と第3電極に交流磁場を発生、透明絶縁性液体を攪拌し、同時に剥離直流電界を印加し前歴表示画像を消去する第2過程、次ぎに、表示画面の全面白色表示を行う第3過程により画像表示を行う。白色表示を行うには、表面用直流電界を逆転して、白色正荷電微粒子を表示面へ、黒色負荷電磁性微粒子を非表示面に垂直移動すればよい。又黒色負荷電磁性微粒子を、マゼンタ、イエロー、シアン色の負荷電磁性微粒子とすれば、カラー表示の電気泳動表示素子が実現する。この駆動法を交流電界・磁気誘導方式と称す。  In the display method, first, an AC electric field is applied to the first transparent electrode and the second electrode to stir the transparent insulating liquid by the electric field, and an AC current is simultaneously applied between the second transparent electrode and the third electrode to generate an AC magnetic field. Then, the AC electric field and the AC magnetic field are superimposed to stir the black loaded electromagnetic fine particles and the white positively charged fine particles in the transparent insulating liquid. At the same time, a display DC electric field is applied between the first transparent drive electrode and the second drive electrode. First positive and negative electrophoretic fine particles are interchanged and vertically moved, black loaded electromagnetic fine particles move on the display surface of the positive electric field portion, and white positive charged fine particles move on the non-display surface of the negative electric field portion, and a first process, image After the display, an AC electric field is generated between the first transparent electrode and the second electrode, an AC magnetic field is generated on the second transparent electrode and the third electrode, the transparent insulating liquid is stirred, and a peeling DC electric field is applied at the same time. Next, the image is displayed by the second process of erasing the image, and then by the third process of displaying the entire white color of the display screen. In order to perform white display, it is only necessary to reverse the surface direct current electric field to vertically move white positively charged fine particles to the display surface and black load electromagnetic fine particles to the non-display surface. If the black load electromagnetic fine particles are magenta, yellow, and cyan load electromagnetic fine particles, a color display electrophoretic display element can be realized. This driving method is called an AC electric field / magnetic induction method.

正電荷を帯びた白色正荷電微粒子と、負電荷及び磁荷を帯びた黒色負荷電磁性微粒子に、交流電場及び交流磁場を印加すると、独自に攪拌され正・負の泳動微粒子の分離を容易にし、表示用直流信号を印加すると、極性に応じて表示面あるいは非表示面方向に垂直に移動し、両泳動微粒子が入れ替わり、高速応答性で高精細の画像表示が可能となる。  When AC electric field and AC magnetic field are applied to positively charged white positively charged fine particles and negatively charged and magnetically charged black loaded electromagnetic fine particles, it is easy to separate positive and negative migrating fine particles by stirring independently. When a DC signal for display is applied, it moves vertically in the direction of the display surface or non-display surface depending on the polarity, and both migrating microparticles are replaced, enabling high-definition image display with high-speed response.

前記記載の交流電界方式による電気泳動表示素子を集合し一体化して、単純マトリックス回路、アクティブマトリックス回路等により駆動させると、交流電界方式による電気泳動表示装置ができる。又、黒色負荷電磁性微粒子の代わりに、マゼンタ、イエロー、シアン色等のカラー負荷電微粒子と、前記白色正荷電微粒子を使用した電気泳動表示素子を用いれば、交流電界方式によるカラー電気泳動表示装置が実現する。  When the electrophoretic display elements based on the AC electric field method described above are assembled and integrated and driven by a simple matrix circuit, an active matrix circuit, or the like, an electrophoretic display device using an AC electric field method can be obtained. In addition, if an electrophoretic display element using magenta, yellow, cyan, etc., color negatively charged fine particles instead of black loaded electromagnetic fine particles and the white positively charged fine particles is used, a color electrophoretic display device using an AC electric field method Is realized.

前記記載の磁気誘導方式による電気泳動表示素子を集合し一体化して、単純マトリックス回路、アクティブマトリックス回路等により駆動させると、磁気誘導方式による電気泳動表示装置ができる。又、黒色負荷電磁性微粒子の代わりに、マゼンタ、イエロー、シアン色等のカラー色負荷電磁性微粒子と、前記白色正荷電微粒子を使用した電気泳動表示素子を用いれば、磁気誘導方式によるカラー電気泳動表示装置が実現する。  When the electrophoretic display elements by the magnetic induction method described above are assembled and integrated and driven by a simple matrix circuit, an active matrix circuit, or the like, an electrophoretic display device by a magnetic induction method can be obtained. If an electrophoretic display element using magenta, yellow, cyan, or other color-loaded electromagnetic fine particles and the white positively charged fine particles is used instead of the black-loaded electromagnetic fine particles, color electrophoresis using a magnetic induction method is performed. A display device is realized.

前記記載の交流電界・磁気誘導方式による電気泳動表示素子を集合し一体化して、単純マトリックス回路、アクティブマトリックス回路等により駆動させると、交流電界・磁気誘導方式による電気泳動表示装置ができる。又、黒色荷電磁性微粒子の代わりに、マゼンタ、イエロー、シアン色等カラー色負荷電磁性微粒子と、前記白色正荷電微粒子を使用した電気泳動表示素子とを用いれば交流電界・磁気誘導方式によるカラー電気泳動表示装置が実現する。  When the electrophoretic display elements by the AC electric field / magnetic induction system described above are assembled and integrated and driven by a simple matrix circuit, an active matrix circuit, or the like, an electrophoretic display device by an AC electric field / magnetic induction system can be obtained. In addition, instead of black charged magnetic fine particles, color-loaded electromagnetic fine particles such as magenta, yellow, and cyan, and an electrophoretic display element using the white positively charged fine particles, color electric current by an AC electric field / magnetic induction method is used. An electrophoretic display device is realized.

前記記載の電気泳動表示素子において、第2基板及び第2基板上に配置された第2電極、絶縁層、第3電極、絶縁層、第2駆動電極及び絶縁層(非表示面)等に透光性材料を使用し、下部から透過光を照射できる構造にすると透過型電気泳動示素装置とすることができる。  In the electrophoretic display element described above, the second substrate, the second electrode disposed on the second substrate, the insulating layer, the third electrode, the insulating layer, the second drive electrode, the insulating layer (non-display surface), and the like are transparent. When a light-sensitive material is used so that transmitted light can be irradiated from below, a transmission type electrophoretic display device can be obtained.

前記白色正荷電微粒子は、高分子微粒子材料に正孔トラップとして粒径0.1μmのSi系酸化物微粒子と、酸化チタン、酸化亜鉛等の白色顔料を加えて懸濁重合により粒径1〜10μmの真球状微粒子とし、これに5〜10kGyのガンマ線を照射、ζ電位が20〜100mVの白色正荷電微粒子としたものである。粒径が真球状微粒子で粒度分布が狭いので、透明絶縁性液体に分散し、表示用直流電界を印加すると規則的に高速移動して、短時間に応答する正荷電微粒子がえられる。  The white positively charged fine particles have a particle size of 1 to 10 μm by suspension polymerization of Si fine oxide particles having a particle size of 0.1 μm as a hole trap and a white pigment such as titanium oxide or zinc oxide as a hole trap. These particles are irradiated with 5 to 10 kGy gamma rays to form white positively charged fine particles having a ζ potential of 20 to 100 mV. Since the particle size is true spherical fine particles and the particle size distribution is narrow, positively charged fine particles that are dispersed in a transparent insulating liquid and regularly move at a high speed when a direct current electric field for display is applied, and respond in a short time.

前記黒色負荷電磁性微粒子は、黒色に着色した高分子微粒子材料に電子トラップ材料のフッ素樹脂を添加、更にPt−Co、MnBiフェライト、YIG等の0.1μm以下の磁性微粒子か、SmCo、FePt、CoPt等のナノ磁性微粒子を加えて、懸濁重合により粒径1〜10μmの真球状微粒子とする。これに、50〜100kGyの電子線を照射し、ζ電位が−20〜−100mVの黒色負荷電磁性微粒子としたものである。粒径が真球状微粒子で粒度分布が狭いので、透明絶縁性液体に分散し、表示用直流電界を印加すると規則的に高速に移動して、短時間に応答する泳動微粒子がえられる。又、高分子微粒子材料を、マゼンタ、イエロー、シアン色等に着色した高分子微粒子材料を用い磁性微粒子を加えて、同様の操作を繰返せば、カラー用負荷電磁性微粒子が製作できる。The black loaded electromagnetic fine particles are obtained by adding a fluorine resin as an electron trap material to a black colored polymer fine particle material, and further, magnetic fine particles of 0.1 μm or less such as Pt—Co, MnBi ferrite, YIG or the like, SmCo 5 , FePt. Then, nanomagnetic fine particles such as CoPt are added to obtain spherical fine particles having a particle diameter of 1 to 10 μm by suspension polymerization. This is irradiated with an electron beam of 50 to 100 kGy to form black loaded electromagnetic fine particles having a ζ potential of −20 to −100 mV. Since the particle size is a true spherical fine particle and the particle size distribution is narrow, when a direct current electric field for display is applied and dispersed in a transparent insulating liquid, it regularly moves at high speed, and electrophoretic fine particles responding in a short time are obtained. In addition, when the same operation is repeated by using a polymer fine particle material colored in magenta, yellow, cyan, etc. as a polymer fine particle material, and repeating the same operation, colored electromagnetic particles can be produced.

前記白色正荷電磁性微粒子は、高分子微粒子材料に、正孔トラップとして粒径0.1μm以下のSi系酸化物超微粒子と酸化チタン、酸化亜鉛等の白色顔料と透明磁性微粒子YIGを加え、懸濁重合により粒径1〜10μmの真球状超微粒子とする。これに、これに5〜10kGyのガンマ線を照射、ζ電位が+20〜+100mVの白色正荷電磁性微粒子としたものである。粒径が真球状超微粒子で粒度分布が狭いので、透明絶縁性液体に分散し、表示用直流電界を印加すると規則的に高速に移動して、短時間に応答する泳動微粒子がえられる。  The white positively charged magnetic fine particles are obtained by adding, as a hole trap, a Si-based oxide ultrafine particle having a particle size of 0.1 μm or less, a white pigment such as titanium oxide or zinc oxide, and transparent magnetic fine particles YIG as a hole trap. The spherical superfine particles having a particle diameter of 1 to 10 μm are obtained by suspension polymerization. This is irradiated with 5 to 10 kGy of gamma rays to form white positively charged magnetic fine particles having a ζ potential of +20 to +100 mV. Since the particle size distribution is a true spherical ultrafine particle and the particle size distribution is narrow, when a direct current electric field for display is applied, a moving microparticle that regularly moves at high speed and responds in a short time is obtained.

前記第1基板、第2基板材料には、透明ガラス又はポリマーフィルムが使用できる。  Transparent glass or polymer film can be used for the first substrate and the second substrate material.

第1基板と第2基板の距離は、表示画像の画質、コントラス及び駆動電圧を考慮すると、泳動微粒子の粒径の約20倍以下か、表示直流電界を考慮すると、150μm以下が望ましい。
前記電気泳動表示素子には、黒色負荷電磁性微粒子、白色正荷電微粒子の外、黒色正荷電微粒子、白色負荷電微粒子、黒色正荷電磁性微粒子、白色負荷電微粒子の組合わせもできる。また白色正荷電微粒子とマゼンタ、イエロー、シアン色等の負荷電磁性微粒子の組み合せ、白色正荷電磁性微粒子とマゼンタ、イエロー、シアン色等の負荷電微粒子の組み合せのカラー用電気泳動表示素子も利用できる。又荷電磁性微粒子は、荷電微粒子に比較して2〜5倍の粒径の大きいことが、透明絶縁性液体中での交流電場、交流磁場において、分離性は良好である。
The distance between the first substrate and the second substrate is preferably about 20 times or less of the particle size of the electrophoretic fine particles in consideration of the image quality of the display image, the contrast and the driving voltage, or 150 μm or less in consideration of the display DC electric field.
The electrophoretic display element may be a combination of black loaded electromagnetic fine particles and white positive charged fine particles, black positive charged fine particles, white negative charged fine particles, black positive charged magnetic fine particles, and white negative charged fine particles. In addition, a combination of white positively charged fine particles and magenta, yellow, cyan, etc., loaded electromagnetic fine particles, and a combination of white positively charged magnetic fine particles and magenta, yellow, cyan, etc. negatively charged fine particles can be used. . The charged magnetic fine particles have a particle size that is 2 to 5 times larger than that of the charged fine particles, and the separability is good in an alternating electric field and an alternating magnetic field in a transparent insulating liquid.

以下、本発明に係る実施形態を図面によって詳細に説明するが、図面中の素子の寸法形状は実際の寸法でもなければ実際の寸法に比例しているものでもない、それらは理解を容易にするために適宜誇張されている。  DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments according to the present invention will be described in detail below with reference to the drawings, but the dimensions and shapes of elements in the drawings are neither actual dimensions nor proportional to actual dimensions, which facilitates understanding. Therefore, it is exaggerated as appropriate.

図1に本発明に係る電気泳動表示素子の基本的構成図を示す。図は便宜上1画素からなる構成を示す。I.は黒色負荷電微粒子8と白色正荷電微粒子9とで構成される交流電界方式である。第1基板1(ネサ・ガラス)と、第1基板1上に配置された第1透明電極2、透明絶縁層3、第1透明駆動電極6、透明絶縁層(表示面)7と、前記第1基板1に対向して配置された、2基板17と、該第2基板17上に配置された第2電極16、絶縁層13、第2駆動電極12、絶縁層(非表示面)11と、第1基板1と第2基板17間に、充填された透明絶縁性液体10と、該透明絶縁性液体10中に分散された黒色負荷電泳動粒子8と、白色正荷電微粒子9との正負2種類の泳動微粒子を封入し、垂直移動による電気泳動表示素子である。
第1透明電極2と第2電極16間に交流電源22を接続し、泳動微粒子を交流磁場により攪拌、第1透明駆動電極6と、第2駆動電極12間に表示用直流電源21を接続して、泳動微粒子8、9を垂直移動して、黒色負荷電微粒子8を透明絶縁層(表示面)7に、白色正荷電微粒子9を絶縁層(非表示面)11に移動、画像表示する。
FIG. 1 shows a basic configuration diagram of an electrophoretic display element according to the present invention. For the sake of convenience, FIG. I. Is an AC electric field system composed of black negatively charged fine particles 8 and white positively charged fine particles 9. A first substrate 1 (nesa glass), a first transparent electrode 2, a transparent insulating layer 3, a first transparent driving electrode 6, a transparent insulating layer (display surface) 7 disposed on the first substrate 1, and the first A second substrate 17 disposed opposite to the first substrate 1; a second electrode 16, an insulating layer 13, a second drive electrode 12, and an insulating layer (non-display surface) 11 disposed on the second substrate 17; The positive and negative of the transparent insulating liquid 10 filled between the first substrate 1 and the second substrate 17, the black electrophoretic particles 8 dispersed in the transparent insulating liquid 10, and the white positively charged fine particles 9. It is an electrophoretic display element that encloses two types of electrophoretic fine particles and moves vertically.
An AC power supply 22 is connected between the first transparent electrode 2 and the second electrode 16, the migrating fine particles are stirred by an AC magnetic field, and a display DC power supply 21 is connected between the first transparent drive electrode 6 and the second drive electrode 12. Then, the electrophoretic fine particles 8 and 9 are vertically moved to move the black negative charged fine particles 8 to the transparent insulating layer (display surface) 7 and the white positively charged fine particles 9 to the insulating layer (non-display surface) 11 to display an image.

IIは、黒色負荷電磁性微粒子20と白色正荷電微粒子9とで構成される磁気誘導方式である。第1基板1(ネサ・ガラス)の表面の透明電極をパターニングして磁場発生用薄膜コイル状第2透明電極4とし、透明絶縁層5、第1透明駆動電極6、透明絶縁層(表示面)7、前記第1基板1に対向して配置された第2基板17と該第2基板17 上に配置された磁場発生用薄膜コイル状第3電極14、絶縁層13、第2駆動電極12及び絶縁層(非表示面)11と、第1基板と第2基板間に、充填された透明絶縁性液体10と、該透明絶縁性液体中に分散された黒色負荷電磁気微粒子20と、白色正荷電微粒子9との正負2種類の泳動粒子を封入し、垂直移動による電気泳動表示素子である。
第2透明電極4と第3電極14間に磁場発生用交流電源23を接続し、交流磁場により黒色荷電磁性微粒子を攪拌、第1透明駆動電極6と、第2駆動電極12間に表示用直流電源21を接続して、泳動微粒子20、9を垂直移動して、黒色負荷電磁性微粒子20を透明絶縁層(表示面)7に、白色正荷電微粒子9を絶縁層(非表示面)11に移動させて画像表示する。
II is a magnetic induction system composed of black loaded electromagnetic fine particles 20 and white positively charged fine particles 9. The transparent electrode on the surface of the first substrate 1 (Nesa glass) is patterned to form a thin-film coiled second transparent electrode 4 for generating a magnetic field. The transparent insulating layer 5, the first transparent drive electrode 6, and the transparent insulating layer (display surface) 7, a second substrate 17 disposed opposite to the first substrate 1, a thin film coiled third electrode 14 for generating a magnetic field disposed on the second substrate 17, an insulating layer 13, a second drive electrode 12, and Insulating layer (non-display surface) 11, transparent insulating liquid 10 filled between the first substrate and the second substrate, black load electromagnetic fine particles 20 dispersed in the transparent insulating liquid, and white positive charge This is an electrophoretic display element that encloses two types of electrophoretic particles, positive and negative, with the fine particles 9 and moves vertically.
A magnetic field generating AC power source 23 is connected between the second transparent electrode 4 and the third electrode 14, the black charged magnetic fine particles are stirred by the AC magnetic field, and the display DC is connected between the first transparent drive electrode 6 and the second drive electrode 12. The power source 21 is connected to move the electrophoretic fine particles 20 and 9 vertically, and the black loaded electromagnetic fine particles 20 are applied to the transparent insulating layer (display surface) 7 and the white positively charged fine particles 9 are applied to the insulating layer (non-display surface) 11. Move to display image.

IIIは、黒色負荷電磁性微粒子20、白色正荷電微粒子9とで構成され、交流電場と交流磁場を重畳して泳動粒子を攪拌する交流電界・磁気誘導方式である。第1基板1と、第1基板上に配置された第1透明電極2、透明絶縁層3、透明電極をパターニングして磁場発生薄膜コイル状とした第2透明電極(薄膜磁場発生用コイル状電極)4、透明絶縁層5と、第1透明駆動電極6、透明絶縁層(表示面)7と、前記第1基板1に対向して配置された、第2基板17と、該第2基板17上に配置された第2電極16、絶縁層15、第3電極(薄膜磁場発生用コイル状電極)14と、絶縁層13 と、第2駆動電極12と、絶縁層(非表示面)11がある。第1基板1と第2基板17間に、充填された透明絶縁性液体10と、該透明絶縁性液体10中に分散された黒色負荷電磁気微粒子20と、白色正荷電微粒子9と正負2種類の泳動粒子を封入し、垂直移動による電気泳動表示素子である。
第1透明電極2と第2電極16間に交流電源22を、第2透明電極4と第3電極14間に磁場発生用交流電源23を接続し、交流電場と交流磁場を重畳して泳動微粒子20、9を攪拌、第1透明駆動電極6と、第2駆動電極12間に表示用直流電源21を接続して、泳動粒子20、9を垂直移動して、黒色荷電磁性微粒子20を絶縁層(表示面)7に、白色正荷電微粒子9を絶縁層(非表示面)11に移動させて画像表示する。
III is an AC electric field / magnetic induction system composed of black loaded electromagnetic fine particles 20 and white positively charged fine particles 9 and stirring the migrating particles by superimposing an alternating electric field and an alternating magnetic field. The first substrate 1 and the second transparent electrode (coiled electrode for generating a thin film magnetic field) by patterning the first transparent electrode 2, the transparent insulating layer 3, and the transparent electrode disposed on the first substrate to form a magnetic field generating thin film coil ) 4, the transparent insulating layer 5, the first transparent drive electrode 6, the transparent insulating layer (display surface) 7, the second substrate 17 disposed opposite to the first substrate 1, and the second substrate 17 The second electrode 16, the insulating layer 15, the third electrode (coiled electrode for thin film magnetic field generation) 14, the insulating layer 13, the second drive electrode 12, and the insulating layer (non-display surface) 11 disposed on the top is there. A transparent insulating liquid 10 filled between the first substrate 1 and the second substrate 17, black load electromagnetic fine particles 20 dispersed in the transparent insulating liquid 10, white positively charged fine particles 9, and two types of positive and negative It is an electrophoretic display element that encloses migrating particles and moves vertically.
The AC power source 22 is connected between the first transparent electrode 2 and the second electrode 16, and the AC power source 23 for magnetic field generation is connected between the second transparent electrode 4 and the third electrode 14. 20 and 9 are agitated, a display DC power source 21 is connected between the first transparent drive electrode 6 and the second drive electrode 12, the electrophoretic particles 20 and 9 are moved vertically, and the black charged magnetic fine particles 20 are formed into an insulating layer. On the (display surface) 7, the white positively charged fine particles 9 are moved to the insulating layer (non-display surface) 11 to display an image.

図2は、各方式の駆動法の詳細をタイムチャートで示したものである。図aは交流電界方式である。第1工程は、前期、中期、後期の三段階に分かれる。先ず第1基板と第2基板間に交流電界を印加、透明絶縁性液体を電場により攪拌、前期には、剥離用直流電界を重畳、前歴表示画像の消去と両泳動微粒子の分離を行い、中期には、表示用直流電界を印加、黒色負荷電磁性微粒子を表示面に、白色正荷電微粒子を非表示面に垂直移動、更に後期には交流電界を除外して、画像表示を行う。第2工程は、交流電界及び剥離用直流電界を印加して、前歴表示画像の消去を行う。第3工程は、負直流電界を印加して、表示面を全面白色化して、操作を終了する。  FIG. 2 is a time chart showing details of the driving method of each method. FIG. A shows an AC electric field system. The first step is divided into three stages, the first half, the middle, and the second half. First, an alternating electric field is applied between the first substrate and the second substrate, the transparent insulating liquid is stirred by the electric field, and in the previous period, a peeling direct current electric field is superimposed, the previous history display image is erased, and both electrophoretic particles are separated. In this case, a display direct current electric field is applied, black load electromagnetic fine particles are vertically moved to the display surface, white positively charged fine particles are vertically moved to the non-display surface, and an alternating electric field is excluded in the later stage to perform image display. In the second step, an AC electric field and a peeling DC electric field are applied to erase the previous history display image. In the third step, a negative DC electric field is applied to whiten the entire display surface, and the operation ends.

図bは、磁気誘導方式である。第1工程は、前期、中期、後期の三段階に分かれる。先ず第1基板と第2基板間に交流電流を通電し、磁場を発生、黒色負荷電磁性微粒子20の磁性と磁場により透明絶縁性液体は攪拌され、前期には、剥離用直流電界を重畳、前歴表示画像の消去と正・負泳動微粒子の分離を行う。中期には、表示用直流電界を印加、黒色負荷電磁性微粒子を表示面に、白色正荷電微粒子を非表示面に垂直移動し、更に、後期には交流電界を除外して、画像表示を行う。第2工程は、交流電界及び剥離用直流電界を印加して、前歴表示画像の消去を行う。第3工程は、負直流電界を印加して、表示面を全面白色化して、操作を終了する。  FIG. B shows a magnetic induction system. The first step is divided into three stages, the first half, the middle, and the second half. First, an alternating current is applied between the first substrate and the second substrate to generate a magnetic field, and the transparent insulating liquid is stirred by the magnetism and magnetic field of the black loaded electromagnetic fine particles 20. Erasing previous history display image and separating positive / negative electrophoretic fine particles. In the middle period, display DC electric field is applied, black loaded electromagnetic fine particles are moved vertically to the display surface, white positively charged fine particles are moved vertically to the non-display surface, and in the latter period, the AC electric field is excluded and image display is performed. . In the second step, an AC electric field and a peeling DC electric field are applied to erase the previous history display image. In the third step, a negative DC electric field is applied to whiten the entire display surface, and the operation ends.

図cは、交流電界・磁気誘導方式である。攪拌過程は、交流電場と交流磁場とを重畳する。泳動微粒子は、黒色負荷電磁性微粒子と白色正荷電微粒子である。交流電場と交流磁場の重畳により、正負の泳動微粒子の分離が完全に行なわれる。前記と同様に、第1工程は、前期、中期、後期の三段階に分かれる。先ず第1基板と第2基板間に交流電場と交流磁場を印加し、交流電場により両荷電微粒子を、交流磁場により荷電磁性微粒子を攪拌し、更に剥離電界を印加、前歴表示画像消去と両泳動微粒子の分離を確実に行う。
中期には、表示用直流電界を印加、黒色負荷電磁性微粒子を表示面に、白色正荷電微粒子を非表示面に垂直移動更に、後期には交流電場、交流磁場を除外して、表示用直流電界のみで画像表示を行う。第2工程は、交流電場、交流磁場及び剥離用直流電界を印加して、前歴表示画像の消去を行う。第3工程は、直流電界を印加して、表示面を全面白色化して、操作を終了する
FIG. C shows an AC electric field / magnetic induction system. In the stirring process, an alternating electric field and an alternating magnetic field are superimposed. Electrophoretic particles are black-loaded electromagnetic particles and white positively charged particles. The superposition of the alternating electric field and the alternating magnetic field completely separates the positive and negative migrating fine particles. Similarly to the above, the first step is divided into three stages of the first period, the middle period, and the latter period. First, an alternating electric field and an alternating magnetic field are applied between the first substrate and the second substrate, both charged fine particles are stirred by the alternating electric field, and the charged magnetic fine particles are stirred by the alternating magnetic field. Ensure that the fine particles are separated.
In the middle period, DC electric field for display is applied, black loaded electromagnetic fine particles move vertically to the display surface, white positively charged fine particles move vertically to the non-display surface, and in the latter period, the AC electric field and AC magnetic field are excluded, Display images only in the world. In the second step, an AC electric field, an AC magnetic field, and a peeling DC electric field are applied to erase the previous history display image. In the third step, a DC electric field is applied to whiten the entire display surface, and the operation ends.

図3は、本発明の交流電界方式による電気泳動表示素子中の泳動微粒子の動作状態の一例である。電気泳動表示素子の構成は、第1基板1と第1基板上に配置された第1透明電極2、透明絶縁層3、第1透明駆動電極6、透明絶縁層(表示面)7と、第1基板に対向して配置された、第2基板17と、該第2基板17上に配置された第2電極16、絶縁層13、第2駆動電極12、絶縁層(非表示面)11と、第1基板1と第2基板17間に、充填された透明絶縁性液体10と該透明絶縁性液体中に分散された黒色負荷電微粒子8と、白色正荷電微粒子9との正・負2種類の泳動微粒子を封入し、垂直移動による電気泳動表示素子である。  FIG. 3 shows an example of the operating state of the electrophoretic fine particles in the electrophoretic display element according to the AC electric field system of the present invention. The electrophoretic display element includes a first substrate 1, a first transparent electrode 2, a transparent insulating layer 3, a first transparent driving electrode 6, a transparent insulating layer (display surface) 7 disposed on the first substrate, A second substrate 17 disposed opposite to one substrate, a second electrode 16, an insulating layer 13, a second drive electrode 12, an insulating layer (non-display surface) 11 disposed on the second substrate 17; Positive / negative 2 between the transparent insulating liquid 10 filled between the first substrate 1 and the second substrate 17, the black negatively charged fine particles 8 dispersed in the transparent insulating liquid, and the white positively charged fine particles 9. It is an electrophoretic display element that encloses various types of electrophoretic fine particles and moves vertically.

第1工程の前期は、第1透明電極2と第2電極16間に交流電源22を接続し、第1透明駆動電極6と第2駆動電極12間に剥離直流電界を印加、交流電場により透明絶縁性液体10を攪拌し、前歴表示画像の消去、黒色負荷電微粒子8、及び白色正荷電微粒子9の分離、透明絶縁性液体10中の分散した泳動微粒子の均一分布化等を行う。中期は攪拌と同時に表示直流電界21を印加すると、荷電微粒子は分離し黒色負荷電微粒子8は表示面7に、白色正荷電微粒子9を非表示面11に移動させ、泳動微粒子の入れ替わりが行われる。良好な表示画質を得るには、交流電界を除外して表示用直流電界21のみの後期の工程が必要である。その結果、白色と黒色の泳動微粒子からなるコントラストのある電気泳動表示素子が得られる。
第2工程は、前歴表示画像の消去の過程で、第1透明電極2と第2電極16間に交流電源22を接続、絶縁層(表示面)7及び絶縁層(非表示面)11に吸着した前歴表示画像を消去する。消去が不充分の場合は、泳動微粒子と同極性の直流電界を印加して、表示面から泳動微粒子を静電的に剥離する。
第3工程は、表示画面を全面白色にするための過程である。第1透明電極側に負直流電界を印加し、表示面に白色荷電微粒子を集めて操作を終了する。
白色表示を得るには、第1過程において、表示用直流電源21の極性を逆転し、第1駆動電極6に負直流電界を、第2駆動電極12に正直流電界を印加、白色正荷電微粒子9を表示面7へ、黒色荷電微粒子9を非表示面11に移動させればよい。黒色荷電微粒子をマゼンタ、イエロー、シアン色の荷電微粒子に代れば、同一の電気泳動表示素子構成で、カラー電気泳動表示素子となる。
In the first stage of the first step, an AC power source 22 is connected between the first transparent electrode 2 and the second electrode 16, a peeling DC electric field is applied between the first transparent driving electrode 6 and the second driving electrode 12, and the AC electric field is transparent. The insulating liquid 10 is agitated to erase the previous history display image, separate the black negatively charged fine particles 8 and the white positively charged fine particles 9, and uniformly distribute the dispersed migrating fine particles in the transparent insulating liquid 10. When the display DC electric field 21 is applied simultaneously with stirring in the middle period, the charged fine particles are separated and the black negative charged fine particles 8 are moved to the display surface 7 and the white positively charged fine particles 9 are moved to the non-display surface 11 so that the migrating fine particles are replaced. . In order to obtain a good display image quality, a later process of only the display DC electric field 21 is required except for the AC electric field. As a result, an electrophoretic display element having a contrast composed of white and black electrophoretic fine particles can be obtained.
In the second step, the AC power supply 22 is connected between the first transparent electrode 2 and the second electrode 16 in the process of erasing the previous history display image, and adsorbed to the insulating layer (display surface) 7 and the insulating layer (non-display surface) 11. Delete the previous history display image. When the erasing is insufficient, a DC electric field having the same polarity as the electrophoretic fine particles is applied to electrostatically peel the electrophoretic fine particles from the display surface.
The third step is a step for making the entire display screen white. A negative DC electric field is applied to the first transparent electrode side, white charged fine particles are collected on the display surface, and the operation ends.
In order to obtain a white display, in the first step, the polarity of the display DC power supply 21 is reversed, a negative DC electric field is applied to the first drive electrode 6, a positive DC electric field is applied to the second drive electrode 12, and white positively charged fine particles are applied. 9 may be moved to the display surface 7, and the black charged fine particles 9 may be moved to the non-display surface 11. If the black charged fine particles are replaced with magenta, yellow, and cyan charged fine particles, a color electrophoretic display element is obtained with the same electrophoretic display element configuration.

図4は、本発明の磁気誘導方式による電気泳動表示素子中の泳動微粒子の動作状態の一例である。電気泳動表示素子の構成は、第1基板1と、第1基板上に配置された第2透明電極(薄膜磁場発生用コイル状電極)4、透明絶縁層5、第1透明駆動電極6、透明絶縁層(表示面)7と、第1基板1に対向して配置された、第2基板17と、該第2基板17上に配置された第3電極(薄膜磁場発生用コイル状電極)14、絶縁層13、第2駆動電極12、絶縁層(非表示面)11と、第1基板1と第2基板17間に、充填された透明絶縁性液体10と、該透明絶縁液体10中に分散された黒色負荷電磁性微粒子20と、白色正荷電微粒子9との正・負2種類の泳動微粒子を封入し、垂直移動による電気泳動表示素子である。  FIG. 4 shows an example of the operating state of the electrophoretic fine particles in the electrophoretic display element according to the magnetic induction system of the present invention. The configuration of the electrophoretic display element includes a first substrate 1, a second transparent electrode (coiled electrode for thin film magnetic field generation) 4 disposed on the first substrate, a transparent insulating layer 5, a first transparent drive electrode 6, a transparent An insulating layer (display surface) 7, a second substrate 17 disposed opposite to the first substrate 1, and a third electrode (coiled electrode for generating a thin film magnetic field) 14 disposed on the second substrate 17. , The insulating layer 13, the second drive electrode 12, the insulating layer (non-display surface) 11, the transparent insulating liquid 10 filled between the first substrate 1 and the second substrate 17, and the transparent insulating liquid 10 This is an electrophoretic display element that encloses two kinds of positive and negative electrophoretic fine particles, that is, dispersed black loaded electromagnetic fine particles 20 and white positively charged fine particles 9, and moves vertically.

第1工程の前期は、第2透明電極4と第3電極14間に交流磁場発生用交流電源23を接続、第1透明駆動電極6と第2駆動電極12間に剥離直流電界を印加し、交流磁場により透明絶縁性液体10中に分散された、黒色負荷電磁性微粒子20を攪拌し、前歴表示画像の消去、黒色負荷電磁性微粒子20及び白色正荷電微粒子9を分離、透明絶縁性液体10中に分散した泳動微粒子の均一分布化等を行う。中期には攪拌と同時に表示直流電界21を印加すると、泳動微粒子は分離し、黒色負荷電微粒子20は表示面に、白色正荷電微粒子9は非表示面11に移動し、泳動微粒子の入れ替わりが行われる。良好な表示画質を得るには、交流電界を除外して表示用直流電界21のみの後期が必要である。その結果、白色と黒色の泳動微粒子からなるコントラストのある電気泳動表示素子が得られる。
第2工程は、前歴表示画像の消去の過程で、第2透明電極4と第3電極14間に交流磁場を発生する交流電源23を接続、絶縁層(表示面)7及び絶縁層(非表示面)11に吸着した前歴表示画像を消去する。消去が不充分の場合は、泳動微粒子と同極性の直流電界を印加して、表示面から泳動微粒子を静電的に剥離する。
第3工程は、表示画面7を全面白色にするための過程である。第1透明電極側に負直流電界を印加し、表示面7に白色荷電微粒子9を集めて操作を終了する。
In the first stage of the first step, an AC magnetic field generating AC power source 23 is connected between the second transparent electrode 4 and the third electrode 14, a peeling DC electric field is applied between the first transparent driving electrode 6 and the second driving electrode 12, The black load electromagnetic fine particles 20 dispersed in the transparent insulating liquid 10 by the AC magnetic field are stirred, the previous history display image is erased, the black load electromagnetic fine particles 20 and the white positively charged fine particles 9 are separated, and the transparent insulating liquid 10 Uniform distribution of migrating fine particles dispersed in the medium is performed. When the display DC electric field 21 is applied simultaneously with stirring in the middle period, the electrophoretic microparticles are separated, the black negatively charged microparticles 20 are moved to the display surface, the white positively charged microparticles 9 are moved to the non-display surface 11, and the electrophoretic microparticles are replaced. Is called. In order to obtain a good display image quality, it is necessary to exclude the AC electric field and only the display DC electric field 21 later. As a result, an electrophoretic display element having a contrast composed of white and black electrophoretic fine particles can be obtained.
In the second step, an AC power source 23 that generates an AC magnetic field is connected between the second transparent electrode 4 and the third electrode 14 in the process of erasing the previous history display image, and the insulating layer (display surface) 7 and the insulating layer (non-display) Surface) The previous history display image adsorbed to 11 is erased. When the erasing is insufficient, a DC electric field having the same polarity as the electrophoretic fine particles is applied to electrostatically peel the electrophoretic fine particles from the display surface.
The third step is a step for making the display screen 7 entirely white. A negative DC electric field is applied to the first transparent electrode side, white charged fine particles 9 are collected on the display surface 7, and the operation is completed.

図5は、本発明の交流電界・磁気誘導方式による電気泳動表示素子中の泳動微粒子の動作状態の一例である。電気泳動表示素子の構成は、第1基板1と第1基板上に配置された第1透明電極2、透明絶縁層3、第2透明電極(薄膜磁場発生用コイル状電極)4、透明絶縁層5、第1透明駆動電極6、透明絶縁層(表示面)7と、第1基板1に対向して配置された、第2基板17と、該第2基板17上に配置された第2電極16、絶縁層15、第3電極(薄膜磁場発生用コイル状電極)14、絶縁層13、第2駆動電極12、絶縁層(非表示面)11と、第1基板1と第2基板17間に充填された透明絶縁性液体10と、該透明絶縁性液体中に分散された黒色負荷電磁性微粒子20と、白色正荷電微粒子9の正負2種類の泳動微粒子を封入した垂直移動による電気泳動表示素子である。  FIG. 5 shows an example of the operating state of the electrophoretic fine particles in the electrophoretic display element using the AC electric field / magnetic induction system of the present invention. The electrophoretic display element is composed of a first substrate 1, a first transparent electrode 2 disposed on the first substrate, a transparent insulating layer 3, a second transparent electrode (coiled electrode for generating a thin film magnetic field) 4, and a transparent insulating layer. 5, the first transparent drive electrode 6, the transparent insulating layer (display surface) 7, the second substrate 17 disposed opposite to the first substrate 1, and the second electrode disposed on the second substrate 17. 16, insulating layer 15, third electrode (coiled electrode for thin film magnetic field generation) 14, insulating layer 13, second drive electrode 12, insulating layer (non-display surface) 11, and between first substrate 1 and second substrate 17 Electrophoretic display by vertical movement in which transparent insulating liquid 10 filled in, black loaded electromagnetic fine particles 20 dispersed in the transparent insulating liquid, and two types of positive and negative electrophoretic fine particles of white positive charged fine particles 9 are enclosed. It is an element.

第1工程の前期は、第1透明電極2と第2電極16間に交流電源22を接続、第2透明電極4と第3電極14間に、交流磁場発生用交流電源23を接続、同時に第1透明駆動電極6と第2駆動電極12間に剥離用直流電界を印加し、交流電場と交流磁場及び剥離用直流電界によって、透明絶縁性液体10を攪拌し、前歴表示画像の消去、黒色負荷電磁性微粒子20及び白色正荷電微粒子9を分離、泳動微粒子の均一分布化等を行う。
中期は攪拌と同時に表示直流電源21を印加すると、泳動微粒子は分離し、黒色負荷電微粒子20は表示面7に、白色正荷電微粒子9は非表示面11に垂直移動して、泳動粒子の入れ替わりが行われるが、良好な表示画質を得るには、交流電界を除外して表示用直流電源21のみの後期が必要である。その結果、白色と黒色の泳動粒子からなるコントラストのある電気泳動表示素子が得られる。
第2工程は、前歴表示画像の消去の過程で、第1透明電極2と第2電極16間に交流電源22を印加、同時に第2透明電極4と第3電極14間に交流磁場を発生する交流電源23を接続、第1及び第2駆動電極6、12に泳動微粒子と同極性の剥離用直流電界を印加して、絶縁層(表示面)7及び絶縁層(非表示面)11吸着した前歴表示画像を消去する。
第3工程は、表示画面を全面白色にするための過程である。第1透明電極側に負直流電界を印加し、表示面7に白色正荷電微粒子9を集めて操作を終了する。
In the first stage of the first step, an AC power source 22 is connected between the first transparent electrode 2 and the second electrode 16, and an AC power source 23 for generating an AC magnetic field is connected between the second transparent electrode 4 and the third electrode 14. 1. A peeling DC electric field is applied between the transparent driving electrode 6 and the second driving electrode 12, and the transparent insulating liquid 10 is stirred by the AC electric field, the AC magnetic field, and the peeling DC electric field, the previous history display image is erased, and the black load is applied. The electromagnetic fine particles 20 and the white positively charged fine particles 9 are separated, and the dispersed fine particles are uniformly distributed.
In the middle period, when the display DC power supply 21 is applied simultaneously with stirring, the electrophoretic fine particles are separated, the black negatively charged fine particles 20 are vertically moved to the display surface 7, and the white positively charged fine particles 9 are vertically moved to the non-display surface 11. However, in order to obtain a good display image quality, only the display direct-current power supply 21 is required after the AC electric field is excluded. As a result, an electrophoretic display element having a contrast composed of white and black electrophoretic particles can be obtained.
In the second step, an AC power supply 22 is applied between the first transparent electrode 2 and the second electrode 16 and simultaneously an AC magnetic field is generated between the second transparent electrode 4 and the third electrode 14 in the process of erasing the previous history display image. An AC power source 23 was connected, and a DC electric field for separation having the same polarity as the electrophoretic fine particles was applied to the first and second drive electrodes 6 and 12 to adsorb the insulating layer (display surface) 7 and the insulating layer (non-display surface) 11. Delete the previous history display image.
The third step is a step for making the entire display screen white. A negative DC electric field is applied to the first transparent electrode side, white positively charged fine particles 9 are collected on the display surface 7, and the operation is completed.

図6は、交流電界方式による電気泳動表示装置の製作フローチャートと断面図である。便宜上4画素で示す。第1基板1は、透明のネサガラスである。透明電極材料は、酸化インジウム錫(ITO)、酸化亜鉛等を用いる。これをフォトリソグラフィにより、パターニングして第1透明電極2とし、スピンナ・コートによりポリカーボネート膜を約20〜50μm塗布して透明絶縁層3とする。表面にITOをスパッタしパターニングして、第1透明駆動電極6を形成する。再びスピン・コートによりポリカーボネート膜を20〜50μm塗布して透明絶縁層(表示面)7を形成し、更にその上にフォトレジストを多層塗布してパターニングして隔壁を形成する。その凹部に泳動微粒子を分散した透明絶縁性液体10を塗布し、ブレードで過剰の液体を除去する。凹部の角型隔壁は、深さ100〜150μm、幅60μm、角型隔壁の幅は10〜20μmである。
第2基板17は、同じく透明のネサガラスである。ネサ電極をパターニングして第2電極16とし、ポリカーボネート膜13を約20〜50μm塗布、表面にITOをスパッタリングして、第2透明駆動電極12を形成する。再びスピンナ・コートし、ポリカーボネート膜を20〜50μm塗布して絶縁層(非表示面)11とし、上記第1基板と貼り合せて交流電界方式電気泳動表示装置とする。
FIG. 6 is a manufacturing flowchart and a cross-sectional view of an electrophoretic display device using an AC electric field method. For convenience, it is shown by 4 pixels. The first substrate 1 is transparent nesa glass. As the transparent electrode material, indium tin oxide (ITO), zinc oxide, or the like is used. This is patterned by photolithography to form a first transparent electrode 2, and a polycarbonate film is applied by about 20 to 50 μm by spinner coating to form a transparent insulating layer 3. The first transparent drive electrode 6 is formed by sputtering and patterning ITO on the surface. Again, a polycarbonate film is applied in an amount of 20 to 50 μm by spin coating to form a transparent insulating layer (display surface) 7, and further, a photoresist is applied thereon and patterned to form partition walls. A transparent insulating liquid 10 in which electrophoretic fine particles are dispersed is applied to the recess, and excess liquid is removed with a blade. The concave square partition walls have a depth of 100 to 150 μm and a width of 60 μm, and the square partition walls have a width of 10 to 20 μm.
The second substrate 17 is also transparent nesa glass. The second electrode 16 is formed by patterning the nesa electrode to form the second electrode 16, applying about 20 to 50 μm of the polycarbonate film 13, and sputtering ITO on the surface. The spinner is coated again, and a polycarbonate film is applied by 20 to 50 μm to form an insulating layer (non-display surface) 11, which is bonded to the first substrate to form an AC electric field type electrophoretic display device.

図7は、交流電界方式による電気泳動表示装置の断面図及び3×3マトリックス平面構成図である。電気泳動表示素子は、300dpiの解像度を維持するには、一辺が60〜70μm、高さ100〜150μmの角柱で、隔壁の幅は約20μmある。図a、図bは、反射型交流電界方式電気泳動表示装置、図c、図dは、背部から光照射し電気泳動表示素子の隔壁を透して透過光が有効に利用された透過型の電気泳動表示装置である。  FIG. 7 is a cross-sectional view and a 3 × 3 matrix plan view of an electrophoretic display device using an alternating electric field system. In order to maintain the resolution of 300 dpi, the electrophoretic display element is a prism having a side of 60 to 70 μm and a height of 100 to 150 μm, and the width of the partition wall is about 20 μm. FIGS. A and b are reflection type AC electric field type electrophoretic display devices, and FIGS. C and d are transmissive types in which transmitted light is effectively utilized through light irradiation from the back through the partition walls of the electrophoretic display element. An electrophoretic display device.

図8は、磁気誘導方式による電気泳動表示装置の製作フローチャートと断面図である。便宜上4画素で示す。第1基板1は、透明のネサガラスである。透明電極材料は、酸化インジウム錫(ITO)、酸化亜鉛等を用いる。ネサガラス上の透明電極をフォトリソグラフィによりパターニングして薄膜磁場発生用コイル状表面電極とし、表面にポリカーボネートを20〜50μmスピンナ・コートして絶縁層を形成、透明電極材料をスパッタしパターニングして薄膜磁場発生用コイルの裏面電極とし表裏導通して、第1透明電極4を構成する。図9に薄膜磁場発生用コイル状電極の構成を示す。
この表面にスピンナ・コートによりポリカーボネート膜を約20〜50μm塗布し透明絶縁層5とし、表面にITOをスパッタしパターニングして、第1透明駆動電極6を形成する。再びスピンナ・コートによりポリカーボネート膜を20〜50μm塗布して透明絶縁層(表示面)7を形成し、更に、その上にフォトレジストを多層塗布、パターニングして隔壁を形成し、その凹部に泳動粒子8、9を分散した透明絶縁性液体10を塗布、プレードで過剰の粒子を除去する。
第2基板17は、同じく透明のネサガラスである。第1透明電極4と同様にネサ膜をパターニングして、薄膜磁場発生用コイル状表面電極とし、表面にポリカーボネートを20〜50μmスピンナ・コートして絶縁層を形成、透明電極材料をスパッタし、パターニングして薄膜磁場発生用コイルの裏面電極とし、表裏導通して、第2電極14を構成する。スピンナ・コートによりポリカーボネートを20〜50μm塗布して絶縁層(非表示面)11とし、前記第1基板1と貼り合せて磁気誘導方式電気泳動表示装置とする。
FIG. 8 is a manufacturing flowchart and a sectional view of an electrophoretic display device using a magnetic induction method. For convenience, it is shown by 4 pixels. The first substrate 1 is transparent nesa glass. As the transparent electrode material, indium tin oxide (ITO), zinc oxide, or the like is used. A transparent electrode on Nesa glass is patterned by photolithography to form a coiled surface electrode for generating a thin film magnetic field, and an insulating layer is formed on the surface by spin coating of polycarbonate with 20 to 50 μm, and a transparent electrode material is sputtered and patterned to form a thin film magnetic field. The first transparent electrode 4 is constituted by conducting the front and back as the back electrode of the generating coil. FIG. 9 shows the configuration of a coiled electrode for generating a thin film magnetic field.
A polycarbonate film is applied to the surface by spinner coating to a thickness of about 20 to 50 μm to form a transparent insulating layer 5, and ITO is sputtered and patterned on the surface to form the first transparent drive electrode 6. Again, a polycarbonate film is applied by spinner coating to a thickness of 20 to 50 μm to form a transparent insulating layer (display surface) 7, and further, a photoresist is applied thereon and patterned to form partition walls, and the migrating particles in the recesses A transparent insulating liquid 10 in which 8 and 9 are dispersed is applied, and excess particles are removed with a blade.
The second substrate 17 is similarly transparent nesa glass. As with the first transparent electrode 4, the nesa film is patterned to form a coiled surface electrode for generating a thin film magnetic field, polycarbonate is coated on the surface with a 20 to 50 μm spinner to form an insulating layer, and a transparent electrode material is sputtered and patterned. Thus, the back electrode of the thin-film magnetic field generating coil is used, and the second electrode 14 is formed by conducting the front and back. A polycarbonate is applied by spinner coating to 20 to 50 μm to form an insulating layer (non-display surface) 11 and bonded to the first substrate 1 to obtain a magnetic induction type electrophoretic display device.

図10は、磁気誘導方式による電気泳動表示装置の断面図及び3×3マトリックス平面構成図である。電気泳動表示素子は、300dpiの解像度を維持するには、一辺が60〜70μm、深さ100〜150μmの角柱で、隔壁の幅は約20μmある。図a、図bは、反射型交流電界方式電気泳動表示装置、図c、図dは、背部から光照射し電気泳動表示素子の隔壁を透して透過光が有効に利用された透過型の電気泳動表示装置である。  FIG. 10 is a cross-sectional view and a 3 × 3 matrix plane configuration diagram of an electrophoretic display device using a magnetic induction method. In order to maintain the resolution of 300 dpi, the electrophoretic display element is a prism having a side of 60 to 70 μm and a depth of 100 to 150 μm, and the width of the partition wall is about 20 μm. FIGS. A and b are reflection type AC electric field type electrophoretic display devices, and FIGS. C and d are transmissive types in which transmitted light is effectively utilized through light irradiation from the back through the partition walls of the electrophoretic display element. An electrophoretic display device.

図11は、交流電界・磁気誘導方式による電気泳動表示装置の製作フローチャートと断面図である。便宜上4画素で示す。第1基板1は、透明のネサガラスである。透明電極材料は、酸化インジウムすず(ITO)、酸化亜鉛等を用いる。これをフォトリソグラフィにより、パターニングして第1透明電極2とし、スピンナ・コートによりポリカーボネート膜を20〜50μm塗布し透明絶縁層3とする。表面にITOをスパッタしパターニングして、薄膜磁場発生用コイルの表面電極とする。更に、表面にポリカーボネートをスピンナ・コートして絶縁層を20〜50μm塗布、再び表面にITOをスパッタしパターニングして、薄膜磁場発生用コイルの裏面電極とし、表裏導通して第2透明電極4を構成する。
この表面にポリカーボネート膜を20μm塗布して、絶縁層5とし、再びITOをスパッタし、パターニングして第1透明駆動電極6とする。更に、表面にスピンナ・コートにによりポリカーボネート膜を10〜20μm塗布して絶縁層(表示面)7を形成し、その上にフォトレジストを多層塗布してパターニングして隔壁を形成し、その凹部に泳動粒子を分散した透明絶縁性液体10を塗布、ブレードで過剰の粒子を除去して第1基板1を製作する。
第2基板17は、同じく透明のネサガラスである。透明電極を、パターニングして第2電極16とし、前記第1透明電極4と同様に操作して、第3電極(薄膜磁場発生用コイル状電極)14を製作する。絶縁層13を塗布、透明電極材料をスパッタし、パターニングして第2駆動電極12を構成する。更に、ポリカーボネート膜を20〜50μm塗布して、絶縁層(非表示面)11を形成第2基板17した。
前記第1基板1と第2基板17を貼り合わせて交流電界・磁気誘導方式電気泳動表示装置とする。
FIG. 11 is a manufacturing flowchart and a sectional view of an electrophoretic display device using an alternating electric field / magnetic induction method. For convenience, it is shown by 4 pixels. The first substrate 1 is transparent nesa glass. As the transparent electrode material, indium tin oxide (ITO), zinc oxide, or the like is used. This is patterned by photolithography to form the first transparent electrode 2, and a polycarbonate film is applied by 20 to 50 μm by spinner coating to form the transparent insulating layer 3. ITO is sputtered on the surface and patterned to form a surface electrode of a thin-film magnetic field generating coil. Further, the surface is coated with a spinner-coating polycarbonate and an insulating layer is applied in a thickness of 20 to 50 μm. The surface is sputtered with ITO again and patterned to form a back electrode of a coil for generating a thin film magnetic field. Constitute.
A polycarbonate film of 20 μm is applied to the surface to form the insulating layer 5, and ITO is sputtered again and patterned to form the first transparent drive electrode 6. Further, a polycarbonate film is applied to the surface by spinner coating to form 10 to 20 μm to form an insulating layer (display surface) 7, and a photoresist is applied on top of that and patterned to form partition walls, and in the recesses A transparent insulating liquid 10 in which electrophoretic particles are dispersed is applied, and excess particles are removed with a blade to manufacture the first substrate 1.
The second substrate 17 is also transparent nesa glass. The transparent electrode is patterned to form the second electrode 16, and the third electrode (coiled electrode for generating a thin film magnetic field) 14 is manufactured in the same manner as the first transparent electrode 4. An insulating layer 13 is applied, a transparent electrode material is sputtered, and patterned to form the second drive electrode 12. Furthermore, 20-50 micrometers of polycarbonate films | membranes were apply | coated and the insulating layer (non-display surface) 11 was formed.
The first substrate 1 and the second substrate 17 are bonded together to form an AC electric field / magnetic induction type electrophoretic display device.

図12は、交流電界・磁気誘導方式による電気泳動表示装置の断面図及び3×3マトリックス平面構成図である。電気泳動表示素子は、300dpiの解像度を維持するには、一辺が60〜70μm、深さ100〜150μmの角柱で、隔壁の幅は約10μmある。図a、図bは、反射型交流電界方式電気泳動表示装置、図c、図dは、背部から光照射し電気泳動表示素子の隔壁を透して透過光が有効に利用された透過型の電気泳動表示装置である。  FIG. 12 is a cross-sectional view and a 3 × 3 matrix plan view of an electrophoretic display device using an alternating electric field / magnetic induction method. In order to maintain the resolution of 300 dpi, the electrophoretic display element is a prism having a side of 60 to 70 μm and a depth of 100 to 150 μm, and the width of the partition wall is about 10 μm. FIGS. A and b are reflection type AC electric field type electrophoretic display devices, and FIGS. C and d are transmissive types in which transmitted light is effectively utilized through light irradiation from the back through the partition walls of the electrophoretic display element. An electrophoretic display device.

本発明は、上記実施例に限定されるものではなく、本発明の技術的思想をしない範囲における種々の変形例、設計変更などをその技術範囲内に包含することは云う迄もない。  The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications, design changes, and the like within the technical scope of the present invention are included in the technical scope.

発明の効果The invention's effect

以上、詳細に述べたように、本発明によって次のような効果が得られた。
第1に交流電場を印加することにより、透明絶縁性液体に分散された泳動荷電微粒子を攪拌、前歴表示画像の消去、分離、沈澱、二次凝集、均一分布等が解決し精細で高コントラストな高画質の表示が可能となった。
As described above in detail, the present invention has the following effects.
First, by applying an alternating electric field, electrophoretic charged fine particles dispersed in a transparent insulating liquid are agitated, the erasure of previous display images, separation, precipitation, secondary aggregation, uniform distribution, etc. are solved, resulting in fine and high contrast. High quality display is now possible.

第2に、荷電磁性微粒子と非磁性荷電微粒子の組み合わせにより、交流磁場により透明絶縁性液体を攪拌、泳動微粒子の分離、前歴表示画像の消去、沈澱、二次凝集、均一分布等が解決し、高精細で高コントラスな高画質の表示が可能となった。  Secondly, the combination of charged magnetic fine particles and non-magnetic charged fine particles solves the problem of stirring the transparent insulating liquid by the alternating magnetic field, separating the migrating fine particles, erasing the previous history display image, precipitation, secondary aggregation, uniform distribution, etc. High-definition and high-contrast high-quality display is now possible.

第3に、荷電磁性微粒子と非磁性荷電微粒子の組み合わせにより、交流電場と交流磁場を重畳して透明絶縁性液体中に分散された、非磁性荷電微粒子、荷電磁性微粒子を独自に攪拌、より効率的な泳動微粒子の分離、画像の消去、沈澱、二次凝集、均一分布等が解決、更なる高精細で高コントラスな高画質の表示が可能となった。  Third, the combination of charged magnetic particles and non-magnetic charged particles superimposes alternating electric field and alternating magnetic field, and independently stirs the non-magnetic charged particles and charged magnetic particles dispersed in the transparent insulating liquid for higher efficiency. This eliminates the separation of migrating microparticles, image erasure, precipitation, secondary aggregation, uniform distribution, etc., enabling higher definition and higher contrast and higher quality display.

第4に、電子トラップを添加した高分子微粒子材料を重合して、真球状微粒子とし、これを放射線照射して負荷電微粒子に、正孔トラップ材料を添加した高分子微粒子材料を重合して、真球状微粒子とし、これを放射線照射して正荷微粒子とした泳動微粒子は、粒径分布、帯電性、高精細性、流動性に優れる電気泳動表示が可能となった。  Fourth, polymer fine particle material added with an electron trap is polymerized into spherical particles, and this is irradiated with radiation to polymerize the polymer fine particle material added with a hole trap material to negatively charged fine particles, Electrophoretic fine particles, which are made into true spherical fine particles and irradiated with radiation to form positively-charged fine particles, enable electrophoretic display with excellent particle size distribution, chargeability, high definition, and fluidity.

第5に、電子トラップと磁性微粒子を混合した高分子微粒子材料を重合して、真球状微粒子とし、これを放射線照射して負荷電磁性微粒子とした泳動微粒子は、粒径分布、帯電性、高精細性、流動性に優れる電気泳動表示が可能となった。  Fifth, the polymer fine particle material in which the electron trap and the magnetic fine particles are mixed is polymerized into a spherical particle, which is irradiated with radiation to form a loaded electromagnetic fine particle. Electrophoretic display with excellent definition and fluidity is now possible.

第6に、角型隔壁をもつ電気泳動表示素子において、クロストーク現象の見るられない、良好な表示コントラスが得られ、単純マトリックス及びアクティブマトリックス駆動により、反射型電気泳動表示装置が実現できる。  Sixth, in an electrophoretic display element having a square partition wall, a good display contrast without a crosstalk phenomenon is obtained, and a reflective electrophoretic display device can be realized by simple matrix and active matrix driving.

第7に、背面からの光照射により透過型電気泳動表示装置が実現できる。  Seventh, a transmission type electrophoretic display device can be realized by light irradiation from the back surface.

第8に、マゼンタ、イエロー、シアン色等の荷電微粒子、荷電磁性微粒子の使用より、カラー電気泳動表示装置が実現できる。  Eighth, a color electrophoretic display device can be realized by using charged fine particles such as magenta, yellow, and cyan, and charged magnetic fine particles.

本発明の電気泳動表示素子の基本的構成を示す断面図である。I.交流電界方式II.磁気誘導方式III.交流電界・磁気誘導方式It is sectional drawing which shows the basic composition of the electrophoretic display element of this invention. I. AC electric field system II. Magnetic induction system III. AC electric field / magnetic induction 本発明の電気泳動表示素子の代表的な駆動法を示す図である。a)交流電界方式 b)磁気誘導方式 c)交流電界・磁気誘導方式It is a figure which shows the typical drive method of the electrophoretic display element of this invention. a) AC electric field method b) Magnetic induction method c) AC electric field / magnetic induction method 本発明の交流電界方式による電気泳動表示素子中の泳動粒子の挙動を示す模式図である。第1過程:前期、中期、後期 第2過程、第3過程。It is a schematic diagram which shows the behavior of the electrophoretic particle in the electrophoretic display element by the alternating current electric field system of the present invention. 1st process: 1st period, 2nd period, 3rd process. 本発明の磁気誘導方式による電気泳動表示素子中の泳動粒子の挙動を示す模式図である。第1過程:前期、中期、後期 第2過程、第3過程。It is a schematic diagram which shows the behavior of the electrophoretic particle in the electrophoretic display element by the magnetic induction system of this invention. 1st process: 1st period, 2nd period, 3rd process. 本発明の交流電界・磁気誘導方式による電気泳動表示素子中泳動粒子の挙動を示す模式図である。第1過程:前期、中期、後期 第2過程、第3過程。It is a schematic diagram which shows the behavior of the electrophoretic particle in the electrophoretic display element by the alternating current electric field / magnetic induction system of the present invention. 1st process: 1st period, 2nd period, 3rd process. 本発明による交流電界方式による電気泳動表示装置の製作フローチャートと断面図である。It is a manufacture flowchart and sectional drawing of the electrophoretic display device by an alternating current electric field system by the present invention. 本発明による交流電界方式による反射型及び透過型電気泳動表示素子アレイの断面図と3×3マトリックス平面構成図である。FIG. 3 is a cross-sectional view and a 3 × 3 matrix plane configuration diagram of a reflection type and transmission type electrophoretic display element array according to an AC electric field method according to the present invention. 本発明による磁気誘導方式による電気泳動表示装置の製作フローチャートと断面図である。6 is a manufacturing flowchart and a cross-sectional view of an electrophoretic display device using a magnetic induction method according to the present invention. 本発明による磁気誘導方式による第1透明電極(薄膜磁場発生用コイル)4の概略図である。It is the schematic of the 1st transparent electrode (coil for thin film magnetic field generation) 4 by the magnetic induction system by this invention. 本発明による磁気誘導方式による反射型及び透過型電気泳動表示素子アレイの断面図と3×3マトリックス平面構成図である。FIG. 4 is a cross-sectional view and a 3 × 3 matrix plane configuration diagram of a reflective and transmissive electrophoretic display element array using a magnetic induction method according to the present invention. 本発明による交流電界・磁気誘導方式による電気泳動表示装置の製作フローチャートと断面図である。It is a manufacture flowchart and sectional drawing of an electrophoretic display device by an alternating current electric field and a magnetic induction system by the present invention. 本発明による交流電界・磁気誘導方式による反射型及び及び透過型電気泳動表示素子アレイの断面図と3×3マトリックス平面構成図である。FIG. 4 is a cross-sectional view and a 3 × 3 matrix plane configuration diagram of a reflection type and transmission type electrophoretic display element array using an AC electric field / magnetic induction method according to the present invention.

符号の説明Explanation of symbols

1・・・第1基板
2・・・第1透明電極
3・・・透明絶縁層
4・・・第2透明電極
5・・・透明絶縁層
6・・・第1透明駆動電極
7・・・絶縁層
8・・・黒色負荷電微粒子
9・・・白色正荷電微粒子
10・・・透明絶縁性液体
11・・・絶縁層
12・・・第2駆動電極
13・・・絶縁層
14・・・第3電極
15・・・絶縁層
16・・・第2電極
17・・・第2基板
18・・・表示素子
19・・・隔壁
20・・・黒色負荷電磁性微粒子
21・・・表示用直流電源
22・・・攪拌用交流電源
23・・・攪拌用磁場発生電源
DESCRIPTION OF SYMBOLS 1 ... 1st board | substrate 2 ... 1st transparent electrode 3 ... Transparent insulating layer 4 ... 2nd transparent electrode 5 ... Transparent insulating layer 6 ... 1st transparent drive electrode 7 ... Insulating layer 8 ... Black negatively charged fine particles 9 ... White positively charged fine particles 10 ... Transparent insulating liquid 11 ... Insulating layer 12 ... Second drive electrode 13 ... Insulating layer 14 ... 3rd electrode 15 ... Insulating layer 16 ... 2nd electrode 17 ... 2nd board | substrate 18 ... Display element 19 ... Partition 20 ... Black load electromagnetic fine particle 21 ... Direct current for display Power source 22 ... AC power source for stirring 23 ... Magnetic field generating power source for stirring

Claims (18)

第1基板と、第1基板上に配置された第1透明電極、透明絶縁層、第1透明駆動電極及び透明絶縁層(表示面)と、前記第1基板に対向して配置された第2基板と、該第2基板上に配置された第2電極、絶縁層、第2駆動電極及び絶縁層(非表示面)と、前記第1基板と第2基板間に充填された透明絶縁性液体と、該透明絶縁性液体中に分散された黒色負荷電微粒子と、白色正荷電微粒子又は、カラー負荷電微粒子と白色正荷電微粒子等の正負2種類の荷電微粒子を備えた、電気泳動表示素子と表示方法である。
先ず、前記第1透明電極と第2電極間に交流電界を印加して、前記透明絶縁性液体を交流電場で攪拌して正負の荷電微粒子を分離し、同時に前記第1透明駆動電極と第2駆動電極間に表示用直流電界を印加し、垂直移動して前記微粒子を前記透明絶縁層(表示面)又は、非表示面に移動する第1過程と、表示後再び前記第1透明電極と第2電極間に交流電界を印加して、前記透明絶縁性液体を交流電場で攪拌し、前歴表示を消去する第2過程と、更に表示画面を全面白色表示する第3過程により表示を終了することを特徴とする、交流電界方式によるモノクロ又は、カラー電気泳動表示素子と、モノクロ又は、カラー電気泳動表示方法。
A first substrate, a first transparent electrode, a transparent insulating layer, a first transparent driving electrode and a transparent insulating layer (display surface) disposed on the first substrate, and a second disposed facing the first substrate; A substrate, a second electrode, an insulating layer, a second drive electrode and an insulating layer (non-display surface) disposed on the second substrate, and a transparent insulating liquid filled between the first substrate and the second substrate And an electrophoretic display device comprising black negatively charged fine particles dispersed in the transparent insulating liquid and two positive and negative charged fine particles such as white positively charged fine particles or color negatively charged fine particles and white positively charged fine particles. It is a display method.
First, an AC electric field is applied between the first transparent electrode and the second electrode, and the transparent insulating liquid is stirred in an AC electric field to separate positive and negative charged fine particles. At the same time, the first transparent drive electrode and the second electrode A first process of applying a direct current electric field for display between the drive electrodes and moving vertically to move the fine particles to the transparent insulating layer (display surface) or non-display surface, and again after the display, the first transparent electrode and the first transparent electrode An AC electric field is applied between the two electrodes, the transparent insulating liquid is stirred with an AC electric field, and the display is terminated by a second process of erasing the previous display and a third process of displaying the entire display screen in white. A monochrome or color electrophoretic display element using an alternating electric field system and a monochrome or color electrophoretic display method.
第1基板と、第1基板上に配置された磁場発生用薄膜コイル状第1透明電極、透明絶縁層、第1透明駆動電極、絶縁層(表示面)と、前記第1基板に対向して配置された第2基板と、該第2基板上に配置された磁場発生用薄膜コイル状第3電極、絶縁層、第2駆動電極、及び絶縁層(非表示面)と、前記第1基板と第2基板間に、充填された透明絶縁性液体と、該透明絶縁性液体中に分散された黒色負荷電磁性微粒子と、白色正荷電微粒子又は、カラー負荷電磁性微粒子と白色正荷電微粒子等の正負2種類の泳動微粒子を備えた電気泳動表示素子と表示方法である。
先ず、前記第1透明電極と第3電極間に交流電流を通電して交流磁場を発生させ、前記透明絶縁性液体を交流磁場で攪拌して正負の微粒子を分離し、同時に前記第1透明駆動電極と第2駆動電極間に表示用直流電界を印加し、垂直移動して前記微粒子を前記透明絶縁層(表示面)又は、非表示面に移動する第1過程と、表示後再び前記第1透明電極と第3電極間に交流電流を通電して磁場を発生し、前記透明絶縁性液体を磁場により攪拌し、前歴表示を消去する第2の過程と、更に表示画面を全面白色表示する第3過程により表示を終了することを特徴とする、磁気誘導方式による電気泳動表示方法。
A first substrate, a thin-film coil-shaped first transparent electrode for generating a magnetic field, a transparent insulating layer, a first transparent driving electrode, an insulating layer (display surface) disposed on the first substrate, and facing the first substrate A second substrate disposed; a thin-film coiled third electrode for generating a magnetic field disposed on the second substrate; an insulating layer; a second drive electrode; and an insulating layer (non-display surface); the first substrate; A transparent insulating liquid filled between the second substrates, black loaded electromagnetic fine particles dispersed in the transparent insulating liquid, white positively charged fine particles, or color loaded electromagnetic fine particles and white positively charged fine particles, etc. An electrophoretic display element including two types of positive and negative electrophoretic fine particles and a display method.
First, an alternating current is passed between the first transparent electrode and the third electrode to generate an alternating magnetic field, and the transparent insulating liquid is stirred with the alternating magnetic field to separate positive and negative fine particles, and at the same time, the first transparent drive A first step of applying a direct current electric field for display between the electrode and the second drive electrode and vertically moving the fine particles to the transparent insulating layer (display surface) or the non-display surface; A second process of generating a magnetic field by passing an alternating current between the transparent electrode and the third electrode, stirring the transparent insulating liquid by the magnetic field and erasing the previous history display, and further displaying the entire display screen in white. An electrophoretic display method using a magnetic induction system, wherein display is terminated by three processes.
第1基板と、第1基板上に配置された第1透明電極、透明絶縁層、磁場発生用薄膜コイル状第2透明電極、透明絶縁層、第1透明駆動電極、透明絶縁層(表示面)と、前記第1基板に対向して配置された第2基板と、該第2基板上に配置された、第2電極、絶縁層、磁場発生用薄膜コイル状第3電極、絶縁層、第2駆動電極及び絶縁層(非表示面)と、前記第1基板と前記第2基板間に、充填された透明絶縁性液体と該透明絶縁性液体中に分散された黒色負荷電磁性微粒子と、白色正荷電微子又は、カラー負荷電磁性微粒子と白色正荷電微粒子等の正負2種類の泳動微粒子を備えた電気泳動表子と電気泳動表示方法である。
先ず、前記第1透明電極と第2極間に交流電界を印加、同時に前記第2透明電極と第3電極に交流を通電して磁場を発生させ、交流電場と交流磁場を重畳して前記透明絶縁性液体を攪拌し、正・負の微粒子を分離し流動性を促す。同時に前記第1透明駆動電極と第2駆動電極間に表示用直流電界を印加し、垂直移動して、前記泳動粒子を表示面又は非表示面に移動する第1過程と、表示後再び前記第1透明電極と第3電極間に交流電場を、また同時に前記第2透明電極と第3電極間に磁場を発生させ、透明絶縁性液体を攪拌して前歴表示を消去する第2過程と、更に表示画面を全面白色表示する第3過程により表示を終了することを特徴とする、交流電界・磁気誘導方式による電気泳動表示方法。
First substrate, first transparent electrode, transparent insulating layer, thin film coiled second transparent electrode for generating magnetic field, transparent insulating layer, first transparent driving electrode, transparent insulating layer (display surface) arranged on first substrate A second substrate disposed opposite to the first substrate, a second electrode, an insulating layer, a thin film coiled third electrode for generating a magnetic field, an insulating layer, and a second layer disposed on the second substrate. A drive electrode, an insulating layer (non-display surface), a transparent insulating liquid filled between the first substrate and the second substrate, black load electromagnetic fine particles dispersed in the transparent insulating liquid, and white An electrophoretic surface plate and an electrophoretic display method comprising positively charged microparticles or two types of positive and negative electrophoretic particles such as color-loaded electromagnetic fine particles and white positively charged fine particles.
First, an alternating electric field is applied between the first transparent electrode and the second electrode, and simultaneously, an alternating current is applied to the second transparent electrode and the third electrode to generate a magnetic field. Stir the insulating liquid and separate positive and negative fine particles to promote fluidity. At the same time, a direct current electric field for display is applied between the first transparent drive electrode and the second drive electrode, and the electrophoretic particles are moved vertically to the display surface or the non-display surface. A second process of generating an alternating electric field between the first transparent electrode and the third electrode, and simultaneously generating a magnetic field between the second transparent electrode and the third electrode, stirring the transparent insulating liquid and erasing the previous history display; An electrophoretic display method using an alternating electric field / magnetic induction method, wherein the display is terminated by a third process of displaying the entire display screen in white.
請求項3の第1過程は、泳動微粒子を前記第1基板上に配置された第1透明駆動電極上の透明絶縁層(表示面)上に吸着させ画像表示を行う。第1透明駆動電極には、黒色表示には正の直流電界信号を。白色表示には負の直流電界信号を印加して画像表示を行う。交流電場と磁場の重畳は、効率よく透明絶縁性液体を攪拌し、荷電磁性微粒子と非磁性正荷電微粒子とは流動性を増し、同時に表示用直流電界を印加すると極性に応じて表示面あるいは非表示面方向に移動、微粒子は入れ替わり所望のコントラストの画像が表示されることを特徴とする請求項3に記載の交流電界・磁気誘導方式による電気泳動表示方法。  In the first process of claim 3, the migrating fine particles are adsorbed onto the transparent insulating layer (display surface) on the first transparent driving electrode disposed on the first substrate to display an image. A positive DC electric field signal is displayed on the first transparent drive electrode for black display. For white display, a negative DC electric field signal is applied to display an image. The superposition of an alternating electric field and a magnetic field efficiently stirs the transparent insulating liquid, and the charged magnetic fine particles and nonmagnetic positively charged fine particles increase the fluidity. 4. The electrophoretic display method according to the AC electric field / magnetic induction method according to claim 3, wherein the image is moved in the direction of the display surface and the fine particles are exchanged to display an image having a desired contrast. 請求項4の前記第2過程は、前歴表示画像の消去が不充分の場合には、第1透明駆動電極及び第2駆動電極に泳動微粒子と同極性の直流電界を印加し、前歴表示画像を表示面、非表示面から電気的に剥離、同時に第1透明電極と第4電極間に交流電場を、第2透明電極と第3電極間に磁場を発生等、電場・磁場を重畳して透明絶縁性液体を攪拌、前歴表示画像を完全消去する電気泳動表示方法。In the second process of claim 4, when the previous history display image is insufficiently erased, a DC electric field having the same polarity as the electrophoretic fine particles is applied to the first transparent drive electrode and the second drive electrode, and the previous history display image is displayed. It is electrically separated from the display surface and non-display surface. Simultaneously, an AC electric field is generated between the first transparent electrode and the fourth electrode, and a magnetic field is generated between the second transparent electrode and the third electrode. An electrophoretic display method that stirs the insulating liquid and completely erases the previous display image. 再び表示書き込みを行う場合、前歴表示画像消去が不充分の場合は、第1階は第2過程を繰返し透明絶縁性液体を攪拌して前歴表示画像を完全消去し、第2段階として微粒子を前記第1透明駆動電極及び前記第2駆動電極間で移動させ、前記表示面に画像表示を行うことを特徴とする請求項1乃至3に記載の電気泳動表示方式及び電気泳動表示素子。  When performing display writing again, if the previous history display image is insufficiently erased, the first floor repeats the second process to stir the transparent insulating liquid to completely erase the previous history display image. 4. An electrophoretic display system and an electrophoretic display element according to claim 1, wherein the electrophoretic display system and the electrophoretic display element are moved between a first transparent drive electrode and a second drive electrode to display an image on the display surface. 前記請求項1乃至3に記載の電気泳動表示装置において、第2基板及び第2基板上に配置された第2電極、絶縁層、第3電極、絶縁層、第2駆動電極、絶縁層(非表示面)を透過光性材料を使用し、下部から透過光を照射できる構造にしたことを特徴とするモノクロ及びカラー電気泳動表示装置。  The electrophoretic display device according to any one of claims 1 to 3, wherein the second substrate, the second electrode, the third electrode, the insulating layer, the second driving electrode, and the insulating layer (non-layered) disposed on the second substrate and the second substrate. A monochrome and color electrophoretic display device characterized in that a display surface) is made of a translucent material so that transmitted light can be irradiated from below. 前記請求項1に記載の交流電界方式による電気泳動表示素子を集合し、一体化して単純マトリックス又は、アクティブマトリックス駆動法により表示することを特徴とする、請求項4乃至7に記載のモノクロ及びカラー電気泳動表示装置。  The monochrome and color according to any one of claims 4 to 7, wherein the electrophoretic display elements of the AC electric field system according to claim 1 are assembled and integrated to display by a simple matrix or active matrix driving method. Electrophoretic display device. 前記請求項2に記載の磁気誘導方式による電気泳動表示素子を集合し、一体化し単純マトリックス又は、アクティブマトリックス回路により表示することを特徴とする、請求項4乃至7に記載のモノクロ及びカラー電気泳動表示装置。  The monochrome and color electrophoresis according to any one of claims 4 to 7, wherein the electrophoretic display elements according to claim 2 are assembled, integrated, and displayed by a simple matrix or an active matrix circuit. Display device. 前記請求項3に記載の交流電界・磁気誘導方式による電気泳動表示素子を集合し、一体化し単純マトリックス又は、アクティブマトリックス回路により表示することを特徴とする請求項4乃至7に記載のモノクロ及びカラー電気泳動表示装置。  The monochrome and color according to any one of claims 4 to 7, wherein the electrophoretic display elements of the AC electric field / magnetic induction system according to claim 3 are assembled, integrated, and displayed by a simple matrix or an active matrix circuit. Electrophoretic display device. 前記白色正荷電微粒子は、高分子微粒子材料に正孔トラップとして粒径0.1μmのSi系酸化物超微粒子と酸化チタン、酸化亜鉛等の白色顔料を加えて懸濁重合法により粒径1〜10μmの真球状超微粒子とし、これに5〜10kGyのガンマ線を照射、ζ電位が20〜100mVの白色正荷電微粒子としたものである。粒形が真球状超微粒子で、粒度分布度が狭いので、透明絶縁性液体に分散し、表示直流電界を印加すると規則的に高速移動して、短時間で応答する正荷電微粒子である。  The white positively charged fine particles have a particle size of 1 to 2 by suspension polymerization method by adding Si oxide ultrafine particles having a particle size of 0.1 μm and white pigments such as titanium oxide and zinc oxide as hole traps to the polymer fine particle material. 10 μm spherical ultrafine particles are formed, and 5-10 kGy of gamma rays are irradiated to the particles to form white positively charged fine particles having a ζ potential of 20-100 mV. The particles are spherical ultrafine particles and have a narrow particle size distribution, so they are positively charged fine particles that are dispersed in a transparent insulating liquid, regularly move at a high speed when a display DC electric field is applied, and respond in a short time. 前記黒色負荷電微粒子及びカラー負荷電磁性微粒子は、黒色又は、マゼンタ、イエロー、シアン色等に着色した高分子微粒子材料に、電子トラップ材料のフッ素樹脂を添加、懸濁重合により、粒径1〜10μmの真球状微粒子とし、50〜100kGyの電子線を照射、ζ電位が−20〜−100mVの黒色負荷電微粒子としたものである。粒形が真球状で、粒度分布度が狭いので、透明絶縁性液体に分散し、表示直流電界を印加すると規則的に高速移動して、短時間で応答する負荷電微粒子である。  The black negatively charged fine particles and the color negatively charged electromagnetic fine particles are added to a polymer fine particle material colored black or magenta, yellow, cyan, etc., by adding a fluorine resin as an electron trap material, and by suspension polymerization, The particles are 10 μm spherical fine particles, irradiated with an electron beam of 50 to 100 kGy, and black negative charged fine particles having a ζ potential of −20 to −100 mV. Since it has a spherical shape and a narrow particle size distribution, it is a negatively charged fine particle that disperses in a transparent insulating liquid, moves regularly at a high speed when a display DC electric field is applied, and responds in a short time. 前記黒色負荷電磁性微粒子は、黒色に着色した高分子微粒子材料に、電子トラップ材料のフッ素樹脂を添加、更にPt−Co、MnBiフェライト、YIG等の粒径0.1μm以下の磁性微粉粒子か、SmCo、Fe−Pt、CoPt等のナノ磁性微粒子を加えて、懸濁重合法により粒径1〜10μmの真球状超微粒子とし、50〜100kGyの電子線を照射、ζ電位が−20〜−100mVの黒色負荷電磁性微粒子としたものである。カラー色負荷電磁性微粒子は、マゼンタ、イエロー、シアン色等に着色した高分子微粒子材料に、電子トラップ材料のフッ素樹脂を添加、YIG等の白色磁性微粒子を加えて懸濁重合により、粒径1〜10μmの真球状微粒子とし、上記と同様に放射線照射してカラー負荷電磁性微粒子としたものである。粒度分布度が狭いので、透明絶縁性液体に分散し、表示電界を印加すると規則的に高速移動して、短時間で応答するカラー色負荷電磁性微粒子である。The black loaded electromagnetic fine particles may be magnetic fine powder particles having a particle size of 0.1 μm or less, such as Pt—Co, MnBi ferrite, YIG, and the like, by adding a fluorine resin as an electron trap material to black colored polymer fine particle material, Nano magnetic fine particles such as SmCo 5 , Fe—Pt, CoPt, etc. are added to obtain spherical ultrafine particles having a particle diameter of 1 to 10 μm by suspension polymerization, irradiated with an electron beam of 50 to 100 kGy, and a ζ potential of −20 to − 100 mV black loaded electromagnetic fine particles. The color-loaded electromagnetic fine particles have a particle size of 1 by adding a fluorine resin as an electron trap material to a polymer fine particle material colored in magenta, yellow, cyan, or the like, adding white magnetic fine particles such as YIG, and suspension polymerization. 10 to 10 μm spherical fine particles, which were irradiated with radiation in the same manner as described above to form color-loaded electromagnetic fine particles. Since the particle size distribution is narrow, the color-loaded electromagnetic particles are dispersed in a transparent insulating liquid, regularly move at high speed when a display electric field is applied, and respond in a short time. 前記白色正荷電磁性微粒子は、高分子微粒子材料に正孔トラップとなるSi系酸化物微粒子を添加し、酸化チタン、酸化亜鉛等の白色顔料と、YIG等の白色磁性微粒子を加えて、懸濁重合法により粒径1〜10μmの真球状超微粒子とし、これに5〜10kGyのガンマ線を照射、ζ電位が+20〜+100mVの白色正荷電磁性微粒子としたものである。粒形が真球状超微粒子で、粒度分布度が狭いので、透明絶縁性液体に分散し、表示電界を印加すると規則的に高速移動して、短時間で応答する白色正荷電磁性微粒子である。  The white positively charged magnetic fine particles are suspended by adding Si-based oxide fine particles as hole traps to the polymer fine particle material, adding white pigments such as titanium oxide and zinc oxide, and white magnetic fine particles such as YIG. The spherical ultrafine particles having a particle diameter of 1 to 10 μm are formed by a polymerization method and irradiated with 5 to 10 kGy of gamma rays to form white positively charged magnetic particles having a ζ potential of +20 to +100 mV. Since it is a spherical ultrafine particle and has a narrow particle size distribution, it is a white positively charged magnetic fine particle that disperses in a transparent insulating liquid, moves regularly at high speed when a display electric field is applied, and responds in a short time. 前記泳動粒子の平均粒径が、1〜10μm以下である請求項1乃至10のいずれかの項に記載の電気泳動表示素子及び電気泳動表示装置。  The electrophoretic display element and the electrophoretic display device according to claim 1, wherein an average particle diameter of the electrophoretic particles is 1 to 10 μm or less. 前記第1基板及び前記第2基板は、ガラス又はポリマー・フイルムであるとを特徴とする請求項1乃至10のいずれかの項に記載の電気泳動表示素子及び電気泳動表示装置。  The electrophoretic display element and the electrophoretic display device according to claim 1, wherein the first substrate and the second substrate are made of glass or polymer film. 前記第1基板及び前記第2基板の距離が、前記微粒子の粒径の20倍か、150μm以下である請求項1乃至10のいずれかの項に記載の電気泳動表示素子及び電気泳動表示装置。  11. The electrophoretic display element and the electrophoretic display device according to claim 1, wherein a distance between the first substrate and the second substrate is 20 times the particle diameter of the fine particles or 150 μm or less. 前記電気泳動表示素子には、黒色正荷電磁性微粒子及び白色負荷電磁性微粒子も使用できる。この場合、表示直流電界は逆極性とする必要がある。又、磁性微粒子、非磁性微粒子を白色、黒色と交換することができるが、磁性微粒子は非磁性微粒子に比較して2〜5倍の粒径の大きいことが、電場・磁場攪拌分離には有効である。  For the electrophoretic display element, black positively charged magnetic fine particles and white loaded electromagnetic fine particles can also be used. In this case, the display DC electric field needs to have a reverse polarity. In addition, magnetic fine particles and non-magnetic fine particles can be exchanged for white and black, but magnetic fine particles are 2 to 5 times larger than non-magnetic fine particles, which is effective for electric and magnetic field separation. It is.
JP2004132231A 2004-03-30 2004-03-30 Electrophoretic display element by vertical migration with barrier rib, electrophoretic display method and electrophoretic display apparatus Pending JP2005284234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004132231A JP2005284234A (en) 2004-03-30 2004-03-30 Electrophoretic display element by vertical migration with barrier rib, electrophoretic display method and electrophoretic display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004132231A JP2005284234A (en) 2004-03-30 2004-03-30 Electrophoretic display element by vertical migration with barrier rib, electrophoretic display method and electrophoretic display apparatus

Publications (1)

Publication Number Publication Date
JP2005284234A true JP2005284234A (en) 2005-10-13

Family

ID=35182630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004132231A Pending JP2005284234A (en) 2004-03-30 2004-03-30 Electrophoretic display element by vertical migration with barrier rib, electrophoretic display method and electrophoretic display apparatus

Country Status (1)

Country Link
JP (1) JP2005284234A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058553A (en) * 2004-08-19 2006-03-02 Bridgestone Corp Method for storing information display panel
JP2007102148A (en) * 2005-10-05 2007-04-19 Takao Kawamura Monochrome/color reflection/translucent-type electrophoretic display device using colored electrophoretic microparticulates with electret property
JP2010044385A (en) * 2008-08-11 2010-02-25 Samsung Electro-Mechanics Co Ltd Electronic paper display device and method of manufacturing the same
JP2010049258A (en) * 2008-08-22 2010-03-04 Samsung Electro-Mechanics Co Ltd Electronic paper display device and manufacturing method thereof
JP2011012222A (en) * 2009-07-06 2011-01-20 Sakura Color Products Corp Process for producing electret fine particle
US8498041B2 (en) 2009-07-29 2013-07-30 Seiko Epson Corporation Electrophoretic display element, electrophoretic display device, and electronic apparatus
JP2021501365A (en) * 2017-11-03 2021-01-14 エルジー・ケム・リミテッド Variable transparency device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058553A (en) * 2004-08-19 2006-03-02 Bridgestone Corp Method for storing information display panel
JP4563749B2 (en) * 2004-08-19 2010-10-13 株式会社ブリヂストン How to store the information display panel
JP2007102148A (en) * 2005-10-05 2007-04-19 Takao Kawamura Monochrome/color reflection/translucent-type electrophoretic display device using colored electrophoretic microparticulates with electret property
JP2010044385A (en) * 2008-08-11 2010-02-25 Samsung Electro-Mechanics Co Ltd Electronic paper display device and method of manufacturing the same
JP2010049258A (en) * 2008-08-22 2010-03-04 Samsung Electro-Mechanics Co Ltd Electronic paper display device and manufacturing method thereof
JP2011012222A (en) * 2009-07-06 2011-01-20 Sakura Color Products Corp Process for producing electret fine particle
US8498041B2 (en) 2009-07-29 2013-07-30 Seiko Epson Corporation Electrophoretic display element, electrophoretic display device, and electronic apparatus
JP2021501365A (en) * 2017-11-03 2021-01-14 エルジー・ケム・リミテッド Variable transparency device
JP7014372B2 (en) 2017-11-03 2022-02-01 エルジー・ケム・リミテッド Variable transmittance device

Similar Documents

Publication Publication Date Title
JP4755885B2 (en) Electrophoretic display element, electrophoretic display device, colored electrophoretic fine particles, insulating liquid, and electrophoretic display element driving method
US8174491B2 (en) Image display medium and image display device
JP4196555B2 (en) Image display device
JP2002014654A (en) Image display device and image forming method
JP2003005227A (en) Picture display device and display driving method
US7605797B2 (en) Particle movement-type display apparatus and driving method thereof
US6922275B2 (en) Electrophoretic display
JP2008209589A (en) Image display method, image display medium and image display device
JP4785244B2 (en) Electrophoretic display device and display method
JP2000056342A (en) Electrophoretic display device and its driving method
JP2005284234A (en) Electrophoretic display element by vertical migration with barrier rib, electrophoretic display method and electrophoretic display apparatus
JP2002277904A (en) Electrophoretic display device
JP2008116513A (en) Electrophoresis display sheet, electrophoresis display device, and electronic device
US20100033801A1 (en) Light modulator
JP5336542B2 (en) Electrophoretic display element, electrophoretic display device, colored electrophoretic fine particles, insulating liquid, and electrophoretic display element driving method
WO2006118116A1 (en) Information display panel manufacturing method
JP2005258240A (en) Method of manufacturing panel for picture display
JP2004177950A (en) Electrophoresis display apparatus
US7582332B2 (en) Particles having charge-controlling group on outer surface for electronic-paper display device and method for preparing the same
KR20080003115A (en) Electronic paper display
JP2005275212A (en) Electrophoretic display device and its manufacturing method, and method for driving the same
JP2002139752A (en) Picture display device
JPS6356629A (en) Method and device for displaying image
JP2006309069A (en) Information display panel
KR20230078791A (en) Driving sequences for removing previous state information from color electrophoretic displays