JP2007102148A - Monochrome/color reflection/translucent-type electrophoretic display device using colored electrophoretic microparticulates with electret property - Google Patents

Monochrome/color reflection/translucent-type electrophoretic display device using colored electrophoretic microparticulates with electret property Download PDF

Info

Publication number
JP2007102148A
JP2007102148A JP2005321496A JP2005321496A JP2007102148A JP 2007102148 A JP2007102148 A JP 2007102148A JP 2005321496 A JP2005321496 A JP 2005321496A JP 2005321496 A JP2005321496 A JP 2005321496A JP 2007102148 A JP2007102148 A JP 2007102148A
Authority
JP
Japan
Prior art keywords
fine particles
substrate
colored
electrophoretic display
electrophoretic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005321496A
Other languages
Japanese (ja)
Other versions
JP4755885B2 (en
JP2007102148A5 (en
Inventor
Takao Kawamura
孝夫 河村
Masahiro Okuda
昌宏 奥田
Takayoshi Doumaru
隆祥 堂丸
Kazuki Wakita
和樹 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005321496A priority Critical patent/JP4755885B2/en
Publication of JP2007102148A publication Critical patent/JP2007102148A/en
Publication of JP2007102148A5 publication Critical patent/JP2007102148A5/ja
Application granted granted Critical
Publication of JP4755885B2 publication Critical patent/JP4755885B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monochrome/color reflection/translucent type electrophoretic display device, using electret property charged microparticulates by quantum irradiation and charged magnetic microparticulates, capable of restraining the occurrence of crosstalks and executing simple matrix drive. <P>SOLUTION: The electrophoretic display elements and the reflection-type electrophoretic imaging device comprise: a first substrate 1; a first drive electrode 6 disposed on the first substrate; a second substrate 19 disposed so as to face the first substrate; a second drive electrode 15 disposed on the second substrate; a white insulating liquid 12, filled in a prismatic or tubular partition consitituted between the first substrate and the second substrate; dispersed spherical colored and negatively-charged microparticulates; and spherical colored and negatively-charged magnetic microparticulates; wherein high-definition image display is achieved, gathering together the electrophoresis display elements which have an alternating electric field, an alternating magnetic field, and an electrode that superposes and mixes them, and vertically move colored migrating microparticulates. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、量子線照射により、電子トラップに帯電した真球状着色負荷電微粒子、真球状着色負荷電磁性微粒子等の着色負荷電泳動微粒子を、弱い正電荷をもつ白色絶縁性液体に分散、これを表示素子の角柱形または円筒形隔壁中で、垂直移動させて表示を行なう新規の高速応答、高解像度、高画質をもつ疑似1粒子タイプの電気泳動表示素子、電気泳動表示方法、モノクロ・カラ−反射型電気泳動表示装置及び反射・透光型電気泳動表示装置等に関するものである。  The present invention disperses colored electrophoretic fine particles such as spherically colored negatively charged negatively charged particles and spherically colored negatively charged electromagnetic particles charged in an electron trap by quantum beam irradiation in a white insulating liquid having a weak positive charge. Is a pseudo-single-particle type electrophoretic display element that has a high-speed response, high resolution, and high image quality, and is displayed in a prismatic or cylindrical partition of a display element. The present invention relates to a reflection type electrophoretic display device and a reflection / transmission type electrophoretic display device.

表示装置は、100年の歴史を持つブラウン管から出発し、蛍光表示管、エレクトロ・ルミネッセンス表示装置、ライト・エミッタ・ダイオ−ド表示装置、液晶表示装置、及びプラズマ・ディスプレイ・パネル表示装置等が市販されている。しかし、これら市販の表示装置は、何れも発光色や透過光を用い、観るための表示装置(透過型)で物質そのものの色を見るため、長時間凝視に耐えるものではない。
最近IT化の進展と共に、印刷物のような表示特性をもち、目に優しく、長時間凝視に耐える、読むための次世代表示装置(反射型)の開発が盛んである。特に新聞や書籍の電子化技術の進歩は著しく、本格的なペ−パレス化の到来が近い将来達成される時代にある。特に新聞の衛星や光通信回線による配信は、印刷、輸送、配送等の一大改革と共に紙消費の削減により、森林資源・地球環境保全等にも貢献が期待されている。
Display devices start with a 100-year-old CRT, and fluorescent display tubes, electroluminescence display devices, light emitter diode display devices, liquid crystal display devices, and plasma display panel display devices are commercially available. Has been. However, all of these commercially available display devices do not endure gaze for a long time because they use luminescent color and transmitted light and see the color of the substance itself with a display device (transmission type) for viewing.
With the development of IT, the development of next-generation display devices (reflective type) for reading that has display characteristics like printed materials, is easy on the eyes, and can withstand long-time fixations is actively underway. In particular, the progress of computerization technology for newspapers and books is remarkable, and the arrival of full-fledged paperlessness will be achieved in the near future. In particular, newspaper satellite and optical communication lines are expected to contribute to conservation of forest resources and the global environment through major reforms such as printing, transportation and delivery, as well as reduction of paper consumption.

このような要求を満たすため、次世代表示装置には、大型で低価格、高精細性、省エネルギ−性、高速応答性およびフルカラ−性等多くの要求がある。このため粒子系、液晶系、EL系、リライタブル・マ−キング系等多くの方式が開発されている。
最も多用されている液晶表示装置は、高速応答性、カラ−化、動画等優れた表示特性を持つが、透過型で表示品位に係わる問題に加えて、その解像度も一般的に最大でも120dpi程度と印刷、プリト・アウト(通常300dpi)等に比較して相当に低い。また透過型のため、裏面より照射用光源が必要で、多大の電力を消費する。このため携帯機器では、高性能の大型蓄電池と充電器が必要である。反射型電気泳動表示装置は、裏面からの照射光源が不要で、省エネ性に富むが、一方暗所で使用出来ない欠点をもつ。
低価格で大型化、高精細化には、荷電微粒子の電気泳動による反射型電気泳動表示方法が、理想的な読むための次世代表示装置の最適技術と考えられる。このため反射型電気泳動表示装置は、マイクロ・カプセル中の粒子の厚み方向移動法、泳動微粒子の回転法等が開発されている。書籍の電子的表示や、衛星配信による新聞表示の様に、300dpi以上の高精細性の要求には不充分で、数μmの真球状着色泳動微粒子を用い絶縁性液体に分散した電気泳動表示装置が最適である。
In order to satisfy such demands, next generation display devices have many demands such as large size, low price, high definition, energy saving, high speed response and full color. For this reason, many systems such as a particle system, a liquid crystal system, an EL system, and a rewritable marking system have been developed.
The most frequently used liquid crystal display devices have excellent display characteristics such as high-speed response, colorization, and moving images. However, in addition to the problems related to display quality, the resolution is generally about 120 dpi at the maximum. And considerably lower than printing, print-out (usually 300 dpi), and the like. Moreover, since it is a transmission type, a light source for irradiation is required from the back surface, and a great amount of power is consumed. For this reason, high-performance large-sized storage batteries and chargers are necessary for portable devices. The reflection type electrophoretic display device does not require an irradiation light source from the back surface and is excellent in energy saving, but has a drawback that it cannot be used in a dark place.
Reflective electrophoretic display method based on electrophoresis of charged fine particles is considered to be the optimum technology for next-generation display devices for ideal reading in order to increase the size and definition at a low price. For this reason, reflection type electrophoretic display devices have been developed, such as a method of moving particles in a microcapsule in the thickness direction, and a method of rotating electrophoretic fine particles. An electrophoretic display device dispersed in an insulating liquid using spherical colored electrophoretic microparticles of several μm, which is insufficient for high-definition requirements of 300 dpi or more, such as electronic display of books and newspaper display by satellite distribution Is the best.

荷電微粒子を電界によって電気泳動し、表示または記憶装置に利用する考え方は、古くから提案(太田:特許公報昭50−15115)されたが、荷電微粒子の形状、帯電電位(ζ電位)が小さく不安定なこと、泳動粒子の二次凝集や沈殿、前歴表示画像の消去及び応答速度等多くの技術的問題があり実現できなかった。  The concept of electrophoresis of charged fine particles by an electric field and use in a display or storage device has been proposed for a long time (Ota: Patent Publication No. Sho 50-15115), but the shape of the charged fine particles and the charged potential (ζ potential) are small and unsatisfactory. It could not be realized due to many technical problems such as stability, secondary aggregation and precipitation of migrating particles, erasure of previous history display images, and response speed.

本格的電気泳動表示法としては、荷電微粒子を水平に移動させる、水平移動型電気泳動表示法及び装置の提案がある。(郷田:特開昭49−5598号公報、特開平11−202804号公報)。透明絶縁性液体中に分散された正・負(白・黒色)の電荷をもつ泳動微粒子の電気泳動現象を用い、クロスト−クの発生を押さえるため隔壁を設け、単純マトリックス方式の駆動法が可能な表示装置である。しかし画素毎に、複雑な障壁を設けるため、大型の表示装置では構成が困難で、二次凝集、沈殿及び前歴表示画像の消去等の解決がなされていない。更に、フルカラ−、暗所使用の対応がない。  As a full-scale electrophoretic display method, there is a proposal of a horizontal movement type electrophoretic display method and apparatus for moving charged fine particles horizontally. (Gouda: JP-A-49-5598, JP-A-11-202804). Using the electrophoretic phenomenon of electrophoretic fine particles with positive / negative (white / black) charges dispersed in a transparent insulating liquid, a partition is provided to suppress the occurrence of crosstalk, and a simple matrix drive method is possible. Display device. However, since a complicated barrier is provided for each pixel, it is difficult to construct a large display device, and solutions such as secondary agglomeration, precipitation, and deletion of previous history display images have not been made. In addition, there is no support for full color and dark places.

しかし、本発明者らは、電気泳動表示装置を研究する中で、実用化不可能な重大な欠点を有することを見い出した。即ち、画像表示を繰り返した場合、駆動電極の表面を被覆した透明絶縁層(表示面)に吸着した前歴表示画像は、静電的に強固に付着し、逆極性の直流電界を印加しても、完全に剥離せず、再び表示書込の場合、残像として支障を来すことである。絶縁性液体より比重の小さい泳動微粒子を使用しても、二次凝集により泳動微粒子は大型化し、長期的には泳動微粒子の沈殿が起り、画質の劣化の要因となる。長期使用による絶縁性液体中に分散された泳動微粒子の分布の不均一化は、表示画像の画質に影響し、画質を低下させる。又一般に電気泳動表示方法は、泳動微粒子が閾値をもたないため、クロスト−ク現象を起し良好な高画質がえられない。又、泳動微粒子の帯電の安定性に問題があり、反射型電気泳動表示装置は、暗所で使用できない。最大欠点は、カラ−表示対応である。一般の反射型電気泳動表示装置では、カラ−表示には赤、緑、青色等又は、黒、マゼンタ、イエロ−、シアン色等の3〜4種(3〜4色)の着色泳動微粒子を必要とする。
以上を総合すると、安定な持続性荷電微粒子の製作、正・負極性の荷電微粉粒子の分離、泳動微粒子の二次凝集の除去と沈澱の防止、前歴表示画像の消去、絶縁性液体中の泳動微粒子の濃度分布の均一化、画像コントラストの向上、クロスト−クの除去、フル・カラ−表示、暗所使用等の多くの問題点を同時に解決する手段が必要ある。
又最大の欠陥は、着色泳動微粒子の帯電の安定性にある。電気泳動表示装置に使用される着色泳動微粒子は、染料やイオン等の発色材料を使用し、新たな電荷の授受をもたらすため、電界により泳動中に不安定要因として作用し、安定性に問題があった。
However, the present inventors have found that the electrophoretic display device has serious drawbacks that cannot be put into practical use. That is, when the image display is repeated, the previous history display image adsorbed on the transparent insulating layer (display surface) covering the surface of the drive electrode adheres electrostatically strongly, and even if a DC electric field having a reverse polarity is applied. In the case of display writing again without being completely peeled off, there is a problem as an afterimage. Even if electrophoretic microparticles having a specific gravity smaller than that of the insulating liquid are used, the electrophoretic microparticles are enlarged due to secondary aggregation, and the electrophoretic microparticles precipitate in the long term, causing deterioration in image quality. The non-uniform distribution of the electrophoretic fine particles dispersed in the insulating liquid due to long-term use affects the image quality of the display image and degrades the image quality. In general, the electrophoretic display method does not have a threshold value because the electrophoretic fine particles do not have a threshold value, and a high-quality image cannot be obtained due to a crosstalk phenomenon. In addition, there is a problem in the stability of charging of the electrophoretic fine particles, and the reflective electrophoretic display device cannot be used in a dark place. The biggest drawback is color display correspondence. In general reflection type electrophoretic display devices, colored display fine particles of 3 to 4 types (3 to 4 colors) such as red, green, and blue, or black, magenta, yellow, and cyan are required for color display. And
In summary, production of stable persistent charged fine particles, separation of positive and negative charged fine powder particles, removal of secondary aggregation of migration fine particles and prevention of precipitation, erasure of previous history display images, migration in insulating liquid There is a need for a means for simultaneously solving many problems such as uniform distribution of fine particle density, improvement of image contrast, removal of crosstalk, full color display, use of dark places, and the like.
The biggest defect is the charging stability of the colored electrophoretic fine particles. The colored electrophoretic particles used in electrophoretic display devices use coloring materials such as dyes and ions, and give new charges and transfers. Therefore, the electrophoretic display device acts as an unstable factor during electrophoresis due to an electric field, and there is a problem in stability. there were.

高分子微粒子原料モノマ−に、電子トラップ材料、顔料等を添加、懸濁重合法・乳化重合法・分散重合法等により5〜10μmの真球状微粒子を作り、これを電子線照射した着色荷電微粒子は、−50〜−100mVのエレクトレット性ζ電位をもつ。更に、原料に磁性微粒子を加え、前述の方法で5〜10μmの真球状微粒子を作り電子線を照射した着色荷電磁性微粒子は、−50〜−100mVのエレクトレット性ζ電位と5×10−4Wbの磁荷を合わせもつ。これ等を弱い正電荷をもつ白色絶縁性液体に分散し、クロスト−クを防止する角柱形または円筒形隔壁に封入する疑似1粒子タイプの新規な電気泳動表示素子を開発した。
・角柱形または円筒形隔壁を赤、緑、青色等に3分割又は、黒、マゼンタ、イエロ−色、シアン色等に4分割して、フルカラ−対応の反射型電気泳動表示装置を開発した。隔壁中の絶縁性液体を交流電界、交流磁界又は、交流電界・交流磁界を重畳して撹拌し、前歴表示画像を消去する電気泳動表示方法。更に、角柱形又は円筒形隔壁に透光性材料を使用して、暗所使用を可能にしたモノクロ・カラ−反射・透光型電気泳動表示装置を創案した。
Colored charged fine particles obtained by adding electron trap materials, pigments, etc. to polymer fine particle raw material monomers to form spherical fine particles of 5 to 10 μm by suspension polymerization, emulsion polymerization, dispersion polymerization, etc., and irradiating them with electron beams Has an electret ζ potential of −50 to −100 mV. Furthermore, the colored charged magnetic fine particles obtained by adding magnetic fine particles to the raw material, forming 5-10 μm spherical fine particles by the above-described method and irradiating the electron beam, have an electret ζ potential of −50 to −100 mV and 5 × 10 −4 Wb. Together with the magnetic charge. We have developed a new electrophoretic display device of pseudo single particle type in which these are dispersed in a white insulating liquid having a weak positive charge and sealed in a prismatic or cylindrical partition that prevents crosstalk.
・ A full-color reflective electrophoretic display device was developed by dividing a prismatic or cylindrical partition into three parts, such as red, green, and blue, or four parts into black, magenta, yellow, and cyan. An electrophoretic display method in which an insulating liquid in a partition wall is agitated by superimposing an alternating electric field, an alternating magnetic field, or an alternating electric field / alternating magnetic field to erase a previous history display image. Furthermore, a monochrome / color reflection / transmission type electrophoretic display device has been devised which uses a translucent material for a prismatic or cylindrical partition wall and enables use in a dark place.

請求項1の発明は、第1基板と、第1基板上に配置された第1透明電極、透明絶縁層、第1透明駆動電極、透光反射層及び透明絶縁層(表示面)と、前記第1基板に対向して配置された第2基板と、該第2基板上に配置された第2電極、絶縁層、第2駆動電極及び絶縁層(非表示面)と、前記第1基板と第2基板間に構成された角柱形又は、円筒形隔壁に充填された白色絶縁性液体と、該白色絶縁性液体中に分散された着色泳動微粒子(真球状着色負荷電微粒子)を備えた疑似1粒子タイプの電気泳動表示素子、電気泳動表示方法、モノクロ・カラ−反射型電気泳動表示装置及び反射・透光型電気泳動表示装置である。
画像表示は、前記第1透明電極と第2電極間に交流電界を印加して、前記白色絶縁性液体を交流電場で撹拌して、表示面及び非表示面に付着する前歴表示画像を消去する。同時に前記第1透明駆動電極と第2駆動電極間に表示用直流電界を印加し、着色泳動微粒子を表示面に垂直移動させ画像表示する第1過程と、表示後再び前記第1透明電極と第2電極間に交流電界を印加して、白色絶縁性液体を撹拌して前歴画像を消去し、同時に着色泳動微粒子を非表示面に垂直移動し、表示面を白色表示する第2の過程により、表示操作を終了する交流電界方式による電気泳動表示素子、電気泳動表示方法、モノクロ・カラ−反射・透光型電気泳動表示装置である。
The invention of claim 1 includes a first substrate, a first transparent electrode disposed on the first substrate, a transparent insulating layer, a first transparent driving electrode, a translucent reflective layer, and a transparent insulating layer (display surface), and A second substrate disposed opposite the first substrate, a second electrode, an insulating layer, a second drive electrode and an insulating layer (non-display surface) disposed on the second substrate, the first substrate, A pseudo provided with a white insulating liquid filled in a prismatic or cylindrical partition formed between the second substrates and colored electrophoretic fine particles (true spherical colored negatively charged fine particles) dispersed in the white insulating liquid. 1 particle type electrophoretic display element, electrophoretic display method, monochrome color reflection type electrophoretic display device and reflection / transmission type electrophoretic display device.
In the image display, an AC electric field is applied between the first transparent electrode and the second electrode, and the white insulating liquid is agitated with an AC electric field to erase the previous history display image adhering to the display surface and the non-display surface. . At the same time, a direct current electric field for display is applied between the first transparent drive electrode and the second drive electrode, the colored migrating fine particles are vertically moved on the display surface, and an image is displayed. By applying an alternating electric field between the two electrodes, stirring the white insulating liquid to erase the previous history image, and simultaneously moving the colored migrating fine particles vertically to the non-display surface, and displaying the display surface in white, An electrophoretic display element, an electrophoretic display method, and a monochrome / color reflection / transmission type electrophoretic display device using an alternating current electric field method for ending a display operation.

請求項2の発明は、第1基板と、第1基板上に配置された磁場発生用薄膜コイル状第2透明電極、透明絶縁層、第1透明駆動電極、透光反射層及び絶縁層(表示面)と、前記第1基板に対向して配置された第2基板と、該第2基板に配置された磁場発生用薄膜コイル状第3電極、絶縁層、第2駆動電極、及び絶縁層(非表示面)と、前記第1基板と第2基板間に構成された、角柱形又は円筒形隔壁に充填された白色絶縁性液体と該白色絶縁性液体に分散された着色泳動微粒子(真球状着色負荷電磁性微粒子)を備えた、疑似1粒子タイプの電気泳動表示素子、電気泳動表示方法、モノクロ・カラ−反射・透光型電気泳動表示装置である。
画像表示は、前記第1透明電極と第3電極間に交流電流を通電して交流磁場を発生させ、前記白色絶縁性液体を交流磁場で撹拌して表示面及び非表示面に付着する前歴画像を消去する。同時に前記第1透明駆動電極と第2駆動電極間に表示用直流電界を印加し、着色泳動微粒子を表示面に垂直移動し画像表示する第1過程。表示後再び前記第1透明電極と第3電極間に交流電流を通電して磁場を発生させ、白色絶縁性液体を撹拌し、着色泳動微粒子を非表示面に垂直移動し、表示面を白色に表示する第2の過程により、表示操作を終了する磁気誘導方式による電気泳動表示素子、電気泳動表示方法、モノクロ・カラ−反射・透光型電気泳動表示装置である。
According to a second aspect of the present invention, there is provided a first substrate, a thin-film coiled second transparent electrode for generating a magnetic field, a transparent insulating layer, a first transparent driving electrode, a translucent reflecting layer, and an insulating layer (display) disposed on the first substrate. Surface), a second substrate disposed opposite to the first substrate, a magnetic field generating thin-film coiled third electrode disposed on the second substrate, an insulating layer, a second drive electrode, and an insulating layer ( A non-display surface), a white insulating liquid filled in a prismatic or cylindrical partition formed between the first substrate and the second substrate, and colored electrophoretic particles (true spherical shape) dispersed in the white insulating liquid. A quasi-single particle type electrophoretic display device, an electrophoretic display method, and a monochrome / color reflection / transmission type electrophoretic display device.
In the image display, an alternating current is passed between the first transparent electrode and the third electrode to generate an alternating magnetic field, and the white insulating liquid is stirred with the alternating magnetic field and adhered to the display surface and the non-display surface. Erase. At the same time, a direct current electric field for display is applied between the first transparent driving electrode and the second driving electrode, and the colored migrating fine particles are vertically moved on the display surface to display an image. After the display, an alternating current is applied again between the first transparent electrode and the third electrode to generate a magnetic field, the white insulating liquid is stirred, the colored electrophoretic particles are moved vertically to the non-display surface, and the display surface is turned white A magnetic induction type electrophoretic display element, an electrophoretic display method, and a monochrome / color reflection / translucent electrophoretic display device that terminates a display operation by a second process of displaying.

請求項3の発明は、第1基板と、第1基板上に配置された第1透明電極、透明絶縁層、磁場発生用薄膜コイル状第2透明電極、透明絶縁層、第1透明駆動電極、透光反射層、及び透明絶縁層(表示面)と、前記第1基板に対向して配置された第2基板と該第2基板上に配置された第2電極、絶縁層、磁場発生用薄膜コイル状第3電極、絶縁層、第2駆動電極、及び絶縁層(非表示面)と、前記第1基板と前記第2基板間に構成された角柱形又は、円筒形隔壁に充填された白色絶縁性液体と、該白色絶縁性液体中に分散された着色泳動微粒子(真球状着色負荷電磁性微粒子)を備えた疑似1粒子タイプの電気泳動表示素子と電気泳動表示方法、モノクロ・カラ−反射型電気泳動表示装置及反射・透光型電気泳動表示装置である。
画像表示は、前記第1透明電極と第2電極間に交流電界を印加して交流電場発生、第2透明電極と第3電極に交流電流を通電して交流磁場を発生し、交流電場と交流磁場とを重畳して、前記白色絶縁性液体を撹拌し表示面及び非表示面に付着する前歴表示画像を消去する。同時に前記第1透明駆動電極と第2駆動電極間に表示用直流電界を印加し、着色泳動微粒子を表示面に垂直移動し画像表示する第1過程。表示後再び前記第1透明電極と第2電極間に交流電界を、同時に第2透明電極と第3電極間に交流電流を通電して交流磁界を発生して、前記白色絶縁性液体を撹拌し前歴画像を消去、着色泳動微粒子を非表示面に垂直移動し、表示面を白色表示する第2の過程により、表示操作を終了する交流電界・磁気誘導方式よる電気泳動表示素子、電気泳動表示方法、モノクロ・カラ−反射型電気泳動表示装置及び反射・透光型電気泳動表示装置である。
The invention of claim 3 includes a first substrate, a first transparent electrode disposed on the first substrate, a transparent insulating layer, a thin film coiled second transparent electrode for generating a magnetic field, a transparent insulating layer, a first transparent driving electrode, A translucent reflective layer, a transparent insulating layer (display surface), a second substrate disposed opposite to the first substrate, a second electrode disposed on the second substrate, an insulating layer, and a magnetic field generating thin film A coil-shaped third electrode, an insulating layer, a second drive electrode, an insulating layer (non-display surface), and a white color filled in a prismatic or cylindrical partition formed between the first substrate and the second substrate Pseudo single-particle type electrophoretic display element comprising an insulating liquid and colored electrophoretic fine particles (true spherical colored loaded electromagnetic fine particles) dispersed in the white insulating liquid, electrophoretic display method, monochrome color reflection Type electrophoretic display device and reflection / transmission type electrophoretic display device.
In the image display, an alternating electric field is applied between the first transparent electrode and the second electrode to generate an alternating electric field, an alternating current is applied to the second transparent electrode and the third electrode to generate an alternating magnetic field, and the alternating electric field and the alternating current are generated. By superimposing a magnetic field, the white insulating liquid is agitated to erase the previous history display image adhering to the display surface and the non-display surface. At the same time, a direct current electric field for display is applied between the first transparent driving electrode and the second driving electrode, and the colored migrating fine particles are vertically moved on the display surface to display an image. After the display, an alternating electric field is again applied between the first transparent electrode and the second electrode, and an alternating current is simultaneously applied between the second transparent electrode and the third electrode to generate an alternating magnetic field, thereby stirring the white insulating liquid. An electrophoretic display element and an electrophoretic display method using an alternating electric field / magnetic induction method in which the previous operation is erased, the colored electrophoretic fine particles are vertically moved to the non-display surface, and the display operation is finished by the second process of displaying the display surface in white. A monochrome color reflection type electrophoretic display device and a reflection / transmission type electrophoretic display device.

請求項4の発明は、角柱形または円筒形隔壁に透光性材料を使用し、裏面から隔壁部に透過光を照射し、暗所で使用できる構造にしたモノクロ・カラ−電気泳動表示素子、反射型電気泳動表示装置及び透光型電気泳動表示装置である。  The invention according to claim 4 is a monochrome color electrophoretic display element that uses a translucent material for a prismatic or cylindrical partition wall, irradiates transmitted light from the back surface to the partition wall part, and can be used in a dark place. A reflective electrophoretic display device and a translucent electrophoretic display device;

請求項5の発明は、角柱形、円筒形等の隔壁を、赤、緑、青色等に3分割又は、黒、マゼンタ、イエロ−、シアン色等に4分割したカラ−用電気泳動表示素子、これを用いたモノクロ・カラ−反射型電気泳動表示装置及び反射・透光型電気泳動表示装置等である。  The invention according to claim 5 is an electrophoretic display element for a color in which partition walls such as prismatic and cylindrical shapes are divided into red, green, blue, etc., or divided into four parts of black, magenta, yellow, cyan, etc. A monochrome color reflection type electrophoretic display device and a reflection / transmission type electrophoretic display device using the same.

請求項6の発明は、カラ−反射型電気泳動表示装置及び透光型電気泳動表示装置において、赤、緑、青、又は、黒、マゼンタ、イエロー、シアン色等の着色泳動微粒子を分散した白色絶縁性液体の注入には、インクジエット・プリンタ手法を利用する製作法である。  The invention of claim 6 is a color reflection electrophoretic display device and a translucent electrophoretic display device, in which colored electrophoretic fine particles such as red, green, blue or black, magenta, yellow, cyan are dispersed. The injection of the insulating liquid is a manufacturing method using an ink jet printer technique.

請求項7の発明は、交流電界方式による電気泳動表示素子を集合して一体化し、単純マトリックス又はアクティブマトリックス回路等で表示可能な、モノクロ・カラ−反射・透光型電気泳動表示装置を製作できる。  According to the seventh aspect of the invention, a monochrome / color reflection / transmission type electrophoretic display device capable of displaying a simple matrix or an active matrix circuit or the like by assembling and integrating electrophoretic display elements by an alternating electric field system can be manufactured. .

請求項8の発明は、磁気誘導方式による電気泳動表示素子を集合して一体化し単純マトリックス又はアクティブマトリックス回路等で表示可能な、モノクロ・カラ−反射・透光型電気泳動表示装置を製作できる。  According to the eighth aspect of the present invention, a monochrome / color reflection / transmission type electrophoretic display device capable of integrating and integrating electrophoretic display elements by a magnetic induction system and displaying them with a simple matrix or an active matrix circuit can be manufactured.

請求項9の発明は、交流電界・磁気誘導方式による電気泳動表示素子を集合し、単純マトリックス又はアクティブマトリックス回路等で表示可能な、モノクロ・カラ−反射型電気泳動表示装置及び反射・透光型電気泳動表示装置を製作できる。  The invention according to claim 9 is a monochrome color reflection type electrophoretic display device and a reflection / transmission type which can collect electrophoretic display elements by an alternating electric field / magnetic induction system and can be displayed by a simple matrix or an active matrix circuit. An electrophoretic display device can be manufactured.

請求項10の発明は、真球状着色負荷電微粒子は、高分子微粒子原料モノマ−に、電子トラップとなる材料、顔料等を添加し、懸濁重合法・乳化重合法・分散重合法等により粒径5〜10μmの真球状微粒子を作る。これに10〜50kGyの電子線を照射し、90〜110℃で十数分間加熱するか、90〜110℃で1−〜50kGyの電子線を照射して エレクトレット性負電荷を帯電した微粒子で、−50〜−100mVのζ電位をもち、赤、緑、青、黒、マゼンタ、イエロ−、シアン色等の色彩に着色した真球状着色負荷電微粒子である。形状が真球状微粒子で、粒度分布が狭く、大きな負ζ電位をもつため、白色絶縁性液体に分散し表示用直流電界を印加すると、規則的に高速移動して、高速応答する真球状着色負荷電微粒子である。  In the invention of claim 10, the spherically charged negatively charged fine particles are obtained by adding a material that becomes an electron trap, a pigment or the like to a polymer fine particle raw material monomer, and then subjecting the particles to suspension polymerization, emulsion polymerization, dispersion polymerization, or the like. Make spherical particles with a diameter of 5-10 μm. It is irradiated with an electron beam of 10 to 50 kGy and heated at 90 to 110 ° C. for 10 minutes or is irradiated with an electron beam of 1 to 50 kGy at 90 to 110 ° C. and charged with an electret negative charge, True spherical colored negatively charged fine particles having a ζ potential of −50 to −100 mV and colored in colors such as red, green, blue, black, magenta, yellow, and cyan. True spherical fine particles with a narrow particle size distribution and a large negative ζ potential. When applied to a white insulating liquid and applied with a DC electric field for display, the spherical colored load moves regularly and responds quickly. Electron fine particles.

請求項11の発明は、真球状着色負荷電磁性微粒子は、高分子微粒子原料モノマ−に電子トラップとなる材料、顔料、磁性微粒子(FeO・Feで示されるマグネタイト微粒子、ナノ磁性微粒子)等を加え、懸濁重合法・乳化重合法・分散重合法等により、4〜10μmの真球状微粒子を作る。これに10〜50kGyの電子線を照射し、90〜110℃で十数分間加熱するか、90〜110℃で10〜〜50kGyの電子線を照射して、エレクトレット性負電荷を帯電した微粒子で、−50〜−100mVのζ電位と、5×10−4Wbの磁荷を合わせもち、赤、緑、青、黒、マゼンタ、イエロ−、シアン色等の色彩に着色した真球状着色負荷電磁性微粒子である。粒形が真球状超微粒子で、粒度分布度が狭いので、白色絶縁性液体に分散し表示用直流電界を印加すると、規則的に高速移動して、高速応答する着色負荷電磁性微粒子である。The invention according to claim 11 is that the spherical colored loaded electromagnetic fine particles are materials, pigments, magnetic fine particles (magnetite fine particles represented by FeO · Fe 2 O 3 , nanomagnetic fine particles) that serve as electron traps in the polymer fine particle raw material monomer. Etc., and 4-10 μm spherical particles are made by suspension polymerization, emulsion polymerization, dispersion polymerization or the like. It is irradiated with an electron beam of 10 to 50 kGy and heated at 90 to 110 ° C. for 10 minutes or is irradiated with an electron beam of 10 to 50 kGy at 90 to 110 ° C. and charged with electret negative charges. , -50 to -100 mV ζ potential and 5 × 10 −4 Wb magnetic charge, and spherically colored load electromagnetics colored in colors such as red, green, blue, black, magenta, yellow and cyan Fine particles. Since it is a spherical ultrafine particle and has a narrow particle size distribution, it is a colored loaded electromagnetic fine particle that regularly moves at high speed and responds at high speed when dispersed in a white insulating liquid and applied with a display DC electric field.

請求項12の発明は、着色泳動微粒子は、顔料等により、赤、緑、青等、又は、黒、マゼンタ、イエロ−、又は、シアン色等に着色したもので、カラ−表示に適する真球状負荷電微粒子及び真球状負荷電磁性微粒子等である。  According to the invention of claim 12, the colored migrating fine particles are colored in red, green, blue, etc., or black, magenta, yellow, cyan, etc. with a pigment or the like, and are true spherical shapes suitable for color display. Negatively charged fine particles, spherically loaded electromagnetic fine particles, and the like.

請求項13の発明は、白色絶縁性液体は、高分子微粒子原料モノマ−に正孔トラップとなる材料、酸化亜鉛、酸化チタン等の酸化物系白色超微粉末を加え、懸濁重合法・乳化重合法・分散重合法等により、0.2〜0.5μmの真球状超微粒子を作る。これに1〜15kGyのガンマ線を照射し、90〜110℃で十数分間加熱するか、90〜110℃で1〜15kGyのガンマ線を照射して、エレクトレット性正電荷に帯電した微粒子で10〜20mVのζ電位をもち、炭化水素絶縁性液体、シリコ−ン絶縁性液体等に1〜30%分散した微弱の正電荷をもつ白色絶縁性液体である。  In the invention of claim 13, the white insulating liquid is obtained by adding a material that becomes a hole trap to the polymer fine particle raw material monomer, oxide-based white ultrafine powder such as zinc oxide, titanium oxide, etc. A spherical ultrafine particle of 0.2 to 0.5 μm is made by a polymerization method, a dispersion polymerization method or the like. This is irradiated with 1 to 15 kGy of gamma rays and heated at 90 to 110 ° C. for 10 minutes or 10 to 15 kGy of gamma rays at 90 to 110 ° C. A white insulating liquid having a weak positive charge dispersed in 1 to 30% in a hydrocarbon insulating liquid, a silicon insulating liquid, or the like.

請求項14の発明は、高分子微粒子原料モノマ−は、アクリル系、ポリエステル系、スチレン系、ポリカ−ボネ−ト系等の樹脂で、電子トラップ材料は弗素系樹脂である。正孔トラップ材料は、Siの酸化物(SiO)、アモルファス・シリコンの酸化物(Si:H:O1−x)の超微粒子である。According to a fourteenth aspect of the present invention, the polymer fine particle raw material monomer is an acrylic, polyester, styrene or polycarbonate resin, and the electron trap material is a fluorine resin. The hole trap material is an ultrafine particle of Si oxide (SiO 2 ) or amorphous silicon oxide (Si: H: O 1-x ).

請求項15の発明は、第1基板及び前記第2基板は、ガラス又はポリマ−・フイルムが使用できる。  In the invention of claim 15, glass or polymer film can be used for the first substrate and the second substrate.

請求項16の発明は、第1基板及び前記第2基板の距離が、泳動微粒子の粒径の20〜30倍か、150μm以下が最適である。  In the invention of claim 16, the distance between the first substrate and the second substrate is optimally 20 to 30 times the particle size of the migrating fine particles or 150 μm or less.

請求項17の発明は、電気泳動表示素子には、真球状着色正荷電微粒子、真球状着色正荷電磁性微粒子も使用できる。この場合、表示直流電界・剥離電界は逆極性にする必要がある。  According to the seventeenth aspect of the present invention, it is also possible to use true spherical colored positively charged fine particles and true spherical colored positively charged magnetic fine particles for the electrophoretic display element. In this case, the display direct current electric field and the peeling electric field need to have opposite polarities.

請求項18の発明は、白色絶縁性液体を構成する白色正荷電超微粒子と着色泳動微粒子との粒径比に関するものである。白色正荷電微粒子は正の電荷をもち、着色負泳動微粒子の真球状着色荷電微粒子、真球状着色負荷電磁性微粒子は負電荷をもつ。白色絶縁性液体に着色泳動微粒子を分散した場合、正・負の微粒子は静電的に結合して、表示動作に不都合を生じる。このため、絶えず分離する必要がある。本発明は、交流電場、交流磁場により撹拌過程により分離を行うが、着色泳動微粒子が大きい程、白色正荷電微粒子は小さい程、分離は有効である.特に、交流電場、交流磁場の重畳による撹拌は、白色正荷電微粒子は交流電場、真球状着色負荷電磁性微粒子は交流磁場により、別個に撹拌され、効率良く撹拌が行われ、また分離も顕著である。この場合も粒径比は有効に作用する。粒径比は1/2〜1/10が望ましい。  The invention of claim 18 relates to the particle size ratio between the white positively charged ultrafine particles and the colored migrating fine particles constituting the white insulating liquid. The white positively charged fine particles have a positive charge, and the colored negative electrophoretic fine particles are colored spherically charged charged particles, and the colored spherical charged electromagnetic particles are negatively charged. When the colored electrophoretic fine particles are dispersed in the white insulating liquid, the positive and negative fine particles are electrostatically coupled to cause inconvenience in the display operation. For this reason, it is necessary to continually separate. In the present invention, separation is carried out by an agitation process using an alternating electric field and alternating magnetic field. The separation is more effective as the colored electrophoretic particles are larger and the white positively charged particles are smaller. In particular, the stirring by superimposing the alternating electric field and alternating magnetic field is such that the white positively charged fine particles are separately stirred by the alternating electric field, and the spherical colored loaded electromagnetic fine particles are separately stirred by the alternating magnetic field. is there. Also in this case, the particle size ratio works effectively. The particle size ratio is desirably 1/2 to 1/10.

請求項19の発明の本電気泳動表示装置は、省エネ性に優れているため、小型太陽電池と小型電池の組合せにより、充電器不要の携帯端末機器(携帯電話、ノ−トパソコン等)のディスプレイに使用できる。  Since the electrophoretic display device of the invention of claim 19 is excellent in energy saving, it can be used as a display of a portable terminal device (cell phone, notebook personal computer, etc.) that does not require a charger by combining a small solar cell and a small battery. Can be used.

請求項20の発明は、耐候性材料を用いた、業務用大型モノクロ・カラ−反射・透光型電気泳動表示装置(屋内外看板)が製作できる。According to the invention of claim 20, a large-sized monochrome / color reflection / transmission type electrophoretic display device (indoor / outdoor signboard) for business use using a weather resistant material can be manufactured.

I.白色絶縁性液体に着色泳動微粒子を分散した疑似1粒子タイプのモノクロ・カラー反射・透光型電気泳動表示装置等を製作した。即ち、交流電界方式、磁気誘導方式、交流電界・磁気誘導方式である。交流電場、交流磁場等の印加による絶縁性液体の撹拌プロセスは、前記の電気泳動表示における3つの欠点、前歴表示画像の消去、二次凝集及び沈澱問題を解決した。
II.電子線照射による真球状着色負荷電微粒子、真球状着色負荷電磁性微粒子はエレクトレット性をもつため、極めて安定で、これ等を着色泳動微粒子に使用した電気泳動表示素子は、長寿命性に優れる。また着色泳動微粒子は、真球状のため、白色絶縁性液体中において高速駆動し、高速応答の電気泳動表示装置が製作できる。
III.着色泳動微粒子と白色絶縁性液体の組合せは、画像部の白色部を白色絶縁性液体が分担するため、高精細(300dpi)でコントラストの大きい高画質の表示が可能となった。
IV.隔壁の採用はクロスト−クを押さえ、隔壁を3分割し各素子を赤、緑、青色等とすること、又は4分割して各素子を黒、マゼンタ、イエロ−、シアン色等とすることにより、カラ−フイルタ−不要のモノクロ・カラ−反射・透光型電気泳動表示装置が製作できる。
V.角柱形または円柱形隔壁を透光性とし、透光反射層を設けて裏面から光照射により、反射型電気泳動表示装置の最大の欠点である、暗所使用を可能としたモノクロ・カラ−反射・透光型電気泳動表示装置が製作できる。
VI.本電気泳動表示装置は画像保持には電力は不要であるため、消費電力は極めて小さく、小型太陽電池と小型蓄電池の組合せにより、充電機能不要の携帯端末機器のディスプレ−・システムが実現できる。
VII.耐候性材料の使用により、屋内外の大型ディスプレ−(表示板、看板等)が製作できる。
I. A pseudo single particle type monochrome / color reflective / translucent electrophoretic display device in which colored electrophoretic particles are dispersed in a white insulating liquid was manufactured. That is, an AC electric field method, a magnetic induction method, and an AC electric field / magnetic induction method. The process of stirring the insulating liquid by applying an AC electric field, an AC magnetic field, etc. solved the above three drawbacks in the electrophoretic display, erasure of previously displayed images, secondary aggregation and precipitation problems.
II. True spherical colored negatively charged fine particles and true spherical colored negatively charged electromagnetic fine particles by electron beam irradiation have electret properties and are therefore extremely stable. Electrophoretic display elements using these as colored electrophoretic fine particles are excellent in long life. Further, since the colored electrophoretic fine particles are spherical, they can be driven at high speed in a white insulating liquid to produce an electrophoretic display device that responds quickly.
III. In the combination of the colored migrating fine particles and the white insulating liquid, since the white insulating liquid shares the white portion of the image portion, high-definition (300 dpi) and high-contrast display with high contrast becomes possible.
IV. Adopting the partition wall, hold down the crosstalk and divide the partition wall into three parts to make each element red, green, blue, etc., or divide into four parts to make each element black, magenta, yellow, cyan, etc. A monochrome / color reflection / transmission type electrophoretic display device which does not require a color filter can be manufactured.
V. Monochrome color reflection that makes it possible to use in dark places, which is the biggest drawback of reflective electrophoretic display devices, by making prismatic or cylindrical partition walls translucent, providing a translucent reflective layer and irradiating light from the back side・ Transparent electrophoretic display devices can be manufactured.
VI. Since this electrophoretic display device does not require power for image retention, power consumption is extremely small, and a display system for a portable terminal device that does not require a charging function can be realized by a combination of a small solar cell and a small storage battery.
VII. By using weather-resistant materials, large indoor and outdoor displays (display boards, signboards, etc.) can be produced.

以下、本発明に係る実施形態を図面によって詳細に説明するが、図面中の素子の寸法形状は実際の寸法でもなければ実際の寸法に比例しているものでもない、それらは理解を容易にするために適宜誇張されている。  DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments according to the present invention will be described in detail below with reference to the drawings, but the dimensions and shapes of elements in the drawings are neither actual dimensions nor proportional to actual dimensions, which facilitates understanding. Therefore, it is exaggerated as appropriate.

図1に本発明に係る電気泳動表示素子の基本的構成図を示す。図は便宜上1画素からなる構成を示す。
I.は真球状着色負荷電磁性微粒子9と白色絶縁性液体12とで構成し、交流電場で撹拌する交流電界方式である。第1基板1(ネサ・ガラス)と、第1基板1上に配置された第1透明電極2、透明絶縁層3、第1透明駆動電極6、透光反射層7、透明絶縁層(表示面)8と、前記第1基板1に対向して配置された、第2基板19と、該第2基板上に配置された第2電極18、絶縁層16、第2駆動電極15、絶縁層(非表示面)14と、第1基板1と第2基板19間に、構成された角柱形又は、円筒形隔壁13に充填された白色絶縁性液体12中に分散した真球状着色負荷電微粒子9とを封入し、垂直移動による電気泳動表示素子である。
第1透明電極2と第2電極18間に交流電界21を印加し、着色泳動微粒子を交流電場により撹拌、第1透明駆動電極6と、第2駆動電極15間に表示用直流電界20を接続して、着色部は着色泳動微粒子9を垂直移動して、透明絶縁層(表示面)8に、白色部は白色絶縁性液体12で表示するモノクロ・カラ−反射・透光型電気泳動表示素子である。
FIG. 1 shows a basic configuration diagram of an electrophoretic display element according to the present invention. For the sake of convenience, FIG.
I. Is an AC electric field system composed of true spherical colored load electromagnetic fine particles 9 and a white insulating liquid 12 and stirred by an AC electric field. A first substrate 1 (nesa glass), a first transparent electrode 2, a transparent insulating layer 3, a first transparent driving electrode 6, a light-transmissive reflecting layer 7, and a transparent insulating layer (display surface) disposed on the first substrate 1 ) 8, a second substrate 19 disposed opposite to the first substrate 1, a second electrode 18 disposed on the second substrate 18, an insulating layer 16, a second drive electrode 15, an insulating layer ( (Non-display surface) 14 and between the first substrate 1 and the second substrate 19, the spherically charged negatively charged fine particles 9 dispersed in the white insulating liquid 12 filled in the prismatic or cylindrical partition 13 formed. And an electrophoretic display element by vertical movement.
An AC electric field 21 is applied between the first transparent electrode 2 and the second electrode 18, the colored migrating fine particles are stirred by the AC electric field, and a display DC electric field 20 is connected between the first transparent driving electrode 6 and the second driving electrode 15. The colored portion vertically moves the colored electrophoretic fine particles 9 so that the white portion is displayed with the white insulating liquid 12 on the transparent insulating layer (display surface) 8, and the monochrome / color reflection / transmission type electrophoretic display element. It is.

IIは、真球状着色負荷電磁性微粒子11と白色絶縁性液体12とで構成し、交流磁場で撹拌する磁気誘導方式である。第1基板1(ネサ・ガラス)の表面の透明電極をパタ−ニングして磁場発生用薄膜コイル状第2透明電極4とし、透明絶縁層5、第1透明駆動電極6、透光反射層7、透明絶縁層(表示面)8、前記第1基板1に対向して配置された第2基板19(ネサ・ガラス)の表面の透明電極をパタ−ニングして磁場発生用薄膜コイル状第3電極17とし、絶縁層16、第2駆動電極15及び絶縁層(非表示面)14と、第1基板1と第2基板19間に、構成された角柱形又は円筒形隔壁13に充填された白色絶縁性液体12と、該白色絶縁性液体中に分散された真球状着色負荷電磁性微粒子11とを封入し、垂直移動による電気泳動表示素子である。
第2透明電極4と第3電極17間に磁場発生用交流電界22を印加し、交流磁場により真球状着色負荷電磁性微粒子11を撹拌、第1透明駆動電極6と、第2駆動電極15間に表示用直流電界20を印加して、着色部は着色泳動微粒子11を垂直移動して、透明絶縁層(表示面)8に表示、白色部は白色絶縁性液体12で表示するモノクロ・カラー反射・透光型電気泳動表示素子である。
II is a magnetic induction method composed of the spherical colored loaded electromagnetic fine particles 11 and the white insulating liquid 12 and stirred by an alternating magnetic field. The transparent electrode on the surface of the first substrate 1 (Nesa glass) is patterned to form a thin-film coiled second transparent electrode 4 for generating a magnetic field, a transparent insulating layer 5, a first transparent drive electrode 6, and a light-transmissive reflecting layer 7 The transparent electrode on the surface of the transparent insulating layer (display surface) 8 and the second substrate 19 (nesa glass) disposed opposite to the first substrate 1 is patterned to form a magnetic field generating thin film coiled third The electrode 17 is filled with an insulating layer 16, a second drive electrode 15, an insulating layer (non-display surface) 14, and a prismatic or cylindrical partition wall 13 formed between the first substrate 1 and the second substrate 19. This is an electrophoretic display element that encloses a white insulating liquid 12 and true spherical colored electromagnetic fine particles 11 dispersed in the white insulating liquid and moves vertically.
A magnetic field generating AC electric field 22 is applied between the second transparent electrode 4 and the third electrode 17, and the spherical colored load electromagnetic fine particles 11 are stirred by the AC magnetic field, and between the first transparent driving electrode 6 and the second driving electrode 15. A DC direct-current electric field 20 is applied to the colored portion, and the colored portion vertically moves the colored electrophoretic particles 11 to display on the transparent insulating layer (display surface) 8, and the white portion is displayed with the white insulating liquid 12. -It is a translucent electrophoretic display element.

IIIは、真球状着色負荷電磁性微粒子11と白色絶縁性液体12とで構成され、交流電場と交流磁場とを重畳して着色泳動粒子を撹拌する交流電界・磁気誘導方式である。第1基板1(ネサ・ガラス)の表面の透明電極を第1透明電極2とし、透明絶縁層3、磁場発生用薄膜コイル状第2電極4、透明絶縁層5、第1透明駆動電極6、透光反射層7、透明絶縁層(表示面)8、前記第1基板1に対向して配置された第2基板19(ネサ・ガラス)の透明電極を第2電極18とし、透明絶縁層16、磁場発生用薄膜コイル状第3電極17、絶縁層16、第2駆動電極15、透明絶縁層(非表示面)14と、第1基板1と前記第2基板19間に、充填された白色絶縁性液体12中に分散された真球状着色負荷電磁性微粒子11とを封入し、垂直移動による電気泳動表示素子である。
第1透明電極2と第2電極18間に交流電場発生用交流電界21を、第2透明電極4と第3電極17間に交流磁場発生用交流電界22を印加し、交流電場と交流磁場とを重畳して白色絶縁性液体12を撹拌、第1透明駆動電極6と第2駆動電極15間に表示用直流電界20を印加して、着色部は着色泳動微粒子11を垂直移動し、透明絶縁層(表示面)8に、白色部は白色荷絶縁性液体12で表示するモノクロ・カラー反射・透光型電気泳動表示素子である。
III is an AC electric field / magnetic induction system composed of true spherical colored loaded electromagnetic fine particles 11 and white insulating liquid 12 and stirring colored electrophoretic particles by superimposing an AC electric field and an AC magnetic field. The transparent electrode on the surface of the first substrate 1 (nesa glass) is the first transparent electrode 2, the transparent insulating layer 3, the thin film coiled second electrode 4 for generating a magnetic field, the transparent insulating layer 5, the first transparent driving electrode 6, The transparent electrode of the translucent reflective layer 7, the transparent insulating layer (display surface) 8, and the second electrode 19 (nesa glass) disposed facing the first substrate 1 is used as the second electrode 18, and the transparent insulating layer 16 is used. , A thin film coiled third electrode 17 for generating a magnetic field, an insulating layer 16, a second drive electrode 15, a transparent insulating layer (non-display surface) 14, and a white color filled between the first substrate 1 and the second substrate 19. This is an electrophoretic display element that encloses spherical colored loaded electromagnetic fine particles 11 dispersed in an insulating liquid 12 and moves vertically.
An alternating electric field 21 for generating an alternating electric field is applied between the first transparent electrode 2 and the second electrode 18, an alternating electric field 22 for generating an alternating magnetic field is applied between the second transparent electrode 4 and the third electrode 17, and an alternating electric field and an alternating magnetic field are applied. And the white insulating liquid 12 is agitated, a direct current electric field 20 for display is applied between the first transparent drive electrode 6 and the second drive electrode 15, and the colored portion vertically moves the colored electrophoretic particles 11, thereby transparent insulation. The white portion on the layer (display surface) 8 is a monochrome / color reflection / transmission type electrophoretic display element displaying with a white load insulating liquid 12.

図2は、各方式の駆動法の詳細をタイムチャ−トで示したものである。
I.は交流電界方式である。第1過程は、前期、中期、後期の三段階に分かれる。先ず第1基板と第2基板間に交流電界を印加、白色絶縁性液体を交流電場により撹拌、前期には、剥離用直流電界を重畳、前歴表示画像の消去と着色泳動微粒子の撹拌を行い、中期には、表示用直流電界を印加、着色泳動微粒子を表示面に、後期には交流電界を切断して、画像表示を行う。第2過程は、交流電界及び剥離用直流電界を印加して、前歴表示画像の消去を行う。着色泳動微粒子は非表示面に移動、表示面は白色絶縁性液体により、白色画面となり表示操作は終了する。
FIG. 2 shows the details of the driving method of each method in a time chart.
I. Is an AC electric field system. The first process is divided into three stages: the first half, the middle, and the second half. First, an AC electric field is applied between the first substrate and the second substrate, the white insulating liquid is stirred by the AC electric field, and in the previous period, a peeling DC electric field is superimposed, the previous display image is erased, and the colored electrophoretic particles are stirred, In the middle period, a display DC electric field is applied, and the colored electrophoretic fine particles are applied to the display surface, and in the latter period, the AC electric field is cut off to display an image. In the second process, an AC electric field and a peeling DC electric field are applied to erase the previous history display image. The colored electrophoretic fine particles move to the non-display surface, and the display surface becomes a white screen by the white insulating liquid, and the display operation is completed.

II.は、磁気誘導方式である。第1過程は、前期、中期、後期の三段階に分かれる。先ず第1基板と第2基板間に交流電流を通電し、交流磁場を発生させ、白色絶縁性液体を交流磁場により撹拌、前期には、剥離用直流電界を重畳、前歴表示画像の消去と着色泳動微粒子(真球状着色負荷電磁性微粒子)の撹拌を行い、中期には、表示用直流電界を印加、着色泳動微粒子を表示面に、後期には交流磁場を切断して、画像表示を行なう。第2過程は、交流磁場及び剥離用直流電界を印加して、前歴表示画像の消去を行なう。着色泳動微粒子は非表示面に垂直移動し、表示面は白色絶縁性液体により、白色画面となり表示操作は終了する。  II. Is a magnetic induction system. The first process is divided into three stages: the first half, the middle, and the second half. First, an alternating current is applied between the first substrate and the second substrate to generate an alternating magnetic field, and the white insulating liquid is stirred by the alternating magnetic field. In the previous period, a peeling direct current electric field is superimposed, and the previous display image is erased and colored. Electrophoretic fine particles (true spherical colored loaded electromagnetic fine particles) are stirred, a DC electric field for display is applied in the middle period, and the AC magnetic field is cut off on the display surface and the colored electrophoretic fine particles are cut off in the latter period to display an image. In the second process, an AC magnetic field and a peeling DC electric field are applied to erase the previous history display image. The colored migrating fine particles move vertically to the non-display surface, and the display surface becomes a white screen by the white insulating liquid, and the display operation is completed.

III.は、交流電界・磁気誘導方式である。第1過程は、前期、中期、後期の三段階に分かれる。先ず第1基板と第2基板間に交流電界を印加、交流電流を通電し、交流電場と同時に交流磁場とを発生させ、白色絶縁性液体を交流電場・交流磁場により撹拌、前期には、剥離用直流電界を重畳、前歴表示画像の消去と着色泳動微粒子の撹拌を行い、中期には、表示用直流電界を印加、着色泳動微粒子を表示面に、後期には交流磁場を切断して、画像表示を行なう。第2過程は、交流電場、交流磁場及び剥離用直流電界を印加して、前歴表示画像の消去を行なう。着色泳動微粒子は非表示面に垂直移動し、表示面は白色絶縁性液体により、白色画面となり表示操作は終了する。交流電場、交流磁場の重畳により、効率よく撹拌が行なわれ、前歴表示画像の消去が高速応答性となる。  III. Is an AC electric field / magnetic induction system. The first process is divided into three stages: the first half, the middle, and the second half. First, an AC electric field is applied between the first substrate and the second substrate, an AC current is applied, an AC magnetic field is generated simultaneously with the AC electric field, and the white insulating liquid is stirred by the AC electric field / AC magnetic field. DC electric field for superimposing, erasing previous display image and stirring colored migrating microparticles, applying DC electric field for display in middle period, cutting colored electrophoretic microparticles on display surface, cutting AC magnetic field in latter period, and image Display. In the second process, an AC electric field, an AC magnetic field, and a peeling DC electric field are applied to erase the previous history display image. The colored migrating fine particles move vertically to the non-display surface, and the display surface becomes a white screen by the white insulating liquid, and the display operation is completed. By superimposing an alternating electric field and an alternating magnetic field, stirring is efficiently performed, and erasing of the previous history display image becomes fast responsiveness.

図3は、本発明の交流電界方式による電気泳動表示素子中の泳動微粒子の動作状態の一例である。電気泳動表示素子の構成は、第1基板1と第1基板上に配置された第1透明電極2、透明絶縁層3、第1透明駆動電極6、透光反射層7、及び透明絶縁層(表示面)8と、第1基板1に対向して配置された、第2基板19と、該第2基板上に配置された第2電極18、絶縁層16、第2駆動電極15、絶縁層(非表示面)14と、第1基板1と第2基板19間に構成された角柱形又は、円筒形隔壁13に充填された白色絶縁性液体12と該白色絶縁性液体に分散された着色泳動微粒子(真球状着色負荷電微粒子)9とを封入し、垂直移動による電気泳動表示素子である。  FIG. 3 shows an example of the operating state of the electrophoretic fine particles in the electrophoretic display element according to the AC electric field system of the present invention. The electrophoretic display element includes a first substrate 1, a first transparent electrode 2, a transparent insulating layer 3, a first transparent driving electrode 6, a translucent reflecting layer 7, and a transparent insulating layer (on the first substrate). Display surface) 8, a second substrate 19 disposed opposite to the first substrate 1, a second electrode 18, an insulating layer 16, a second drive electrode 15, and an insulating layer disposed on the second substrate. (Non-display surface) 14, a white insulating liquid 12 filled in a prismatic or cylindrical partition 13 formed between the first substrate 1 and the second substrate 19, and a color dispersed in the white insulating liquid It is an electrophoretic display element that encloses electrophoretic fine particles (true spherical colored negatively charged fine particles) 9 and moves vertically.

第1過程の前期は、第1透明電極2と第2電極18間に交流電界21を印加し、第1透明駆動電極6と第2駆動電極15間に剥離用直流電界を印加、交流電場により白色絶縁性液体12を撹拌し、前歴表示画像の消去、白色絶縁性液体中に分散した泳動微粒子(真球状着色負荷電微粒子)9の均一分布化等を行う。中期は撹拌と同時に表示直流電界20を印加すると、非表示面の泳動微粒子は、表示面近傍に集まり、後期には交流電界を切断して、画像表示を行なう。
第2過程の前期は、第1透明電極2と第2電極18間に交流電界21を印加し、第1透明駆動電極6と第2駆動電極15間に剥離用直流電界を印加、交流電場によりにより白色絶縁性液体12を撹拌し、前歴表示画像の消去を行なう。着色泳動微粒子9は非表示面14に移動、後期には着色泳動微粒子9は殆ど非表示層に集まり、その結果表示面8には白色絶縁性液体12により白色画面となり、表示操作は終了する。
In the first stage of the first process, an alternating electric field 21 is applied between the first transparent electrode 2 and the second electrode 18, and a peeling direct electric field is applied between the first transparent driving electrode 6 and the second driving electrode 15. The white insulating liquid 12 is agitated to erase the previous history display image, to uniformly distribute the electrophoretic fine particles (true spherical colored negative charged fine particles) 9 dispersed in the white insulating liquid. When the display DC electric field 20 is applied simultaneously with stirring in the middle period, the migrating fine particles on the non-display surface gather near the display surface, and in the latter period, the AC electric field is cut off to display an image.
In the first half of the second process, an alternating electric field 21 is applied between the first transparent electrode 2 and the second electrode 18, and a peeling direct electric field is applied between the first transparent driving electrode 6 and the second driving electrode 15. The white insulating liquid 12 is agitated to erase the previous history display image. The colored electrophoretic fine particles 9 move to the non-display surface 14, and in the later stage, the colored electrophoretic fine particles 9 are mostly collected in the non-display layer. As a result, the white insulating liquid 12 forms a white screen on the display surface 8, and the display operation is completed.

図4は、本発明の磁気誘導方式による電気泳動表示素子中の泳動微粒子の動作状態の一例である。電気泳動表示素子の構成は、第1基板1と第1基板上に配置された磁場発生用薄膜コイル状第2透明電極4、透明絶縁層5、第1透明駆動電極動電極6、透光反射層7、透明絶縁層(表示面)8と、第1基板に対向して配置された、第2基板19と、該第2基板上に配置された磁場発生用薄膜コイル状第3電極17、絶縁層16、第2駆動電極15、絶縁層(非表示面)14と、第1基板1と第2基板19間に構成された、角柱形又は、円筒形隔壁13に充填された白色絶縁性液体12と該白色絶縁性液体中に分散された真球状着色負荷電磁性微粒子11とを封入し、垂直移動による電気泳動表示素子である。  FIG. 4 shows an example of the operating state of the electrophoretic fine particles in the electrophoretic display element according to the magnetic induction system of the present invention. The configuration of the electrophoretic display element is as follows: a first substrate 1 and a thin film coiled second transparent electrode 4 for generating a magnetic field disposed on the first substrate, a transparent insulating layer 5, a first transparent driving electrode moving electrode 6, a light-transmissive reflection. A layer 7, a transparent insulating layer (display surface) 8, a second substrate 19 disposed opposite to the first substrate, and a magnetic field generating thin-film coiled third electrode 17 disposed on the second substrate, Insulating layer 16, second drive electrode 15, insulating layer (non-display surface) 14, white insulating property filled in prismatic or cylindrical partition wall 13 formed between first substrate 1 and second substrate 19. This is an electrophoretic display element that encloses the liquid 12 and the spherical colored loaded electromagnetic fine particles 11 dispersed in the white insulating liquid and moves vertically.

第1過程の前期は、第2透明電極4と第3電極17間に交流電源22を接続し磁場発生用電流を通電し、交流磁場により白色絶縁性液体12を撹拌し、前歴表示画像の消去、白色絶縁性液体中に分散した着色負荷電磁性微粒子11の均一分分布化等を行う。中期は撹拌と同時に表示直流電源20を印加すると、非表示面の泳動微粒子は、表示面近傍に集まり 後期には交流電界を切断して、画像表示を行なう。10は弱い正電荷をもつ懸濁白色荷電微粒子である。
第2過程の前期は交流磁界及び剥離用直流電界を印加して前歴表示画像の消去行なう。着色泳動微粒子11は非表示面14に移動、後期には泳動微粒子は殆ど非表示面に集まり、その結果表示面8は白色絶縁性液体12により白色画面となり、表示操作は終了する。
In the first half of the first process, an AC power supply 22 is connected between the second transparent electrode 4 and the third electrode 17 and a current for generating a magnetic field is applied. The white insulating liquid 12 is stirred by the AC magnetic field, and the previous history display image is erased. Then, uniform distribution of the colored loaded electromagnetic fine particles 11 dispersed in the white insulating liquid is performed. When the display DC power supply 20 is applied simultaneously with stirring in the middle period, the migrating fine particles on the non-display surface gather near the display surface, and the AC electric field is cut off in the latter period to display an image. Reference numeral 10 denotes suspended white charged fine particles having a weak positive charge.
In the first half of the second process, an AC magnetic field and a peeling DC electric field are applied to erase the previous history display image. The colored electrophoretic particles 11 move to the non-display surface 14, and in the later stage, the electrophoretic microparticles are mostly collected on the non-display surface. As a result, the display surface 8 becomes a white screen by the white insulating liquid 12, and the display operation ends.

図5は、本発明の交流電界・磁気誘導方式による電気泳動表示素子中の泳動微粒子の動作状態の一例である。電気泳動表示素子の構成は、第1基板1と第1基板上に配置された第1透明電極2、透明絶縁層3、磁場発生用薄膜コイル状第2透明電極4、透明絶縁層5、第1透明駆動電極6、透光反射層7及び透明絶縁層(表示面)8と、第1基板に対向して配置された、第2基板19と、該第2基板上に配置された第2電極18、絶縁層16、磁場発生用薄膜コイル状第3電極17、絶縁層16、第2駆動電極15、絶縁層(非表示面)14と、第1基板1と第2基板19間に構成された角柱形又は、円筒形隔壁13に充填された白色絶縁性液体12と該透白色絶縁性液体中に分散された着色負荷電磁性微粒子11とを封入し、垂直移動による電気泳動表示素子である。  FIG. 5 shows an example of the operating state of the electrophoretic fine particles in the electrophoretic display element using the AC electric field / magnetic induction system of the present invention. The configuration of the electrophoretic display element includes a first substrate 1, a first transparent electrode 2 disposed on the first substrate, a transparent insulating layer 3, a thin film coiled second transparent electrode 4 for generating a magnetic field, a transparent insulating layer 5, 1 transparent drive electrode 6, translucent reflective layer 7 and transparent insulating layer (display surface) 8, a second substrate 19 disposed opposite to the first substrate, and a second substrate disposed on the second substrate. An electrode 18, an insulating layer 16, a magnetic field generating thin film coiled third electrode 17, an insulating layer 16, a second drive electrode 15, an insulating layer (non-display surface) 14, and a configuration between the first substrate 1 and the second substrate 19. In an electrophoretic display device by enclosing the white insulating liquid 12 filled in the prismatic or cylindrical partition wall 13 and the colored load electromagnetic fine particles 11 dispersed in the transparent white insulating liquid. is there.

第1過程の前期は、第1透明電極2と第2電極18間に交流電源21を印加、同時に第2透明電極4と第3電極17間に交流磁場発生用交流電源22を接続し交流磁場発生用電流を通電し、交流電場と交流磁場により白色絶縁性液体12を撹拌し、前歴表示画像の消去、白色絶縁性液体中に分散した着色負荷電磁性微粒子11の均一分布化等を行う。中期は撹拌と同時に表示直流電界20を印加すると、非表示面14の泳動微粒子は、表示面8近傍に集まり 後期には交流電界を切断して画像表示を行なう。
第2過程の前期は、交流電場と交流磁界及び剥離用直流電界を印加して、前歴表示画像の消去行なう。着色泳動微粒子11は非表示面14に移動、後期には着色泳動微粒子は殆ど非表示面14に集まり、その結果表示面8は白色絶縁性液体12により白色画面となり表示操作は終了する。
In the first stage of the first process, an AC power source 21 is applied between the first transparent electrode 2 and the second electrode 18, and an AC power source 22 for generating an AC magnetic field is simultaneously connected between the second transparent electrode 4 and the third electrode 17. A current for generation is applied, and the white insulating liquid 12 is agitated by an AC electric field and an AC magnetic field, and the previous history display image is erased, the colored load electromagnetic fine particles 11 dispersed in the white insulating liquid are uniformly distributed, and the like. When the display DC electric field 20 is applied simultaneously with stirring in the middle period, the migrating fine particles on the non-display surface 14 gather near the display surface 8, and in the latter period, the AC electric field is cut to display an image.
In the first half of the second process, an AC electric field, an AC magnetic field, and a peeling DC electric field are applied to erase the previous history display image. The colored electrophoretic particles 11 move to the non-display surface 14, and in the later stage, the colored electrophoretic particles are mostly collected on the non-display surface 14. As a result, the display surface 8 becomes a white screen by the white insulating liquid 12, and the display operation ends.

図6は、交流電界方式による電気泳動表示装置の製作フロ−チャ−トと断面図である。便宜上4画素で示す。第1基板1は、透明のネサガラスである。透明電極材料は、酸化インジウム錫(ITO)、酸化亜鉛等を用いる。これを第1透明電極2とし、スピンナ・コ−トによりポリカ−ボネ−ト膜を約20〜50μm塗布して透明絶縁層3とする。表面に透明電極材料をスパッタしパタ−ニングして、第1透明駆動電極6のY軸方向のリ−ド線をパタ−ニングする。次にフォトレジスト塗布し、パタ−ニングして貫通絶縁層をとする。アルミニウムを蒸着パタ−ニングして透光反射層7をとする。フォトレジストを塗布、透明電極材料をスパッタしてY軸方向の第1透明駆動電極6を構成する。スピンナ・コ−トによりポリカ−ボネ−ト膜を20〜50μm塗布して、透明絶縁層(表示面)8とする。更に、感光性樹脂(NAP)を50μm〜150μm塗布し、フォトリソグラフにより、角柱形または円筒形隔壁13を形成し、その凹部に白色絶縁性液体12を注入する。
カラ−電気泳動表示装置の場合、白色絶縁性液体は、3種類又は4種類の色彩の着色泳動微粒子を分散している。これを所定の位置の電気泳動表示素子に注入(300dpi以上)するには、インクジエット・プリンタ手法が最適である。この場合、白色絶縁性液体は、分散された真球状着色負荷電微粒子により負の電荷をもつ。このためインクジエット・プリンタのノズル先端内面に負電極を設け、第1透明駆動電極を正とし加速用直流電界を印加すると、所定の位置の角柱形又は、円筒形隔壁中に加速飛翔され、短時間に注入することができる。
凹部の角柱形障壁は、深さ50〜150μm、幅が60〜70μm、厚さが15〜30μm、円筒型障壁は、直径40〜70μm、厚さ約15〜30μmである
第2基板19は、前記第1基板と同様ネサ・ガラスである。ネサ膜を第2電極18とし、ポリカ−ボネ−ト膜を20〜50μm塗布して絶縁層16とし、その表面に透明電極材料をスパッタしパタ−ニングして第2駆動電極15のX軸のリ−ド線を形成する。これにフォトレジストを塗布し、パタ−ニングして、貫通絶縁層Aを形成する。透明電極材料をスパッタし、パタ−ニングしてX軸第2駆動電極15とする。更にポリカ−ボネ−ト膜20〜50μm塗布して非表示面14を構成する。
第1基板と第2基板を張り合わせて電気泳動表示装置とし、駆動ICを接続してモノクロ・カラ−反射・透光型電気泳動表示装置を完成する。
FIG. 6 is a manufacturing flow chart and a sectional view of an electrophoretic display device using an alternating electric field system. For convenience, it is shown by 4 pixels. The first substrate 1 is transparent nesa glass. As the transparent electrode material, indium tin oxide (ITO), zinc oxide, or the like is used. This is used as the first transparent electrode 2, and a polycarbonate film is applied by about 20 to 50 μm by spinner coating to form the transparent insulating layer 3. A transparent electrode material is sputtered on the surface and patterned to pattern the lead wire in the Y-axis direction of the first transparent drive electrode 6. Next, a photoresist is applied and patterned to form a through insulating layer. Aluminum is vapor-deposited and patterned so that the light-transmitting / reflecting layer 7 is obtained. A first transparent drive electrode 6 in the Y-axis direction is formed by applying a photoresist and sputtering a transparent electrode material. A polycarbonate film of 20 to 50 μm is applied by a spinner coat to form a transparent insulating layer (display surface) 8. Further, a photosensitive resin (NAP) is applied by 50 μm to 150 μm, a prismatic or cylindrical partition wall 13 is formed by photolithography, and the white insulating liquid 12 is injected into the concave portion.
In the case of a color electrophoretic display device, the white insulating liquid disperses colored electrophoretic particles of three or four colors. In order to inject this into an electrophoretic display element at a predetermined position (300 dpi or more), an ink jet printer method is optimal. In this case, the white insulating liquid has a negative charge due to the dispersed spherically charged negatively charged fine particles. For this reason, when a negative electrode is provided on the inner surface of the nozzle tip of the ink jet printer, the first transparent drive electrode is made positive and an accelerating DC electric field is applied, it is accelerated and flies into a prismatic or cylindrical partition wall at a predetermined position. Can be infused on time.
The concave prismatic barrier has a depth of 50 to 150 μm, a width of 60 to 70 μm, a thickness of 15 to 30 μm, a cylindrical barrier has a diameter of 40 to 70 μm, and a thickness of about 15 to 30 μm. Nesa glass is the same as the first substrate. The nesa film is used as the second electrode 18, and the polycarbonate film is applied by 20 to 50 μm to form the insulating layer 16, and a transparent electrode material is sputtered and patterned on the surface of the second driving electrode 15 along the X axis. A lead wire is formed. A photoresist is applied thereto and patterned to form the through insulating layer A. A transparent electrode material is sputtered and patterned to form the X-axis second drive electrode 15. Further, a non-display surface 14 is formed by applying a polycarbonate film of 20 to 50 μm.
The first substrate and the second substrate are attached to form an electrophoretic display device, and a driving IC is connected to complete a monochrome / color reflection / translucent electrophoretic display device.

図7は、交流電界方式による電気泳動表示装置の断面図及び3×3マトリックス平面構成図である。電気泳動表示素子は、300dpiの解像度を維持するには、一辺が60〜70μm、高さ100〜150μmの角柱または円筒で、隔壁の幅は約15〜30μmである。図a、図bは、角柱形隔壁をもつ反射型電気泳動表示装置である。図c、図dは、円筒形隔壁をもつ透光型電気泳動表示装置ある。裏面から光照射し、隔壁を透した光は透光反射層7で有効に反射して表示面を照射暗所で使用できるモノクロ・カラ−反射・透光型電気泳動表示装置である。  FIG. 7 is a cross-sectional view and a 3 × 3 matrix plan view of an electrophoretic display device using an alternating electric field system. In order to maintain the resolution of 300 dpi, the electrophoretic display element is a prism or cylinder having a side of 60 to 70 μm and a height of 100 to 150 μm, and a partition wall width of about 15 to 30 μm. FIGS. A and b show a reflection type electrophoretic display device having a prismatic partition. FIGS. C and d show a translucent electrophoretic display device having a cylindrical partition. This is a monochrome / color reflection / transmission type electrophoretic display device in which the light irradiated from the back surface and the light transmitted through the partition wall is effectively reflected by the light transmission / reflection layer 7 and the display surface can be used in the dark place.

図8は、磁気誘導方式による電気泳動表示装置の製作フロ−チャ−トと断面図である。便宜上4画素で示す。第1基板1は、透明のネサガラスである。透明電極材料は、酸化インジウム錫(ITO)、酸化亜鉛等を用いる。ネサガラス上の透明電極をフォトリソグラフィによりパタ−ニングして磁場発生用薄膜コイル状第2透明電極4とし、ポリカ−ボネ−ト膜を20〜50μm塗布して透明絶縁層5とする。表面に透明電極材料をスパッタしパタ−ニングして、第1透明駆動電極6のY軸方向のリ−ド線とし、次にフォトレジストを塗布し、パタ−ニングして貫通絶縁層とする。アルミニウムを蒸着しパタ−ニングして、透光反射層7とする。フォトレジストを塗布、透明電極材料をスパッタしてY軸方向の第1透明駆動電極6を構成する。ポリカ−ボネ−ト膜を20〜50μm塗布して、透明絶縁層(表示面)8とする。更に、感光性樹脂(NAP)を50〜150μm塗布し、フォトリソグラフィにより、角柱形または円筒形隔壁13を形成し、その凹部に白色絶縁性液体12を注入する。
カラ−電気泳動表示装置の場合、白色絶縁性液体は、3種類又は4種類の色彩の着色泳動微粒子を分散している。これを所定の位置の電気泳動表示素子に注入するには、インクジエット・プリンタ手法が最適である。この場合、白色絶縁性液体は、分散された真球状着色負荷電磁性微粒子により負の電荷をもつ。このためインクジエット・プリンタ・タンクのノズル先端内面に負電極を設け、第1透明駆動電極を正とし加速用直流電界を印加すると、所定の位置の角柱形又は、円筒形隔壁中に加速飛翔され、短時間で注入することができる。
凹部の角柱形障壁は、深さ50〜150μm、幅40〜70μm、厚さは15〜30μm、円筒型障壁は、直径40〜70μm、厚さ15〜30μmである。
第2基板19は、前記第1基板と同様ネサ・ガラスである。ネサ膜を第2電極18とし、ポリカ−ボネ−ト膜を約20〜50μm塗布して絶縁層16とし、その表面に透明電極材料をスパッタしパタ−ニングして第2駆動電極15のX軸のリ−ド線を形成する。これにフォトレジストを塗布パタ−ニングして 貫通絶縁層Aを形成、透明電極材料をスパッタし、パタ−ニングしてX軸第2駆動電極15とする。更にポリカ−ボネ−ト膜約20〜50μm塗布して非表示面14を構成する。 第1基板と第2基板を張り合わせて電気泳動表示装置とし、駆動ICを接続してモノクロ・カラ−反射・透光型電気泳動表示装置を完成する。
FIG. 8 is a manufacturing flowchart and a sectional view of an electrophoretic display device using a magnetic induction system. For convenience, it is shown by 4 pixels. The first substrate 1 is transparent nesa glass. As the transparent electrode material, indium tin oxide (ITO), zinc oxide, or the like is used. The transparent electrode on the nesa glass is patterned by photolithography to form a thin film coiled second transparent electrode 4 for generating a magnetic field, and a polycarbonate film is applied to a thickness of 20 to 50 μm to form a transparent insulating layer 5. A transparent electrode material is sputtered on the surface and patterned to form a lead line in the Y-axis direction of the first transparent drive electrode 6, and then a photoresist is applied and patterned to form a through insulating layer. Aluminum is vapor-deposited and patterned to form the light-transmitting / reflecting layer 7. A first transparent drive electrode 6 in the Y-axis direction is formed by applying a photoresist and sputtering a transparent electrode material. A polycarbonate film of 20 to 50 μm is applied to form a transparent insulating layer (display surface) 8. Further, a photosensitive resin (NAP) is applied in an amount of 50 to 150 μm, a prismatic or cylindrical partition wall 13 is formed by photolithography, and the white insulating liquid 12 is injected into the recess.
In the case of a color electrophoretic display device, the white insulating liquid disperses colored electrophoretic particles of three or four colors. In order to inject this into the electrophoretic display element at a predetermined position, the ink jet printer method is optimal. In this case, the white insulating liquid has a negative charge due to the dispersed spherically colored loaded electromagnetic fine particles. For this reason, when a negative electrode is provided on the inner surface of the nozzle tip of the ink jet printer tank, the first transparent drive electrode is made positive and an accelerating DC electric field is applied, it is accelerated and flies into a rectangular columnar or cylindrical partition at a predetermined position. Can be injected in a short time.
The concave prismatic barrier has a depth of 50 to 150 μm, a width of 40 to 70 μm, a thickness of 15 to 30 μm, and a cylindrical barrier has a diameter of 40 to 70 μm and a thickness of 15 to 30 μm.
The second substrate 19 is nesa glass, like the first substrate. The Nesa film is used as the second electrode 18, and a polycarbonate film is applied by about 20 to 50 μm to form the insulating layer 16. A transparent electrode material is sputtered on the surface and patterned to form the X axis of the second drive electrode 15. The lead wire is formed. A photoresist is applied and patterned to form a through insulation layer A, a transparent electrode material is sputtered, and patterned to form the X-axis second drive electrode 15. Further, a non-display surface 14 is formed by applying a polycarbonate film of about 20 to 50 μm. The first substrate and the second substrate are attached to form an electrophoretic display device, and a driving IC is connected to complete a monochrome / color reflection / translucent electrophoretic display device.

図9は、磁気誘導方式による電気泳動表示装置の断面図及び3×3マトリックス平面構成図である。電気泳動表示素子は、300dpiの解像度を維持するには、一辺が60〜70μm、高さ100〜150μmの角柱または円筒で、隔壁の厚さは15〜30μmである。図a、図bは、角柱形隔壁をもつ反射型電気泳動表示装置である。図c、図dは、円筒形隔壁をもつ透光型電気泳動表示装置ある。裏面から光照射し、隔壁を透した光は透光反射層7で有効に反射して表示面を照射暗所で使用できるモノクロ・カラ−反射・透光型電気泳動表示装置である。  FIG. 9 is a cross-sectional view and a 3 × 3 matrix plane configuration diagram of an electrophoretic display device using a magnetic induction method. In order to maintain the resolution of 300 dpi, the electrophoretic display element is a prism or cylinder having a side of 60 to 70 μm and a height of 100 to 150 μm, and a partition wall thickness of 15 to 30 μm. FIGS. A and b show a reflection type electrophoretic display device having a prismatic partition. FIGS. C and d show a translucent electrophoretic display device having a cylindrical partition. This is a monochrome / color reflection / transmission type electrophoretic display device in which the light irradiated from the back surface and the light transmitted through the partition wall is effectively reflected by the light transmission / reflection layer 7 and the display surface can be used in the dark place.

図10は、交流電界・磁気誘導方式による電気泳動表示装置の製作フロ−チャ−トと断面図である。便宜上4画素で示す。第1基板1は、透明のネサガラスである。透明電極材料は、酸化インジウム錫(ITO)、酸化亜鉛等を用いる。ネサガラス上の透明電極を第1透明電極2とする。表面にポリカ−ボネ−トを20〜50μm塗布して透明絶縁層3とし、透明電極材料をスパッタし、パタ−ニングして薄膜磁場発生用コイル状第2透明電極4とする。再びポリカ−ボネ−トを20〜50μm塗布して透明絶縁層5とし、透明電極材料をスパッタし、パタ−ニングして、第1透明駆動電極6のY軸リ−ド線を形成する。次にフォトレジストを塗布し、パタ−ニングして貫通絶縁層とする。アルミニウムを蒸着し、パタ−ニングして透光反射層7を構成する。フォトレジストを塗布、透明電極材料をスパッタしてY軸方向の第1透明駆動電極6を構成する。ポリカ−ボネ−ト膜を20〜50μm塗布して、透明絶縁層(表示面)8とする。更に、感光性樹脂(NAP)を50μm〜150μm塗布し、フォトリソグラフィにより、角柱形または円筒形隔壁13を形成し、その凹部に白色絶縁性液体12を注入する。
カラ−電気泳動表示装置の場合、白色絶縁性液体は、3種類又は4種類の色彩の着色泳動微粒子を分散している。これを所定の位置の電気泳動表示素子に注入するには、インクジエット・プリンタ手法が最適である。この場合、白色絶縁性液体は、分散された真球状着色負荷電磁性微粒子により負の電荷をもつ。このためインクジエット・プリンタ・タンクのノズル先端内面に負電極を設け、第1透明駆動電極を正とし加速用直流電界を印加すると、所定の位置の角柱形又は、円筒形隔壁中に加速飛翔され、短時間で注入することができる。
凹部の角柱形障壁は、深さ50〜150μm、幅40〜70μm、厚さは15〜30μm、円筒型障壁は、直径40〜70μm、厚さ15〜30μmである。
第2基板19は、前記第1基板と同様ネサ・ガラスである。ネサ膜を第2電極18とし、ポリカ−ボネ−ト膜を約20〜50μm塗布して絶縁層16とし、その表面に透明電極材料をスパッタしパタ−ニングして第2駆動電極15のX軸のリ−ド線を形成する。これにフォトレジストを塗布パタ−ニングして貫通絶縁層Aを形成し、透明電極材料をスパッタし、パタ−ニングしてX軸第2駆動電極15とする。更にポリカ−ボネ−ト膜20〜50μm塗布して非画像表示面14を構成する。
第1基板と第2基板を張り合わせて電気泳動表示装置とし、駆動ICを接続してモノクロ・カラ−反射・透光型電気泳動表示装置を完成する。
FIG. 10 is a manufacturing flow chart and a sectional view of an electrophoretic display device using an alternating electric field / magnetic induction method. For convenience, it is shown by 4 pixels. The first substrate 1 is transparent nesa glass. As the transparent electrode material, indium tin oxide (ITO), zinc oxide, or the like is used. Let the transparent electrode on the Nesa glass be the first transparent electrode 2. The surface is coated with 20 to 50 μm of polycarbonate to form a transparent insulating layer 3, and a transparent electrode material is sputtered and patterned to form a thin film magnetic field generating coiled second transparent electrode 4. Again, 20 to 50 μm of polycarbonate is applied to form the transparent insulating layer 5, and a transparent electrode material is sputtered and patterned to form the Y-axis lead wire of the first transparent drive electrode 6. Next, a photoresist is applied and patterned to form a through insulating layer. Aluminum is vapor-deposited and patterned to form the translucent reflective layer 7. A first transparent drive electrode 6 in the Y-axis direction is formed by applying a photoresist and sputtering a transparent electrode material. A polycarbonate film of 20 to 50 μm is applied to form a transparent insulating layer (display surface) 8. Further, a photosensitive resin (NAP) is applied to 50 μm to 150 μm, a prismatic or cylindrical partition wall 13 is formed by photolithography, and the white insulating liquid 12 is injected into the recess.
In the case of a color electrophoretic display device, the white insulating liquid disperses colored electrophoretic particles of three or four colors. In order to inject this into the electrophoretic display element at a predetermined position, the ink jet printer method is optimal. In this case, the white insulating liquid has a negative charge due to the dispersed spherically colored loaded electromagnetic fine particles. For this reason, when a negative electrode is provided on the inner surface of the nozzle tip of the ink jet printer tank, the first transparent drive electrode is made positive and an accelerating DC electric field is applied, it is accelerated and flies into a rectangular columnar or cylindrical partition at a predetermined position. Can be injected in a short time.
The concave prismatic barrier has a depth of 50 to 150 μm, a width of 40 to 70 μm, a thickness of 15 to 30 μm, and a cylindrical barrier has a diameter of 40 to 70 μm and a thickness of 15 to 30 μm.
The second substrate 19 is nesa glass, like the first substrate. The Nesa film is used as the second electrode 18, and a polycarbonate film is applied by about 20 to 50 μm to form the insulating layer 16. A transparent electrode material is sputtered on the surface and patterned to form the X axis of the second drive electrode 15. The lead wire is formed. A through-insulating layer A is formed by coating a photoresist on this, and a transparent electrode material is sputtered and patterned to form the X-axis second drive electrode 15. Further, a non-image display surface 14 is formed by applying a polycarbonate film of 20 to 50 μm.
The first substrate and the second substrate are attached to form an electrophoretic display device, and a driving IC is connected to complete a monochrome / color reflection / translucent electrophoretic display device.

図11は、交流電界・磁気誘導方式による電気泳動表示装置の断面図及び3×3マトリックス平面構成図である。電気泳動表示素子は、300dpiの解像度を維持するには、一辺が60〜70μm、深さ100〜150μmの角柱または円筒で、隔壁の幅は15〜30μmである。図a、図bは、反射型交流電界・磁気誘導方式電気泳動表示装置である。図c、図dは、円筒形隔壁をもつ透光型電気泳動表示装置ある。裏面から光照射し、隔壁を透した光は透光反射層7で有効に反射して表示面を照射暗所で使用できるモノクロ・カラ−反射・透光型電気泳動表示装置である。  FIG. 11 is a cross-sectional view and a 3 × 3 matrix plan view of an electrophoretic display device using an alternating electric field / magnetic induction method. In order to maintain the resolution of 300 dpi, the electrophoretic display element is a prism or cylinder having a side of 60 to 70 μm and a depth of 100 to 150 μm, and a partition wall width of 15 to 30 μm. FIGS. A and b show a reflection type AC electric field / magnetic induction type electrophoretic display device. FIGS. C and d show a translucent electrophoretic display device having a cylindrical partition. This is a monochrome / color reflection / transmission type electrophoretic display device in which the light irradiated from the back surface and the light transmitted through the partition wall is effectively reflected by the light transmission / reflection layer 7 and the display surface can be used in the dark place.

図12は、着色泳動微粒子、白色絶縁性液体の製作フロ−チャ−トである。前記着色負荷電微粒子は、アクリル系、ポリエステル系、スチレン系、ポリカーボネート系等の高分子微粒子原料モノマ−に、トラップとなる材料、顔料等を添加し、懸濁重合法・乳化重合法・分散重合法等により、5〜10μmの真球状微粒子をつくる。これに10〜50kGyの電子線を照射し、90〜110℃で十数分開加熱するか、90〜110℃で10〜50kGyの電子線を照射して、エレクトレット性負電荷を帯電した微粒子で−30〜−100mVのζ電位をもち、
前記着色負荷電磁性微粒子は、前述の材料に磁性微粒子(FeO・Feで示されるマグネタイト微粒子)を加え、懸濁重合法・乳化重合法・分散重合法等により、5〜10μmの真球状微粒子を作る。これに10〜50kGyの電子線を照射して、−30〜−100mVのエレクトレット性ζ電位と5×10−4Wbの磁荷とを合わせも着色負荷電磁性微粒子である。
前記白色絶縁性液体は高分子微粒子原料モノマ−に、正孔トラップとなる材料(SiO,Si:H:O1−x等)、酸化亜鉛、酸化チタン等の酸化物白色超微粒子を加え、懸濁重合法・乳化重合法・分散重合法等により、0.1〜1μmの真球状超微粒子を作る。これに1〜150kGyのガンマ線を照射し、90〜110℃で十数分間加熱するか、90〜110℃で1〜150kGyのガンマ線を照射して、エレクトレット性正電荷を帯電した微粒子で5〜20mVのζ電位をもち炭化水素絶縁性溶媒、シリコ−ン絶縁性溶媒に1〜20%分散した白色絶縁性液体である。
FIG. 12 is a production flow chart of colored electrophoretic fine particles and white insulating liquid. The colored negatively charged fine particles are prepared by adding a trapping material, a pigment or the like to a polymer fine particle raw material monomer such as acrylic, polyester, styrene, polycarbonate, etc. 5-10 μm spherical particles are produced by a legal method or the like. This is irradiated with an electron beam of 10 to 50 kGy and heated to open at least ten times at 90 to 110 ° C., or is irradiated with an electron beam of 10 to 50 kGy at 90 to 110 ° C. and charged with electret negative charges − Having a zeta potential of 30 to -100 mV,
The colored loaded electromagnetic fine particles are obtained by adding magnetic fine particles (magnetite fine particles represented by FeO · Fe 2 O 3 ) to the above-mentioned material, and by using a suspension polymerization method, an emulsion polymerization method, a dispersion polymerization method, or the like. Make spherical fine particles. When this is irradiated with an electron beam of 10 to 50 kGy and an electret ζ potential of −30 to −100 mV and a magnetic charge of 5 × 10 −4 Wb are combined, they are colored load electromagnetic fine particles.
The white insulating liquid is added to a polymer fine particle raw material monomer, a material that serves as a hole trap (SiO 2 , Si: H: O 1-x, etc.), oxide white ultrafine particles such as zinc oxide and titanium oxide, By using a suspension polymerization method, an emulsion polymerization method, a dispersion polymerization method or the like, 0.1 to 1 μm spherical fine particles are produced. This is irradiated with 1 to 150 kGy of gamma rays and heated at 90 to 110 ° C. for 10 minutes, or 90 to 110 ° C. with 1 to 150 kGy of gamma rays and charged with electret positive charges of 5 to 20 mV. A white insulating liquid having a ζ potential of 1 to 20% dispersed in a hydrocarbon insulating solvent or a silicon insulating solvent.

本発明は、上記実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々の変形例、設計変更などをその技術範囲内に包含することは云う迄もない。  The present invention is not limited to the above-described embodiments, and it is needless to say that various modifications, design changes, and the like are included within the technical scope without departing from the technical idea of the present invention.

本発明の電気泳動表示素子の基本的構成を示す断面図である。I.交流電界方式 II.磁気誘導方式 III.交流電界・磁気誘導方式  It is sectional drawing which shows the basic composition of the electrophoretic display element of this invention. I. AC electric field method II. Magnetic induction system III. AC electric field / magnetic induction 本発明の電気泳動表示素子の代表的な駆動法を示す図である。I.交流電界方式 II.磁気誘導方式 III.交流電界・磁気誘導方式  It is a figure which shows the typical drive method of the electrophoretic display element of this invention. I. AC electric field method II. Magnetic induction system III. AC electric field / magnetic induction 本発明の交流電界方式による電気泳動表示素子中の泳動粒子の挙動を示す模式図である。第1過程:前期、中期、後期 第2過程:前期、後期  It is a schematic diagram which shows the behavior of the electrophoretic particle in the electrophoretic display element by the alternating current electric field system of the present invention. 1st process: 1st, middle, 2nd 2nd process: 1st, 2nd 本発明の磁気誘導方式による電気泳動表示素子中の泳動粒子の挙動を示す模式図である。第1過程:前期、中期、後期 第2過程:前期、後期  It is a schematic diagram which shows the behavior of the electrophoretic particle in the electrophoretic display element by the magnetic induction system of this invention. 1st process: 1st, middle, 2nd 2nd process: 1st, 2nd 本発明の交流電界・磁気誘導方式による電気泳動表示素子中泳動粒子の挙動を示す模式図である。第1過程:前期、中期、後期 第2過程:前期、後期  It is a schematic diagram which shows the behavior of the electrophoretic particle in the electrophoretic display element by the alternating current electric field / magnetic induction system of the present invention. 1st process: 1st, middle, 2nd 2nd process: 1st, 2nd 本発明による交流電界方式による電気泳動表示装置の製作フロ−チャ−トと断面図である。  FIG. 2 is a manufacturing flowchart and a cross-sectional view of an electrophoretic display device using an alternating electric field system according to the present invention. 本発明による交流電界方式による反射型及び透過型電気泳動表示素子アレイの断面図と3×3マトリックス平面構成図である。  FIG. 3 is a cross-sectional view and a 3 × 3 matrix plane configuration diagram of a reflection type and transmission type electrophoretic display element array according to an AC electric field method according to the present invention. 本発明による磁気誘導方式による電気泳動表示装置の製作フロ−チャ−トと断面図である。  FIG. 4 is a manufacturing flowchart and a cross-sectional view of an electrophoretic display device using a magnetic induction system according to the present invention. 本発明による磁気誘導方式による反射型及び透過型電気泳動表示素子アレイの断面図と3×3マトリックス平面構成図である。  FIG. 4 is a cross-sectional view and a 3 × 3 matrix plane configuration diagram of a reflective and transmissive electrophoretic display element array using a magnetic induction method according to the present invention. 本発明による交流電界・磁気誘導方式による電気泳動表示装置の製作フロ−チャ−トと断面図である。  FIG. 2 is a manufacturing flowchart and a cross-sectional view of an electrophoretic display device using an alternating electric field / magnetic induction method according to the present invention. 本発明による交流電界・磁気誘導方式による反射型及び及び透光型電気泳動表示素子アレイの断面図と3×3マトリックス平面構成図である。  FIG. 2 is a cross-sectional view and a 3 × 3 matrix plane configuration diagram of a reflection-type and translucent-type electrophoretic display element array using an alternating electric field / magnetic induction method according to the present invention. 着色泳動微粒子、白色絶縁性液体の製作フロ−チャ−トである。  This is a production flowchart of colored electrophoretic fine particles and white insulating liquid.

符号の説明Explanation of symbols

1・・・第1基板
2・・・第1透明電極
3・・・透明絶縁層
4・・・第2透明電極
5・・・透明絶縁層
6・・・第1透明駆動電極
7・・・透光反射層
8・・・絶縁層(表示面)
9・・・着色泳動微粒子(負荷電微粒子)
10・・・白色正荷電微粒子
11・・・着色泳動微粒子(負荷電磁性微粒子)
12・・・白色絶縁性液体
13・・・隔壁
14・・・絶縁層(非表示面)
15・・・第2駆動電極
16・・・絶縁層
17・・・第3電極
18・・・第2電極
19・・・第2基板
20・・・表示用直流電源
21・・・撹拌用交流電源
22・・・撹拌用磁場発生電源
DESCRIPTION OF SYMBOLS 1 ... 1st board | substrate 2 ... 1st transparent electrode 3 ... Transparent insulating layer 4 ... 2nd transparent electrode 5 ... Transparent insulating layer 6 ... 1st transparent drive electrode 7 ... Translucent reflective layer 8 ... Insulating layer (display surface)
9 ... Colored electrophoretic fine particles (negatively charged fine particles)
10 ... White positively charged fine particles 11 ... Colored electrophoretic fine particles (loaded electromagnetic fine particles)
12 ... White insulating liquid 13 ... Partition 14 ... Insulating layer (non-display surface)
DESCRIPTION OF SYMBOLS 15 ... 2nd drive electrode 16 ... Insulating layer 17 ... 3rd electrode 18 ... 2nd electrode 19 ... 2nd board | substrate 20 ... DC power supply 21 for display ... AC for stirring Power source 22 ... Magnetic field generating power source for stirring

Claims (20)

第1基板と、第1基板上に配置された第1透明電極、透明絶縁層、第1透明駆動電極、透光反射層及び透明絶縁層(表示面)と前記第1基板に対向して配置された第2基板と、該第2基板上に配置された第2電極、絶縁層、第2駆動電極、及び絶縁層(非表示面)と、前記第1基板と第2基板間の隔壁に充填された白色絶縁性液体と、該白色絶縁性液体中に分散され着色泳動微粒子(真球状着色負荷電微粒子)を備えた疑似1粒子タイプの電気泳動表示素子、電気泳動表示方法、モノクロ・カラ−反射・透光型電気泳動表示装置。
画像表示は、前記第1透明電極と第2電極間に交流電源を印加して、前記白色絶縁性液体を交流電場で撹拌して、表示面及び非表示面に付着する前歴表示画像を消去する。同時に前記第1透明駆動電極と第2駆動電極間に表示用直流電界を印加し、着色泳動微粒子を表示面に垂直移動させ画像表示する第1過程と、表示後再び前記第1透明電極と第2電極間に交流電界を印加して、白色絶縁性液体を撹拌し前歴表示画像を消去し、更に着色泳動微粒子を非表示面に垂直移動し、表示面を白色表示する第2の過程により、表示操作を終了することを特徴とする、交流電界方式による電気泳動表示素子、電気泳動表示方法、モノクロ・カラ−反射・透光型電気泳動表示装置。
The first substrate, the first transparent electrode, the transparent insulating layer, the first transparent drive electrode, the light-transmissive reflecting layer, and the transparent insulating layer (display surface) disposed on the first substrate and the first substrate are disposed opposite to the first substrate. And a second electrode disposed on the second substrate, an insulating layer, a second drive electrode, an insulating layer (non-display surface), and a partition wall between the first substrate and the second substrate. Pseudo single particle type electrophoretic display element comprising filled white insulating liquid and colored electrophoretic fine particles (true spherical colored negatively charged fine particles) dispersed in the white insulating liquid, electrophoretic display method, monochrome color -Reflective / translucent electrophoretic display device.
In the image display, an AC power source is applied between the first transparent electrode and the second electrode, and the white insulating liquid is agitated with an AC electric field to erase the previous history display image adhering to the display surface and the non-display surface. . At the same time, a direct current electric field for display is applied between the first transparent drive electrode and the second drive electrode, the colored migrating fine particles are vertically moved on the display surface, and an image is displayed. By applying an alternating electric field between the two electrodes, stirring the white insulating liquid, erasing the previous history display image, moving the colored electrophoretic particles vertically to the non-display surface, and displaying the display surface in white, An electrophoretic display element using an alternating electric field system, an electrophoretic display method, and a monochrome color reflection / transmission type electrophoretic display device, characterized in that the display operation is terminated.
第1基板と、第1基板上に配置された磁場発生用薄膜コイル状第2透明電極、透明絶縁層、第1透明駆動電極、透光反射層及び絶縁層(表示面)と、前記第1基板に対向して配置された第2基板と、該第2基板に配置された磁場発生用薄膜コイル状第3電極、絶縁層、第2駆動電極、及び絶縁層(非表示面)と、前記第1基板と第2基板間の隔壁に、充填された白色絶縁性液体中に分散された着色荷電磁性微粒子(真球状着色負荷電磁性微粒子)を備えた疑似1粒子タイプの電気泳動表示素子、電気泳動表示方法、モノクロ・カラ−反射・透光型電気泳動表示装置。
画像表示は、前記第1透明電極と第3電極間に交流電流を通電して交流磁場を発生させ、前記白色絶縁性液体を交流磁場で撹拌して、表示面及び非表示面に付着する前歴画像を消去する。同時に前記第1透明駆動電極と第2駆動電極間に表示用直流電界を印加し、着色泳動微粒子を表示面に垂直移動させ画像表示する第1過程と、表示後再び前記第1透明電極と第3電極間に交流電界を印加して磁場を発生させ、白色絶縁性液体を撹拌し、着色泳動微粒子を非表示面に垂直移動し、表示面を白色表示する第2の過程により、表示操作を終了することを特徴とする、磁気誘導方式による電気泳動表示素子、電気泳動表示方法、モノクロ・カラ−反射・透光型電気泳動表示装置。
A first substrate; a thin-film coiled second transparent electrode for generating a magnetic field; a transparent insulating layer; a first transparent driving electrode; a translucent reflecting layer; and an insulating layer (display surface) disposed on the first substrate; A second substrate disposed opposite to the substrate, a magnetic field generating thin-film coiled third electrode disposed on the second substrate, an insulating layer, a second drive electrode, and an insulating layer (non-display surface); A quasi-single particle type electrophoretic display element comprising colored charged magnetic fine particles (true spherical colored loaded electromagnetic fine particles) dispersed in a white insulating liquid filled in a partition wall between a first substrate and a second substrate; Electrophoretic display method, monochrome / color reflection / transmission type electrophoretic display device.
In the image display, an alternating current is passed between the first transparent electrode and the third electrode to generate an alternating magnetic field, and the white insulating liquid is stirred by the alternating magnetic field and adhered to the display surface and the non-display surface. Erase the image. At the same time, a direct current electric field for display is applied between the first transparent drive electrode and the second drive electrode, the colored migrating fine particles are vertically moved on the display surface, and an image is displayed. By applying an alternating electric field between the three electrodes to generate a magnetic field, stirring the white insulating liquid, moving the colored migrating fine particles vertically to the non-display surface, and displaying the display surface in white, the display operation is performed. An electrophoretic display element based on a magnetic induction system, an electrophoretic display method, and a monochrome / color reflection / translucent electrophoretic display device, characterized in that it is terminated.
第1基板と、第1基板上に配置された第1透明電極、透明絶縁層、磁場発生用薄膜コイル状第2透明電極、透明絶縁層、第1透明駆動電極、透光反射層及び透明絶縁層(表示面)と、前記第1基板に対向して配置された第2基板と該第2基板上に配置された第2電極、絶縁層、磁場発生用薄膜コイル状第3電極、絶縁層、第2駆動電極、及び絶縁層(非表示面)と、前記第1基板と前記第2基板間の隔壁に充填された白色絶縁性液体と、該白色絶縁性液体中に分散された着色泳動微粒子(真球状着色負荷電磁性微粒子)を備えた疑似1粒子タイプの電気泳動表示素子、モノクロ・カラ−反射・透光型電気泳動表示装置。
画像表示は、前記第1透明電極と第2電極間に交流電界を印加して交流電場を発生し、第2透明電極と第3電極に交流電流を通電して交流磁場を発生して、交流電場と交流磁場とを重畳し白色絶縁性液体を撹拌して、表示面及び非表示面に付着する前歴表示画像を消去する。同時に前記第1透明駆動電極と第2駆動電極間に表示用直流電界を印加し、着色泳動微粒子を表示面の透明絶縁層に垂直移動させ画像表示する第1過程と、表示後再び前記第1透明電極と第2電極間に交流電界を印可して、交流電場を発生し、同時に第2透明電極と第3電極間に交流電流を通電して交流磁場を発生し、交流電場と交流磁場とを重畳して、白色絶縁性液体を撹拌し前歴表示画像を消去、着色泳動微粒子を非表示面に垂直移動し、表示面を白色表示する第2の過程により表示操作を終了することを特徴とする、交流電界・磁気誘導方式による電気泳動表示素子、電気泳動表示方法、モノクロ・カラ−反射・透光型電気泳動表示装置。
A first substrate, a first transparent electrode disposed on the first substrate, a transparent insulating layer, a thin film coiled second transparent electrode for generating a magnetic field, a transparent insulating layer, a first transparent driving electrode, a light-transmissive reflecting layer, and a transparent insulating material A layer (display surface), a second substrate disposed opposite to the first substrate, a second electrode disposed on the second substrate, an insulating layer, a thin-film coiled third electrode for generating a magnetic field, and an insulating layer , A second drive electrode, an insulating layer (non-display surface), a white insulating liquid filled in a partition wall between the first substrate and the second substrate, and a colored electrophoresis dispersed in the white insulating liquid A quasi-single particle type electrophoretic display device having fine particles (true spherical colored loaded electromagnetic fine particles), a monochrome color reflection / transmission type electrophoretic display device.
In the image display, an alternating electric field is applied between the first transparent electrode and the second electrode to generate an alternating electric field, an alternating current is applied to the second transparent electrode and the third electrode to generate an alternating magnetic field, and an alternating current is generated. The white insulating liquid is stirred by superimposing the electric field and the alternating magnetic field, and the previous history display image adhering to the display surface and the non-display surface is erased. At the same time, a direct current electric field for display is applied between the first transparent drive electrode and the second drive electrode, the colored migrating fine particles are vertically moved to the transparent insulating layer on the display surface, and an image is displayed. An alternating electric field is applied between the transparent electrode and the second electrode to generate an alternating electric field. At the same time, an alternating current is applied between the second transparent electrode and the third electrode to generate an alternating magnetic field. And the white insulating liquid is agitated to erase the previous display image, the colored electrophoretic fine particles are moved vertically to the non-display surface, and the display operation is terminated by the second process of displaying the display surface in white. An electrophoretic display element using an alternating electric field / magnetic induction method, an electrophoretic display method, and a monochrome / color reflection / translucent electrophoretic display device.
前記請求項1乃至3に記載の反射型電気泳動表示装置において、第2基板及び該第2基板上に配置された第2電極、絶縁層、第3電極、絶縁層、第2駆動電極、絶縁層、角柱又は円筒隔壁等に透光性材料を使用し、裏面から透過光を照射できる構造にしたことを特徴とするモノクロ・カラ−反射・透光型電気泳動表示装置。  4. The reflection type electrophoretic display device according to claim 1, wherein the second substrate and the second electrode, the insulating layer, the third electrode, the insulating layer, the second drive electrode, and the insulating layer disposed on the second substrate are provided. A monochrome / color reflection / transmission type electrophoretic display device using a translucent material for a layer, a prism, a cylindrical partition, or the like, and having a structure capable of irradiating transmitted light from the back surface. 前記角柱形、円筒形隔壁を3分割し、赤、緑、青色等、又は4分割して黒、マゼンタ、イエロー、又はシアン色等としたカラ−用電気泳動表示素子とモノクロ・カラ−反射・透光型電気泳動表示装置。  The prismatic and cylindrical partition walls are divided into three, red, green, blue, etc., or divided into four black, magenta, yellow, cyan, etc. Translucent electrophoretic display device. 前記電気泳動表示素子に、泳動微粒子及び白色絶縁性液体等の注入には、インクジエット・プリンタ手法を利用するモノクロ・カラ−反射・透光型電気泳動表示装置の製作法。  A method of manufacturing a monochrome color reflection / transmission type electrophoretic display device using an ink jet printer technique for injecting electrophoretic fine particles and white insulating liquid into the electrophoretic display element. 前記請求項1に記載の交流電界方式による電気泳動表示素子を集合し、一体化し単純マトリックス又は、TFTマトリックス回路により表示することを特徴とする、請求項1乃至6に記載のモノクロ・カラ−反射・透光型電気泳動表示装置。  7. The monochrome color reflection according to claim 1, wherein the electrophoretic display elements of the AC electric field system according to claim 1 are assembled, integrated, and displayed by a simple matrix or a TFT matrix circuit.・ Translucent electrophoretic display device. 前記請求項2に記載の磁気誘導方式による電気泳動表示素子を集合し、一体化し単純マトリックス又は、TFTマトリックス回路により表示することを特徴とする、請求項2乃至6に記載のモノクロ・カラ−反射・透光型電気泳動表示装置。  7. The monochrome color reflection according to claim 2, wherein the electrophoretic display elements of the magnetic induction system according to claim 2 are assembled, integrated, and displayed by a simple matrix or a TFT matrix circuit.・ Translucent electrophoretic display device. 前記請求項3に記載の交流電界・磁気誘導方式による電気泳動表示素子を集合し、一体化し単純マトリックス又は、TFTマトリックス回路により表示することを特徴とする請求項3乃至6に記載のモノクロ・カラ−反射・透光型電気泳動表示装置。  The monochrome color display according to any one of claims 3 to 6, wherein the electrophoretic display elements of the AC electric field / magnetic induction system according to claim 3 are assembled, integrated, and displayed by a simple matrix or a TFT matrix circuit. -Reflective / translucent electrophoretic display device. 前記着色負荷電微粒子は、高分子微粒子原料モノマ−に、電子トラップとなる材料、顔料等を添加し、懸濁重合法・乳化重合法・分散重合法等により、5〜10μmの真球状微粒子を作る。これに10〜50kGyの電子線を照射し、90〜110℃で十数分間加熱するか、90〜110℃で10〜50kGyの電子線を照射して、エレクトレット性負電荷を帯電した微粒子で、−50〜−100mVのζ電位をもち、所望の色彩に着色したことを特徴とする着色負荷電微粒子である。粒形が真球状超微粒子で、粒度分布度が狭いので、白色絶縁性液体に分散し表示用直流電界を印加すると、規則的に高速移動して、短時間で応答する真球状着色負荷電微粒子。  The colored negatively charged fine particles are obtained by adding a material that becomes an electron trap, a pigment, and the like to a polymer fine particle raw material monomer, and forming spherical fine particles of 5 to 10 μm by a suspension polymerization method, an emulsion polymerization method, a dispersion polymerization method, or the like. create. This is irradiated with an electron beam of 10 to 50 kGy and heated at 90 to 110 ° C. for a few dozen minutes, or irradiated with an electron beam of 10 to 50 kGy at 90 to 110 ° C. and charged with an electret negative charge, Colored negatively charged fine particles having a ζ potential of −50 to −100 mV and colored in a desired color. Spherical ultra-fine particles with a narrow particle size distribution, so that when they are dispersed in a white insulating liquid and a direct current electric field for display is applied, they are regularly moved at high speed and respond in a short time. . 前記着色負荷電磁性微粒子は、高分子微粒子原料モノマ−に、電子トラップとなる材料、顔料等、磁性微粒子(FeO・Feで示されるマグネタイト微粒子、ナノ磁性微粒子等)を加え、懸濁重合法・乳化重合法・分散重合法等により、5〜10μmの真球状微粒子を作る。これに10〜50kGyの電子線を照射し、90〜110℃で十数分間加熱するか、90〜110℃で10〜50kGyの電子線を照射して、エレクトレット性負電荷を帯電した微粒子で、−50〜−100mVのζ電位と、5×10−4Wbの磁荷を合わせもち、所望の色彩に着色したことを特徴とする着色負荷電磁性微粒子である。粒形が真球状超微粒子で、粒度分布度が狭いので、白色絶縁性液体に分散し表示用直流電界を印加すると、規則的に高速移動して、短時間で応答し、低い直流電界で駆動する真球状着色負荷電磁性微粒子。The colored loaded electromagnetic fine particles are suspended by adding magnetic fine particles (magnetite fine particles indicated by FeO.Fe 2 O 3 , nanomagnetic fine particles, etc.) such as electron trap materials, pigments, etc. to the polymer fine particle raw material monomer. 5 to 10 μm spherical particles are made by a polymerization method, an emulsion polymerization method, a dispersion polymerization method, or the like. This is irradiated with an electron beam of 10 to 50 kGy and heated at 90 to 110 ° C. for a few dozen minutes, or irradiated with an electron beam of 10 to 50 kGy at 90 to 110 ° C. and charged with an electret negative charge, A colored loaded electromagnetic fine particle characterized by having a ζ potential of −50 to −100 mV and a magnetic charge of 5 × 10 −4 Wb and colored in a desired color. Because it is a spherical ultra-fine particle and has a narrow particle size distribution, when it is dispersed in a white insulating liquid and a DC electric field for display is applied, it regularly moves at high speed, responds in a short time, and is driven by a low DC electric field. True spherical colored loaded electromagnetic fine particles. 前記着色泳動微粒子は、顔料等により、赤、緑、青等又は黒、マゼンタ、イエロ−、シアン色等に着色したもので、カラ−表示に適する真球状着色負荷電微粒子及び真球状着色負荷電磁性微粒子。  The colored electrophoretic fine particles are colored red, green, blue, etc. or black, magenta, yellow, cyan, etc. with pigments, etc., and are suitable for color display. Fine particles. 前記白色絶縁性液体は、高分子微粒子原料モノマ−に、正孔トラップ材料と、酸化亜鉛、酸化チタン等の酸化物系白色超微粉末を加え懸濁重合法、乳化重合法、分散重合法等により、0.1〜1μmの真球状超微粒子を作る。これに1〜15kGyのガンマ線を照射し、90〜110℃で十数分間加熱するか、90〜110℃で1〜15kGyのガンマ線を照射して、エレクトレット性正電荷を帯電した白色正荷電微粒子で、5〜50mVのζ電位をもつ。これを炭化水素絶縁性液体またはシリコ−ン系絶縁性液体等に5〜20%分散した白色絶縁性液体。  The white insulating liquid is a suspension polymerization method, an emulsion polymerization method, a dispersion polymerization method, etc. by adding a hole trap material and an oxide-based white ultrafine powder such as zinc oxide or titanium oxide to a polymer fine particle raw material monomer. To produce 0.1 to 1 μm spherical fine particles. This is irradiated with gamma rays of 1 to 15 kGy and heated for 10 minutes at 90 to 110 ° C., or irradiated with 1 to 15 kGy of gamma rays at 90 to 110 ° C., and white positively charged fine particles charged with electret positive charges. And a ζ potential of 5 to 50 mV. A white insulating liquid in which 5 to 20% is dispersed in a hydrocarbon insulating liquid or a silicone-based insulating liquid. 前記高分子微粒子原料モノマ−は、アクリル系、ポリエステル系、スチレン系、ポリカ−ボネ−ト系等の樹脂で、電子トラップとなる材料は、弗素系樹脂である。正孔トラップとなる材料は、Siの酸化物(SiO)アモルファス・シリコン酸化物(Si:H:O1−x)の超微粒子である。The polymer fine particle raw material monomer is an acrylic resin, a polyester resin, a styrene resin, a polycarbonate resin, or the like, and the electron trap material is a fluorine resin. The material to be a hole trap is an ultrafine particle of Si oxide (SiO 2 ) amorphous silicon oxide (Si: H: O 1-x ). 前記第1基板及び前記第2基板は、ガラス又はポリマ−・フイルムであることを特徴とする請求項1乃至10のいずれかの項に記載の電気泳動表示素子、モノクロ・カラ−反射・透光型電気泳動表示装置。  11. The electrophoretic display device according to claim 1, wherein the first substrate and the second substrate are made of glass or polymer film. Type electrophoretic display. 前記第1基板及び前記第2基板の距離が、前記泳動微粒子の粒径の50倍か、200μm以下であることを特徴とする請求項1乃至9のいずれかの項に記載の電気泳動表示素子、モノクロ・カラ−反射・透光型電気泳動表示装置。  10. The electrophoretic display element according to claim 1, wherein a distance between the first substrate and the second substrate is 50 times the particle diameter of the electrophoretic fine particles or 200 μm or less. Monochrome color reflection / transmission type electrophoretic display. 前記電気泳動表示素子には、真球状着色正荷電微粒子及び真球状着色正荷電磁性微粒子も使用できる。この場合、印加電界は逆極性にする必要がある。  As the electrophoretic display element, true spherical colored positively charged fine particles and true spherical colored positively charged magnetic fine particles can also be used. In this case, the applied electric field needs to have a reverse polarity. 前記白色絶縁性液体を構成する白色正荷電微粒子と、着色泳動微粒子の粒径比が1/2〜1/10の範囲にあることを特徴とする白色正荷電微粒子と真球状着色荷電微粒子及び真球状着色荷電磁性微粒子。  The white positively charged fine particles, the spherical colored charged fine particles, and the true positively charged fine particles, the white electrophoretic fine particles constituting the white insulating liquid, and the colored electrophoretic fine particles are in the range of 1/2 to 1/10. Spherical colored charged magnetic fine particles. 前記電気泳動表示装置は、省エネ性に優れているため、小型太陽電池と小型蓄電池の組合せにより、充電器不要の携帯端末機器(携帯電話ノ−トパソコン等)用ディスプレ−・システム。  Since the electrophoretic display device is excellent in energy saving, a display system for a portable terminal device (such as a mobile phone notebook personal computer) that does not require a charger by combining a small solar cell and a small storage battery. 前記荷電微粒子、荷電磁性微粒子及び白色絶縁性液体等に、耐候性材料を使用した、業務用大型電気泳動表示素子、大型業務用モノクロ・カラ−反射・透光型電気泳動表示装置(表示板・看板等)。
〔発明の名称〕 エレクトレット性着色泳動微粒子を用いたモノクロ・カラ−反射・透光型電気泳動表示装置−I。
Large commercial electrophoretic display elements, large commercial monochrome / color reflective / translucent electrophoretic display devices (display plates, etc.) using weather-resistant materials for the charged fine particles, charged magnetic fine particles and white insulating liquid. Signboards, etc.).
[Title of Invention] Monochrome color reflection / transmission type electrophoretic display-I using electret colored electrophoretic fine particles.
JP2005321496A 2005-10-05 2005-10-05 Electrophoretic display element, electrophoretic display device, colored electrophoretic fine particles, insulating liquid, and electrophoretic display element driving method Expired - Fee Related JP4755885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005321496A JP4755885B2 (en) 2005-10-05 2005-10-05 Electrophoretic display element, electrophoretic display device, colored electrophoretic fine particles, insulating liquid, and electrophoretic display element driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321496A JP4755885B2 (en) 2005-10-05 2005-10-05 Electrophoretic display element, electrophoretic display device, colored electrophoretic fine particles, insulating liquid, and electrophoretic display element driving method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011099403A Division JP5336542B2 (en) 2011-04-27 2011-04-27 Electrophoretic display element, electrophoretic display device, colored electrophoretic fine particles, insulating liquid, and electrophoretic display element driving method

Publications (3)

Publication Number Publication Date
JP2007102148A true JP2007102148A (en) 2007-04-19
JP2007102148A5 JP2007102148A5 (en) 2009-06-18
JP4755885B2 JP4755885B2 (en) 2011-08-24

Family

ID=38029123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321496A Expired - Fee Related JP4755885B2 (en) 2005-10-05 2005-10-05 Electrophoretic display element, electrophoretic display device, colored electrophoretic fine particles, insulating liquid, and electrophoretic display element driving method

Country Status (1)

Country Link
JP (1) JP4755885B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097170A (en) * 2008-09-17 2010-04-30 Toppan Printing Co Ltd Image display device and method of manufacturing the same
KR100974913B1 (en) 2009-12-02 2010-08-10 주식회사 나노브릭 Display method and device using electromagnetophoresis characteristics
JP2010244008A (en) * 2009-04-07 2010-10-28 Chunghwa Picture Tubes Ltd Pixel driving structure of particle display displaying three colors and method for displaying colors thereof
JP2011012222A (en) * 2009-07-06 2011-01-20 Sakura Color Products Corp Process for producing electret fine particle
CN101957533A (en) * 2009-07-09 2011-01-26 江苏丽恒电子有限公司 Color electrophoretic display
JP2011059330A (en) * 2009-09-09 2011-03-24 Casio Computer Co Ltd Electrophoretic display apparatus and method of driving the same
JP2011145623A (en) * 2010-01-18 2011-07-28 Fuji Xerox Co Ltd Display medium and display device
JP2011170172A (en) * 2010-02-19 2011-09-01 Seiko Epson Corp Electrophoretic display device and electronic equipment
JP2011168678A (en) * 2010-02-17 2011-09-01 Sakura Color Products Corp Method for producing electret coarse powder
US8940809B2 (en) 2010-12-02 2015-01-27 Sakura Color Products Corporation Processes for manufacturing electret fine particles or coarse powder
KR20150015618A (en) * 2013-07-31 2015-02-11 주식회사 나노브릭 Method for enhancing optical property of electrophoretic display
EP2634620A4 (en) * 2010-10-27 2015-08-05 Sakura Color Prod Corp Electrophoretic display device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391722A (en) * 1989-09-04 1991-04-17 Toyota Motor Corp Driving method for electrophoresis display element
JP2001312225A (en) * 1999-07-21 2001-11-09 Fuji Xerox Co Ltd Image display medium, image forming method and image forming device
JP2002107771A (en) * 2000-09-29 2002-04-10 Fuji Xerox Co Ltd Picture display medium and image forming apparatus
JP2002169191A (en) * 2000-09-21 2002-06-14 Fuji Xerox Co Ltd Image display medium and image display device
JP2004046072A (en) * 2002-05-21 2004-02-12 Tdk Corp Display device
JP2004109832A (en) * 2002-09-20 2004-04-08 Fuji Xerox Co Ltd Method of manufacturing image display medium, and image display medium
JP2004184435A (en) * 2002-11-29 2004-07-02 Fuji Xerox Co Ltd Image display apparatus
JP2005157232A (en) * 2003-11-20 2005-06-16 Takao Kawamura Positively charged fine particle having positive hole trap by irradiation with radiation
JP2005284234A (en) * 2004-03-30 2005-10-13 Takao Kawamura Electrophoretic display element by vertical migration with barrier rib, electrophoretic display method and electrophoretic display apparatus
JP4563749B2 (en) * 2004-08-19 2010-10-13 株式会社ブリヂストン How to store the information display panel

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391722A (en) * 1989-09-04 1991-04-17 Toyota Motor Corp Driving method for electrophoresis display element
JP2001312225A (en) * 1999-07-21 2001-11-09 Fuji Xerox Co Ltd Image display medium, image forming method and image forming device
JP2002169191A (en) * 2000-09-21 2002-06-14 Fuji Xerox Co Ltd Image display medium and image display device
JP2002107771A (en) * 2000-09-29 2002-04-10 Fuji Xerox Co Ltd Picture display medium and image forming apparatus
JP2004046072A (en) * 2002-05-21 2004-02-12 Tdk Corp Display device
JP2004109832A (en) * 2002-09-20 2004-04-08 Fuji Xerox Co Ltd Method of manufacturing image display medium, and image display medium
JP2004184435A (en) * 2002-11-29 2004-07-02 Fuji Xerox Co Ltd Image display apparatus
JP2005157232A (en) * 2003-11-20 2005-06-16 Takao Kawamura Positively charged fine particle having positive hole trap by irradiation with radiation
JP2005284234A (en) * 2004-03-30 2005-10-13 Takao Kawamura Electrophoretic display element by vertical migration with barrier rib, electrophoretic display method and electrophoretic display apparatus
JP4563749B2 (en) * 2004-08-19 2010-10-13 株式会社ブリヂストン How to store the information display panel

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097170A (en) * 2008-09-17 2010-04-30 Toppan Printing Co Ltd Image display device and method of manufacturing the same
JP2010244008A (en) * 2009-04-07 2010-10-28 Chunghwa Picture Tubes Ltd Pixel driving structure of particle display displaying three colors and method for displaying colors thereof
JP2011012222A (en) * 2009-07-06 2011-01-20 Sakura Color Products Corp Process for producing electret fine particle
CN101957533A (en) * 2009-07-09 2011-01-26 江苏丽恒电子有限公司 Color electrophoretic display
US8878769B2 (en) 2009-09-09 2014-11-04 Casio Computer Co., Ltd. Electrophoretic display apparatus and method of driving the same
JP2011059330A (en) * 2009-09-09 2011-03-24 Casio Computer Co Ltd Electrophoretic display apparatus and method of driving the same
KR101234424B1 (en) * 2009-09-09 2013-02-18 가시오게산키 가부시키가이샤 Electrophoretic displaying apparatus and method of driving the same
WO2011068364A3 (en) * 2009-12-02 2011-10-27 주식회사 나노브릭 Indicator method and apparatus using electromagnetic properties
KR100974913B1 (en) 2009-12-02 2010-08-10 주식회사 나노브릭 Display method and device using electromagnetophoresis characteristics
WO2011068364A2 (en) * 2009-12-02 2011-06-09 주식회사 나노브릭 Indicator method and apparatus using electromagnetic properties
JP2011145623A (en) * 2010-01-18 2011-07-28 Fuji Xerox Co Ltd Display medium and display device
US8928649B2 (en) 2010-01-18 2015-01-06 Fuji Xerox Co., Ltd. Display medium and display apparatus
JP2011168678A (en) * 2010-02-17 2011-09-01 Sakura Color Products Corp Method for producing electret coarse powder
US8404087B2 (en) 2010-02-17 2013-03-26 Sakura Color Products Corporation Process for producing electret coarse powder
TWI470015B (en) * 2010-02-17 2015-01-21 Sakura Color Prod Corp Process for producing electret coarse powder
US8593438B2 (en) 2010-02-19 2013-11-26 Seiko Epson Corporation Electrophoretic display and electronic device
JP2011170172A (en) * 2010-02-19 2011-09-01 Seiko Epson Corp Electrophoretic display device and electronic equipment
EP2634620A4 (en) * 2010-10-27 2015-08-05 Sakura Color Prod Corp Electrophoretic display device
US8940809B2 (en) 2010-12-02 2015-01-27 Sakura Color Products Corporation Processes for manufacturing electret fine particles or coarse powder
US9074060B2 (en) 2010-12-02 2015-07-07 Sakura Color Products Corporation Processes for manufacturing electret fine particles or coarse powder
KR20150015618A (en) * 2013-07-31 2015-02-11 주식회사 나노브릭 Method for enhancing optical property of electrophoretic display
KR102168213B1 (en) 2013-07-31 2020-10-21 주식회사 나노브릭 Method for enhancing optical property of electrophoretic display

Also Published As

Publication number Publication date
JP4755885B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4755885B2 (en) Electrophoretic display element, electrophoretic display device, colored electrophoretic fine particles, insulating liquid, and electrophoretic display element driving method
JP4816245B2 (en) Electrophoretic display device
KR100639547B1 (en) Image display unit
US8553315B2 (en) Electrophoretic display device, driving method of electrophoretic display device, and electronic apparatus
Amundson Electrophoretic imaging films for electronic paper displays
WO2011058725A1 (en) Display device and method of manufacture thereof
JP5718651B2 (en) Multicolor subpixel full color reflective display
TWI251710B (en) Electrophoretic dispersion, electrophoresis display device, method for manufacturing electrophoresis display device, and electronic appliance
JP2004271610A (en) Color electrophoresis display device
JP2004020818A (en) Collar electrophoretic display device
US20040145561A1 (en) Electrophoretic display
TWI421816B (en) Display device and drive method therefor
JP2002162650A (en) Electrophoretic display device and display method
JP2012003231A (en) Electrophoretic display device and method for driving the same, and electronic apparatus
JP3715906B2 (en) Electrophoretic display device and driving method of electrophoretic display device
JP3592184B2 (en) Electrophoretic display device and driving method thereof
JP2007072349A (en) Particle movement type display device and method for manufacturing same
JP5336542B2 (en) Electrophoretic display element, electrophoretic display device, colored electrophoretic fine particles, insulating liquid, and electrophoretic display element driving method
JP2005284234A (en) Electrophoretic display element by vertical migration with barrier rib, electrophoretic display method and electrophoretic display apparatus
US6952305B2 (en) Electrophoretic display
JP2010210856A (en) Image display medium, image display device, and method of driving image display medium
JP3931550B2 (en) Electrophoretic display device
KR20080003115A (en) Electronic paper display
US20230386421A1 (en) Driving sequences to remove prior state information from color electrophoretic displays
JPS6356629A (en) Method and device for displaying image

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110318

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees