KR102168213B1 - Method for enhancing optical property of electrophoretic display - Google Patents

Method for enhancing optical property of electrophoretic display Download PDF

Info

Publication number
KR102168213B1
KR102168213B1 KR1020130090916A KR20130090916A KR102168213B1 KR 102168213 B1 KR102168213 B1 KR 102168213B1 KR 1020130090916 A KR1020130090916 A KR 1020130090916A KR 20130090916 A KR20130090916 A KR 20130090916A KR 102168213 B1 KR102168213 B1 KR 102168213B1
Authority
KR
South Korea
Prior art keywords
electrode
voltage
particles
electric field
electrophoretic display
Prior art date
Application number
KR1020130090916A
Other languages
Korean (ko)
Other versions
KR20150015618A (en
Inventor
이동진
주재현
Original Assignee
주식회사 나노브릭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노브릭 filed Critical 주식회사 나노브릭
Priority to KR1020130090916A priority Critical patent/KR102168213B1/en
Publication of KR20150015618A publication Critical patent/KR20150015618A/en
Application granted granted Critical
Publication of KR102168213B1 publication Critical patent/KR102168213B1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0804Sub-multiplexed active matrix panel, i.e. wherein one active driving circuit is used at pixel level for multiple image producing elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

본 발명에 일 태양에 따르면, 전기영동 디스플레이의 광특성 향상을 위한 구동 방법이 제공된다.According to an aspect of the present invention, a driving method for improving optical characteristics of an electrophoretic display is provided.

Description

전기영동 디스플레이의 광특성 향상을 위한 구동 방법{METHOD FOR ENHANCING OPTICAL PROPERTY OF ELECTROPHORETIC DISPLAY}Driving method to improve the optical characteristics of an electrophoretic display{METHOD FOR ENHANCING OPTICAL PROPERTY OF ELECTROPHORETIC DISPLAY}

본 발명은 전기영동 디스플레이의 광특성 향상을 위한 구동 방법에 관한 것이다.The present invention relates to a driving method for improving optical characteristics of an electrophoretic display.

도 1은 투과 모드와 차폐 모드 두 영역으로 구동되는 ETD의 구동원리를 나타내는 도면이다.1 is a diagram showing a driving principle of an ETD driven in two regions of a transmission mode and a shielding mode.

도 1에 있어서, 일반적으로 차폐 모드에서 투과 모드로 변환하기 위해서는 입자가 음전하를 띠는 경우 하부전극에 양전압을 인가하며, 입자가 그 반대 부호인 경우 음전압을 인가하여 상대적으로 전극 폭이 좁은 하부전극에 입자들을 집중시킴으로써 투과 모드로 변환될 수 있다. In Figure 1, in general, in order to convert from the shielding mode to the transmission mode, a positive voltage is applied to the lower electrode when the particles have a negative charge, and when the particles have the opposite sign, a negative voltage is applied so that the electrode width is relatively narrow. By concentrating the particles on the lower electrode, it can be converted into a transmission mode.

상기 구동에 있어서, 일반적으로 입자들이 소자 내에서 bistable 혹은 메모리 효과가 없을 경우, 도 1의 (b)에서 나타낸바 와 같이 투과 모드를 유지하는 동안 인가된 구동전압을 지속적으로 유지하고 있어야 투과 모드를 유지할 수 있다. In the above driving, in general, when the particles do not have a bistable or memory effect in the device, the transmission mode must be continuously maintained while maintaining the transmission mode as shown in Fig. 1(b). Can be maintained.

그러나, 전기영동 디스플레이에 있어서 유체 내에 전하를 띠는 하전입자 혹은 대전입자들은 두 전극 사이에서 인가된 전기장에 비례하여 영동을 하며, 이때 유체내에서 입자들이 위치 및 배열에 따라 제 1 전극에서 제 2 전극으로 이동하는데 필요한 전기장의 세기와 응답시간이 다르다. 따라서, 도 1과 같은 방식으로 투과 모드를 장시간 유지하는 경우 입자들에 가해지는 전기 및 물리적인 데미지가 크기 때문에 소자의 수명 및 광특성 저하에 큰 영향을 미칠 수 있다. However, in an electrophoretic display, charged particles or charged particles carrying an electric charge in a fluid undergo migration in proportion to the electric field applied between the two electrodes, and at this time, the particles in the fluid move from the first electrode to the second electrode according to the position and arrangement. The strength of the electric field required to move to the electrode and the response time are different. Accordingly, if the transmission mode is maintained for a long time in the manner as shown in FIG. 1, electric and physical damage to the particles is large, and thus, it may have a great influence on the lifespan and optical characteristics of the device.

본 발명을 전기영동 디스플레이의 광특성 향상을 위한 구동 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a driving method for improving optical characteristics of an electrophoretic display.

본 발명에 일 태양에 따르면, 전기영동 디스플레이의 광특성 향상을 위한 구동 방법이 제공된다.According to an aspect of the present invention, a driving method for improving optical characteristics of an electrophoretic display is provided.

본 발명에 의하면, 전기영동 디스플레이의 광특성 향상을 위한 구동 방법이 제공되는 효과가 달성된다.According to the present invention, an effect of providing a driving method for improving optical characteristics of an electrophoretic display is achieved.

도 1은 투과 모드와 차폐 모드 두 영역으로 구동되는 ETD의 구동원리를 나타내는 도면이다.
도 2는 입자 및 소자의 내구성 향상을 위한 multi-step 구동방법을 나타내는 도면이다.
도 3은 상기 multi-step에 의한 구동전압을 ETD로 적용한 실시예를 나타내는 도면이다.
도 4는 전기영동 디스플레이에 multi-step 구동전압이 적용된 실시예를 나타내는 도면이다.
도 5는 multi-step 구동전압의 응용 (refresh voltage)을 나타내는 도면이다.
도 6은 제 3전극과 양방향 전계에 의한 투과율 향상방법을 나타내는 도면이다.
도 7은 제 3 전극과 양방향 전계에 의한 투과율 향상방법에 대한 실시예를 나타내는 도면이다.
1 is a diagram showing a driving principle of an ETD driven in two regions of a transmission mode and a shielding mode.
2 is a diagram showing a multi-step driving method for improving durability of particles and devices.
3 is a diagram showing an embodiment in which the driving voltage according to the multi-step is applied to ETD.
4 is a diagram illustrating an embodiment in which a multi-step driving voltage is applied to an electrophoretic display.
5 is a diagram showing an application of a multi-step driving voltage (refresh voltage).
6 is a diagram illustrating a method of improving transmittance by using a third electrode and a bidirectional electric field.
7 is a diagram showing an embodiment of a method for improving transmittance by using a third electrode and a bidirectional electric field.

1. 전기영동 디스플레이 (ETD/EPD) 광특성 향상을 위한 구동방법1. Electrophoretic display (ETD/EPD) driving method to improve optical characteristics

1.1 Multi-step voltage1.1 Multi-step voltage

앞서 밝힌 이유로, 본 특허에서 제안하고자 하는 기술은 도 2에서 나타낸 바와 같이 투과 모드로 변환하기 위하여 유체 내에서 입자들이 위치를 고려한 인가전압과 입자들이 하부전극에 모두 집중한 후 동일부호를 띠는 입자들 간의 척력에 의하여 하부전극으로부터 벗어나지 않도록 유지할 수 있는 최소의 전압을 인가하는 방식을 조합한 multi-step 구동펄스를 특허로 제한하고자 한다. For the reasons mentioned above, the technology to be proposed in this patent is the applied voltage considering the position of the particles in the fluid in order to convert to the transmission mode as shown in FIG. 2 and the particles having the same symbol after all of the particles are concentrated on the lower electrode. A patent is intended to limit the multi-step driving pulse that combines the method of applying the minimum voltage that can be maintained so as not to deviate from the lower electrode by repulsive force between them.

도 2는 입자 및 소자의 내구성 향상을 위한 multi-step 구동방법을 나타내는 도면이다.2 is a diagram showing a multi-step driving method for improving durability of particles and devices.

multi-step 구동방법에 있어서, 분할되는 인가전압의 크기 (pulse amplitude) 및 폭 (pulse width)은 입자들의 내구성 및 switching speed에 따라 그림 도 2의 (b) 좌측의 그림에서 나타낸바 와 같이 초기구동전압 영역과 유지전압 영역 사이를 세분화 시킬 수 있으며, 소자가 적용되는 application이 빠른 switching speed를 요구될 시 그림 도 2의 (b) 우측에서 나타낸바 와 같이 초기구동전압에서 유지전압으로 바로 전환될 수 있다. In the multi-step driving method, the pulse amplitude and the pulse width of the divided applied voltage depend on the durability of the particles and the switching speed, as shown in the figure on the left of (b) of Figure 2 The voltage area and the sustain voltage area can be subdivided, and when the application to which the device is applied requires a fast switching speed, it can be directly switched from the initial driving voltage to the sustain voltage as shown in the right side of Fig. 2(b). have.

상기 multi-step 구동펄스를 적용함에 있어서, 입자들의 소자 내에서 메모리효과를 가졌을 때, multi-step으로 구동 후 메모리효과가 하락하기 전 가해주는 refresh voltage를 적용할 때 multi-step 전압의 유지전압만을 인가하여 메모리효과를 지속시킬 수 있다. In applying the multi-step driving pulse, only the sustain voltage of the multi-step voltage is applied when the particles have a memory effect in the device, and the refresh voltage applied before the memory effect decreases after driving in a multi-step By applying it, the memory effect can be sustained.

도 3은 상기 multi-step에 의한 구동전압을 ETD로 적용한 실시예를 나타내는 도면이다.3 is a diagram showing an embodiment in which the driving voltage according to the multi-step is applied to ETD.

그림에서 나타낸 바와 같이 인가전압이 차단되면 입자들이 유체 내에서 흩어져 차폐된 상태가 되고 입자들이 하부전극에 형성된 전극으로 집중시키기 위한 구동전압인 25V이 인가된 상태에서 투명한 상태를 유지한 상태에서 구동전압을 15V를 낮춘 상태에서도 투명한 상태를 유지하는 것을 확인하였다. As shown in the figure, when the applied voltage is cut off, the particles are scattered in the fluid to become shielded, and the driving voltage in a state that maintains a transparent state with the driving voltage 25V applied to concentrate the particles to the electrode formed on the lower electrode. It was confirmed that the transparent state was maintained even when the 15V was lowered.

상기 multi-step에 의한 구동전압은 도 4에서 나타낸 바와 같이 전기영동 현상을 이용하는 모든 디스플레이 및 소자에 적용될 수 있다. 또한, 전하를 띠는 대전입자를 이용하는 모든 디스플레이 및 소자에 적용될 수 있다. The driving voltage by the multi-step can be applied to all displays and devices using electrophoresis as shown in FIG. 4. In addition, it can be applied to all displays and devices using charged particles carrying an electric charge.

도 4는 전기영동 디스플레이에 multi-step 구동전압이 적용된 실시예를 나타내는 도면이다.4 is a diagram illustrating an embodiment in which a multi-step driving voltage is applied to an electrophoretic display.

본 실시예를 위하여 메모리 효과가 없는 입자들을 이용하여 sample을 제작하였으며, 그림에서 구현된 문자 I는 초기전압 15V 인가 후 유지전압 5V를 지속적으로 인가하여 유지한 이미지이며, 그림에서 구현된 문자 K는 multi-step 구동방법이 적용되지 않고 15V로만 지속적으로 구동전압이 적용된 이미지이다. 그림에서 보여준바 와 같이 구현된 이미지의 편차가 없다는 것을 확인할 수 있으며, 이는 입자의 수명, 소자의 내구성 강화뿐만 아니라 이미지를 장시간 유지하기 위한 구동전압이 낮아짐에 따라 소비전력이 크게 향상될 수 있다. For this example, a sample was produced using particles without a memory effect, and the letter I implemented in the figure is an image maintained by continuously applying a sustain voltage of 5V after applying the initial voltage 15V, and the letter K implemented in the figure This is an image where the multi-step driving method is not applied and the driving voltage is continuously applied only at 15V. As shown in the figure, it can be seen that there is no deviation in the implemented image, which can greatly improve the power consumption as the driving voltage for maintaining the image for a long time is lowered as well as the life of the particles and the durability of the device.

상기 구동방법은 소자가 일정한 쌍안정성을 가지고 있을 때 도 5와 같이 Refresh voltage로 응용될 수 있다. The driving method can be applied as a refresh voltage as shown in FIG. 5 when the device has a certain bi-stability.

도 5는 multi-step 구동전압의 응용 (refresh voltage)을 나타내는 도면이다.5 is a diagram showing an application of a multi-step driving voltage (refresh voltage).

도 5는 제 3 전극을 활용한 양방향 전계 구동방법에 의한 ETD 광특성 향상을 나타내는 도면이다.5 is a diagram illustrating an improvement in ETD optical characteristics by a bidirectional electric field driving method using a third electrode.

도 6은 제 3 전극과 양방향 전계에 의한 투과율 향상방법을 나타내는 도면이다.6 is a diagram illustrating a method of improving transmittance by using a third electrode and a bidirectional electric field.

기존의 일반적인 ETD 소자의 경우 상부전극 (제 1 전극) 혹은 하부전극 (제 2 전극) 중 하나를 상대적으로 좁게 형성하여 인가되는 전계 방향에 따라 좁게 형성된 전극에 집중되거나 흩어짐에 따라 투과 모드와 차폐 모드로 변환이 가능한 구조이다(도 6의 좌측 참조). In the case of conventional ETD devices, either the upper electrode (first electrode) or the lower electrode (second electrode) is formed relatively narrowly, and the transmission mode and the shielding mode are concentrated or scattered on the narrowly formed electrode according to the applied electric field direction. It is a structure that can be converted to (see the left side of Fig. 6).

기존의 소자구조에 있어서, 투과 모드를 위하여 상/하부 두 전극 사이에 전압이 인가되면, 상대적으로 좁게 형성된 전극 (제 2 전극) 주변부에는 셀면적이 넓을수록 상대적으로 전기장이 세기가 작을 수 있으며, 이로 인하여 제 2 전극과 상대적으로 멀리 위치하고 있거나 전하량의 편차를 지닌 입자들은 제 2 전극으로 집중하지 못하거나 제 2 전극 주변에 위치할 수 있다. 이는 소자의 투과율이 떨어지는 원인이 될 수 있으며, 만약 모든 입자들을 제 2 전극에 모두 집중시키기 위하여 전기장의 세기가 더욱 커지면 입자들이 모두 집중될 수 있으나 입자들이 전기적이고 물리적으로 큰 데미지를 받아 구동 안정성에 문제가 될 수 있다. In the existing device structure, when a voltage is applied between the upper and lower electrodes for the transmission mode, the electric field intensity may be relatively small as the cell area is wider around the relatively narrowly formed electrode (second electrode). For this reason, particles located relatively far from the second electrode or having a difference in charge amount may not be concentrated on the second electrode or may be located around the second electrode. This may cause the transmittance of the device to drop, and if the electric field increases in order to concentrate all the particles on the second electrode, all the particles may be concentrated, but the particles are electrically and physically damaged, which impairs driving stability. It can be a problem.

본 특허에서 제안하고자 하는 기술은, 상부전극 (제 1 전극)과 하부전극 (제 2 전극) 이외에도 별도로 입자들을 집중시키기 위하여 형성된 제 2 전극 주변에 제 3 전극을 형성하고 입자들을 집중시키기 위하여 제 1 전극과 제 2 전극 사이에 형성되는 전기장과 제 1 전극과 제 3 전극 사이에 상대적으로 전기장의 세기가 낮고 방향이 반대인 양방향 전계를 형성함으로써 입자들의 이탈 없이 제 2 전극으로 입자들의 집중시키는 것을 돕고 투과 모드를 유지하면서도 제 2 전극에 집중된 입자들의 흩어짐을 방지하는데 목적으로 하는 기술이다 (도 6 우측 참조). In addition to the upper electrode (first electrode) and the lower electrode (second electrode), the technology to be proposed in this patent is to form a third electrode around the second electrode separately formed to concentrate particles, and to concentrate the particles. By forming an electric field formed between the electrode and the second electrode and a bidirectional electric field in which the intensity of the electric field is relatively low and the direction is opposite between the first electrode and the third electrode, it helps to concentrate the particles to the second electrode without leaving the particles. It is a technology aimed at preventing scattering of particles concentrated on the second electrode while maintaining the transmission mode (see the right of FIG. 6).

도 7은 제 3 전극과 양방향 전계에 의한 투과율 향상방법에 대한 실시예를 나타내는 도면이다.7 is a diagram showing an embodiment of a method for improving transmittance by using a third electrode and a bidirectional electric field.

도 7은 상기 기술을 적용한 실시 예이다. 상부전극을 공통전극으로 하고 하부전극이 멀티전극을 패터닝된 두 개의 패널을 제작한 후 하나의 패널에는 두 멀티전극 중 하나의 전극에 구동전압 (+HV)를 인가하고 (도 7의 좌측 참조) 또 다른 패널에는 두 멀티전극 중 하나의 전극에 구동전압 (+HV)를 인가하고 또 하나의 전극에는 상대적으로 전기장의 세기가 낮고 전기장이 방향이 반대가 되도록 부호가 반대인 중간전압 (mV)를 인가하였다 (도 7의 우측 참조). 그림에서 나타낸 바와 같이 도 7의 좌측에서 나타낸 전극에 전압이 인가되지 않는 전극 영역에는 전기장이 형성된 전극으로 운동하지 못한 입자들이 상대적으로 많은 반면에 도 7의 우측의 현미경 사진은 구동전압(+HV)가 인가된 영역의 전극으로 입자들이 상대적으로 많이 집중하고 -mV 전압이 인가된 영역의 전극에는 상대적으로 적은 입자들이 남아있는 것을 확인하였다. 7 is an embodiment to which the above technology is applied. After fabricating two panels with the upper electrode as the common electrode and the lower electrode with the multi-electrode patterned, a driving voltage (+HV) was applied to one of the two multi-electrodes to one panel (see the left side of FIG. 7). In another panel, a driving voltage (+HV) is applied to one of the two multi-electrodes, and an intermediate voltage (mV) with opposite signs is applied to the other electrode so that the electric field strength is relatively low and the electric field direction is reversed. Applied (see the right side of Fig. 7). As shown in the figure, in the electrode area where voltage is not applied to the electrode shown in the left side of FIG. 7, there are relatively many particles that did not move due to the electrode in which the electric field was formed, whereas the micrograph on the right side of FIG. 7 shows the driving voltage (+HV). It was confirmed that relatively large numbers of particles were concentrated in the electrode in the region to which was applied, and relatively few particles remained in the electrode in the region to which the -mV voltage was applied.

현재 사용하고 있는 (도 6의 좌측 사진) 전극 구조와 구동방법에서는 하부 전극 주변영역을 제어하기 어렵기 때문에 도 7의 결과는 동일한 입자를 사용하여 실제 소자 구동에 있어서 투과율을 향상시킬 수 있다는 가능성을 다시 한번 확인해준 결과이다.
Since it is difficult to control the area around the lower electrode in the electrode structure and driving method currently used (pictured on the left of Fig. 6), the result of Fig. 7 shows the possibility that the transmittance can be improved in actual device driving using the same particles This is the result of checking once again.

Claims (2)

상부전극;
상기 상부전극보다 폭이 좁은 하부전극;
상기 하부전극을 중심으로 양쪽에 각각 위치한 제3전극; 및
상기 상부전극과 상기 하부전극 사이에 인가된 전기장에 비례하여 영동하는 대전입자;를 포함하고,
투과모드를 위하여, 상기 대전입자가 상기 하부전극으로 이동하도록 초기전압이 인가된 후 상기 대전입자가 상기 하부전극에 집중된 상태를 유지하기 위하여 상기 초기전압보다 낮은 유지전압이 인가되고,
상기 투과모드에서, 상기 상부전극은 그라운드 전극이고, 상기 하부전극에 구동전압을 인가하고, 상기 제3 전극에 상기 구동전압과 부호가 반대이고 상기 구동전압보다 크기가 작은 중간전압을 인가하여, 상기 상부전극과 상기 하부전극 사이에 제1 전기장이 형성되고, 상기 제1 전기장의 방향과 반대방향이고 상기 제1 전기장의 세기보다 작은 제2 전기장이 상기 상부전극과 상기 제3 전극 사이에 형성되는 것을 특징으로 하는 전기영동 디스플레이.
Upper electrode;
A lower electrode having a narrower width than the upper electrode;
Third electrodes respectively located on both sides of the lower electrode; And
Including; charged particles that migrate in proportion to the electric field applied between the upper electrode and the lower electrode,
For the transmission mode, after an initial voltage is applied so that the charged particles move to the lower electrode, a sustain voltage lower than the initial voltage is applied to maintain a state in which the charged particles are concentrated on the lower electrode,
In the transmission mode, the upper electrode is a ground electrode, a driving voltage is applied to the lower electrode, and an intermediate voltage having a sign opposite to the driving voltage and smaller than the driving voltage is applied to the third electrode. A first electric field is formed between the upper electrode and the lower electrode, and a second electric field is formed between the upper electrode and the third electrode in a direction opposite to the direction of the first electric field and smaller than the strength of the first electric field. Electrophoretic display characterized by.
삭제delete
KR1020130090916A 2013-07-31 2013-07-31 Method for enhancing optical property of electrophoretic display KR102168213B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130090916A KR102168213B1 (en) 2013-07-31 2013-07-31 Method for enhancing optical property of electrophoretic display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130090916A KR102168213B1 (en) 2013-07-31 2013-07-31 Method for enhancing optical property of electrophoretic display

Publications (2)

Publication Number Publication Date
KR20150015618A KR20150015618A (en) 2015-02-11
KR102168213B1 true KR102168213B1 (en) 2020-10-21

Family

ID=52572816

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130090916A KR102168213B1 (en) 2013-07-31 2013-07-31 Method for enhancing optical property of electrophoretic display

Country Status (1)

Country Link
KR (1) KR102168213B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102054553B1 (en) 2017-09-25 2019-12-10 주식회사 엘지화학 Transparent electrode substrate and method for manufacturing thereof
KR102179729B1 (en) 2018-03-27 2020-11-17 주식회사 엘지화학 Black partition wall pattern film and method for manufacturing thereof
KR102261236B1 (en) 2018-04-17 2021-06-04 주식회사 엘지화학 Partition wall pattern film and method for manufacturing thereof
JP7076846B2 (en) 2018-05-30 2022-05-30 エルジー・ケム・リミテッド Photomask for imprint and its manufacturing method
KR102396509B1 (en) 2018-06-05 2022-05-10 주식회사 엘지화학 Black partition wall pattern film and method for manufacturing thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184435A (en) 2002-11-29 2004-07-02 Fuji Xerox Co Ltd Image display apparatus
JP2007102148A (en) 2005-10-05 2007-04-19 Takao Kawamura Monochrome/color reflection/translucent-type electrophoretic display device using colored electrophoretic microparticulates with electret property
KR101234424B1 (en) 2009-09-09 2013-02-18 가시오게산키 가부시키가이샤 Electrophoretic displaying apparatus and method of driving the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1634265A1 (en) * 2003-06-02 2006-03-15 Koninklijke Philips Electronics N.V. Electrophoretic display panel
KR100953585B1 (en) * 2008-05-09 2010-04-21 김영조 Driving method of electronic paper
KR101065367B1 (en) * 2010-01-13 2011-09-19 주식회사 이미지앤머터리얼스 Electrophoretic display device and driving method thereof
KR20120056246A (en) * 2010-07-19 2012-06-01 주식회사 나노브릭 Display method and device
KR101258466B1 (en) * 2011-03-18 2013-04-26 주식회사 이미지앤머터리얼스 Multi color electrophoretic display device and method of driving the device
KR20130040997A (en) * 2013-03-13 2013-04-24 주식회사 나노브릭 Method and apparatus for controlling transmittance and reflectance by usnig particles
KR20130054975A (en) * 2013-04-30 2013-05-27 주식회사 나노브릭 Method and apparatus for constrolling reflectance and manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184435A (en) 2002-11-29 2004-07-02 Fuji Xerox Co Ltd Image display apparatus
JP2007102148A (en) 2005-10-05 2007-04-19 Takao Kawamura Monochrome/color reflection/translucent-type electrophoretic display device using colored electrophoretic microparticulates with electret property
KR101234424B1 (en) 2009-09-09 2013-02-18 가시오게산키 가부시키가이샤 Electrophoretic displaying apparatus and method of driving the same

Also Published As

Publication number Publication date
KR20150015618A (en) 2015-02-11

Similar Documents

Publication Publication Date Title
KR102168213B1 (en) Method for enhancing optical property of electrophoretic display
US8730216B2 (en) Display medium drive device, computer-readable storage medium, and display device
CN110520791B (en) Display substrate, driving method thereof and display device
CN102692748B (en) Touch control grating, display device and method for realizing 3D and touch control functions
EP2506247A1 (en) Pixel circuit and method of operating the same
JP2014032416A (en) Pixel structure and sub-pixel structure of color electrophoretic display
KR20120090074A (en) Transparent electrochromic systems with a plurality of polarisation electrodes
KR20130126042A (en) Eloctro wetting display apparatus
KR20140112450A (en) Reflective display device and method for controlling the same
CN101782707B (en) Pixel structure and sub-pixel structure of color electrophoresis display device
CN102213886A (en) Pixel unit and LCD (liquid crystal display) panel
US10209599B2 (en) Display panel, display method thereof and display device
CN102110416B (en) Electrophoretic display and driving method thereof
US20090295765A1 (en) Electrophoretic device and method for controlling the same
CN102177464B (en) A moving particle display device
US20140061691A1 (en) Array Substrate, Manufacturing Method And Display Device Thereof
KR20130022479A (en) Electrophoretic display device
CN102929045A (en) Polymer dispersed liquid crystal panel and preparation method thereof and liquid crystal display device
CN110288954B (en) Driving method of low-power-consumption multi-gray-scale electrowetting display
CN107492349A (en) The driving method of the multiple colour electrophoretic type display device of electronic paper of spatial stability
JP5996277B2 (en) Image display medium and image display device
JP2009528553A (en) Driving in-plane moving particle devices
CN101490612A (en) Electrophoretic device and method for controlling the same
JP5445310B2 (en) Electrophoretic display device, control circuit, electronic apparatus, and driving method
JP2013222021A (en) Electrophoretic display device and electronic apparatus

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
E601 Decision to refuse application
E801 Decision on dismissal of amendment
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant