JP2004238825A - Water supply system in water works - Google Patents

Water supply system in water works Download PDF

Info

Publication number
JP2004238825A
JP2004238825A JP2003026762A JP2003026762A JP2004238825A JP 2004238825 A JP2004238825 A JP 2004238825A JP 2003026762 A JP2003026762 A JP 2003026762A JP 2003026762 A JP2003026762 A JP 2003026762A JP 2004238825 A JP2004238825 A JP 2004238825A
Authority
JP
Japan
Prior art keywords
water
water supply
supply system
receiving tank
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003026762A
Other languages
Japanese (ja)
Other versions
JP3872437B2 (en
Inventor
Hiromitsu Sugawara
博充 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMADAI KIDEN KK
Original Assignee
YAMADAI KIDEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMADAI KIDEN KK filed Critical YAMADAI KIDEN KK
Priority to JP2003026762A priority Critical patent/JP3872437B2/en
Publication of JP2004238825A publication Critical patent/JP2004238825A/en
Application granted granted Critical
Publication of JP3872437B2 publication Critical patent/JP3872437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Pipeline Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water supply system low in rate of electricity used for water supply with gentle water supply (always at a constant terminal pressure of 0.15 Mpa) and absolutely secure with easy control operation. <P>SOLUTION: A water receiving tank 1 is connected to a water main through a flow regulating valve, and a low area water supply system and a high area water supply system are connected to the water receiving tank. The water pressure of the water main is used as it is, and the difference between suction pressure and water supply pressure to the high area water supply system is pressurized by an submerged pump 2 and supplied to the high area water supply system. Water from the water receiving tank is supplied as it is with natural pressure to the low area water supply system, and water in the water receiving tank is constantly changed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
この発明は、上水道における給水システム、殊に加圧給水システムに関するものであり、水の使用量の変動、本管水圧の低下に関わりなく、安定的に低区給水系及び高区給水系への給水を行うことができ、また、本管水圧を利用して高区給水の加圧を行い、また本管水圧を減圧(受水層に貯め圧力0に)して一定圧に近い圧力で低区給水を行うことにより、当該給水圧の為の消費電力を節減することが出来るものである。
【0002】
【従来の技術】
上水道においては、比較的低い地区へ給水する低区給水系と、比較的高い地区に給水する高区給水系とがあり、また、水道本管から受水槽に補給して、水位計とバルブの開度調整によって、所定の水量を受水槽に減圧して貯留し、この受水槽から取り入れて、低区給水系、高区給水系にそれぞれのポンプで所定水圧で給水するのが一般的であり、水道本管の水圧変動(時間帯による水使用量の変動の為の水圧変動等)、低区給水系、高区給水系の水使用量の変動に関わらず、低区給水系、高区給水系にそれぞれ所定圧力で給水するようになっているのが一般的である。
このような上水道における従来の給水システムでは、受水槽が開放型であるために、低区給水系、高区給水系のいずれについても、ゼロ圧(受水槽圧)から、低区給水系への給水圧(例えば0・15Mpa)に、或いは高区給水系への給水圧(例えば0.5〜0.55Mpa)に、それぞれのポンプで加圧することになっている。このため、水道本管の水圧エネルギーが受水槽で大気に放出されて、無駄に消耗されていることになる(但し、この従来技術を記載した文献は見当らない)。
【0003】
また、受水槽への貯水は、引込水道本管の水の動きが少量時、本管圧力が上昇時の夜間及び日中の水使用量の少ない時に行なう。ところで、水道本管からの補給量が低区給水系、高区給水系への給水量に対して不足する時、この不足分を受水槽の貯水で補って、給水不足が生じないようにしている。このような給水不足が生じる異常事態は、火事の発生による消火活動時、病院等が活動を開始して一斉に多量の水が使用される時などに発生するが、この異常事態への対応に支障のないように、受水槽、低区給水系、高区給水系への加圧給水システムが設計され、運転されているが、この場合も水道本管の水圧エネルギーを利用しないので加圧給水ポンプの消費電力が大きい。
【0004】
他方、水道本管から受水槽への補給量と低区給水系、高区給水系による水使用量とがほぼバランスしている時は、受水槽内の貯水は消費されないので、受水槽内の水の入れ換わりが緩やかであり、消費量が少ない状態が長時間続くと受水槽内の水が劣化(死水化)する可能性もある。従って、受水槽への補給を制御して、受水槽から低区給水系、高区給水系への給水により、受水槽の貯水が一定時間で完全に入れ換わるようにすることが必要である。
【0005】
【発明が解決しようとする課題】
この発明は、上水道の低区給水系及び高区給水系への給水システムにおける上記従来技術の問題を解消することを目的とし、水道本管の水圧エネルギーを有効に利用することによって、低区給水系、高圧給水系への加圧給水の為のポンプの消費電力を節減し、また、低区給水系及び高区給水系の水使用量の大小に関わらず、受水槽の水が自然に入れ換わるように、低区給水系及び高区給水系への給水システムを工夫することをその課題とするものである。
【0006】
【課題を解決するための手段】
上記課題を解決のために工夫した給水システムは、水道本管に流量調節弁を介して接続された受水槽と、当該受水槽に低区給水系及び高区給水系が接続されており、これらの低区給水系及び高区給水系にそれぞれ所定水圧で給水する上水道の給水システムを前提として、次の(1)〜(6)によって構成されるものである。
(1)上記受水槽内に密閉されたポンプ室を設け、当該ポンプ室に水道本管からの枝管を流量調節弁を介して接続していること。
(2)上記ポンプ室に補充水管を設け、当該補充水管を逆止弁と流量調節弁を介して受水槽に解放していること。
(3)上記ポンプ室に密閉タンク型水中ポンプを設置し、当該水中ポンプの吐出管を高区給水系の給水管に接続していること。
(4)さらに、水道本管からの枝管を流量調節弁を介して受水槽に解放していること。
(5)上記受水槽に流量調節弁を介して低区給水系の給水管を接続していること。
(6)上記水中ポンプの駆動モータがインバーター制御による可変速モータであること。
【0007】
【作用】
上記受水槽は所定量の水を貯留することができ、水道本管の枝管から流量調節弁を介して上記受水槽に補給し、この補給量を調節することによって、所定の水位に保持され、上記受水槽の位置は給水圧0.15Mpa以下にならないように高台地区に設置されている。
【0008】
他方、ブースターポンプ(水中ポンプ)は常時水が満たされていて、水道本管水圧によって加圧され、水道本管からの枝管に設けられた上記流量調節弁の開度調節によって、所定圧(0.15Mpa)以下にならないように制御される。
水中ポンプは、ポンプ室圧力を高区給水系への給水圧力(水道給水圧力が一定になるよう、例えば0.5〜0.55Mpa)まで加圧するものであり、高区給水系への給水を行い、その吐出圧力が上記給水圧力(末端圧一定制御になるよう、例えば末端で0.15Mpa)に保持されるように、その回転速度が制御される。この場合の水中ポンプの消費電力は、ポンプ室吸込圧力(例えば0.15〜0.3Mpa)と吐出圧力(例えば0.5〜0.55Mpa)の差分の加圧に要するものであるから、水道本管の水圧によるポンプ室の圧力(例えば0.2〜0.4Mpa)分だけ消費電力が節減される。
【0009】
また、水道本管(引込本管)からの給水の一部を枝管に分流させ、この枝管の流量調節弁で分流量を調節して(例えば、夜間及び日中の水使用量の少ない時)これを受水槽に補充する。そして、この受水槽への補充量の調節によって、受水槽の水位を低区給水系への給水圧力(例えば高台地区の標高により0.15Mpa以上)に保持している。そして、低区給水系への給水圧力は高台地区に設けた受水槽設置圧力であり、低区給水系への給水についての水中ポンプによる加圧は無いので、低区給水系への給水の加圧の為の消費電力はゼロである。
【0010】
また、高区給水系における水使用量が異常に多く、水道本管からの枝管による流量では不足する場合はポンプ室に接続された補充水管の逆止弁が自動的に開き、受水槽内の水を吸い込み、この水と本管吸込み圧力が0.15Mpa以下とならないようにし、本管吸込み水と一緒に水中ポンプで加圧して、これを高区給水系に給水する。この場合も水中ポンプの回転速度を調節することによって所定圧力(末端圧0.15Mpa一定になるよう、例えば0.5〜0.55Mpa)に加圧することができる。
【0011】
また、通常は受水槽の水は低区給水系への給水として常時消費され、受水槽の水は常時入れ換わっているので、受水槽の水が滞留して劣化する可能性はない。他方、高区給水系への給水は、受水槽を経ないで、水道本管からポンプ室、水中ポンプ(立型水中ブースターポンプ)を経て、高区給水系へ直接給水される。
【0012】
【実施態様1】
実施態様1は、解決手段における水中ポンプが、立型の水中ブースターポンプであることである。
【0013】
【実施態様2】
実施態様2は、解決手段における受水槽を2以上並列に配置し、各受水槽の水中ポンプを高区給水系への給水管に対して常時1台運転をし、1台予備とし交互運転とし並列に接続していることである。
【0014】
【実施態様3】
実施態様3は、実施態様2において、低区給水系の給水管を各受水槽に並列に接続したことである。
【0015】
【実施の形態】
次いで、図面を参照しつつ、実施例を説明する。
この実施例は、貯水容量50〜1000tの受水槽1を並列に2つ設け(なお、給水人口により異なるが)、各受水槽1にそれぞれ密閉されたポンプ室2を設けている。この受水槽1は所定の貯水量の水位に保たれ、この時、受水槽の位置は給水圧0.15Mpa以下にならないように高台地区に設置されている。
【0016】
左右の受水槽1,1のポンプ室2,2にそれぞれ最大容量が0.3から5.00m/分(最高回転速度3000rpm)(給水人口により異なるが)の水中ポンプ(立型水中ブースターポンプ)3が設置されている。これらの左右の水中ポンプ3,3は、吐出管4に互いに並列に接続されており、水中ポンプ3と吐出管4との間に流量調節弁(スルース弁)5を介在させている。
左右のポンプ室2,2は、水道本管からの枝管6に互いの並列に接続されている。この枝管6とポンプ室2との間に電動流量調節弁7が介在していて、ポンプ室2への給水圧(一次側本管給水住民の給水圧)が0.15Mpa以下にならないようにポンプ室2の圧力計測信号に基づいて、電動流量調節弁7の開度が自動調節される。
【0017】
上記吐出管4は高区給水管8に流量調節弁(スルース弁)9を介して接続されている。なお、左右の受水槽1,1は普段は共通水位となっているが互いに独立にすることができる。また、水使用量の大小に応じて、上記水中ポンプは左右いずれか単独で、あるいは両方の運転で加圧給水を行うようにしている。
【0018】
また、ポンプ室2に設けられている補充水管11が受水槽1に解放しており、また、補充水管11に逆止弁および流量調節弁(スルース弁)12が設けられていて、高区給水系の水使用量が異常に多量の時に、前記水中ポンプはフル回転し、水道本管の枝管からの給水では不足する場合上記補充水管11の逆止弁が自動的に開いて、受水槽1からも水がポンプ室2に補充されるようになっている。
また、低区給水系への給水管13が、左右の受水槽1,1に互いに並列に接続されていて、受水槽1の標高位置(高台)により水圧0.15Mpaで低区に給水するようになっている。
【0019】
上水道の給水システムは24時間運転されているので、水道本管から枝管6を介して水圧0.15Mpa以上でポンプ室に常時給水され、水中ポンプ3による吐出管4への給水量の変動に関わりなくポンプ室2の水圧がほぼ0.15Mpa以上に保たれるように、電動流量調節弁7の開度を調節することによって、枝管6からポンプ室2への補給水圧は自動的にほぼ0.15Mpa以下にならないように制御される。
ポンプ室2内の水が水中ポンプ3によって、末端一定になるように加圧されて吐出管4に給水される。水中ポンプ3から吐出管4への給水圧力は、水中ポンプの回転速度の調節によって、高区給水系の水使用量の変動に関わりなく、自動的に一定に制御される。そして、吐出管4に圧送された水は流量調節弁(スルース弁)9を経て高区給水管8に送られる。また、上記標高の高台に設けられた互いに並列に接続された左右の受水槽1,1は、その水圧0.15Mpa以上で低区給水管14に給水するようになっている。
【0020】
低区給水系の水使用量が異常に多い時は、受水槽の水位が低下する傾向を示すので、受水槽への電動流量調節弁10の開度が拡大され、枝管6から受水槽1への補給量が増大するが、それでもなお不足するときは、受水槽異状水位低下により異状通報をして係員が現場にて原因を確認することにした。高区給水には水中ポンプ3,3の回転速度が制御され、その吐出量が増大するので、吐出管4の給水圧力一定に保たれるようにポンプには「余裕」をもたせている。
【0021】
高区給水系の水使用量が異常に多い時は、電動流量調査弁7の開度が拡大され、また、受水槽の補充水管11の逆止弁および流量調節弁(スルース弁)12が開かれて、水道本管の枝管6からの給水圧0.15Mpaに保ち(電動流量調節弁7にて調節)つつ、受水槽1から吸い込んだ水を水中ポンプ3で加圧して吐出管4に送り込む。
【0022】
高区給水系、低区給水系による水使用量が異常に多くて、受水槽の水位が低下する(例えば,地震とかで本管破損又は火災発生時に起こる)異状事態は度々生じるものではない。
なお、上記受水槽の手前に集落がある場合、この集落には上記受水槽の手前の水道本管の枝管から給水する。
【0023】
以上説明したとおり、この発明の給水システムによれば、高区給水系への給水圧力は、引込本管の水圧をそのまま使用し、不足分を水中ポンプで加圧して、これを高区給水系へ供給するだけであるから、開放型タンクの水を加圧して低区給水系及び高区給水系へ給水する従来の給水システムに比して、給水加圧ポンプの消費電力を大幅に節減することができる。
また、受水槽の水圧を低区給水系の給水圧力に保持して、受水槽から自然流下により低区給水系へ給水するから、低区給水系の水使用量の大小に関わらず、受水槽内の水の入れ換えが常時なされる。従って、受水槽内に水が滞留することなく水が劣化(死水化)するという問題はない。
【図面の簡単な説明】
【図1】実施例の平面図である。
【図2】実施例の概略縦断面図である。
【符号の説明】
1・・・受水槽
2・・・密閉ポンプ室
3・・・水中ポンプ(立型水中ブースターポンプ)
4・・・吐出管
5・・・流量調節弁
6・・・枝管
7・・・電動流量調節弁
8・・・高区給水管
9・・・流量調節弁
10・・・電動流量調節弁
11・・・補充水管
12・・・流量調節弁
13・・・低区給水系への給水管
14・・・低区給水管
MH・・・マンホル
[0001]
[Industrial applications]
The present invention relates to a water supply system in a water supply system, particularly to a pressurized water supply system, and stably supplies water to a low-area water supply system and a high-area water supply system irrespective of fluctuations in water usage and a decrease in main water pressure. Water can be supplied, and the main area water pressure is used to pressurize the high-area water supply, and the main water pressure is reduced (to 0 in the reservoir) and reduced at a pressure close to a constant pressure. By performing ward water supply, power consumption for the water supply pressure can be reduced.
[0002]
[Prior art]
There are two types of water supply systems: a low-area water supply system that supplies water to relatively low districts, and a high-area water supply system that supplies water to relatively high areas. By adjusting the opening degree, a predetermined amount of water is decompressed and stored in a receiving tank, taken in from the receiving tank, and supplied to the low- and high-district water supply systems at a predetermined water pressure with respective pumps. , Regardless of fluctuations in water pressure in the water main (water pressure fluctuations due to fluctuations in water usage over time), fluctuations in water usage in the low ward water supply system and high ward water supply system, Generally, water is supplied to the water supply system at a predetermined pressure.
In a conventional water supply system for such a water supply system, since the water receiving tank is open, both the low ward water supply system and the high ward water supply system are switched from zero pressure (water receiving tank pressure) to the low ward water supply system. Each pump is used to pressurize the water supply pressure (for example, 0.15 Mpa) or the water supply pressure to the high-area water supply system (for example, 0.5 to 0.55 Mpa). For this reason, the hydraulic energy of the water main is released to the atmosphere in the water receiving tank and is wasted wastefully (however, there is no literature describing this conventional technique).
[0003]
In addition, the water is stored in the receiving tank when the movement of the water in the service water main is small, and when the water pressure is low at night and during daytime when the main pressure is increased. By the way, when the amount of water supply from the water main is insufficient for the water supply to the low ward water supply system and the high ward water supply system, make up for this shortage by storing the water in the receiving tank so that there is no shortage of water supply. I have. Abnormal situations that cause such a shortage of water supply occur during fire extinguishing activities due to the occurrence of fires, when hospitals, etc. start activities and use a large amount of water all at once. The pressurized water supply system for the water receiving tank, low ward water supply system, and high ward water supply system is designed and operated so as not to cause any problems. The power consumption of the pump is large.
[0004]
On the other hand, when the amount of water supplied from the water main to the receiving tank is almost balanced with the amount of water used by the low and high ward water supply systems, the water in the receiving tank is not consumed. If the water exchange is gradual and the state of low consumption continues for a long time, the water in the receiving tank may be deteriorated (dead water). Therefore, it is necessary to control the replenishment of the water receiving tank so that the water stored in the water receiving tank is completely replaced within a certain period of time by supplying water from the water receiving tank to the low-area water supply system and the high-area water supply system.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art in a water supply system to a low-area water supply system and a high-area water supply system of a water supply system. The power consumption of the pump for pressurized water supply to the system and high-pressure water supply system is reduced, and the water in the receiving tank is naturally supplied regardless of the amount of water used in the low-area water supply system and the high-area water supply system. Instead, it is an object to devise a water supply system for the low-ward water supply system and the high-ward water supply system.
[0006]
[Means for Solving the Problems]
The water supply system devised to solve the above-mentioned problem has a water receiving tank connected to a water main via a flow control valve, and the low water supply system and the high water supply system are connected to the water receiving tank. Assuming a water supply system of a water supply system that supplies water to the low-ward water supply system and the high-ward water supply system at a predetermined water pressure, the system is configured by the following (1) to (6).
(1) A closed pump chamber is provided in the water receiving tank, and a branch pipe from a water main is connected to the pump chamber via a flow control valve.
(2) A refill water pipe is provided in the pump chamber, and the refill water pipe is opened to a water receiving tank via a check valve and a flow control valve.
(3) A closed tank type submersible pump is installed in the pump room, and the discharge pipe of the submersible pump is connected to a water supply pipe of a high-area water supply system.
(4) Further, the branch pipe from the water main is opened to the water receiving tank via the flow control valve.
(5) A water supply pipe of a low-distance water supply system is connected to the water receiving tank via a flow control valve.
(6) The drive motor of the submersible pump is a variable speed motor controlled by an inverter.
[0007]
[Action]
The water receiving tank can store a predetermined amount of water, and is supplied to the water receiving tank through a flow control valve from a branch pipe of a water main pipe, and is maintained at a predetermined water level by adjusting the replenishing amount. The position of the water receiving tank is set in a hill area so that the water supply pressure does not become 0.15 Mpa or less.
[0008]
On the other hand, the booster pump (submersible pump) is always filled with water, is pressurized by the water main water pressure, and is adjusted to a predetermined pressure (by adjusting the opening degree of the flow control valve provided on the branch pipe from the water main). 0.15 Mpa).
The submersible pump pressurizes the pump room pressure to the water supply pressure to the high-area water supply system (for example, 0.5 to 0.55 Mpa so that the water supply water pressure becomes constant). Then, the rotation speed is controlled so that the discharge pressure is maintained at the above-described feedwater pressure (terminal pressure constant control, for example, 0.15 Mpa at the terminal end). The power consumption of the submersible pump in this case is required for pressurizing the difference between the pump chamber suction pressure (for example, 0.15 to 0.3 Mpa) and the discharge pressure (for example, 0.5 to 0.55 Mpa). The power consumption is reduced by the pressure (for example, 0.2 to 0.4 MPa) of the pump chamber due to the water pressure of the main pipe.
[0009]
In addition, a part of the water supply from the water main (inlet main) is diverted to the branch pipe, and the branch flow rate is adjusted by a flow control valve of the branch pipe (for example, the nighttime and daytime water consumption is small). Replenish this into the receiving tank. Then, by adjusting the replenishing amount of the water receiving tank, the water level of the water receiving tank is maintained at the water supply pressure to the low-area water supply system (for example, 0.15 Mpa or more depending on the altitude of the hill area). The water supply pressure to the low ward water supply system is the pressure of the water receiving tank installed in the hill area, and there is no pressurization by the submersible pump for the water supply to the low ward water supply system. The power consumption for pressure is zero.
[0010]
Also, if the water usage in the high ward water supply system is abnormally large and the flow rate from the main pipe to the branch pipe is insufficient, the check valve of the replenishment water pipe connected to the pump room will open automatically, and the And the main pipe suction pressure is kept below 0.15 Mpa, and the water is pressurized with a submersible pump together with the main pipe suction water and supplied to the high section water supply system. Also in this case, by adjusting the rotation speed of the submersible pump, the pressure can be increased to a predetermined pressure (for example, 0.5 to 0.55 Mpa so that the terminal pressure becomes constant at 0.15 Mpa).
[0011]
Further, usually, the water in the water receiving tank is always consumed as water supply to the low-area water supply system, and the water in the water receiving tank is constantly replaced. Therefore, there is no possibility that the water in the water receiving tank stays and deteriorates. On the other hand, the water supply to the high ward water supply system is directly supplied to the high ward water supply system from the water main via the pump room and the submersible pump (vertical underwater booster pump) without passing through the water receiving tank.
[0012]
Embodiment 1
Embodiment 1 is that the submersible pump in the solution is a vertical submersible booster pump.
[0013]
Embodiment 2
In the second embodiment, two or more water receiving tanks in the solution are arranged in parallel, and one underwater pump of each water receiving tank is always operated for the water supply pipe to the high-area water supply system, and one is set as a spare and alternately operated. That is, they are connected in parallel.
[0014]
Embodiment 3
Embodiment 3 is that in Embodiment 2, a water supply pipe of a low-distance water supply system is connected to each of the water receiving tanks in parallel.
[0015]
Embodiment
Next, embodiments will be described with reference to the drawings.
In this embodiment, two water receiving tanks 1 each having a water storage capacity of 50 to 1000 t are provided in parallel (depending on the water supply population), and each of the water receiving tanks 1 is provided with a sealed pump chamber 2. The water receiving tank 1 is maintained at a predetermined water level. At this time, the position of the water receiving tank 1 is set in a hill area so that the water supply pressure does not become 0.15 Mpa or less.
[0016]
Submersible pumps (vertical submersible booster pumps) with a maximum capacity of 0.3 to 5.00 m 3 / min (maximum rotation speed 3000 rpm) (depending on the water supply population) in the pump chambers 2 and 2 of the left and right receiving tanks 1 and 1 respectively. 3) is installed. These left and right submersible pumps 3 are connected to the discharge pipe 4 in parallel with each other, and a flow control valve (sluice valve) 5 is interposed between the submersible pump 3 and the discharge pipe 4.
The left and right pump chambers 2, 2 are connected in parallel with each other to a branch pipe 6 from a water main. An electric flow control valve 7 is interposed between the branch pipe 6 and the pump chamber 2 so that the water supply pressure to the pump chamber 2 (the water supply pressure of the primary side mains water supply residents) does not become 0.15 Mpa or less. The opening of the electric flow control valve 7 is automatically adjusted based on the pressure measurement signal of the pump chamber 2.
[0017]
The discharge pipe 4 is connected to a high section water supply pipe 8 via a flow control valve (sluice valve) 9. The left and right water receiving tanks 1 and 1 usually have a common water level, but they can be independent of each other. Further, depending on the amount of water used, the submersible pump supplies pressurized water by either left or right operation or both operations.
[0018]
In addition, a replenishing water pipe 11 provided in the pump chamber 2 is open to the water receiving tank 1, and a check valve and a flow control valve (sluice valve) 12 are provided in the refilling water pipe 11. When the amount of water used in the system is abnormally large, the submersible pump rotates at full speed, and if water supply from the branch pipe of the water main is insufficient, the check valve of the supplementary water pipe 11 automatically opens, and The pump chamber 2 is refilled with water from 1.
Further, a water supply pipe 13 to the low ward water supply system is connected to the left and right water receiving tanks 1 and 1 in parallel with each other, and water is supplied to the low ward at a water pressure of 0.15 Mpa depending on the elevation position (elevation) of the water receiving tank 1. It has become.
[0019]
Since the water supply system of the water supply system is operated for 24 hours, water is constantly supplied to the pump room at a water pressure of 0.15 Mpa or more from the water main via the branch pipe 6, and the water supply to the discharge pipe 4 by the submersible pump 3 varies. Regardless, by adjusting the opening of the electric flow control valve 7 so that the water pressure in the pump chamber 2 is maintained at approximately 0.15 Mpa or more, the supply water pressure from the branch pipe 6 to the pump chamber 2 is automatically substantially reduced. It is controlled not to be less than 0.15 Mpa.
The water in the pump chamber 2 is pressurized by the submersible pump 3 so as to be constant at the end and supplied to the discharge pipe 4. The water supply pressure from the submersible pump 3 to the discharge pipe 4 is automatically controlled to be constant by adjusting the rotation speed of the submersible pump, irrespective of fluctuations in the water usage of the high-area water supply system. Then, the water pressure-fed to the discharge pipe 4 is sent to the high-area water supply pipe 8 via a flow rate control valve (sluice valve) 9. The left and right water receiving tanks 1, 1 provided on the hill at the altitude and connected in parallel to each other supply water to the low-area water supply pipe 14 at a water pressure of 0.15 Mpa or more.
[0020]
When the water usage of the low-area water supply system is abnormally large, the water level in the water receiving tank tends to decrease. Therefore, the opening of the electric flow control valve 10 to the water receiving tank is expanded, and If the amount of water supplied to the tank increases, but it is still insufficient, a notification will be sent to the staff due to a decrease in the abnormal water level in the receiving tank, and the staff will confirm the cause at the site. The rotation speed of the submersible pumps 3 and 3 is controlled during the high water supply, and the discharge amount increases. Therefore, the pump is provided with “margin” so that the water supply pressure of the discharge pipe 4 is kept constant.
[0021]
When the water usage of the high ward water supply system is abnormally large, the opening of the electric flow rate check valve 7 is expanded, and the check valve and the flow rate control valve (sluice valve) 12 of the replenishing water pipe 11 of the receiving tank are opened. The water sucked from the water receiving tank 1 is pressurized by the submersible pump 3 and supplied to the discharge pipe 4 while maintaining the water supply pressure from the branch pipe 6 of the water main pipe at 0.15 Mpa (adjusted by the electric flow control valve 7). Send in.
[0022]
Unusual situations in which the water usage in the high-area water supply system and the low-area water supply system are abnormally large and the water level in the receiving tank lowers (for example, when the main pipe is damaged or a fire occurs due to an earthquake) do not occur frequently.
When there is a settlement in front of the water receiving tank, water is supplied to the settlement from a branch pipe of a water main in front of the water receiving tank.
[0023]
As described above, according to the water supply system of the present invention, the water supply pressure to the high-area water supply system uses the water pressure of the incoming main pipe as it is, pressurizes the shortage with a submersible pump, and applies this to the high-area water supply system. Power supply of the pressurized water supply pump compared to the conventional water supply system that pressurizes the water in the open tank and supplies it to the low-area water supply system and the high-area water supply system. be able to.
Also, since the water pressure in the receiving basin is maintained at the water supply pressure of the low ward water supply system and water is supplied from the receiving basin to the low ward water supply system by natural flow, regardless of the amount of water used in the low ward water supply system, The water inside is constantly replaced. Therefore, there is no problem that the water is degraded (dead water) without staying in the water receiving tank.
[Brief description of the drawings]
FIG. 1 is a plan view of an embodiment.
FIG. 2 is a schematic vertical sectional view of the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Receiving tank 2 ... Sealed pump room 3 ... Submersible pump (vertical submersible booster pump)
4 ... discharge pipe 5 ... flow control valve 6 ... branch pipe 7 ... electric flow control valve 8 ... high section water supply pipe 9 ... flow control valve 10 ... electric flow control valve 11 ... replenishing water pipe 12 ... flow rate control valve 13 ... water supply pipe to low area water supply system 14 ... low area water supply pipe MH ... manhol

Claims (4)

水道本管に流量調節弁を介して接続された受水槽と、当該受水槽に低区給水系及び高区給水系が接続されており、これらの低区給水系及び高区給水系にそれぞれ所定水圧で給水する上水道の給水システムにおいて、
上記受水槽内に密閉したポンプ室を設け、当該ポンプ室に水道本管からの枝管を流量調節弁を介して接続してあり、
上記ポンプ室に補充水管を設け、当該補充水管を逆止弁と流量調節弁を介して受水槽に解放してあり、
上記ポンプ室に密閉タンク型水中ポンプを設置して、当該水中ポンプの吐出管を高区給水系の給水管に接続してあり、
さらに、上記水道本管から分岐した枝管を流量調節弁を介して受水槽に解放してあり、
上記受水槽に流量調節弁を介して低区給水系の給水管を接続してあり、
上記水中ポンプの駆動モータがインバーター制御による可変速モータである上水道の給水システム。
A water receiving tank connected to the water main via a flow control valve, and a low-area water supply system and a high-area water supply system are connected to the water-receiving tank. In a water supply system for water supply using water pressure,
A sealed pump chamber is provided in the water receiving tank, and a branch pipe from the water main is connected to the pump chamber via a flow control valve,
A refill water pipe is provided in the pump chamber, and the refill water pipe is opened to a receiving tank via a check valve and a flow control valve,
A closed tank type submersible pump is installed in the pump room, and the discharge pipe of the submersible pump is connected to a water supply pipe of a high-area water supply system,
Furthermore, the branch pipe branched from the water main is opened to a water receiving tank via a flow control valve,
A water supply pipe of a low-distance water supply system is connected to the water receiving tank via a flow control valve,
A water supply system for a water supply system, wherein a drive motor of the submersible pump is a variable speed motor controlled by an inverter.
上記水中ポンプが、立型の水中ブースターポンプである請求項1記載の上水道の給水システム。The water supply system for a water supply system according to claim 1, wherein the submersible pump is a vertical submersible booster pump. 上記受水槽を2以上並列に配置し、各受水槽の上記水中ブースターポンプを高区給水系への給水管に対して並列に接続している請求項1記載の上水道の給水システム。The water supply system according to claim 1, wherein two or more of the water receiving tanks are arranged in parallel, and the submersible booster pumps in each of the water receiving tanks are connected in parallel to a water supply pipe to a high-area water supply system. 上記低区給水系の給水管を各受水槽に並列に接続している請求項3記載の上水道の給水システム。The water supply system for a water supply system according to claim 3, wherein a water supply pipe of the low-ward water supply system is connected to each of the water receiving tanks in parallel.
JP2003026762A 2003-02-04 2003-02-04 Water supply system in waterworks Expired - Lifetime JP3872437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003026762A JP3872437B2 (en) 2003-02-04 2003-02-04 Water supply system in waterworks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003026762A JP3872437B2 (en) 2003-02-04 2003-02-04 Water supply system in waterworks

Publications (2)

Publication Number Publication Date
JP2004238825A true JP2004238825A (en) 2004-08-26
JP3872437B2 JP3872437B2 (en) 2007-01-24

Family

ID=32954669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026762A Expired - Lifetime JP3872437B2 (en) 2003-02-04 2003-02-04 Water supply system in waterworks

Country Status (1)

Country Link
JP (1) JP3872437B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392938A (en) * 2011-08-05 2012-03-28 罗文峰 Transportation system and method of high concentration solid granule suspending solution
CN108005170A (en) * 2017-11-30 2018-05-08 上海市政工程设计研究总院(集团)有限公司 A kind of double water source water plant
CN113502878A (en) * 2021-07-20 2021-10-15 重庆昕晟环保科技有限公司 Direct pressure-superposed secondary water supply equipment
CN113529848A (en) * 2021-08-25 2021-10-22 上海伺水科技有限公司 Numerical control pressure-superposed compensation type integrated non-negative pressure water supply equipment
CN114582113A (en) * 2022-03-08 2022-06-03 山东工业职业学院 Device for automatically selecting wireless transmission frequency for intelligent water affairs

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392938A (en) * 2011-08-05 2012-03-28 罗文峰 Transportation system and method of high concentration solid granule suspending solution
CN108005170A (en) * 2017-11-30 2018-05-08 上海市政工程设计研究总院(集团)有限公司 A kind of double water source water plant
CN113502878A (en) * 2021-07-20 2021-10-15 重庆昕晟环保科技有限公司 Direct pressure-superposed secondary water supply equipment
CN113529848A (en) * 2021-08-25 2021-10-22 上海伺水科技有限公司 Numerical control pressure-superposed compensation type integrated non-negative pressure water supply equipment
CN114582113A (en) * 2022-03-08 2022-06-03 山东工业职业学院 Device for automatically selecting wireless transmission frequency for intelligent water affairs

Also Published As

Publication number Publication date
JP3872437B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
JP6684360B2 (en) Water supply system and its container, booster pump, water supply method
US7656050B2 (en) Hydroelectric pumped-storage
NO20016431L (en) Simplified storage lanterns
JP2008519159A (en) Electrolytic cell electrolyte pump system
NO20120067A1 (en) Intermediate storage chamber
JP2004238825A (en) Water supply system in water works
JP4714597B2 (en) Deaerator
ES2959740T3 (en) System and method for energy storage and generation, where pressure is released in a liquid circuit that in turn drives a liquid turbine for energy generation
JP2004019626A (en) Wind power generator
CN217756924U (en) Water treatment equipment for integrated cold station and integrated cold station
US2105624A (en) Water power
GB2527751A (en) Accumulator system
CN110906311B (en) Boiler water charging system
US4140146A (en) Salt water fire fighting supply normally excluding salt water
JP2019090452A (en) Gas supply device
KR100314663B1 (en) Apparatus For Suppling Water Using Air Pressure and inverter
US9874003B1 (en) Method and apparatus for cycling or drawing down water stored in pressure tanks installed on water service lines supplied by water supply systems
JP2000328613A (en) Feed water system
JP2014178084A (en) Hot water storage type electric water heater
CN113067008B (en) Metal-air battery system and control method
JP6555767B1 (en) Hot spring centralized management system
JPH06158690A (en) Feed water supply system of building
CN205369383U (en) Water supply installation with pressure compensation of intaking
RU2323857C1 (en) Plane fuel system
JP5244690B2 (en) Booster water supply device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060525

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060731

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060801

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061019

R150 Certificate of patent or registration of utility model

Ref document number: 3872437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term