JP6684360B2 - Water supply system and its container, booster pump, water supply method - Google Patents

Water supply system and its container, booster pump, water supply method Download PDF

Info

Publication number
JP6684360B2
JP6684360B2 JP2018548212A JP2018548212A JP6684360B2 JP 6684360 B2 JP6684360 B2 JP 6684360B2 JP 2018548212 A JP2018548212 A JP 2018548212A JP 2018548212 A JP2018548212 A JP 2018548212A JP 6684360 B2 JP6684360 B2 JP 6684360B2
Authority
JP
Japan
Prior art keywords
water
pump
pipe
water supply
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018548212A
Other languages
Japanese (ja)
Other versions
JP2019510146A (en
Inventor
イーヨン シー
イーヨン シー
リェンクェア シー
リェンクェア シー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shi Yiyong
Original Assignee
Shi Yiyong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shi Yiyong filed Critical Shi Yiyong
Publication of JP2019510146A publication Critical patent/JP2019510146A/en
Application granted granted Critical
Publication of JP6684360B2 publication Critical patent/JP6684360B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B11/00Arrangements or adaptations of tanks for water supply
    • E03B11/02Arrangements or adaptations of tanks for water supply for domestic or like local water supply
    • E03B11/06Arrangements or adaptations of tanks for water supply for domestic or like local water supply with air regulators
    • E03B11/08Air regulators
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B11/00Arrangements or adaptations of tanks for water supply
    • E03B11/02Arrangements or adaptations of tanks for water supply for domestic or like local water supply
    • E03B11/06Arrangements or adaptations of tanks for water supply for domestic or like local water supply with air regulators
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B11/00Arrangements or adaptations of tanks for water supply
    • E03B11/10Arrangements or adaptations of tanks for water supply for public or like main water supply
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/04Domestic or like local pipe systems
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/07Arrangement of devices, e.g. filters, flow controls, measuring devices, siphons or valves, in the pipe systems
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/07Arrangement of devices, e.g. filters, flow controls, measuring devices, siphons or valves, in the pipe systems
    • E03B7/075Arrangement of devices for control of pressure or flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Reciprocating Pumps (AREA)

Description

本発明は、給水分野に関し、特に給水システム及びその容器、並びにブースターポンプ、給水方法に関する。   The present invention relates to the field of water supply, and particularly to a water supply system and its container, a booster pump, and a water supply method.

非負圧又は非負圧型圧力重畳給水装置とは、給水管網に直接直列接続されて加圧する給水技術を意味し、タンク型非負圧給水装置は、給水本管と用水本管との間で貯水タンクを非負圧給水装置に並列接続することにより、貯水量を増加させることができる。   Non-negative pressure or non-negative pressure type pressure superimposition water supply device means a water supply technology that is directly connected in series to the water supply pipe network to pressurize, and the tank type non-negative pressure water supply device is a water storage tank between the water supply main and the water main. It is possible to increase the amount of stored water by connecting in parallel to the non-negative pressure water supply device.

初期、CN2437746には、貯水容器に装設された開口又は密閉された密閉弁を有する加圧給水装置が開示され、CN2438751には、「ブイ、浮玉又はステンレスボールを出入口のスイッチとして真空レギュレータを制御する」加圧式安定給水装置が開示されている。   Initially, CN2437746 discloses a pressurized water supply apparatus having an opening or a closed sealing valve installed in a water storage container, and CN2438751 discloses "a vacuum regulator using a buoy, a floating ball, or a stainless ball as a switch at the entrance and exit. A controlled "pressurized stable water supply is disclosed.

CJ/T254−2014に、さらに給水管網の圧力を確保するために、「限界圧力」が提案されている。   CJ / T254-2014 proposes a "limit pressure" in order to further secure the pressure of the water supply network.

従来技術において、吸排気弁又は真空ブレーカが公共管網及び用水システムに広く使用されるにつれて、真空の給水管網に対する損害が制御される。給水装置は、用水システムの給水率を向上させて、及び給水管網の供給する圧力及び水量に適する方向へ発展すべきである。   In the prior art, as intake and exhaust valves or vacuum breakers are widely used in public networks and water systems, the damage to the vacuum supply network is controlled. The water supply system should be developed to improve the water supply rate of the water supply system and to be suitable for the pressure and water volume supplied by the water supply network.

タンク型非負圧給水装置は、貯水量が大きいため、用水システムの給水を確保すると同時に、公共管網の運転条件に適する。しかしながら、貯水タンク内の水量が常圧状態にあるため、給水圧力と大きな圧力差があり、且つ、貯水タンク内の水の貯蔵時間がさらに用水量の変化によってランダム性を有するため、装置の制御が複雑となり、一部の非負圧による利点も失われてしまう。   Since the tank type non-negative pressure water supply device has a large amount of water storage, it secures the water supply for the water system and at the same time is suitable for the operating conditions of the public network. However, since the amount of water in the water storage tank is at normal pressure, there is a large pressure difference from the water supply pressure, and the storage time of water in the water storage tank is random due to changes in the amount of water used. Becomes complicated, and some advantages of non-negative pressure are lost.

本発明はタンク型非負圧給水技術を改良するものであり、タンク型非負圧給水装置と同じ作用を有するが、給水、貯水及び給水装置同士の接続が簡単になり、動作パラメータが連続する給水システム及びその容器、並びにブースターポンプ、給水方法を提供することを目的とする。   The present invention is to improve the tank type non-negative pressure water supply technology, and has the same action as the tank type non-negative pressure water supply device, but simplifies the connection between the water supply, the water storage, and the water supply device, and the operating parameters are continuous. And a container thereof, a booster pump, and a water supply method.

本発明の目的を実現するために、以下の技術案を用いる。給水システムであって、第1給水管、吸気弁、容器、第1ポンプ、用水管を備え、第1給水管に吸気弁が設けられ、容器が第1給水管と第1ポンプの吸水管との間に接続され、第1ポンプの排水管が用水管に接続され、前記容器が空気圧水タンクであり、容器内の圧縮されたガス量は吸気弁が真空を破って吸い込んだ空気量に等しい。   In order to realize the object of the present invention, the following technical solutions are used. A water supply system, comprising a first water supply pipe, an intake valve, a container, a first pump, and a water pipe, the first water supply pipe is provided with an intake valve, and the container is a first water supply pipe and a water intake pipe of the first pump. The drainage pipe of the first pump is connected to the water pipe, the container is a pneumatic water tank, and the amount of compressed gas in the container is equal to the amount of air sucked by the intake valve breaking the vacuum. .

前記容器内の圧縮されたガスは真空を破られた空気であってもよいし、ほかのクリーンガス、例えば濾過後の空気又は窒素ガスであってもよい。   The compressed gas in the container may be vacuum broken air or another clean gas such as filtered air or nitrogen gas.

前記吸気弁は、第1給水管の静圧が比較的低い箇所に設置され、複数設置されてもよい。   The intake valve may be installed at a location where the static pressure of the first water supply pipe is relatively low, and a plurality of intake valves may be installed.

好ましくは、第1給水管には、吸気弁と容器との間にスロットル管又はスロットル板が設けられている。   Preferably, the first water supply pipe is provided with a throttle pipe or a throttle plate between the intake valve and the container.

従来技術によれば、前記吸気弁は、吸排気弁であってもよいが、大気圧に達する時に吸気できるほかの装置、例えば真空ブレーカであってもよい。   According to the prior art, the intake valve may be an intake / exhaust valve, but may also be another device capable of intake when atmospheric pressure is reached, for example a vacuum breaker.

前記容器は、その貯水量が容器及び吸気弁後側の給水管に貯蔵される水量の合計を含む。   The water content of the container includes the total amount of water stored in the water supply pipe behind the container and the intake valve.

第1給水管と第1ポンプとの間に接続された空気圧水タンクであり、第1水位及び第2水位が設定される容器であって、第1水位が常圧とも称される大気圧に対応し、第2水位が第1給水管の水圧に対応する。容器内の水位が前記第1水位と第2水位との間にあるとき、空気圧貯水モードであって、つまり貯蔵される水量が一定の圧力に対応する。   A pneumatic water tank connected between a first water supply pipe and a first pump, which is a container in which a first water level and a second water level are set, and in which the first water level is also called atmospheric pressure. Correspondingly, the second water level corresponds to the water pressure of the first water supply pipe. When the water level in the container is between the first water level and the second water level, it is in the pneumatic water storage mode, that is, the amount of water stored corresponds to a constant pressure.

第1給水管と第1ポンプとの間に接続された空気圧水タンクであり、さらに常圧水タンクとして用いられ、つまり、容器内の圧縮されたガス量が貯水量の一部のみを常圧又は常圧以上で給水するように維持し、最低水位及び第1水位が設定される容器であって、第1水位が大気圧に対応し、最低水位が第1水位より低い。前記容器は、第1水位で大気に接通することにより、空気圧給水モードにおける貯水量以外のほかの水量を使用する時に負圧を発生しないようにする。   It is a pneumatic water tank connected between the first water supply pipe and the first pump, and is also used as a normal pressure water tank, that is, the amount of compressed gas in the container is normal pressure for only a part of the stored water amount. Alternatively, it is a container in which water is maintained at a pressure equal to or higher than normal pressure, and a minimum water level and a first water level are set, the first water level corresponds to atmospheric pressure, and the minimum water level is lower than the first water level. The container is in contact with the atmosphere at the first water level so as not to generate a negative pressure when using a water amount other than the stored water amount in the pneumatic water supply mode.

前記最低水位と第1水位との間の貯水量がタンク型非負圧給水装置における貯水タンクの貯水量に相当する。   The water storage amount between the minimum water level and the first water level corresponds to the water storage amount of the water storage tank in the tank-type non-negative pressure water supply device.

第1水位は容器内の圧縮されたガス量によって決定される。   The first water level is determined by the amount of compressed gas in the container.

前記大気との連通とは、第1給水管に設置される吸気弁が吸気し始めることを意味し、さらに第1水位で吸排気弁を設置してもよい。   The communication with the atmosphere means that the intake valve installed in the first water supply pipe starts to intake air, and the intake / exhaust valve may be installed at the first water level.

前記大気との連通は、さらにほかのクリーンガスに連通してもよい。   The communication with the atmosphere may communicate with another clean gas.

第1給水管と第1ポンプとの間に接続された空気圧水タンクであり、さらに常圧水タンクとして用いられる容器であって、容器の排水口に渦流防止装置が設けられる。   The container is a pneumatic water tank connected between the first water supply pipe and the first pump, and is a container used as a normal pressure water tank. A swirl preventive device is provided at a drain port of the container.

前記空気圧水タンクは、さらに常圧水タンクとして用いられ、且つ、受圧水タンクとして用いられ、つまり、貯水容器は、圧力のある場合に貯水する時、ガス及び水の界面が直接接触し、容器がポンプに接続され、具体的に、従来技術における非負圧給水装置でのバッファタンク(装置)又は補償タンク(装置)を備える。   The pneumatic water tank is further used as a normal pressure water tank, and is also used as a pressure receiving water tank, that is, when the water storage container stores water under pressure, the interface between gas and water is in direct contact, Is connected to a pump and specifically includes a buffer tank (device) or a compensation tank (device) in a non-negative pressure water supply device according to the related art.

空気圧水タンクとして用いられるとともに、常圧水タンクとして用いられる前記容器の効果は、常圧で貯水した水を通常又は使用しない時に密閉状態にすることにより、衛生性及び安全性を確保することである。特に、空気圧貯水と常圧貯水を一体に設計する構想は、さらに貯水量とその使用圧力が連続的且つ一致するように維持されるという効果を有する。   As well as being used as a pneumatic water tank, the effect of the container used as a normal pressure water tank is to ensure hygiene and safety by keeping the water stored at normal pressure in a closed state during normal or non-use. is there. In particular, the concept of integrally designing the air pressure water storage and the atmospheric pressure water storage has the effect that the water storage amount and the operating pressure thereof are continuously and consistently maintained.

本発明の給水システムにおいて空気圧水タンクと称される容器は、空気圧水タンクとして用いられるとともに、常圧水タンクとして用いられ、空気圧で貯水する水量を有するだけでなく、常圧で貯水する水量を有する前記容器を含む。   The container referred to as a pneumatic water tank in the water supply system of the present invention is used as a pneumatic water tank and is also used as a normal pressure water tank, and not only has the amount of water stored under air pressure but also the amount of water stored under normal pressure. Including the container having.

さらに、前記第2水位が設定される容器は、さらに第3水位が設けられてもよく、第3水位が第2水位より高く、第2水位が第1ポンプの吸水管の圧力に対応し、第3水位が第1ポンプの排水管の圧力に対応する。   Further, the container in which the second water level is set may be further provided with a third water level, the third water level is higher than the second water level, and the second water level corresponds to the pressure of the water absorption pipe of the first pump, The third water level corresponds to the pressure of the drain pipe of the first pump.

第1ポンプを備え、第1ポンプの吸水管が容器に接続され、第1ポンプの排水管が用水管に接続されるブースターポンプであって、さらに第2ポンプを備え、第2ポンプが第1ポンプの吸水管に並列接続される。前記第2ポンプが第1ポンプの吸水管に並列接続される構造は、第2ポンプが第1ポンプに直列接続される場合を含むが、第2ポンプは第1ポンプの排水管に並列接続されてもよい。   A booster pump including a first pump, a water absorption pipe of the first pump being connected to a container, and a drain pipe of the first pump being connected to a water pipe, further comprising a second pump, and a second pump being a first pump. It is connected in parallel with the water suction pipe of the pump. The structure in which the second pump is connected in parallel to the water suction pipe of the first pump includes a case where the second pump is connected in series to the first pump, but the second pump is connected in parallel to the drain pipe of the first pump. May be.

前記第1ポンプ又は第2ポンプは、1台のポンプであってもよいし、並列接続又は直列接続される1組のポンプであってもよい。   The first pump or the second pump may be a single pump, or a set of pumps connected in parallel or in series.

前記ブースターポンプに第1管路、第2管路及び第3管路が設けられる。ブースターポンプの吸水管に第3管路が設けられ、第1ポンプの第2ポンプに接続される管路には第2管路が設けられ、第3管路は第2給水管に接続され、第2管路は容器に接続される。   The booster pump is provided with a first conduit, a second conduit and a third conduit. The water intake pipe of the booster pump is provided with a third pipe line, the pipe line connected to the second pump of the first pump is provided with a second pipe line, and the third pipe line is connected to the second water supply pipe, The second conduit is connected to the container.

前記第1管路に第1弁が設けられ、第2管路に第2弁が設けられ、第3管路に第3弁が設けられ、第1管路、第2管路及び第3管路は容器に接続される。   The first pipe is provided with a first valve, the second pipe is provided with a second valve, the third pipe is provided with a third valve, and the first pipe, the second pipe and the third pipe are provided. The tract is connected to the container.

第2管路及び第3管路は第2給水管に接続される。   The second pipeline and the third pipeline are connected to the second water supply pipe.

ブースターポンプの排水管に第1管路が設けられ、第1管路は容器に接続される。空気圧水タンクの作用は、圧力保持、すなわち、ブースターポンプを未使用又は流量が小さすぎる時に停止させることと、用水管の用水量が急に変化するとき、急に変化する流量を補充又は平衡化させて、第1ポンプの動作状態を安定化させることとがある。前記流量の急な変化については、流量が大きい場合、相対変化幅が小さく、影響が小さく、流量が小さい場合、相対変化幅が大きく、影響が大きい。容器がブースターポンプの吸水管に接続される場合、容器内の水位が低く、このことから、給水本管又は用水管の抵抗が大きく、流量が大きいことを示し、容器がブースターポンプの排水管に接続される場合、給水管又は用水管の抵抗が小さく、流量が小さいことを示している。これら特徴によれば、ブースターポンプの吸水管側に接続される容器はさらにブースターポンプの排水管側の空気圧水タンクとして用いられてもよい。   A first pipeline is provided in the drainage pipe of the booster pump, and the first pipeline is connected to the container. The function of the pneumatic water tank is to maintain the pressure, that is, to stop the booster pump when it is unused or when the flow rate is too low, and when the amount of water in the water pipe suddenly changes, to supplement or balance the rapidly changing flow rate. In some cases, the operating state of the first pump may be stabilized. Regarding the rapid change in the flow rate, when the flow rate is large, the relative change width is small and the influence is small, and when the flow rate is small, the relative change width is large and the influence is large. When the container is connected to the water intake pipe of the booster pump, the water level in the container is low, which indicates that the resistance of the water main or water pipe is large and the flow rate is large, and the container is connected to the drain pipe of the booster pump. When connected, the resistance of the water supply pipe or the water pipe is small, indicating that the flow rate is small. According to these characteristics, the container connected to the water suction pipe side of the booster pump may be further used as a pneumatic water tank on the drain pipe side of the booster pump.

第2ポンプはさらに、第3ポンプを含んでもよく、第3ポンプは第2ポンプの吸水管に並列接続される。   The second pump may further include a third pump, and the third pump is connected in parallel to the water suction pipe of the second pump.

このように、第3ポンプはさらに第1ポンプの排水管又は第2ポンプの排水管に並列接続されてもよい。前記第3ポンプは第2ポンプと同様である。   In this way, the third pump may further be connected in parallel to the drain pipe of the first pump or the drain pipe of the second pump. The third pump is similar to the second pump.

前記ブースターポンプの効果は以下のとおりである。給水システムは様々なモードで作動可能になり、具体的には、第1弁をオンにする場合、第1ポンプ及び容器から構成される調整装置無しの非負圧給水装置になり、第1ポンプの揚程を有し、第2弁をオンにする場合、第1ポンプ及び容器から構成されるタンク型非負圧給水装置になり、貯水量の使用が増加し、第1弁と第2弁を次々とオンにする場合、第2ポンプ及び容器から構成される調整装置無しの非負圧給水装置になり、第2ポンプの揚程を有し、第1弁と第3弁をオンにする場合、直接給水システムになる。このような多様化された作動方式を直接給水システムに用いると、省エネ性が向上する。   The effects of the booster pump are as follows. The water supply system can be operated in various modes, specifically, when the first valve is turned on, it becomes a non-negative pressure water supply device without a regulator composed of the first pump and the container, When it has a pump head and the second valve is turned on, it becomes a tank type non-negative pressure water supply device composed of the first pump and the container, the usage of the stored water increases, and the first valve and the second valve are successively connected. When it is turned on, it becomes a non-negative pressure water supply device without a regulating device composed of a second pump and a container, and when it has the head of the second pump and when the first valve and the third valve are turned on, a direct water supply system become. When such a diversified operating method is directly applied to the water supply system, energy saving is improved.

非負圧の第1利点は密閉貯水方法を用いることである。前記貯水を使用する時、真空レギュレータ又はエネルギー貯蔵装置を用いる。本発明は、配管の従来の真空破壊技術を利用し、用いた方法は、給水システムにおける容器として空気圧水タンクを用いて、真空を破られたガスを貯蔵圧縮することであり、本発明の第1特徴である。   The first advantage of non-negative pressure is to use a closed water storage method. When using the water storage, a vacuum regulator or an energy storage device is used. The present invention utilizes conventional vacuum breaking techniques for piping and the method used is to store and compress the vacuum broken gas using a pneumatic water tank as a container in the water supply system. This is one feature.

前記真空を破られたガスの量は、水使用量の相違に起因してランダム性を示す。しかしながら、前回に容器内へ吸い込んだ空気によって、再び前回の水使用量に達する時に負圧が発生せず、溶解、ガス渦等が空気を消費したり、又は水使用量を増加させたりするため、真空破壊用の吸気弁が再び吸気するようになる。前記容器内の圧縮されたガス量が真空を破って吸い込んだ空気量に等しいことは、この特徴を反映している。   The amount of gas that has broken the vacuum exhibits randomness due to the difference in the amount of water used. However, because the air sucked into the container last time does not generate a negative pressure when the amount of water used last time is reached again, dissolution, gas vortex, etc. consumes air or increases the amount of water used. , The vacuum-breaking intake valve comes to inhale again. This feature is reflected in that the amount of compressed gas in the container is equal to the amount of air drawn through the vacuum.

真空を破られたガスの量がランダムであるため、本発明では、真空を破って吸い込んだ空気を貯蔵圧縮することが好ましい。真空を破って吸い込んだ空気は既に給水システムに入ったガスであるため、真空破壊手段を講じる時に衛生上の要素を考慮すべきであるが、ほかの方法を用いてもよい。ほかのクリーンガスを用いる場合、さらに吸気弁又は容器に接続されてもよい。   In the present invention, it is preferable to break the vacuum and store and compress the sucked air because the amount of the gas that has broken the vacuum is random. Since the air drawn by breaking the vacuum is a gas that has already entered the water supply system, hygiene factors should be considered when taking vacuum breaking measures, although other methods may be used. When using another clean gas, it may be further connected to an intake valve or a container.

第1給水管を負圧発生から保護する場合、空気圧貯水圧力が常圧まで連続的に低下し、給水管を限界圧力以上にするようにする場合、給水管に1つのスロットル装置が設置され、スロットル装置前の水圧を限界圧力以上に維持し、スロットル装置の後に、前記密閉させた貯水を使用することにより用水管の水量を確保する必要があるため、システムの圧力が低下し、負圧が発生するまで低下すると、真空破壊用の吸気弁が吸気する。   When the first water supply pipe is protected from negative pressure generation, the pneumatic water storage pressure is continuously reduced to normal pressure, and when the water supply pipe is set to a pressure equal to or higher than the limit pressure, one throttle device is installed in the water supply pipe, It is necessary to maintain the water pressure in front of the throttle device above the limit pressure, and to secure the amount of water in the water pipe by using the sealed water storage after the throttle device. When the pressure drops to the level at which it occurs, the vacuum-breaking intake valve inhales.

給水管を限界圧力以上にする場合、第1給水管には、吸気弁の状態を安定化させるために、吸気弁と容器との間にスロットル手段が設置されている。   When the water supply pipe has a pressure equal to or higher than the limit pressure, the first water supply pipe is provided with throttle means between the intake valve and the container in order to stabilize the state of the intake valve.

空気圧水タンクは、圧縮ガスに対応する水量によってシステムの圧力変化を安定化させるという利点を有する反面、圧縮ガスが容器の容積の一部を占めるデメリットがある。ボイルマリオット原理に基づいて、本発明の方法を用いるときに、貯水量の容器の総容積での比率を計算することができる。限界圧力が0.1MPaである場合、貯水量は50%、限界圧力が0.2MPaである場合、貯水量は67%であり、一般的な空気圧水タンクに比べて、貯水効率が向上する。貯水量以外の容積がガスで占められ、この部分の容積をさらに減少させてもよい。   The pneumatic water tank has the advantage of stabilizing the pressure change of the system by the amount of water corresponding to the compressed gas, but has the disadvantage that the compressed gas occupies a part of the volume of the container. Based on the Boyle Marriott principle, the ratio of water storage to the total volume of the container can be calculated when using the method of the invention. When the limit pressure is 0.1 MPa, the stored water amount is 50%, and when the limit pressure is 0.2 MPa, the stored water amount is 67%, and the water storage efficiency is improved as compared with a general pneumatic water tank. The volume other than the stored water volume may be occupied by the gas, and the volume of this portion may be further reduced.

本発明の第2特徴は、タンク型非負圧給水装置における貯水タンクの貯水量に相当する貯水量と、真空を破られたガスを圧縮するときに発生した空気圧貯水量とを足し合わせるすることである。第1特徴による空気圧水タンクの容積が増加して、常圧で使用する貯水量を貯水することになる。このように貯水を足し合わせると、容器の貯水時間の問題を解決するだけでなく、常圧水を密閉させた状態で貯蔵するようにし、このようにして、衛生性を高めるとともに、装置の動作中の制御段階を簡素化させ、足し合わせた水量は動作中に圧力が連続的に変化し、装置の動作の安定化に役立ち、一連の有益な効果を奏する。   The second feature of the present invention is to add the water storage amount corresponding to the water storage amount of the water storage tank in the tank type non-negative pressure water supply device and the pneumatic water storage amount generated when compressing the gas whose vacuum is broken. is there. The volume of the pneumatic water tank according to the first feature increases, and the amount of stored water used at normal pressure is stored. Adding water in this way not only solves the problem of the water storage time of the container, but also stores atmospheric pressure water in a sealed state, thus improving hygiene and operating the device. The control steps therein are simplified, and the added water volume causes a continuous change in pressure during operation, which helps stabilize the operation of the device and has a series of beneficial effects.

容器内の第2水位と第1水位との間の貯水量は、排水圧力の連続性を維持することを目的とする。容器内の第2水位と最低水位との間の貯水量は、用水管の需要を満たす総貯水量である。   The amount of water stored between the second water level and the first water level in the container is intended to maintain the continuity of drainage pressure. The amount of water stored between the second water level and the minimum water level in the container is the total amount of water storage that meets the demand for the water pipe.

従来技術に比べて、本発明の貯水用の第1給水管及び容器は、従来技術における安定化タンク又は補償タンクの形状を変えることに相当し、その効果の1つは、容器の水位が第1給水管の高点よりも低い場合、容器の「非負圧」による第1給水管の高点で生じた負圧への影響を解消し、第1給水管の貯水量を増加させ、弊害を利点に変えることである。それ以外、本方法では、空気圧の作用を維持して、空気圧タンクで界面により接続される水に対応圧力を発生させて、圧縮ガスで貯水量の圧力の連続低下を行い、総ガス量として貯水量の一部を使用しても負圧を発生させないほどに維持するという効果を有する。具体的に、給水管の非負圧又は限界圧力を維持するとき、ガスの圧力が貯水量の一部に効果的に作用し、総ガス量によって貯水量のほかの部分の圧力が連続的に低下することが維持され、負圧を発生させると、真空破壊用の吸気弁が吸気し始める。   Compared with the prior art, the first water supply pipe and container for water storage of the present invention corresponds to changing the shape of the stabilization tank or the compensation tank in the prior art, and one of the effects is that the water level of the container is When it is lower than the high point of the 1 water pipe, the negative pressure caused by the "non-negative pressure" of the container on the high pressure of the 1st water pipe is eliminated, and the stored water amount of the 1st water pipe is increased to It is to turn it into an advantage. Other than that, in this method, the action of air pressure is maintained, a corresponding pressure is generated in the water connected by the interface in the pneumatic tank, and the pressure of the stored water is continuously reduced by the compressed gas, and the stored gas is stored as the total gas amount. It has the effect of maintaining a negative pressure so that even if a part of the amount is used, negative pressure is not generated. Specifically, when the non-negative pressure or the limit pressure of the water supply pipe is maintained, the gas pressure effectively acts on a part of the stored water amount, and the pressure of the other part of the stored water amount is continuously reduced by the total gas amount. When the negative pressure is generated, the intake valve for vacuum breaking starts to inhale.

従来技術では、常圧状態での排水口のガス渦の現象についての研究が多く、実用化されている渦流防止板又は旋回流防止装置は、貯水タンク(又はプール)で排水口と最低水面との差を減少させることにより有効水深を増加させるものとして用いられるが、このような技術はまだ非負圧給水装置に適用されていない。特に、容器がポンプに接続されるという非負圧給水装置の第1特徴により、水中に混入するガスによるポンプへのキャビテーションが発生しやすい。従って、本発明はGB50015−2003(2009年版)第3.4.13条に記載された現象に基づき、ガス及び水の界面で直接接触する空気圧水タンクに渦流防止装置を増設する手段を提案している。前記空気圧水タンクはさらに、常圧水タンク、及び加圧貯水容器として用いられ、ポンプに接続されるものであり、上記手段により、このような容器によるガス渦のポンプに対する影響が解消される。   In the prior art, there have been many studies on the phenomenon of gas vortex at the drainage port under normal pressure condition, and the vortex shedding plate or swirling flow prevention device that has been put to practical use is used in a water storage tank (or pool) with the drainage port and the minimum water level It is used to increase the effective water depth by decreasing the difference in water pressure, but such technology has not yet been applied to non-negative pressure water supply devices. In particular, due to the first characteristic of the non-negative pressure water supply device in which the container is connected to the pump, cavitation easily occurs in the pump due to the gas mixed in the water. Therefore, the present invention proposes a means for adding an eddy current prevention device to a pneumatic water tank which is in direct contact with the interface of gas and water, based on the phenomenon described in Article 3.4.13 of GB50015-2003 (2009 edition). ing. The pneumatic water tank is further used as a normal pressure water tank and a pressurized water storage container, and is connected to a pump. By the above means, the influence of the gas vortex on the pump by the container is eliminated.

前記渦流防止装置は、容器の排水口に設けられる水平な円形バッフルであってもよく、円形バッフルの断面を流れる水流の速度を吸水口の水流速度より低くする。円形バッフルの下方と容器の壁との間に、さらに水流方向に沿った垂直板が設けられてもよい。   The swirl preventive device may be a horizontal circular baffle provided at the drainage port of the container, and makes the velocity of the water flow flowing through the cross section of the circular baffle lower than the velocity of the water flow at the water intake port. A vertical plate may be further provided between the bottom of the circular baffle and the wall of the container along the water flow direction.

本発明の前記容器に最低水位が設定される場合、容器が第1水位にあるとき、真空破壊又は吸気手段が必要であり、第1水位と最低水位との間の貯水量を補充する場合、容器は排気手段が必要である。容器に用いた真空破壊又は吸気手段は第1水位以上又は以下にすることができる。容器の排気手段は第1水位に対応し、自動制御手段を取ってもよく、例えば信号で排気弁の開閉を制御する。   When the minimum water level is set in the container of the present invention, when the container is at the first water level, vacuum breaking or suction means is required, and when replenishing the stored water amount between the first water level and the minimum water level, The container needs exhaust means. The vacuum breaking or suction means used for the container can be above or below the first water level. The exhaust means of the container corresponds to the first water level and may take automatic control means, for example, a signal controls the opening and closing of the exhaust valve.

同時に、第1給水管は好ましくは第1水位に接続される。第1給水管は、真空破壊時にガスを補充する役割を有するが、排気時の方向が給水方向と逆になる。   At the same time, the first water pipe is preferably connected to the first water level. The first water supply pipe has a role of replenishing gas when the vacuum is broken, but the direction of exhaust is opposite to the direction of water supply.

第1給水管の水圧がランダムに変化するため、第2水位の水圧が第1給水管の限界圧力に相当する場合、給水管の最高圧力に対応する水位が最高水位である。最高水位は第2水位上側に位置し、最高水位と第2水位との間の貯水量は、本発明の第1給水管が限界圧力以上にあるが、圧力が低下する時の、第1給水管と用水管の水量の差であり、第1給水管又は公共管網の圧力が低下するときに給水量を減少させる役割を果たし、給水管又は公共管網の圧力維持に役立つ。   Since the water pressure of the first water supply pipe changes randomly, when the water pressure of the second water level corresponds to the limit pressure of the first water supply pipe, the water level corresponding to the highest pressure of the water supply pipe is the highest water level. The highest water level is located above the second water level, and the stored water amount between the highest water level and the second water level is the first water supply when the pressure of the first water supply pipe of the present invention is above the limit pressure but the pressure drops. It is the difference in the amount of water between the pipe and the water pipe, plays a role of reducing the amount of water supply when the pressure of the first water pipe or the public pipe network decreases, and helps maintain the pressure of the water pipe or the public pipe network.

第2水位はさらにブースターポンプの吸水管の圧力に対応する。さらに、容器内の圧縮されたガスを十分に利用し、つまり、本発明の第2特徴は、容器に第3水位が設けられ、第3水位がブースターポンプの排水管の圧力に対応することをさらに含む。インバータポンプに配置される空気圧水タンク内の水量も足し合わせることに相当する。このように、システムに1つ又は1組のみの容器が設けられるが、それによって、容器がブースターポンプの吸水管に接続されるだけでなく、ブースターポンプの排水管に接続されるため、容器が圧力の変化に応じて時間帯をずらして異なる管路に接続される必要があるという問題がある。   The second water level further corresponds to the pressure in the water intake pipe of the booster pump. Further, the compressed gas in the container is fully utilized, that is, the second feature of the present invention is that the container is provided with a third water level, and the third water level corresponds to the pressure of the drain pipe of the booster pump. Including further. This is equivalent to adding up the amount of water in the pneumatic water tank arranged in the inverter pump. In this way, the system is provided with only one or only one set of containers, whereby the container is connected not only to the suction pipe of the booster pump but also to the drain pipe of the booster pump, so that There is a problem in that it is necessary to shift the time zones according to changes in pressure and connect to different pipelines.

第2水位と第3水位との間に、さらに起動水位がある。前記起動水位は、用水管システムの用水量がより小さい場合、配管の抵抗が減少するため、所望のブースターポンプの排水管が有してもよい低圧力に対応する。起動水位が最高水位より低いとき、直接給水方式で給水してもよい。   There is an additional starting water level between the second water level and the third water level. The starting water level corresponds to the low pressure that the drain pipe of the desired booster pump may have, because the resistance of the pipe decreases when the amount of water in the water pipe system is smaller. When the starting water level is lower than the maximum water level, water may be supplied by the direct water supply method.

既存の建物の直接給水区域では、第3水位に対応する圧力と第2水位に対応する圧力との差がより小さい場合、起動水位が最高水位より低い確率が高い場合が多い。本発明により既存の建物の直接給水区域での圧力が不足するという問題を解決するとき、給水本管に悪影響を与えることがないため、本発明を用いることにより、既存の給水本管又は公共管網の水圧を十分に利用することを促進することもできる。   In the direct water supply area of an existing building, if the difference between the pressure corresponding to the third water level and the pressure corresponding to the second water level is smaller, the starting water level is often lower than the highest water level. When the present invention solves the problem of insufficient pressure in the direct water supply area of an existing building, it does not adversely affect the water supply main. Therefore, by using the present invention, the existing water supply main or public pipe It is also possible to promote full utilization of the water pressure of the net.

起動水位が最高水位より高い場合、起動水位と最高水位又は第2水位との間の水量によって、ブースターポンプ揚程を減少できる反面、給水管の給水も制限される。   When the starting water level is higher than the highest water level, the amount of water between the starting water level and the highest water level or the second water level can reduce the booster pump lift, but also restrict the water supply of the water supply pipe.

ブースターポンプの動作方式であって、ブースターポンプの第2管路が容器に接続される。第2ポンプによる第2給水管への1回目の加圧によって、容器内の圧力が高まり、それにより容器内の貯水量を増加させると同時に、第2給水管の給水を連続的にし、その作用としては、用水バレー時に第2給水管の給水量の使用を増加させ、用水ピーク時に第2給水管の給水量の使用を減少させ、このように、ピーク負荷シフトの作用を果たすことをさらに含む。   A method of operating a booster pump, wherein the second line of the booster pump is connected to the container. The first pressurization of the second water supply pipe by the second pump increases the pressure in the container, thereby increasing the amount of water stored in the container and, at the same time, continuously supplying water to the second water supply pipe and its action. The method further includes increasing the use of the water supply amount of the second water pipe during the water valley and decreasing the use of the water supply amount of the second water pipe during the peak time of the water, and thus performing the function of the peak load shift. .

本発明の容器は、常圧貯水量の場合、空気圧貯水方式を含むため、第2給水管の圧力を十分に利用することができ、省エネが可能であり、空気圧貯水方式では、常圧貯水の水量が含まれ、その利点として、圧縮空気量を減少させて、貯水容積を増加させることと、常圧貯水量の衛生性を確保するとともに、常圧貯水と空気圧貯水を足し合わせることにより、用水周期への配慮も解消することにある。   Since the container of the present invention includes the pneumatic water storage system in the case of the atmospheric pressure water storage amount, the pressure of the second water supply pipe can be fully utilized and energy saving is possible. In the pneumatic water storage system, the atmospheric water storage system is used. The amount of water is included, and the advantage is that the amount of compressed air is reduced to increase the volume of stored water and the hygiene of the atmospheric pressure stored water is ensured, and the atmospheric pressure water and pneumatic pressure water It is also about eliminating the consideration for the cycle.

それに対応して、容器内の圧力が連続的に変化することは、ポンプの動作の安定化に役立つ。しかしながら、圧力の変化幅が大きすぎると、速度変動率の範囲が広すぎることによりポンプの動作効率を低下させてしまう。このため、直列接続されるブースターポンプを用いることは省エネを実現できる。   Correspondingly, the continuous change in pressure in the container helps stabilize the operation of the pump. However, if the change width of the pressure is too large, the range of the speed variation rate is too wide, and the operation efficiency of the pump is reduced. Therefore, using booster pumps connected in series can save energy.

直列接続されるブースターポンプを用いる場合、どのように効果的に制御するかの難問がある。   When using booster pumps connected in series, there is a problem of how to control them effectively.

本発明の第3特徴は、容器がブースターポンプの第1管路又は第3管路に接続される場合、第1ポンプが、第1ポンプの排水管を定圧に維持するように制御され、第2ポンプが、第2ポンプの排水管を定圧に維持するように制御されることである。さらに、第2ポンプが設定周波数以上で動作してもよく、第2ポンプの排水管の圧力がある設定値より高い場合、第2ポンプは動作を終了する。   A third feature of the present invention is that when the container is connected to the first or third line of the booster pump, the first pump is controlled to maintain the drainage pipe of the first pump at a constant pressure, The two pumps are controlled to maintain a constant pressure in the drain pipe of the second pump. Further, the second pump may operate at a set frequency or higher, and if the drain pressure of the second pump is higher than a certain set value, the second pump ends the operation.

第2ポンプは第1ポンプの吸水管の圧力を確保し、第2ポンプの排水管の圧力がある設定値より高い場合、第1ポンプの加圧揚程が小さすぎ、速度変動率によって第1ポンプが低効率で動作する。   The second pump secures the pressure of the water suction pipe of the first pump, and when the pressure of the drain pipe of the second pump is higher than a certain set value, the pressure head of the first pump is too small, and the first pump is affected by the speed fluctuation rate. Operates with low efficiency.

本発明の第4特徴は、容器がブースターポンプの第2管路に接続される場合、第1ポンプが依然として排水管の圧力で制御され、第2ポンプが第2ポンプの排水管の圧力に応じて一定幅の周波数変換範囲を設定し、次に第2ポンプの吸水管の圧力で周波数が決定され、第2ポンプの吸水管の圧力が低い場合、前記一定幅の周波数変換範囲内から比較的低い周波数で動作し、圧力が高い場合に、比較的高い周波数で動作することである。   A fourth aspect of the present invention is that when the container is connected to the second line of the booster pump, the first pump is still controlled by the pressure of the drain and the second pump responds to the pressure of the drain of the second pump. A frequency conversion range of a certain width is set, and then the frequency is determined by the pressure of the water absorption pipe of the second pump. When the pressure of the water absorption pipe of the second pump is low, the frequency conversion range of the certain width is relatively set. It operates at a low frequency and, at high pressure, at a relatively high frequency.

ポンプの特性曲線に基づき、第2ポンプが平衡容器の圧力で動作し、且つ、第2給水管の圧力が高い場合、第2ポンプの流量が大きく、圧力が低い場合、第2ポンプの流量が小さい。   Based on the characteristic curve of the pump, when the second pump operates at the pressure of the equilibrium container and the pressure of the second water supply pipe is high, the flow rate of the second pump is large, and when the pressure is low, the flow rate of the second pump is small.

第4特徴は、ポンプの制御方法であって、第1パラメータポイントに基づいて1つの周波数変換範囲を設定し、第2パラメータポイントに基づいて具体的な周波数変換周波数を決定し、前記周波数変換範囲は、ポンプの特性曲線によって決定され、流量及び揚程を調整する。   A fourth feature is a pump control method, wherein one frequency conversion range is set based on a first parameter point, and a specific frequency conversion frequency is determined based on a second parameter point. Is determined by the characteristic curve of the pump and regulates the flow rate and head.

上記いずれか1つの特徴も独立して用いることができる。   Any one of the above features can also be used independently.

従来技術において、CECS 211−2012第5.0.6条には、安定化タンクの水容積が1分間の設計流量以上であると規定され、この容積はCJ/T 254−2014第5.4.3.1条に規定されるものに等しく、GB 50015−2003(2009年版)第3.7.4条におけるポンプのポンプ井戸の容積(3分間)より小さい。真空レギュレータを起動させ、用水ピーク時に、ポンプが設計流量で動作し、これらの要素が互いに補完する確率は高いため、容器に渦流防止装置を用いる必要がある。   In the prior art, CECS 211-2012 Article 5.0.6 stipulates that the stabilizing tank water volume is greater than or equal to the design flow rate per minute, which is CJ / T 254-2014 5.4. Equivalent to that specified in Article 3.1 and smaller than the pump well volume (3 minutes) of the pump in GB 50015-2003 (2009 edition) Article 3.7.4. It is necessary to use an anti-vortex device on the vessel because the vacuum regulator is activated and the pump operates at the designed flow rate during peak water usage and these elements are more likely to complement each other.

CECS 211−2012第5.0.6条には、タンク型非負圧低位貯水タンクの容積が1時間−2時間のうちの1時間当たりの最大流量であると規定され、GB 50015−2003(2009年版)第3.7.2条又は第3.7.3条における用水調整量又は有効容積(日間用水量の20%が約2時間のうちの1時間当たりの最大流量である)に近い。   CECS 211-2012 Article 5.0.6 stipulates that the volume of a tank type non-negative pressure lower water storage tank is the maximum flow rate per hour of 1 hour to 2 hours, and GB 50015-2003 (2009). (Year version) It is close to the water adjustment amount or effective volume (20% of daily water amount is the maximum flow rate per hour in about 2 hours) in Article 3.7.2 or 3.7.3.

本発明の出願人は、非負圧給水装置の使用効果が高い地域で、貯水タンクを使用する複数の事例を追跡したところ、安全貯水量が大きすぎることを見出した。それは、GB 50974−2014第5.1.13条における要件が以前のGB 50015−2003(2009年版)第3.8.6条に重視化されておらず、代表例として、側壁出口を用いた貯水タンクがいずれの手段も取らないという現象に繋がる可能性がある。   The applicant of the present invention has traced a plurality of cases of using a water storage tank in an area where the non-negative pressure water supply device is highly used, and found that the safe water storage amount is too large. It is that the requirements in GB 50974-2014 Article 5.1.13 were not emphasized in the previous GB 50015-2003 (2009 edition) Article 3.8.6, and as a representative example, a sidewall outlet was used. It may lead to the phenomenon that the water tank does not take any measures.

慎重に、磁気フラップレベルゲージを用いて、既存の貯水タンク内の水位の変化を連続的に記録することができる。   Carefully, a magnetic flap level gauge can be used to continuously record changes in water level in existing water storage tanks.

図1は給水システムを示す図である。FIG. 1 is a diagram showing a water supply system. 図2は本発明の給水システムを示す図である。FIG. 2 is a diagram showing a water supply system of the present invention. 図3は本発明の容器内の水位を示す図である。FIG. 3 is a diagram showing the water level in the container of the present invention. 図4は渦流防止装置が設けられる容器を示す図である。FIG. 4 is a view showing a container provided with an eddy current prevention device. 図5は本発明のブースターポンプの接続管路を示す図である。FIG. 5 is a view showing a connecting pipe line of the booster pump of the present invention. 図6は本発明のブースターポンプの接続管路を示す図である。FIG. 6 is a view showing a connecting pipe line of the booster pump of the present invention. 図7は本発明のブースターポンプの接続管路を示す図である。FIG. 7 is a view showing a connecting pipe line of the booster pump of the present invention. 図8は本発明を分析するための図である。FIG. 8 is a diagram for analyzing the present invention. 図9は本発明を分析するための図である。FIG. 9 is a diagram for analyzing the present invention.

図1に給水システムを示しており、該給水システムは、第1給水管2、吸気弁1、容器3、第1ポンプ4、用水管5から構成される。さらに、第2給水管6、第2ポンプ10を備え、さらに第1弁7、第2弁8、第3弁9を備え、さらに給水本管11と、容器3に接続される管路12とを備える。   FIG. 1 shows a water supply system, which is composed of a first water supply pipe 2, an intake valve 1, a container 3, a first pump 4, and a water pipe 5. Furthermore, the second water supply pipe 6 and the second pump 10 are provided, the first valve 7, the second valve 8 and the third valve 9 are further provided, and further, the water supply main pipe 11 and the pipe line 12 connected to the container 3 are provided. Equipped with.

第1給水管2及び第2給水管6は給水本管11に接続され、第1給水管2、第2給水管6にはそれぞれ開閉弁が設けられている。給水本管11又は第1給水管2又は第2給水管6の管路の高点に吸気弁1が設けられ、逆流防止装置の前側にさらに1つの吸気弁が設けられ、該吸気弁によって給水本管11に負圧を発生させないようにする。第1給水管2は容器3に接続され、容器3は第1ポンプ4の吸水管に接続され、第1ポンプ4の排水管は用水管5に接続されている。   The first water supply pipe 2 and the second water supply pipe 6 are connected to the water supply main pipe 11, and the first water supply pipe 2 and the second water supply pipe 6 are provided with open / close valves, respectively. An intake valve 1 is provided at a high point of a pipeline of the water supply main pipe 11 or the first water supply pipe 2 or the second water supply pipe 6, and one intake valve is further provided on the front side of the backflow prevention device. Prevent negative pressure from being generated in the main pipe 11. The first water supply pipe 2 is connected to the container 3, the container 3 is connected to the water absorption pipe of the first pump 4, and the drainage pipe of the first pump 4 is connected to the water pipe 5.

通常、水が給水本管11、第1給水管2を通して容器3に入り、容器3内の水が第1ポンプ4によって用水管5に加圧供給される。   Usually, water enters the container 3 through the water supply main pipe 11 and the first water supply pipe 2, and the water in the container 3 is pressurized and supplied to the water pipe 5 by the first pump 4.

給水本管11の水圧が低下すると、給水本管11に接続される管路又は公共管網の流量が大きく、抵抗が増加することが示されており、その結果、給水本管11の水圧が低下し、それに応じて容器3の圧力が低下し、容器3内のガスが膨張して、貯水量が減少し、減少した貯水量は、用水管5の用水量として補充され、このように、給水量を減少させて、公共管網の流量を減少させ、抵抗を減少させ、給水圧力を維持する役割を果たす。   It has been shown that when the water pressure of the water supply main 11 decreases, the flow rate of the pipeline or public network connected to the water supply main 11 increases and the resistance increases. As a result, the water pressure of the water supply main 11 increases. The water pressure in the container 3 decreases, the gas in the container 3 expands accordingly, the amount of stored water decreases, and the decreased amount of stored water is replenished as the amount of water in the water pipe 5, thus, It serves to reduce the water supply, reduce the flow in the public network, reduce the resistance and maintain the water supply pressure.

限界圧力に対応するまで給水本管の給水量がさらに減少する場合、給水本管11は給水を停止し、この時、容器3内の水位が第2水位に対応する。容器3内の第2水位から第1水位までの貯水量を用水管5の用水量として連続的に補充し、容器3内のガスの膨張に従って、第1給水管2に設置される吸気弁1が吸気するまで圧力が連続的に低下する。容器内にさらに最低水位が設定される場合、前記吸気を容器3に補充し、容器3内の第1水位から最低水位までの貯水量を用水管5の用水量として連続的に補充する。タンク型非負圧給水装置の貯水タンクの給水状態に相当する。   If the amount of water supplied to the main water supply further decreases until it corresponds to the limit pressure, the main water supply 11 stops supplying water, and at this time, the water level in the container 3 corresponds to the second water level. The water storage amount from the second water level to the first water level in the container 3 is continuously replenished as the water amount of the water pipe 5, and the intake valve 1 installed in the first water supply pipe 2 according to the expansion of the gas in the container 3 The pressure decreases continuously until the air is taken. When the lowest water level is further set in the container, the intake air is replenished in the container 3, and the stored water amount from the first water level to the lowest water level in the container 3 is continuously replenished as the water amount in the water pipe 5. It corresponds to the water supply state of the water storage tank of the tank type non-negative pressure water supply device.

給水本管11の給水量が減少し又は水圧が限界圧力まで低下する場合、第2給水管6を閉じ、容器3内の水位が第2水位以下である場合、第3弁9をオンにすることができ、容器3は第1ポンプの吸水管に接続されるとともに、第2ポンプ10の吸水管に接続され、このように、いつでも給水揚程を増加させることができる。   When the water supply amount of the water supply main 11 decreases or the water pressure decreases to the limit pressure, the second water supply pipe 6 is closed, and when the water level in the container 3 is equal to or lower than the second water level, the third valve 9 is turned on. It is possible to connect the container 3 to the water suction pipe of the first pump and to the water suction pipe of the second pump 10, thus increasing the water supply head at any time.

給水本管11の水圧が高く、給水量が十分であり、容器3が最高水位に対応する場合、第1給水管2を閉じ、第2給水管6を第1ポンプ4の吸水管に接続し、又は、第1弁7をオンにして、容器3を第1ポンプ4の排水管に接続することができ、この場合、容器3は第1ポンプ4の空気圧水タンクとして使用される。調整装置無しの非負圧給水装置に相当する。   When the water pressure of the water supply main 11 is high and the amount of water supply is sufficient and the container 3 corresponds to the maximum water level, the first water supply pipe 2 is closed and the second water supply pipe 6 is connected to the water intake pipe of the first pump 4. Alternatively, the first valve 7 can be turned on to connect the container 3 to the drain of the first pump 4, in which case the container 3 is used as a pneumatic water tank for the first pump 4. It corresponds to a non-negative pressure water supply device without a regulator.

給水本管11の水圧が用水管5に必要な圧力より高い場合、第1弁7、第3弁9を次々とオンにし、第2給水管を用水管5に接続して、それにより、直接給水システムを構成する。   If the water pressure of the water main 11 is higher than the pressure required for the water pipe 5, the first valve 7 and the third valve 9 are turned on one after the other, and the second water pipe is connected to the water pipe 5, thereby directly Configure a water supply system.

図2は本発明の給水システムを示し、該給水システムは、基本的な給水システム形態である。図1中の第1給水管2、吸気弁1、容器3、第1ポンプ4、用水管5を備える。さらに第1ポンプ4の空気圧水タンク13を備える。   FIG. 2 illustrates the water supply system of the present invention, which is a basic water supply system configuration. A first water supply pipe 2, an intake valve 1, a container 3, a first pump 4, and a water pipe 5 in FIG. 1 are provided. Furthermore, the pneumatic water tank 13 of the first pump 4 is provided.

空気圧水タンク13の作用としては、圧力保持、すなわち、第1ポンプ4を未使用又は流量が小さすぎる時に停止することと、用水管5の用水量が急に変化する場合、急に変化する流量を補充又は平衡化させ、第1ポンプの動作状態を安定化することとがある。前記流量の急な変化は、流量が大きい場合、相対変化幅が小さく、影響が小さく、流量が小さい場合、相対変化幅が大きく、影響が大きい。図1中、容器3がブースターポンプ4(又は第2ポンプ10を含む。以下同様)の吸水管に接続される場合、容器3の水位が低く、最高水位以下にあり、それは、給水本管11又は用水管5の抵抗が大きく、流量が大きいことを示しており、容器3がブースターポンプ4の排水管に接続される場合、最高水位以上にあり、それは、給水管2又は用水管5の抵抗が小さく、流量が小さいことを示しており、流量が急に変化する特徴に一致する。   The action of the pneumatic water tank 13 is to maintain the pressure, that is, to stop the first pump 4 when it is unused or when the flow rate is too small, and when the amount of water in the water pipe 5 suddenly changes, the flow rate that changes abruptly. May be supplemented or balanced to stabilize the operating state of the first pump. The sudden change in the flow rate has a small relative change width and a small influence when the flow rate is large, and has a large relative change width and a large influence when the flow rate is small. In FIG. 1, when the container 3 is connected to the water suction pipe of the booster pump 4 (or the second pump 10; the same applies hereinafter), the water level of the container 3 is low and is below the maximum water level, which is the water supply main 11 Or, the resistance of the water pipe 5 is large, indicating that the flow rate is large, and when the container 3 is connected to the drain pipe of the booster pump 4, it is above the maximum water level, which is the resistance of the water supply pipe 2 or the water pipe 5. Is small, indicating that the flow rate is small, which is consistent with the characteristic that the flow rate changes abruptly.

図3は本発明の容器3内の水位を示す。第1水位101及び第2水位102が設定される。第1水位101の高さに対応するように、第1給水管2が接続され、さらに排気弁14が設けられている。容器3にはさらに排水管17が設けられている。第1水位101以下にさらに最低水位104が設定され、第2水位102以上にさらに第3水位103が設定される。第2水位102と第3水位103との間に、さらに最高水位105及び起動水位106がある。   FIG. 3 shows the water level in the container 3 of the present invention. The first water level 101 and the second water level 102 are set. The first water supply pipe 2 is connected so as to correspond to the height of the first water level 101, and an exhaust valve 14 is further provided. The container 3 is further provided with a drainage pipe 17. The lowest water level 104 is further set below the first water level 101, and the third water level 103 is further set above the second water level 102. Between the second water level 102 and the third water level 103, there is a maximum water level 105 and a starting water level 106.

第1水位101は常圧、第2水位102は第1給水管2の限界圧力、最高水位105は第1給水管2の最高圧力、起動水位106は用水管の最小給水圧力であるブースターポンプの起動圧力に対応し、第2水位はさらにブースターポンプの給水管の圧力に対応し、第3水位103はブースターポンプの排水管の圧力に対応する。最高水位105は、給水管網の流量が減少して、抵抗が減少するときの水位であり、起動水位106は、用水管網の流量が減少して、抵抗が減少するときの水位である。最高水位105が起動水位106より高く、ひいては第3水位103より高い場合、給水には、直接給水方式を用いてもよい。   The first water level 101 is normal pressure, the second water level 102 is the limit pressure of the first water supply pipe 2, the highest water level 105 is the highest pressure of the first water supply pipe 2, and the starting water level 106 is the minimum water supply pressure of the water pipe. The second water level further corresponds to the pressure of the feed pipe of the booster pump, the third water level 103 corresponds to the pressure of the drain pipe of the booster pump, which corresponds to the starting pressure. The maximum water level 105 is the water level when the flow rate of the water supply network decreases and the resistance decreases, and the starting water level 106 is the water level when the flow rate of the water supply network decreases and the resistance decreases. When the maximum water level 105 is higher than the starting water level 106 and thus higher than the third water level 103, a direct water supply system may be used for water supply.

好ましくは、第1給水管2は第1水位101の高さに接続されるが、第1水位101の高さ以上又は以下に接続されてもよい。第1給水管2が最高水位105以上に接続される場合、実際水位が最高水位105より高い時、以上の説明のとおり、第1給水管2は閉状態にあり、実際水位が最高水位105より低い時、第1給水管2は容器3内のガスに連通し、給水機関の許可を得た上、配管の抵抗を減少させて給水圧力を十分に利用するために給水本管11に設けられる逆流防止装置を省略することができる。   Preferably, the first water supply pipe 2 is connected to the height of the first water level 101, but it may be connected to the height of the first water level 101 or higher. When the first water pipe 2 is connected to the maximum water level 105 or higher, when the actual water level is higher than the maximum water level 105, as described above, the first water pipe 2 is in the closed state and the actual water level is higher than the maximum water level 105. When the temperature is low, the first water supply pipe 2 is provided in the water supply main pipe 11 so as to communicate with the gas in the container 3 and obtain the permission of the water supply engine, and also to reduce the resistance of the pipe and fully utilize the water supply pressure. The backflow prevention device can be omitted.

さらに排気弁14の高さ以上に排気弁15を設置してもよく、さらに排気弁14の高さ以下に排気弁16を設置してもよい。排気弁15及び排気弁16を設置する目的は、容器内の圧縮されたガス量を調整し、つまり第1水位A1の設置高さを調整することにある。排気弁15の弁をオンにすると、圧縮空気量を減少させることに相当し、排気弁16の弁をオンにすると、圧縮空気量を増加させることに相当する。第1水位が排気弁15又は排気弁16の高さに設けられる場合、第2水位、第3水位の高さ及び対応する貯水量は対応して変化するが、対応する圧力は変化しない。   Further, the exhaust valve 15 may be installed above the height of the exhaust valve 14, and the exhaust valve 16 may be installed below the height of the exhaust valve 14. The purpose of installing the exhaust valve 15 and the exhaust valve 16 is to adjust the amount of compressed gas in the container, that is, to adjust the installation height of the first water level A1. Turning on the valve of the exhaust valve 15 corresponds to reducing the amount of compressed air, and turning on the valve of the exhaust valve 16 corresponds to increasing the amount of compressed air. If the first water level is provided at the height of the exhaust valve 15 or the exhaust valve 16, the height of the second water level, the third water level and the corresponding amount of stored water change correspondingly, but the corresponding pressure does not change.

圧縮空気量を減少させることは、タンク型非負圧給水装置における貯水タンクの貯水量を増加させることに相当し、圧縮空気量を増加させることは、タンク型非負圧給水装置における貯水タンクの貯水量を減少させることに相当する。このように、本発明の容器は、所定容積に対して、その貯水量をさらに調整することができる。   Reducing the amount of compressed air is equivalent to increasing the amount of water stored in the water tank of the tank-type non-negative pressure water supply device, and increasing the amount of compressed air is the amount of water storage in the water tank of the tank-type non-negative pressure water supply device. Is equivalent to decreasing. Thus, the container of the present invention can further adjust the amount of stored water with respect to a predetermined volume.

排気弁14、排気弁15、排気弁16は、従来技術によるものを用いてもよいし、吸排気弁を用いてもよい。   The exhaust valve 14, the exhaust valve 15, and the exhaust valve 16 may be conventional ones or intake / exhaust valves.

図4は容器を示し、該容器は空気圧水タンクであるとともに、常圧水タンクとして用いられ、排水管17に接続される容器内に渦流防止装置18が設けられている。   FIG. 4 shows a container, which is a pneumatic water tank, is used as a normal pressure water tank, and is provided with a swirl preventive device 18 in the container connected to the drain pipe 17.

図5は本発明のブースターポンプの接続管路の最初の図面である。第1ポンプ4の吸水管19に第2ポンプ10が並列接続され、第2ポンプ10に並列接続される管路には、第2ポンプ10の迂回管である逆止弁21が設けられている。第2ポンプ10はさらに第1ポンプ4の排水管20に並列接続されてもよい。   FIG. 5 is the first drawing of the connecting line of the booster pump of the present invention. The second pump 10 is connected in parallel to the water suction pipe 19 of the first pump 4, and the check valve 21 which is a bypass pipe of the second pump 10 is provided in the pipeline connected in parallel to the second pump 10. . The second pump 10 may be further connected in parallel to the drain pipe 20 of the first pump 4.

図6は本発明のブースターポンプの接続管路の2番目の図面である。第1管路22は第1ポンプ4の排水管20に接続され、第1管路22には第1弁7が設けられている。第2管路23及び第1ポンプ4の吸水管19は第2ポンプ10の排水管の片側に接続され、第2管路23には第2弁8が設けられている。第3管路24は第2ポンプ10の吸水管に接続され、第3管路24には第3弁9が設けられている。第1管路22、第2管路23、第3管路24は管路12に接続されている。逆止弁21は第2ポンプ10の迂回管に設けられている。   FIG. 6 is a second drawing of the connecting line of the booster pump of the present invention. The first pipe line 22 is connected to the drain pipe 20 of the first pump 4, and the first pipe line 22 is provided with the first valve 7. The second pipe 23 and the water suction pipe 19 of the first pump 4 are connected to one side of the drain pipe of the second pump 10, and the second pipe 23 is provided with the second valve 8. The third pipe line 24 is connected to the water suction pipe of the second pump 10, and the third pipe line 24 is provided with a third valve 9. The first conduit 22, the second conduit 23, and the third conduit 24 are connected to the conduit 12. The check valve 21 is provided in the bypass pipe of the second pump 10.

図7は本発明のブースターポンプの接続管路の3番目の図面である。第2ポンプ10の吸水管はさらに第3ポンプ27に並列接続されてもよく、接続管路の各圧力部にさらに第1管路22、第2管路23、第3管路24及び管路26が設けられていてもよい。   FIG. 7 is a third drawing of the connecting line of the booster pump of the present invention. The water suction pipe of the second pump 10 may be further connected in parallel to the third pump 27, and the first pipe line 22, the second pipe line 23, the third pipe line 24 and the pipe line may be further connected to each pressure portion of the connection pipe line. 26 may be provided.

図5−図7に対して、第2ポンプ10を第1ポンプ4の排水管20に接続し、又は第3ポンプ27を第1ポンプ4の排水管20又は第2ポンプ10の排水管に接続する等は、当業者が上記構想に基づいて実現できるため、詳細な説明は省略する。   5 to 7, the second pump 10 is connected to the drain pipe 20 of the first pump 4, or the third pump 27 is connected to the drain pipe 20 of the first pump 4 or the drain pipe of the second pump 10. Since the above can be realized by those skilled in the art based on the above concept, detailed description thereof will be omitted.

図8は本発明を分析するための最初の図面である。図8から分かるように、本発明では、第1給水管2及び容器3から構成される貯水容積が2つのシステムの高点を形成するが、さらに2つ以上のシステムの高点を形成してもよい。水流方向において、第1システムの高点に吸気弁1が設けられ、ほかのシステムの高点がガスを貯蔵及び圧縮する容積を形成する。容器内に貯蔵される水量を使用するとき、吸気弁1から吸気し、第1水位以下の貯水を補充するとき、排気弁14から排気する。吸気弁1は管路の高点に設置され、配管内の真空破壊時に生成したガス以外のガスを排出するように吸排気弁を使用してもよく、排気弁14も、第1水位以下の貯水を使用する時の吸気量を補充するように、吸排気弁を用いてもよい。   FIG. 8 is the first drawing for analyzing the present invention. As can be seen from FIG. 8, in the present invention, the water storage volume composed of the first water supply pipe 2 and the container 3 forms the high point of two systems, but further forms the high point of two or more systems. Good. In the water flow direction, the intake valve 1 is provided at the high point of the first system, and the high point of the other system forms a volume for storing and compressing gas. When the amount of water stored in the container is used, the intake valve 1 inhales, and when the stored water below the first water level is replenished, it is exhausted from the exhaust valve 14. The intake valve 1 is installed at a high point of the pipeline, and an intake / exhaust valve may be used so as to discharge a gas other than the gas generated at the time of breaking the vacuum in the pipe. An intake / exhaust valve may be used so as to replenish the intake amount when using the stored water.

前記システムの高点は、静圧の比較的低い点、又はガスが集中した箇所である。前記ほかのシステムの高点は、第1水位の水面高さを平衡化させるために、管路に接続されてもよい。   The high point of the system is the point where the static pressure is relatively low or where the gas is concentrated. The high point of the other system may be connected to a conduit to balance the water level at the first water level.

第1給水管2に第1システムの高点を形成させることは容易である。   It is easy to make the first water pipe 2 form the high point of the first system.

図9は本発明を分析するための2番目の図面である。容器3の圧力が第1給水管2の水圧に対応するため、排気弁14が排気するとき又は容器3内の圧縮ガスが圧力を増加させるとき、第1給水管2は給水状態にあり、水流方向は排気方向と逆である。一方、静止状態にある時、第1給水管2が容器3内のガス集中箇所に接続される場合、ガス遮断手段を取るべきである。又は、吸気弁1の排気機能をなくし、又は容器外にガス遮断装置28を設置し、又は容器内にガス遮断装置29を設置する。   FIG. 9 is a second drawing for analyzing the present invention. Since the pressure of the container 3 corresponds to the water pressure of the first water supply pipe 2, the first water supply pipe 2 is in the water supply state when the exhaust valve 14 exhausts or when the compressed gas in the container 3 increases the pressure, The direction is opposite to the exhaust direction. On the other hand, when the first water supply pipe 2 is connected to the gas concentration point in the container 3 in the stationary state, the gas cutoff means should be taken. Alternatively, the exhaust function of the intake valve 1 is eliminated, or the gas shutoff device 28 is installed outside the container, or the gas shutoff device 29 is installed inside the container.

以上のように、本発明の給水システム及びその容器、並びにブースターポンプは、本発明の構想の基本的な形態であり、給水方法を含むいかなる改良も本発明の保護範囲内に含まれる。   As described above, the water supply system of the present invention, the container thereof, and the booster pump are the basic forms of the concept of the present invention, and any improvement including the water supply method is included in the protection scope of the present invention.

Claims (10)

給水システムであって、第1給水管、容器、第1ポンプ、用水管を備え、容器が第1給水管と第1ポンプの吸水管との間に接続され、第1ポンプの排水管が用水管に接続され、
前記容器は、第1水位及び第2水位が設定され、第1水位は大気圧に対応し、第2水位は第1給水管の水圧に対応し、貯水の水位が前記第1水位と第2水位との間にある場合、気体圧力により貯水することを特徴とする給水システム。
A water supply system comprising a first water supply pipe, a container, a first pump, and a water pipe, the container being connected between the first water supply pipe and the water intake pipe of the first pump, and the drain pipe of the first pump being used. Connected to a water pipe,
A first water level and a second water level are set in the container, the first water level corresponds to the atmospheric pressure, the second water level corresponds to the water pressure of the first water supply pipe, and the stored water level is the first water level and the second water level. A water supply system characterized by storing water by gas pressure when it is between the water level and the water level.
さらに吸気弁を備え、前記第1給水管に前記吸気弁が設けられ、前記吸気弁が開放されると、前記容器内にガスを圧縮し、前記容器内に圧縮されたガス量は、前記吸気弁が前記容器の外部から吸い込んだ空気量に等しい、ことを特徴とする請求項1に記載の給水システム。 Further, an intake valve is provided, the intake valve is provided in the first water supply pipe, and when the intake valve is opened, gas is compressed in the container, and the amount of gas compressed in the container is the intake gas. The water supply system according to claim 1, wherein the valve is equal to the amount of air sucked from the outside of the container . 前記容器は、第2水位より高い第3水位がさらに設定され、
第2水位は、第1ポンプの吸水管の圧力に対応し、
第3水位は第1ポンプの排水管の圧力に対応することを特徴とする請求項1に記載の給水システム。
The container is further set with a third water level higher than the second water level,
The second water level corresponds to the pressure of the suction pipe of the first pump,
The water supply system according to claim 1, wherein the third water level corresponds to the pressure of the drain pipe of the first pump.
第1水位より低い最低水位が設定され、前記容器内の第1水位から最低水位までの貯水量を用水管の用水量として連続的に補充貯水の水位が第1水位と最低水位との間にある場合、定常圧により貯水することを特徴とする請求項1〜3のいずれか1項に記載の給水システム。 The lowest water level lower than the first water level is set, and the stored water volume from the first water level to the lowest water level in the container is continuously replenished as the water volume of the water pipe, and the stored water level is the first water level and the lowest water level. The water supply system according to any one of claims 1 to 3, wherein the water is stored at a constant pressure when the water supply is in between. 前記容器の排水口に渦流防止装置が設けられていることを特徴とする請求項1〜4のいずれか1項に記載の給水システム。 The water supply system according to any one of claims 1 to 4, wherein a swirl preventive device is provided at a drain port of the container. さらに第2ポンプを備え、第2ポンプは第1ポンプの吸水管に並列接続されことを特徴とする請求項1〜5のいずれか1項に記載の給水システム。 Further comprising a second pump, the second pump is a water supply system according to any one of claims 1-5, characterized in that that will be connected in parallel to the suction pipe of the first pump. 第2ポンプの吸入管路は第3管路を設け、第1ポンプが第2ポンプに接続される管路に第2管路を設け、第3管路が第2吸入管路に接続され、第2管路が前記容器に接続される、請求項6に記載の給水システム。  The suction pipeline of the second pump is provided with a third pipeline, the first pump is provided with a second pipeline in the pipeline connected to the second pump, and the third pipeline is connected with the second suction pipeline. The water supply system according to claim 6, wherein a second pipeline is connected to the container. 前記第1ポンプの排水管路は第1管路を設け、第1管路が前記容器に接続される、請求項6に記載の給水システム。  The water supply system according to claim 6, wherein the drainage pipeline of the first pump is provided with a first pipeline, and the first pipeline is connected to the container. 第1ポンプが、第1ポンプの排水管を定圧に維持するように制御され、第2ポンプが、第2ポンプの排水管を定圧に維持するように制御され、第2ポンプは、設定周波数以上で動作し、第2ポンプの排水管の圧力がある設定値より高い場合、動作を終了することを特徴とする請求項6に記載の給水システム。 The first pump is controlled to maintain the drain pipe of the first pump at a constant pressure, the second pump is controlled to maintain the drain pipe of the second pump at a constant pressure, and the second pump is equal to or higher than a set frequency. The water supply system according to claim 6, wherein the water supply system according to claim 6, wherein the drainage pipe pressure of the second pump is higher than a certain set value, the operation is terminated. 第1ポンプ及び第2ポンプの制御方法は、第1パラメータポイントに基づいて1つの周波数変換範囲を設定し、第2パラメータポイントに基づいて具体的な周波数変換周波数を決定し、前記周波数変換範囲は、ポンプの特性曲線によって決定され、流量及び揚程を調整することを特徴とする請求項6に記載の給水システム。


The control method of the first pump and the second pump sets one frequency conversion range based on the first parameter point, determines a specific frequency conversion frequency based on the second parameter point, and the frequency conversion range is The water supply system according to claim 6, wherein the flow rate and the head are adjusted by the characteristic curve of the pump.


JP2018548212A 2016-03-18 2017-03-17 Water supply system and its container, booster pump, water supply method Expired - Fee Related JP6684360B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610167576.6A CN105696654A (en) 2016-03-18 2016-03-18 Water supply system and container and boost pump thereof and water supply method
CN201610167576.6 2016-03-18
PCT/CN2017/000235 WO2017157088A1 (en) 2016-03-18 2017-03-17 Water supply system and container and booster water pump thereof, and water supply method

Publications (2)

Publication Number Publication Date
JP2019510146A JP2019510146A (en) 2019-04-11
JP6684360B2 true JP6684360B2 (en) 2020-04-22

Family

ID=56232377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018548212A Expired - Fee Related JP6684360B2 (en) 2016-03-18 2017-03-17 Water supply system and its container, booster pump, water supply method

Country Status (4)

Country Link
US (1) US20190010681A1 (en)
JP (1) JP6684360B2 (en)
CN (1) CN105696654A (en)
WO (1) WO2017157088A1 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2545899B (en) * 2015-12-21 2018-07-25 Imperial Innovations Ltd Management of liquid conduit systems
CN105696654A (en) * 2016-03-18 2016-06-22 石连科 Water supply system and container and boost pump thereof and water supply method
EP3385163B1 (en) * 2017-04-07 2024-03-27 Airbus Operations GmbH An aircraft comprising a high-pressure water supply and distribution system
CN107700600A (en) * 2017-10-31 2018-02-16 安徽舜禹水务股份有限公司 Three pot type network pressure superposition water supply systems
CN109750717A (en) * 2017-11-03 2019-05-14 山东宏科水电设备有限公司 Box type negative-pressure-free supply equipment
US10612215B2 (en) * 2018-02-14 2020-04-07 Living Water Storage Solutions LLC Water storage systems
US11306464B2 (en) 2018-02-14 2022-04-19 Living Water Storage Solutions LLC Water storage systems
CN109577415B (en) * 2018-11-26 2021-05-11 南京工业大学 Box type non-negative pressure water supply system and control optimization method thereof
CN109916729B (en) * 2019-04-02 2024-04-02 山东省医疗器械产品质量检验中心 Device for testing bursting pressure of catheter under static condition and working method thereof
CN109903668A (en) * 2019-04-18 2019-06-18 桂林理工大学 A kind of multifunctional water pump experimental provision
CN110185097A (en) * 2019-06-17 2019-08-30 上海威派格智慧水务股份有限公司 A kind of electricity separation cabinet and its installation method of the integration without negative pressure equipment
CN110468913A (en) * 2019-06-20 2019-11-19 上海威派格智慧水务股份有限公司 A kind of dedicated pressurization supply equipment of integration water supply transformation
CN110470057A (en) * 2019-07-19 2019-11-19 华帝股份有限公司 Gas heater
US11066286B1 (en) * 2019-07-23 2021-07-20 Thomas Mullenaux Water dispensing system for furniture
CN110593349B (en) * 2019-08-22 2021-08-27 上海威派格智慧水务股份有限公司 Variable-frequency pressurized water supply equipment and working method thereof
CN110886347A (en) * 2019-11-07 2020-03-17 杭州沃德水泵制造有限公司 Pressure-dividing box type water supply equipment
CN110924477A (en) * 2019-12-06 2020-03-27 湖南华振供水设备有限公司 Full frequency conversion intelligent compensation type pressure-superposed water supply equipment
CN111287258A (en) * 2020-02-12 2020-06-16 长沙扬翔饲料有限责任公司 Fire hydrant pressure-stabilizing water supply system and process
US11427458B2 (en) * 2020-03-24 2022-08-30 Aquaphant, Inc. Re-fillable drinking container for use with a water-dispensing system
US11371224B2 (en) * 2020-03-24 2022-06-28 Aquaphant, Inc. Water-dispensing method for furniture
DE202020102937U1 (en) * 2020-05-22 2020-07-01 Fidica Gmbh & Co. Kg Modular tube
CN111997144B (en) * 2020-08-26 2021-09-21 无锡康宇水处理设备有限公司 Outdoor integral intelligent pipe network pressure-superposed water supply equipment
CN111997143B (en) * 2020-08-26 2022-05-06 埃梯梯智慧水务科技有限公司 Energy-saving optimized pipe network pressure-superposed water supply control system
CN111997142B (en) * 2020-08-26 2021-09-24 无锡康宇水处理设备有限公司 Flow compensation non-negative pressure pipe network pressure-superposed energy-saving water supply control system
CN112343122B (en) * 2020-10-27 2022-02-15 杭州沃德水泵制造有限公司 Secondary water supply equipment
CN112359922A (en) * 2020-11-16 2021-02-12 中国电子系统工程第三建设有限公司 Novel no negative pressure device
CN112526868B (en) * 2020-11-17 2022-10-28 海南蓝宇科技有限公司 Control method of secondary pressurization domestic water supply system
CN112523297A (en) * 2020-12-11 2021-03-19 吉林建筑大学 Pressure stability control system of non-negative pressure water supply system
CN114947037A (en) * 2021-02-25 2022-08-30 临沂连科环保科技有限公司 Gravity water pressure continuous sterilization equipment
CN113089766A (en) * 2021-03-29 2021-07-09 杭州杭开环境科技有限公司 Compensation type non-negative-pressure pressurization direct-connection water supply equipment
CN113279455A (en) * 2021-05-30 2021-08-20 上海上锐泵业(集团)有限公司 Totally-enclosed energy-saving water-saving secondary pressure-superposed water supply equipment
CN113389249B (en) * 2021-06-17 2022-08-30 无锡市城乡给排水工程设计院有限责任公司 Air circulation device in secondary water supply stainless steel water tank
CN113431146A (en) * 2021-07-26 2021-09-24 安徽蓝博供水设备有限公司 Tank type non-negative pressure water supply equipment
CN113482105B (en) * 2021-08-02 2022-05-17 安徽皖水水务发展有限公司 Anti-pollution filtering type wisdom water supply system
CN113605496B (en) * 2021-09-06 2023-07-14 宁夏水投科技股份有限公司 Non-negative pressure variable frequency constant pressure water supply equipment
CN114047789B (en) * 2021-11-10 2023-08-18 深圳安吉尔饮水产业集团有限公司 Water tank water replenishing control method
CN114277888A (en) * 2021-12-17 2022-04-05 上海邦布科技集团有限公司 Negative pressure-free water supply equipment with negative ion purification function
CN114541522A (en) * 2022-02-26 2022-05-27 王坤 Non-negative pressure water supply device capable of intelligently adjusting high, medium and low peak water supply flow
CN114737639B (en) * 2022-04-20 2023-04-07 蓝深集团股份有限公司 Non-negative pressure water supply equipment
CN114855939A (en) * 2022-05-09 2022-08-05 天津中怡建筑规划设计有限公司 Series-parallel connection pressure-superposed water supply system
CN115262702B (en) * 2022-07-29 2023-04-21 上海昊岳泵业制造有限公司 Non-negative pressure water supply device with waterproof backflow function
CN116025035B (en) * 2022-12-23 2023-11-17 北京水利发展有限公司 Control method of same-pressure quantity-keeping multi-unit water supply system
CN116339175B (en) * 2023-05-30 2023-07-25 合肥荣叙科技有限公司 Water supply pump house automatic control system based on big data analysis
CN116715322B (en) * 2023-08-11 2023-10-20 深圳市鹏翔汇星水处理技术有限公司 Water outlet control device of ultrafilter and ultrafilter

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2375590A (en) * 1942-12-15 1945-05-08 Standard Oil Dev Co Settler
US3205664A (en) * 1962-10-30 1965-09-14 Nettel Frederick Method and means for starting and stopping once-through high-pressure steam boilers
JPS4941528Y1 (en) * 1970-08-20 1974-11-14
JPS496663U (en) * 1972-04-18 1974-01-21
JPS5916107B2 (en) * 1973-08-15 1984-04-13 株式会社荏原製作所 How to operate multiple pumps in parallel
JPS56116470U (en) * 1980-01-30 1981-09-07
DE3216013A1 (en) * 1981-01-23 1984-10-25 Joan 6000 Frankfurt Mares Water-conveying system for industrial and domestic water supply installations
JPS6027777B2 (en) * 1981-08-26 1985-07-01 三菱電機株式会社 Direct water supply device
JPS60145486A (en) * 1983-12-30 1985-07-31 Hitachi Ltd Pressure control for pump
US4576552A (en) * 1985-05-06 1986-03-18 Smith Dresden G Air and water volume control apparatus for hydropneumatic tanks
JPS63205496A (en) * 1987-02-20 1988-08-24 Ebara Corp Automatic feed water device
JPH029957A (en) * 1988-06-25 1990-01-12 Toshio Yamamoto Pressure tank water supply system
JP2540692B2 (en) * 1992-05-27 1996-10-09 前澤給装工業株式会社 Water supply device with pre-storage tank
CN1081222A (en) * 1993-05-06 1994-01-26 朴龙奎 Miniaturization, universal energy-saving pneumatic water supply installation
JP3025213B2 (en) * 1997-02-28 2000-03-27 日機装株式会社 Water supply device
JP3567060B2 (en) * 1997-04-25 2004-09-15 株式会社日立産機システム Water supply device for water supply with water storage tank
JP3523489B2 (en) * 1998-04-02 2004-04-26 和夫 菅田 Pump control method
JP2000337264A (en) * 1999-05-25 2000-12-05 Hitachi Ltd Water supply device with reservoir tank for city water
ATE397971T1 (en) * 2004-08-06 2008-07-15 Ecolab Inc DOSING SYSTEM FOR ADDING A LIQUID ADDITIVE TO A PRESSURIZED WATER SUPPLY LINE
US8206123B2 (en) * 2007-06-05 2012-06-26 W. R. Grace & Co.-Conn. Automated yield monitoring and control
US20090107562A1 (en) * 2007-10-29 2009-04-30 Ruibo Wang Pre-pressurized self-balanced negative-pressure-free water-supply apparatus
CN100585101C (en) * 2008-12-10 2010-01-27 王峰 Secondary water supply front equipment and its control method
CN202194188U (en) * 2011-08-18 2012-04-18 王浩 Automatic gas complementing type pressure water supplying device
CN102979138A (en) * 2012-12-20 2013-03-20 山东鲁润热能科技有限公司 Intelligent water supply equipment
CN104727385A (en) * 2013-12-24 2015-06-24 青岛万力科技有限公司 Storage type energy-saving non-negative-pressure variable-frequency water supply equipment
CN104005453B (en) * 2014-06-06 2016-01-20 丹东川宇消防工程有限公司 PLC intelligent double-control fire fighting pressurization voltage stabilization water-feeding equipment
CN105369847A (en) * 2014-08-19 2016-03-02 上海东方威尔节能技术有限公司 Integral energy-saving optimization method for circulating water system
CN105155620A (en) * 2015-09-14 2015-12-16 金剑环保有限公司 Negative pressure-free water supply pump station
CN105201045A (en) * 2015-09-23 2015-12-30 安徽舜禹水务实业有限公司 Box-type pressure-superposed variable-frequency energy-saving water supplying system
CN205917782U (en) * 2016-03-18 2017-02-01 石连科 Water supply system and container and booster water pump thereof
CN105696654A (en) * 2016-03-18 2016-06-22 石连科 Water supply system and container and boost pump thereof and water supply method

Also Published As

Publication number Publication date
CN105696654A (en) 2016-06-22
US20190010681A1 (en) 2019-01-10
WO2017157088A1 (en) 2017-09-21
JP2019510146A (en) 2019-04-11

Similar Documents

Publication Publication Date Title
JP6684360B2 (en) Water supply system and its container, booster pump, water supply method
CN110442160B (en) Air pressure stabilizing device for closed type circulating cooling system
CN214094886U (en) Constant pressure tank mode constant pressure water replenishing device
CN203034538U (en) Novel non-negative pressure water supply device
CN204919687U (en) No negative pressure water supply equipment with water hammer safeguard function
CN207277418U (en) A kind of new subregion intelligent water supply system and water supply installation
CN210421268U (en) Water tower water level control cabinet
CN107700585A (en) A kind of tap water flow control system
CN209083588U (en) A kind of automatic water device
CN203834573U (en) Box-type air pressure fire fighting water supply equipment
CN207582564U (en) A kind of non-negative pressure frequency-changing water supply device
CN210597462U (en) Pipe network non-negative pressure water supply equipment
JP2000328613A (en) Feed water system
CN207775985U (en) Plateau box type negative-pressure-free supercharging water supply system
JPH0239533Y2 (en)
CN207775970U (en) Plateau laminates supercharging water supply system with pot type
CN206288998U (en) A kind of gas-liquid mixing pump pressure air supporting
CN110822681A (en) Fresh water fluctuation device for nuclear power ship air conditioner cold water system
CN208718007U (en) A kind of water impact preventing Non-energy-consumption is from superfeed pressure tank
CN107023052B (en) Double-liquid-level control water tank
CN210315790U (en) Buffer tank type non-negative pressure water supply equipment
CN207776012U (en) Plateau water tank type tap water supply system
CN219909168U (en) Night small-flow pressure-stabilizing water supply system
CN109555183A (en) A kind of novel subregion intelligent water supply system and water supply device
CN203213202U (en) Pressure stabilization type water and steam insulation water storage box and pump station

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200327

R150 Certificate of patent or registration of utility model

Ref document number: 6684360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees