JP2000328613A - Feed water system - Google Patents

Feed water system

Info

Publication number
JP2000328613A
JP2000328613A JP11138579A JP13857999A JP2000328613A JP 2000328613 A JP2000328613 A JP 2000328613A JP 11138579 A JP11138579 A JP 11138579A JP 13857999 A JP13857999 A JP 13857999A JP 2000328613 A JP2000328613 A JP 2000328613A
Authority
JP
Japan
Prior art keywords
water
water supply
water tank
pumping
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11138579A
Other languages
Japanese (ja)
Inventor
Kenichi Kasahara
健一 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASAHARA SETSUBI SEKKEI JIMUSH
KASAHARA SETSUBI SEKKEI JIMUSHO KK
Original Assignee
KASAHARA SETSUBI SEKKEI JIMUSH
KASAHARA SETSUBI SEKKEI JIMUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASAHARA SETSUBI SEKKEI JIMUSH, KASAHARA SETSUBI SEKKEI JIMUSHO KK filed Critical KASAHARA SETSUBI SEKKEI JIMUSH
Priority to JP11138579A priority Critical patent/JP2000328613A/en
Publication of JP2000328613A publication Critical patent/JP2000328613A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a feed water system inexpensively and easily constructed by connecting a pumping feed water pipe having the function of pumping and feed water to the lower part of a high set water tank or a pressure water tank as a main piping system. SOLUTION: A feed water system is formed of a pumping feed water pipe 1 for connecting one end to the discharge port of a feed water pump 3 and connecting the other end to the lower part of a high set water tank 2, and a feed water branch pipe 8 branched from the feed water pipe 1. When a pump 3 is started, water is pumped from the feed water pipe 1 to the water tank 2, and when it reaches a stop water level 21, the pump 3 is stopped. Thereafter, when the faucet of a feed water consumption part is opened, water is fed through the feed water pipe 1 and the branch pipe 8 to the consumption part by gravity. When feed water consumption is advanced, the water level of the water tank 2 is lowered, when it reaches a water level 22, the pump 3 is started again, and water is supplied to the consumption part as soon as water is pumped to the water tank 2. Successively, when a consumption amount is smaller than a pumping amount, it reaches a water level 21, and the pump 3 is stopped. Thereby a cost can be remarkably lessened as compared with two pipe passages of pumping and feed water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は中高層建築等の給
水ポンプより給水枝管までの給水システムに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water supply system from a water supply pump to a water supply branch pipe of a middle-high-rise building or the like.

【0002】[0002]

【従来の技術】従来より中高層建築の給水システムとし
ては、 (イ)給水ポンプにて水源より水を汲み上げ、揚水管を
経て高置水槽に水を揚水貯留し、揚水管とは別の給水管
を経て、重力にて必要箇所に給水する重力給水システ
ム。 (ロ)給水ポンプの吐出口直近に、給水ポンプの電動機
が安全な範囲で最小起動間隔を保てる水量を空気にて蓄
圧した圧力水槽を設け、その圧力により必要箇所に給水
する圧力給水システム。。 (ハ)必要箇所の給水量に応じて、給水ポンプの運転台
数や回転数を制御して給水するポンプ直送給水システム
があった。
2. Description of the Related Art Conventionally, as a water supply system for a middle-to-high-rise building, (a) water is pumped from a water source by a water supply pump, the water is pumped and stored in an elevated water tank via a water pump, and a water pipe different from the water pipe. Gravity water supply system that supplies water to necessary places by gravity. (B) A pressure water supply system in which a pressure water tank is provided in the vicinity of the discharge port of the water supply pump, in which the amount of water that the motor of the water supply pump can maintain the minimum start interval within a safe range is stored by air, and water is supplied to a required portion by the pressure. . (C) There is a direct pumping water supply system that supplies water by controlling the number of operating water pumps and the number of rotations in accordance with the amount of water supply at a required location.

【0003】[0003]

【発明が解決しようとする課題】これは次のような欠点
があった。 (イ)重力給水システムは、揚水と給水の二本の配管が
あり、それなりの配管コストと所要スペースを必要とし
た。 (ロ)また高所に貯留水量の大きい高置水槽があるた
め、大きな建築構造強度が必要とされ、特に地震時の横
方向の応力に対して不利な建築となっていた。(ハ)さ
らに高所の貯留水量の大きい高置水槽は塔屋屋上の外部
に設置されるが、寒冷地においては凍結対策や積雪対策
が必要であった。
This has the following disadvantages. (A) The gravity water supply system has two pipes for pumping and supplying water, which requires a reasonable piping cost and required space. (B) In addition, since there is an elevated water tank with a large amount of stored water at a high place, a large building structural strength is required, and the building is disadvantageous particularly against lateral stress during an earthquake. (C) In addition, an elevated water tank with a large amount of stored water at a high place is installed outside the roof of the tower, but measures against freezing and snow were required in cold regions.

【0004】(イ)圧力給水システムには、給水ポンプ
の吐出口直近に圧力水槽があるために圧力水槽の保有圧
力は、圧力水槽より最高所の給水箇所までの実揚程およ
び流体の摩擦損失水頭と給水箇所の必要水圧を加えた大
きな圧力となり、圧力水槽は大きな構造強度が要求され
た。 (ロ)日本の場合、大きな圧力がかかる圧力水槽は、労
働安全衛生法の規制の対象の圧力容器ともなり法規にも
とずいた点検や、帳票類の作成保管の義務がかせられ
た。
(A) In the pressure water supply system, since the pressure water tank is located immediately near the discharge port of the water supply pump, the pressure held by the pressure water tank is the actual head from the pressure water tank to the highest water supply point and the frictional loss head of the fluid. And the required water pressure at the water supply point increased, and the pressure tank required large structural strength. (B) In Japan, pressure water tanks, which are subject to large pressures, became pressure vessels subject to the regulations of the Industrial Safety and Health Act, and were obliged to perform inspections based on laws and regulations and to prepare and store forms.

【0005】ポンプ直送給水システムには、給水ポンプ
の運転台数や回転数を給水量に応じて制御する複雑な制
御回路や制御部品が必要となり、多大なコストと煩雑な
維持管理を要した。
[0005] The direct pump water supply system requires a complicated control circuit and control parts for controlling the number of operation and the number of rotations of the water supply pump in accordance with the amount of water supply, resulting in enormous cost and complicated maintenance.

【0006】本発明は、上記の欠点を解決した、給水シ
ステムを提供することを目的としている。
An object of the present invention is to provide a water supply system which solves the above-mentioned drawbacks.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の給水システムにおいては、揚水と給水の機
能を併せ持つ揚水給水管1にて主要な配管系として、高
置水槽1又は圧力水槽4の下部に接続する。
In order to achieve the above-mentioned object, in the water supply system of the present invention, a high water tank 1 or a pressure tank is used as a main piping system in a water supply pipe 1 having both functions of water pumping and water supply. Connected to the lower part of the water tank 4.

【0008】また揚水給水管1を高置水槽2又は圧力水
槽4の付近で揚水管11と給水管12に分岐し、揚水管
11を高置水槽1又は圧力水槽4の上部に接続し、給水
管12は揚水時閉止弁7を介して高置水槽1又は圧力水
槽4の下部に接続することもできる。
Further, the pumping water supply pipe 1 is branched into a water pumping pipe 11 and a water supply pipe 12 near the elevated water tank 2 or the pressure water tank 4, and the water pumping pipe 11 is connected to the upper part of the elevated water tank 1 or the pressure water tank 4 to supply water. The pipe 12 can be connected to the lower part of the elevated water tank 1 or the pressure water tank 4 via the pumping shutoff valve 7.

【0009】あるいは、揚水給水管1より高置水槽2又
は圧力水槽4の付近にて分岐した、高置水槽2又は圧力
水槽4の停止水面21の直近の下部へ、揚水時閉止弁7
を有する副給水管13を接続し、揚水給水管1は高置水
槽2又は圧力水槽4の下部に接続することもできる。
Alternatively, a pumping stop valve 7 is provided at a lower portion of the elevated water tank 2 or the pressure water tank 4, which is branched from the pumping water supply pipe 1 in the vicinity of the elevated water tank 2 or the pressure water tank 4, immediately below the stop water surface 21.
And the pumping water supply pipe 1 can be connected to the lower part of the elevated water tank 2 or the pressure water tank 4.

【0010】さらに、給水ポンプ3の揚水量をピーク時
最大給水消費量とし、安全な範囲で給水ポンプの電動機
が最小起動間隔を保てるだけの少容量の高置水槽2又は
圧力水槽4とすることもできる。
Further, the amount of water pumped by the water supply pump 3 is set to the maximum water consumption at the peak time, and the small water tank 2 or the pressure water tank 4 is so small that the electric motor of the water pump can keep the minimum starting interval within a safe range. Can also.

【0011】また、圧力水槽4はできるだけ建物高所に
設けて、圧力水槽の必要圧力を少ないものとすることも
できる。
Further, the pressure water tank 4 can be provided as high as possible in the building to reduce the required pressure of the pressure water tank.

【0012】[0012]

【発明の実施の形態】発明の実施の形態を実施例にもと
ずき図面を参照して説明する。 (イ)図1において、一端がたとえば渦巻型の給水ポン
プ3の吐出口に接続され、他端がたとえばFRP製の高
置水槽2の下部に接続されたたとえば塩化ビニールライ
ニング鋼管製の揚水給水管1と、揚水給水管1より分岐
の単数、または複数のたとえば塩化ビニールライニング
鋼管製の給水枝管8により構成される。 (ロ)給水ポンプ3が起動すると、水は揚水給水管1よ
り高置水槽2へ揚水され停止水面21に水面が達すると
給水ポンプ3を停止させる。 (ハ)その後給水消費箇所の水栓などを開栓すれば高置
水槽2より、揚水給水管1および給水枝管8をとうり給
水消費箇所へ重力にて給水される。 (ニ)給水消費が進むと高置水槽2の水面が下がり、や
がて水面が起動水面22に達したとき、給水ポンプ3が
再び起動し水は高置水槽2へ揚水されるが、同時に給水
消費箇所の水栓などが開栓されていれば、そこにも給水
される。 (ホ)その場合に給水消費量が給水ポンプ3の揚水量よ
り多い場合には、同時に高置水槽2よりも水の供給があ
り、給水消費箇所の給水量をまかない高置水槽2の水面
は下がるが、やがて給水消費量が給水ポンプ3の揚水量
より少なくなると高置水槽2の水面は上昇し、停止水面
21に水面が達すると給水ポンプ3を停止させる。 (ヘ)そのために、従来の技術と同様に算出した、高置
水槽2の容量と給水ポンプ3の揚水量および揚程とす
る。 (ト)あるいは、給水ポンプ3の揚水量をピーク時最大
給水消費量と同じにして、高置水槽2の容量を、少ない
給水消費量のときに給水ポンプ3用電動機の起動間隔が
安全な最小時間を確保できるだけの少容量にすることも
できる。 (チ)また高置水槽2の容量が少さい場合にはたとえば
硬質塩化ビニール管等を利用して高置水槽2を製作する
こともできる。 (リ)給水枝管8のうち高置水槽2に最も近いものを、
揚水給水管1の高置水槽2の接続部に近いところより取
り出し、高置水槽2の水の入れ換えをより早く促すこと
もできる。 (ヌ)さらに停止水面21と起動水面22に合わせた、
たとえばステンレス製の電極棒による水位センサーと連
動したリレーを設け、その信号にてポンプの起動停止の
自動化もできる。 (ル)さらに図2に示されるように、揚水給水管1を複
数とすることもできる。 (ヲ)また図3に示すように高置水槽2も複数にするこ
ともできるが、たとえば仕切弁を用いた弁5を開閉して
その内の1台をバックアップ用とすることができる。 (ワ)あるいは複数の高置水槽2の容量の合計が必要容
量として並列して使用し、どちらかがたとえば清掃時な
どに、他方のみ使用して不完全ながらも断水せぬように
することもできる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings based on embodiments. (A) In FIG. 1, a pumping water supply pipe made of, for example, vinyl chloride lining steel pipe, having one end connected to a discharge port of, for example, a spiral water supply pump 3 and the other end connected to a lower part of an elevated water tank 2 made of, for example, FRP. 1 and one or more water supply branch pipes 8 made of, for example, vinyl chloride lining steel pipes branched from the pumping water supply pipe 1. (B) When the water supply pump 3 is started, water is pumped from the water pumping water supply pipe 1 to the high water tank 2, and when the water surface reaches the stop water surface 21, the water supply pump 3 is stopped. (C) Thereafter, when the faucet or the like at the water supply consuming point is opened, water is supplied from the elevated water tank 2 to the water consuming point through the pumping water supply pipe 1 and the water supply branch pipe 8 by gravity. (D) As the consumption of water supply proceeds, the water level of the elevated water tank 2 drops, and when the water level reaches the activation water surface 22, the water supply pump 3 is activated again and water is pumped to the elevated water tank 2. If the faucet at the location is open, water will also be supplied there. (E) In this case, when the water consumption is larger than the water pumping amount of the water supply pump 3, the water is supplied more than the high water tank 2 at the same time. Although the water level drops, the water level of the elevated water tank 2 rises as soon as the water supply consumption becomes smaller than the pumping amount of the water supply pump 3, and when the water level reaches the stop water level 21, the water supply pump 3 is stopped. (F) For this purpose, the capacity of the high water tank 2, the pumping amount of the water supply pump 3, and the head calculated in the same manner as in the conventional technique are used. (G) Alternatively, the pumping amount of the water supply pump 3 is set to be the same as the maximum water consumption at the peak time, and the capacity of the high water tank 2 is reduced so that the starting interval of the motor for the water supply pump 3 is a minimum when the water consumption is small. The capacity can be made as small as possible to secure time. (H) When the capacity of the elevated water tank 2 is small, the elevated water tank 2 can be manufactured using, for example, a hard vinyl chloride tube. (I) Of the water supply branch pipes 8, the one closest to the elevated tank 2
It is also possible to take out the pumping water supply pipe 1 from a position near the connection part of the elevated water tank 2 and promptly replace the water in the elevated water tank 2 more quickly. (Nu) Further, the water level was adjusted to the stop water surface 21 and the start water surface 22,
For example, a relay interlocked with a water level sensor using a stainless steel electrode rod can be provided, and the signal can be used to automate the start and stop of the pump. (R) Further, as shown in FIG. 2, a plurality of pumping water supply pipes 1 may be provided. (ヲ) Also, as shown in FIG. 3, a plurality of high water tanks 2 can be provided. For example, a valve 5 using a gate valve can be opened and closed, and one of them can be used as a backup. (C) Alternatively, the sum of the capacities of the plurality of high water tanks 2 may be used in parallel as the required capacity, and one of them may be used only for the other, for example, for cleaning, so that the water is not imperfectly cut off. it can.

【0013】(イ)図4に示される実施例は、給水ポン
プ3を2台にしたものであるが、その場合の給水ポンプ
3の容量は、それぞれポンプが1台の場合と同じ容量と
し、互いにバックアップすることができる。 (ロ)あるいは必要揚水量を複数の給水ポンプ3で分け
あい、給水消費量が少ないときは複数の給水ポンプ3の
内の1台のみの運転とし、給水消費量が増えて1台のみ
の運転では給水量が足りない場合には別の給水ポンプ3
も同時に運転する、単独および追従運転とすることもで
きる。 (ハ)単独および追従運転の場合で水位リレーによる給
水ポンプ3の自動起動、自動停止を計る場合には、単独
運転用の起動水面22と停止水面21を定め、追従運転
用の追従起動水面24を起動水面22の下に、追従運転
用の追従停止水面23を停止水面21の下に定める。給
水ポンプ3が3台の場合はさらにそれらの下に3台目自
動運転用水面を定めることができる。 (ニ)単独および追従運転の場合の複数の給水ポンプ3
の揚水量をすべて同じとしても、あるいは違わせても良
い。 (ホ)複数の給水ポンプ3を単独および追従運転とし、
給水ポンプ3の合計水量をピーク時最大給水消費量とし
た場合には、給水ポンプ3の内の1台だけの揚水量を対
象として高置水槽2の容量とすることができ、その容量
はごく小さなものとなる。 (ヘ)単独および追従運転の場合でも互いにバックアッ
プしあい、不完全ながらも断水せぬようにすることもで
きる。
(A) In the embodiment shown in FIG. 4, two water supply pumps 3 are used. In this case, the capacity of the water supply pumps 3 is the same as that of a single water supply pump. Can back up each other. (B) Alternatively, the required pumping amount is divided by a plurality of water pumps 3, and when the water consumption is small, only one of the plurality of water pumps 3 is operated, and the water consumption is increased and only one is operated. If there is not enough water supply, another water supply pump 3
Can also be operated at the same time, as a single operation and a following operation. (C) When measuring the automatic start and automatic stop of the water supply pump 3 by the water level relay in the case of the single operation and the following operation, the start water surface 22 and the stop water surface 21 for the independent operation are determined, and the following water surface 24 for the following operation is determined. Is defined below the start water surface 22 and the following stop water surface 23 for the following operation is set below the stop water surface 21. When there are three water supply pumps 3, a third automatic operation water surface can be further defined below them. (D) Multiple feed pumps 3 for single operation and following operation
May be the same or different. (E) A plurality of feed pumps 3 are operated independently and in a following operation,
When the total water consumption of the water supply pump 3 is set to the maximum water consumption at the peak, the capacity of the high water tank 2 can be set to the capacity of the high water tank 2 for only one of the water supply pumps 3. It will be small. (F) Even in the case of the single operation and the following operation, backup can be performed with each other, so that the water can be prevented from being cut off even though the operation is incomplete.

【0014】(イ)図5は高置水槽2の配管接続の実施
例を示すが、揚水給水管1の高置水槽2の付近にて分岐
し、高置水槽2の上部へ接続されたたとえば揚水給水管
1と同じ材質の揚水管11と、高知水槽2への揚水時に
閉止するたとえば逆止弁を用いた揚水時閉止弁7を介し
て接続された、たとえば揚水給水管1と同じ材質の給水
管12を高置水槽2の下部へ接続する。 (ロ)給水ポンプ3が運転され、給水消費量がポンプ揚
水量より少ないと、揚水給水管1と揚水管11を経て高
置水槽2へ水が流入するが、高知水槽2への揚水時にの
み閉止する揚水時閉止弁7により給水管12からの高置
水槽2への水の流入は無い。やがて停止水面21に達す
れば給水ポンプ3を停止させる。 (ハ)引き続き給水消費が継続すれば給水管12より高
知水槽2への揚水時にのみ閉止する揚水時閉止弁7を経
て給水消費箇所へ水が供給され、高知水槽2と揚水管1
1の水面が下がりやがて起動水面22に達し給水ポンプ
3が起動するが、給水消費量が給水ポンプ3の揚水量よ
りも多い場合は揚水量のすべては給水消費箇所へ供給さ
れ、揚水量では足りない分は高知水槽2より供給され高
知水槽2の水面はさらに下がり続ける。 (ニ)やがて給水ポンプ3の揚水量よりも給水消費量が
少なくなリ高知水槽2へ揚水管11より水の流入が始ま
る。 (ホ)以上のサイクルを繰り返して高置水槽2の水は高
置水槽2の下部より消費され、他方高置水槽2への水の
供給は上部よりなされ、水は常に入れ替わる。 (ヘ)この場合にも、給水枝管8のうち高置水槽2に最
も近いものは、揚水給水管1の揚水時閉止弁7に近い給
水ポンプ3側より取り出し、高置水槽2の水の入れ換え
をより早く促すこともできる。
(A) FIG. 5 shows an embodiment of the pipe connection of the elevated water tank 2, which branches near the elevated water tank 2 of the pumping water supply pipe 1 and is connected to the upper part of the elevated water tank 2. A pumping pipe 11 of the same material as that of the pumping water supply pipe 1 and a pumping stop valve 7 that closes when pumping water into the Kochi water tank 2 using, for example, a check valve, are connected. The water supply pipe 12 is connected to the lower part of the elevated water tank 2. (B) When the water supply pump 3 is operated and the water consumption is smaller than the pump water pumping amount, water flows into the high water tank 2 via the water pumping water supply pipe 1 and the water pumping pipe 11, but only when water is pumped into the Kochi water tank 2. There is no inflow of water from the water supply pipe 12 to the high water tank 2 by the closing valve 7 at the time of pumping to be closed. When the water level reaches the stop water level 21, the water supply pump 3 is stopped. (C) If the water consumption continues, water is supplied to the water consumption point via the pumping stop valve 7 which closes only when water is pumped from the water supply pipe 12 to the Kochi water tank 2, and the water is supplied to the Kochi water tank 2 and the water pump 1
The water surface of the water supply pump 1 will soon reach the start-up water surface 22 and the water supply pump 3 will be started. However, if the amount of water consumption is larger than the amount of water pumped by the water supply pump 3, all of the water pumped will be supplied to the water consumption point. The remaining water is supplied from the Kochi water tank 2 and the water level of the Kochi water tank 2 keeps lowering further. (D) Eventually, the flow of water from the water pump 11 into the Kochi water tank 2 in which the water consumption is smaller than the water pumping amount of the water pump 3 starts. (E) By repeating the above cycle, the water in the elevated water tank 2 is consumed from the lower part of the elevated water tank 2, while the supply of water to the elevated water tank 2 is performed from the upper part, and the water is constantly replaced. (F) Also in this case, of the water supply branch pipes 8, the one closest to the high water tank 2 is taken out from the water supply pump 3 side of the pumping water supply pipe 1 near the stop valve 7 at the time of pumping, and the water in the high water tank 2 is taken out. The replacement can be encouraged earlier.

【0015】(イ)図6も高置水槽2の配管接続の実施
例を示すが、揚水給水管1の高置水槽2の付近にて分岐
し、高置水槽2への揚水時に閉止する弁7を介して高置
水槽2の上部へ接続されたたとえば揚水給水管1と同じ
材質の副給水管13を設け、高知水槽2の下部へ揚水給
水管1を接続する。 (ロ)給水ポンプ3が運転され、給水消費量がポンプ揚
水量より少ないと、揚水給水管1より高置水槽2へ水が
流入し、徐徐に高置水槽2の水面が上がるが、揚水給水
管1より分岐された副給水管13には高置水槽2への揚
水時にのみ閉止する揚水時閉止弁7により水は流入しな
い。 (ハ)やがて上昇した高置水槽2の水面が副給水管13
の高置水槽2の接続部に達し、副給水管13に水は流入
し充満するが、さらに水面は上昇しポンプ停止水面21
に達すれば給水ポンプ3を停止させる。 (ニ)引き続き給水消費が継続すれば揚水給水管1より
給水消費箇所へ水が供給され、高知水槽2と副給水管1
3の水面が下がりやがて起動水面22に達し給水ポンプ
3が起動するが、給水消費量が給水ポンプ3の揚水量よ
りも多い場合は揚水量のすべては給水消費箇所へ供給さ
れ、揚水量では足りない分は高知水槽2より供給され高
知水槽2の水面はさらに下がり続ける。 (ホ)やがて給水ポンプ3の揚水量よりも給水消費量が
少なくなリ高知水槽2へ揚水給水管1より水の流入が始
まる。 (ヘ)以上のサイクルを繰り返して高置水槽2の水は、
ポンプが起動し停止寸前に高置水槽2の上部より副給水
管13に水は流入して消費され、水は常に入れ換わる。 (ト)この場合にも、給水枝管8のうち、高置水槽2に
最も近いものは揚水給水管1の高置水槽2の接続部に近
いところより取り出し、高置水槽2の水の入れ換えをよ
り早く促すこともできる。
(A) FIG. 6 also shows an embodiment in which the elevated water tank 2 is connected to a pipe. The valve branches off near the elevated water tank 2 of the pumping water supply pipe 1 and closes when the water is pumped into the elevated water tank 2. For example, an auxiliary water supply pipe 13 made of the same material as the pumped water supply pipe 1 connected to the upper part of the elevated water tank 2 via 7 is provided, and the pumped water supply pipe 1 is connected to the lower part of the Kochi water tank 2. (B) When the water supply pump 3 is operated and the water consumption is smaller than the pumping amount, the water flows into the high water tank 2 from the water supply pipe 1 and the water level of the high water tank 2 gradually rises. Water does not flow into the sub-water supply pipe 13 branched from the pipe 1 by the pumping-time closing valve 7 that is closed only when pumping water into the high water tank 2. (C) The water surface of the elevated water tank 2 that has risen soon becomes the auxiliary water pipe 13.
Reaches the connection part of the high water tank 2 and the water flows into the sub-water supply pipe 13 and fills, but the water level further rises and the pump stop water level 21
Is reached, the water supply pump 3 is stopped. (D) If water consumption continues, water is supplied from the pumping water pipe 1 to the water consumption point, and the Kochi water tank 2 and the auxiliary water pipe 1 are supplied.
The water surface of the water supply pump 3 will soon reach the starting water surface 22 and the water supply pump 3 will be activated. However, if the water consumption is larger than the water supply amount of the water supply pump 3, all of the water supply amount will be supplied to the water supply consumption point, and the water supply amount will be insufficient. The remaining water is supplied from the Kochi water tank 2 and the water level of the Kochi water tank 2 keeps lowering further. (E) Eventually, water starts to flow from the pumping water supply pipe 1 to the Kochi water tank 2 where the water consumption is smaller than the water pumping amount of the water supply pump 3. (F) Repeating the above cycle, the water in the elevated water tank 2
Immediately before the pump starts and stops, water flows into the sub water supply pipe 13 from the upper part of the high water tank 2 and is consumed, and the water is constantly replaced. (G) Also in this case, of the water supply branch pipes 8, the one closest to the elevated water tank 2 is taken out from a place near the connection part of the pumped water supply pipe 1 to the elevated water tank 2, and the water in the elevated water tank 2 is replaced. Can be encouraged earlier.

【0016】(イ)従来より圧力給水システムは、重力
給水システムの採用が難しい、たとえば建物構造や形態
のため充分な高所に高置水槽を設置できない場合や、広
い敷地の広範囲に低層建物が分散していて、高置水槽を
設置を設置するためには高い給水塔を設けなければなら
ないような場合で、そのような給水塔が景観を損ねた
り、給水塔建設の予算が計上できなかったりした場合に
採用される。 (ロ)それで本発明においては、上記に述べた条件であ
っても設置可能な高さに圧力水槽4を設け、その圧力は
設置された高さで不足な給水圧力を持つだけのものとす
る。 (ハ)圧力水槽4の圧力は水槽上部に空気を封じ込め、
その弾性を利用して必要圧力を得る。その原理は、一定
量の理想気体の等温状態においては圧力と体積の積は常
に一定で、圧力と体積は逆比例の関係にある、ボイル−
シャールの法則を、空気を理想気体とみなして利用す
る。つまり絶対圧力が1.033Kgf/平方cmで
1,000リットルの空気に圧力を加えて絶対圧力で
2.066Kgf/平方cmとした場合、体積は500
リットルとなる。言い換えれば、大気中の1,000リ
ットルの容器の下部より容器中の空気が流出せぬよう、
500リットルの水を圧入すれば、水は非圧縮性である
から容器上部に絶対圧力で2.066Kgf/平方cm
で500リットルの空気と、下部に絶対圧力で2.06
6Kgf/平方cmの500リットルの水を有する、つ
まりゲージ圧1.033Kgf/平方cm、有効水量5
00リットルの圧力水槽4となる。 (ニ)図7は図1、図2および図3の高置水槽2をたと
えば硬質塩化ビニール管で製作した圧力水槽4に置き換
えて、圧力水槽4付近を示したものであり、給水ポンプ
3、揚水給水管1、給水枝管8については図1、図2お
よび図3と同様とする。 (ホ)給水ポンプ3の起動水面22と停止水面21との
間隔を給水ポンプ3の電動機が安全な範囲で給水ポンプ
の最小起動間隔を保てるだけの容量となるよう定め、起
動水面22の圧力を圧力水槽4の設置された高さでの不
足な給水圧力とし、停止水面43の圧力とその上部の空
気容積をボイル−シャールの法則にて算定する。 (ヘ)停止水面21の圧力とその上部の空気容積は逆比
例の関係にあるので、圧力を高くすれば空気容積は少な
くなる。つまり圧力を高くすれば有効水量に比して圧力
水槽4の全体容量は小さくなるが、それだけの圧力に耐
える構造強度が必要となり、さらに日本ではゲージ圧2
Kgf/平方cmを超える場合には労働安全衛生法の規
制の対象となり制約をうける場合があるので、それらを
比較考慮して停止水面21の圧力をさだめる。 (ト)また給水枝管8のうち、圧力水槽4に最も近いも
のを停止水面21に直近の下部より取り出し、圧力水槽
4の水の入れ換えをより早く促すこともできる。
(A) Conventionally, it has been difficult to employ a gravity water supply system in a pressure water supply system. For example, when a high water tank cannot be installed at a sufficiently high place due to a building structure or form, or when a low-rise building is used over a wide area of a large site. In cases where the towers are dispersed and high water towers must be installed in order to set up elevated water tanks, such water towers will damage the landscape and the budget for water tower construction cannot be allocated It is adopted when it is done. (B) Therefore, in the present invention, the pressure water tank 4 is provided at a height that can be installed even under the above-mentioned conditions, and the pressure is set to have only insufficient water supply pressure at the installed height. . (C) The pressure in the pressure water tank 4 traps air in the upper part of the water tank,
The required pressure is obtained by utilizing the elasticity. The principle is that in the isothermal state of a certain amount of ideal gas, the product of pressure and volume is always constant, and pressure and volume are inversely proportional.
Sharl's law is used, considering air as an ideal gas. That is, if the absolute pressure is 1.033 Kgf / square cm and pressure is applied to 1,000 liters of air to make the absolute pressure 2.066 Kgf / square cm, the volume is 500
Liters. In other words, so that the air in the container does not flow out from the lower part of the 1,000 liter container in the atmosphere,
If 500 liters of water is injected, the water is incompressible, so the absolute pressure is 2.066 kgf / cm 2 on the top of the container.
500 liters of air and 2.06 absolute pressure below
It has 6 kgf / cm 2 of 500 liters of water, i.e. a gauge pressure of 1.033 kgf / cm 2 and an effective water volume of 5
It becomes a pressure water tank 4 of 00 liters. (D) FIG. 7 shows the vicinity of the pressure water tank 4 in which the elevated water tank 2 of FIGS. 1, 2 and 3 is replaced with a pressure water tank 4 made of, for example, a rigid PVC pipe. The pumping water supply pipe 1 and the water supply branch pipe 8 are the same as those shown in FIGS. (E) The distance between the start water surface 22 and the stop water surface 21 of the water supply pump 3 is determined so that the electric motor of the water supply pump 3 has a capacity enough to maintain the minimum start interval of the water supply pump within a safe range. Insufficient water supply pressure at the height where the pressure water tank 4 is installed is determined, and the pressure of the stop water surface 43 and the air volume above the stop water surface 43 are calculated by Boyle-Charard's law. (F) Since the pressure on the stop water surface 21 and the air volume above it are in inverse proportion, the higher the pressure, the smaller the air volume. In other words, if the pressure is increased, the overall capacity of the pressure water tank 4 becomes smaller than the effective water amount, but a structural strength that can withstand that pressure is required.
If it exceeds Kgf / square cm, it is subject to the regulations of the Industrial Safety and Health Law and may be subject to restrictions. Therefore, the pressure on the stop water surface 21 is reduced by taking these into consideration. (G) Of the water supply branch pipes 8, the one closest to the pressure water tank 4 can be taken out from the lower portion immediately adjacent to the stop water surface 21 to prompt the replacement of the water in the pressure water tank 4 earlier.

【0017】(イ)図7にもとずいて、起動水面22の
圧力をゲージ圧0.5Kgf/平方cm(絶対圧1.5
33Kgf/平方cm)、有効水量450リットル、停
止水面43のゲージ圧1.5Kgf/平方cm(絶対圧
2.533Kgf/平方cm)の条件での実施例とすれ
ば、停止水面21の上部の空気容積はボイル−シャール
の法則にて算定すれば690リットルとなり、起動水面
22の上部の容積は、690リットルに450リットル
を加えた1,140リットルとなる。さらにゲージ圧
0.5Kgf/平方cm(絶対圧1.533Kgf/平
方cm)の起動水面22の上部容積1,140リットル
を得るためには大気圧(絶対圧1.033Kgf/平方
cm)の1,692リットルの空気をゲージ圧0.5K
gf/平方cm(絶対圧1.533Kgf/平方cm)
となるよう圧力をかけて得られる。 (ロ)それで大気圧水面41をその上部に1,692リ
ットルの空気容積を得られるよう定め、たとえばボール
弁を用いた排水弁9を開放すれば大気圧水面41を得ら
れるように設ける。 (ハ)起動水面22を上部に1,140リットルの容積
を得られるよう定め、停止水面21も上部に690リッ
トルの容積を得られるよう定めて、それぞれにたとえば
ステンレス製の電極棒による水位センサーにより動作す
るリレーを設け、給水ポンプ3がそれぞれの水面で起
動、停止となるよう制御回路を設ける。 (ニ)停止水面21の上部にたとえばボール弁の吸排気
弁6を設ける。 (ホ)吸排気弁6を開放し給水ポンプ3を手動運転し
て、吸排気弁6より空気を排出しつつ給水配管系に水を
充満させ、続いて排水弁9を開放して大気圧水面41を
定める。 (ヘ)大気圧水面41が定まったなら、排水弁9と吸排
気弁6を閉止し、給水ポンプ3をそれぞれの水面で起
動、停止となるよう制御回路にて自動運転となるようス
イッチを入れる。 (ト)給水ポンプ3は運転を開始し、停止水面21にて
自動停止するがそのときの圧力はゲージ圧1.5Kgf
/平方cmとなる。 (チ)給水消費が継続すると圧力水槽4の水位が下がり
同時に圧力も下がるが、給水消費が450リットルにな
ると起動水面22となり、給水ポンプ3は再び起動する
が、そのときの圧力はゲージ圧0.5Kgf/平方cm
である。 (リ)圧力給水システムの場合、給水ポンプ3の容量は
あらかじめピーク時給水最大消費量と同じにしてあるの
で、給水消費が継続していれば、給水消費箇所に給水し
つつ、徐徐に停止水面21に向かって水面は上昇しやが
て停止水面21となり、給水ポンプ3は自動停止とな
る。 (ヌ)このサイクルを繰り返して給水消費箇所に給水し
つづけるが、圧力水槽4の空気がごく少量ずつ水に溶け
込んで運転圧力が下がっていくので、一定期間自動運転
したら圧力水槽4の水位のリセットを行う。 (ル)排水弁9と吸排気弁6たとえば電磁弁として、制
御回路にタイムスイッチを組み込み一定期間通常運転を
したら、圧力水槽4の水位のリセットも自動的とした全
自動運転とすることもできる。
(A) Based on FIG. 7, the pressure of the starting water surface 22 is increased to a gauge pressure of 0.5 kgf / cm 2 (absolute pressure of 1.5 kgf).
33Kgf / square cm), the effective water volume is 450 liters, and the gauge pressure of the stop water surface 43 is 1.5 Kgf / square cm (absolute pressure 2.533 Kgf / square cm). The volume is 690 liters when calculated according to Boyle-Charle's law, and the volume above the starting water surface 22 is 1,140 liters which is 450 liters added to 690 liters. Furthermore, in order to obtain an upper volume of 1,140 liters of the starting water surface 22 having a gauge pressure of 0.5 kgf / cm 2 (absolute pressure 1.533 kgf / cm 2), the atmospheric pressure (absolute pressure 1.033 kgf / cm 2) is required. 692 liters of air with 0.5K gauge pressure
gf / square cm (absolute pressure 1.533Kgf / square cm)
It is obtained by applying pressure so that (B) Then, the atmospheric pressure water surface 41 is determined so that an air volume of 1,692 liters can be obtained at the upper portion thereof. For example, the atmospheric pressure water surface 41 is provided by opening the drain valve 9 using a ball valve. (C) The starting water surface 22 is determined so that a volume of 1,140 liters can be obtained at the upper part, and the stop water surface 21 is also determined such that a volume of 690 liters can be obtained at the upper part. An operating relay is provided, and a control circuit is provided so that the water supply pump 3 starts and stops at each water surface. (D) The intake / exhaust valve 6 such as a ball valve is provided above the stop water surface 21. (E) Opening the intake / exhaust valve 6 and manually operating the water supply pump 3 to fill the water supply piping system with water while discharging air from the intake / exhaust valve 6, and then opening the drain valve 9 to open the atmospheric pressure water surface. 41 is determined. (F) When the atmospheric pressure water level 41 is determined, the drain valve 9 and the intake / exhaust valve 6 are closed, and the water supply pump 3 is turned on and off by the control circuit so as to start and stop at the respective water levels. . (G) The water supply pump 3 starts operating, and automatically stops at the stop water surface 21. The pressure at that time is a gauge pressure of 1.5 kgf.
/ Square cm. (H) When the consumption of water supply continues, the water level in the pressure water tank 4 decreases and the pressure decreases at the same time. However, when the consumption of water supply reaches 450 liters, the starting water level 22 is reached, and the water supply pump 3 is started again. .5Kgf / square cm
It is. (I) In the case of the pressure water supply system, the capacity of the water supply pump 3 is previously set to be the same as the maximum water consumption at the peak, so that if the water consumption continues, the water is gradually stopped while the water is supplied to the water consumption point. The water level rises toward 21 and becomes the stop water level 21 soon, and the water supply pump 3 is automatically stopped. (V) This cycle is repeated to continuously supply water to the water consumption point. However, since the air in the pressure water tank 4 dissolves into the water little by little and the operating pressure decreases, the water level of the pressure water tank 4 is reset after the automatic operation for a certain period. I do. (L) As a drain valve 9 and an intake / exhaust valve 6, for example, an electromagnetic valve, a time switch is incorporated in a control circuit, and if normal operation is performed for a certain period of time, the water level of the pressure water tank 4 can be reset automatically to realize fully automatic operation. .

【0018】また圧力水槽4のまわりにも図5と同様に
揚水管11と、圧力水槽4への揚水時に閉止する揚水時
閉止弁7、および給水管12を設け圧力水槽4の水を常
に入れ換えることもできる。
A pumping pipe 11, a pump-off shut-off valve 7 that closes when pumping water into the pressure water tank 4, and a water supply pipe 12 are also provided around the pressure water tank 4 as in FIG. You can also.

【0019】あるいは圧力水槽4のまわりにも図6と同
様に圧力水槽4への揚水時に閉止する揚水時閉止弁7、
および副給水管13を設け圧力水槽4の水を常に入れ換
えることもできる。
Alternatively, a pumping-time shut-off valve 7, which closes when the water is pumped into the pressure water tank 4, around the pressure water tank 4, as in FIG.
In addition, it is also possible to provide a sub-water supply pipe 13 and always replace the water in the pressure water tank 4.

【0020】さらに図3の実施例と同様に圧力水槽4を
複数にしたり、図4の実施例と同様に給水ポンプ3を複
数とすることもできる。
Further, a plurality of pressure water tanks 4 may be provided as in the embodiment of FIG. 3, or a plurality of water supply pumps 3 may be provided as in the embodiment of FIG.

【0021】[0021]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0022】揚水給水管が1本であるので、従来の重力
給水工法においての揚水管と給水主管の2本の管路に比
して、コストが従来の技術のほぼ67%および建物内の
配管スペースがほぼ60%と大幅に少なくなる。
Since there is only one pumping water supply pipe, the cost is almost 67% of that of the conventional technology and the piping in the building, compared with the two pipes of the conventional water supply pipe and the water supply main pipe in the gravity water supply method. The space is significantly reduced to almost 60%.

【0023】給水ポンプ3の揚水量をピーク時最大給水
消費量とし、安全な範囲で給水ポンプの電動機が最小起
動間隔を保てるだけの少容量の高置水槽2とすることで
高置水槽2の重量、大きさが従来の技術の重力給水シス
テムの場合のほぼ12%と格段に小さくなり安価となる
上、建物構造への影響や設置スペースも少なくてすみ、
寒冷地における凍結対策や積雪対策も容易となる。
The pumping amount of the water supply pump 3 is set to the maximum water consumption at the peak time, and the high water tank 2 having a small capacity enough for the electric motor of the water pump to keep the minimum starting interval within a safe range. The weight and size are much smaller, almost 12% of that of the conventional gravity water supply system, and the cost is low. In addition, the influence on the building structure and the installation space are small,
Countermeasures against freezing and snow in cold regions are also easier.

【0024】圧力水槽4を設置可能な建物上部に設ける
ことで、圧力水槽4の設定圧力は小さくなり構造強度も
小さいものとなり、製作コストも安価となる。
By providing the pressure water tank 4 at the upper part of the building where it can be installed, the set pressure of the pressure water tank 4 is reduced, the structural strength is reduced, and the manufacturing cost is reduced.

【0025】さらに小さな圧力で済むことは、日本にお
いて労働安全衛生法の規制の対象外となり煩雑な法規上
の対応が不必要となる。
[0025] Reducing the pressure requires even less pressure in Japan, which obviates the regulations of the Occupational Safety and Health Law, and eliminates the need for complicated legal regulations.

【0026】あるいは従来の技術では労働安全衛生法の
規制の対象外とするために、40リットル以下の圧力水
槽を必要数設けて対処したが、そのような姑息で複雑な
手段は不必要となる。
Alternatively, in the prior art, in order to be exempt from the regulations of the Industrial Safety and Health Law, a necessary number of pressure water tanks of 40 liters or less were provided to cope with the problem, but such palliative and complicated means are not required. .

【0027】従来の技術では圧力水槽内の空気が水に溶
け込むことが無いように隔膜を設けたりしていたが、本
発明は隔膜は不要であるので圧力水槽4の構造は従来の
技術に比して簡便となり、圧力水槽4の水面を電極棒に
よる水位センサーにての圧力制御を採用することができ
る。
In the prior art, the diaphragm was provided so that the air in the pressure water tank did not dissolve into the water. However, the present invention does not require a diaphragm, so that the structure of the pressure water tank 4 is different from that of the prior art. Thus, the water level in the pressure water tank 4 can be controlled by a water level sensor using an electrode rod.

【0028】電極棒を用いた水位センサーによる制御
は、従来の技術で採用されている圧力センサーによる制
御に比して動作は確実で、微細な設定もできる上に安価
であり、保守点検も容易となり維持管理コストも安価と
なる。
The control by the water level sensor using the electrode rod is more reliable in operation than the control by the pressure sensor used in the conventional technology, can be set finely, is inexpensive, and is easy to maintain and inspect. The maintenance cost is also low.

【0029】さらに給水ポンプの台数や回転数を給水量
に応じて制御する、複雑な制御回路や制御部品が必要
で、多大なコストと煩雑な維持管理を要するポンプ直送
給水システムを敢えて採用する必要はない。
Further, a complicated control circuit and control parts for controlling the number and the number of rotations of the water supply pump according to the water supply amount are required, and it is necessary to dare to adopt a pump direct water supply system which requires a great deal of cost and complicated maintenance. There is no.

【0030】小容量の高置水槽や圧力水槽の場合には、
各種配管材を自由な形に組合せて高置水槽や圧力水槽と
することができ、建物の狭い場所や小屋裏を利用して高
置水槽や圧力水槽の設置場所とすることができる。
In the case of a small high-capacity water tank or a pressure water tank,
Various piping materials can be freely combined to form an elevated water tank or a pressure water tank, and a narrow place of a building or the back of a hut can be used as an installation place of an elevated water tank or a pressure water tank.

【0031】さらに小容量の高置水槽や圧力水槽の場合
には、水槽内における水の貯留時間が短くなり、より新
鮮な水を給水消費箇所に供給できる。
Further, in the case of a high-capacity water tank or a pressure water tank having a small capacity, the storage time of water in the water tank is shortened, and fresher water can be supplied to the water supply consuming point.

【図面の簡単な説明】[Brief description of the drawings]

【図1】重力給水システムの図である。FIG. 1 is a diagram of a gravity water supply system.

【図2】図1の重力給水システムの揚水給水管を複数と
した図である。
FIG. 2 is a diagram showing a plurality of pumping water supply pipes of the gravity water supply system of FIG. 1;

【図3】重力給水システムの高置水槽を複数とした場合
の図である。
FIG. 3 is a diagram when a plurality of high water tanks of the gravity water supply system are provided.

【図4】重力給水システムの給水ポンプを複数とした場
合の図である。
FIG. 4 is a diagram when a plurality of water supply pumps are used in the gravity water supply system.

【図5】重力給水システムの高置水槽付近の配管実施例
の図である。
FIG. 5 is a diagram of an embodiment of a piping in the vicinity of an elevated water tank of a gravity water supply system.

【図6】重力給水システムの高置水槽付近の配管実施例
の図である。
FIG. 6 is a diagram of an embodiment of a piping in the vicinity of an elevated water tank of the gravity water supply system.

【図7】圧力給水システムの圧力水槽付近の図である。FIG. 7 is a view near a pressure water tank of the pressure water supply system.

【符号の説明】[Explanation of symbols]

1 揚水給水管 2 高置水槽 3 給水ポンプ 4 圧力水槽 5 弁 6 吸気弁 7 揚水時閉止弁 8 給水枝管 9 排水弁 11 揚水管 12 給水管 13 副給水管 21 停止水面 22 起動水面 23 追従停止水面 24 追従起動水面 41 大気圧水面 DESCRIPTION OF SYMBOLS 1 Pumping water supply pipe 2 Elevated water tank 3 Water supply pump 4 Pressure water tank 5 Valve 6 Intake valve 7 Shut-off valve at the time of pumping 8 Water supply branch pipe 9 Drainage valve 11 Pumping pipe 12 Water supply pipe 13 Secondary water supply pipe 21 Stop water surface 22 Start-up water surface 23 Follow-up stop Water surface 24 Follow-up activation water surface 41 Atmospheric pressure water surface

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高置水槽2と一端が給水ポンプ3の吐出
口に接続され他端が高置水槽2に接続された揚水給水管
1、揚水給水管1より分岐の給水枝管8よりなる給水シ
ステム。
An elevated water tank and a pumping water supply pipe having one end connected to a discharge port of a water supply pump and the other end connected to the elevated water tank, and a water supply branch pipe branched from the pumping water supply pipe. Water supply system.
【請求項2】 揚水給水管1を高置水槽2の付近にて分
岐し、高置水槽2の上部へ接続された揚水管11と、高
置水槽2の下部へ揚水時閉止弁7を介して接続された給
水管12からなる《請求項1》の給水システム。
2. A pumping water supply pipe 1 is branched near the elevated water tank 2 and is connected to an upper part of the elevated water tank 2 through a water pumping pipe 11 and a lower part of the elevated water tank 2 through a shutoff valve 7 at the time of pumping. <2> The water supply system according to <1>, comprising a water supply pipe 12 connected and connected.
【請求項3】 揚水給水管1より高置水槽2の付近にて
分岐し、高置水槽2の停止水面21の直近の下部へ高置
水槽2へ揚水時閉止弁7をかいして接続された副給水管
13を有する《請求項1》の給水システム。
3. Branching from the pumping water supply pipe 1 in the vicinity of the elevated water tank 2 and connected to the elevated water tank 2 immediately below the stop water surface 21 of the elevated water tank 2 through the shutoff valve 7 during pumping. <2> The water supply system according to <1>, wherein the auxiliary water supply pipe 13 is provided.
【請求項4】 高置水槽2の起動水面22と停止水面2
1との間の水量を給水ポンプ3の電動機が安全な範囲で
最小起動間隔とした《請求項1》、《請求項2》および
《請求項3》の給水システム。
4. The starting water surface 22 and the stopping water surface 2 of the elevated water tank 2.
The water supply system according to claim 1, claim 2, or claim 3, wherein the amount of water between them is set to a minimum activation interval within a safe range of the electric motor of the water supply pump 3.
【請求項5】 高置水槽2を圧力水槽4に置き換えた
《請求項1》、《請求項2》、《請求項3》および《請
求項4》の給水システム。
5. The water supply system according to claim 1, 2 or 3, wherein the elevated water tank 2 is replaced with a pressure water tank 4.
JP11138579A 1999-05-19 1999-05-19 Feed water system Pending JP2000328613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11138579A JP2000328613A (en) 1999-05-19 1999-05-19 Feed water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11138579A JP2000328613A (en) 1999-05-19 1999-05-19 Feed water system

Publications (1)

Publication Number Publication Date
JP2000328613A true JP2000328613A (en) 2000-11-28

Family

ID=15225428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11138579A Pending JP2000328613A (en) 1999-05-19 1999-05-19 Feed water system

Country Status (1)

Country Link
JP (1) JP2000328613A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102051898A (en) * 2009-11-05 2011-05-11 上海熊猫机械(集团)有限公司 Power-saving type pressure-superposed water supply equipment
CN102051897A (en) * 2009-11-05 2011-05-11 上海熊猫机械(集团)有限公司 Environmentally-friendly electricity-saving water supply equipment
CN104652529A (en) * 2015-03-09 2015-05-27 顾飞华 Water supply system of water well
CN104846897A (en) * 2014-02-17 2015-08-19 浦华环保有限公司 Reclaimed water recycling system for sewage factory
CN107201769A (en) * 2017-07-20 2017-09-26 湖南铁马网络科技有限公司 A kind of water tower pumping system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102051898A (en) * 2009-11-05 2011-05-11 上海熊猫机械(集团)有限公司 Power-saving type pressure-superposed water supply equipment
CN102051897A (en) * 2009-11-05 2011-05-11 上海熊猫机械(集团)有限公司 Environmentally-friendly electricity-saving water supply equipment
CN104846897A (en) * 2014-02-17 2015-08-19 浦华环保有限公司 Reclaimed water recycling system for sewage factory
CN104652529A (en) * 2015-03-09 2015-05-27 顾飞华 Water supply system of water well
CN104652529B (en) * 2015-03-09 2016-03-09 顾飞华 Well-water supplies system
CN107201769A (en) * 2017-07-20 2017-09-26 湖南铁马网络科技有限公司 A kind of water tower pumping system

Similar Documents

Publication Publication Date Title
JP6684360B2 (en) Water supply system and its container, booster pump, water supply method
US8740576B2 (en) Pumping system for pumping liquid from a lower level to an operatively higher level
CN209703536U (en) A kind of marine traffic engineering foundation pit siphon pumping drain combined assembly
RU2652969C2 (en) Device for water supply from the well to tower and its automatic drain valve
JP2000328613A (en) Feed water system
CA2725950C (en) A method and pump unit for a pressure sewerage system
US20170107706A1 (en) Water Pump With Safe Cross Connection
US20090020163A1 (en) Siphon Breaker
CN203684387U (en) Special double-water-tank integrated sewage lifting equipment for subway
JP6101574B2 (en) Underground drainage station and operation method thereof
CN205296301U (en) No negative pressure water supply equipment of pressure -stabilizing box formula intelligence
CN109353450B (en) Ship emergency drainage device and method
JP6669388B2 (en) Drainage pump
CN209324676U (en) Centrifugal pump with siphon bucket
CN218597269U (en) Water filling device and water supply system of centrifugal pump
CN217811541U (en) Dual-purpose drainage system for pressurized drainage and siphon drainage
CN213625847U (en) Anti-floating type tank-pump integrated buried water tank
CN219795436U (en) Siphon type water turbine top cover drainage device
CN211228715U (en) Automatic water supply device
CN109026746B (en) Medium prestorage process of centrifugal pump
JPS6231680Y2 (en)
KR101711392B1 (en) Booster pump for water supply using air venting
RU6218U1 (en) HYDRO-PNEUMATIC WATER PRESSURE INSTALLATION
US20140373938A1 (en) Liquid Supply System
KR20190002803U (en) a water tank and booster pump system