JP2004235284A - Method of installing solar cell panel for condensating solar power generation device - Google Patents

Method of installing solar cell panel for condensating solar power generation device Download PDF

Info

Publication number
JP2004235284A
JP2004235284A JP2003019611A JP2003019611A JP2004235284A JP 2004235284 A JP2004235284 A JP 2004235284A JP 2003019611 A JP2003019611 A JP 2003019611A JP 2003019611 A JP2003019611 A JP 2003019611A JP 2004235284 A JP2004235284 A JP 2004235284A
Authority
JP
Japan
Prior art keywords
solar cell
cell panel
sun tracking
sun
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003019611A
Other languages
Japanese (ja)
Other versions
JP4253194B2 (en
Inventor
Michio Kondo
道雄 近藤
Kenji Araki
建次 荒木
Toshio Egami
敏夫 江上
Masao Hiramatsu
雅男 平松
Noritoku Miyazaki
憲徳 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Daido Metal Co Ltd
Original Assignee
Daido Steel Co Ltd
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Daido Metal Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2003019611A priority Critical patent/JP4253194B2/en
Publication of JP2004235284A publication Critical patent/JP2004235284A/en
Application granted granted Critical
Publication of JP4253194B2 publication Critical patent/JP4253194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

<P>PROBLEM TO BE SOLVED: To enable a solar cell panel to be installed and adjusted independently of whether sunlight is present or not. <P>SOLUTION: A method of installing and adjusting the solar cell panel is provided with a first step of placing a sun tracking sensor 43 on a horizontal surface plate 62, making spot light L4 incident on the horizontal platen 62 at a right angle impinge on the detecting surface of the sun tracking sensor 43 at a prescribed point, and adjusting a level 48 annexed to the sun tracking sensor 43 so as to make it indicate a prescribed indicating position; a second step of placing a condensation-type solar cell panel on the surface plate 62, and adjusting the attitude of the condensation-type solar cell panel so as to condense parallel light incident on the platen at a right angle on the light receiving surface of the solar cell provided inside the condensation-type solar cell panel; a third step of placing the sun tracking sensor 43 on the solar tracking trestle and adjusting the attitude of the solar tracking trestle so as to make the level indicate a prescribed indicating position; and a fourth step of setting the mounting surface of the surface plate horizontal in attitude by a leveling device, and placing the condensating solar cell panel adjusted in attitude on the surface plate on the mounting surface of the platen. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は集光式太陽光発電装置の太陽電池パネルの設置方法に関し、特に、太陽追尾架台への太陽電池パネルの設置方法の改良に関する。
【0002】
【従来の技術】
集光式太陽光発電装置において、太陽の移動に追従するように姿勢が制御される太陽追尾架台に、集光レンズと太陽電池を内設した太陽電池パネルを搭載したものがある(特許文献1)。従来、上記太陽電池パネルを設置するに当たっては、太陽追尾架台を追従作動させた状態で太陽電池パネルからの発電出力を測定し、発電出力が最大になるように太陽電池パネルの姿勢を調整して設置している。
【特許文献1】特開2002−202817
【0003】
【発明が解決しようとする課題】
しかし、上記従来の設置方法では、雨天等の太陽光が弱い状態では太陽電池パネルの設置調整ができないという問題があるとともに、太陽追尾架台が追従動作を行っている状態での太陽電池パネルの設置には十分な注意を要するという問題があった。
【0004】
本発明はこのような課題を解決するもので、太陽光の有無に無関係に太陽電池パネルの設置調整が可能であるとともに設置作業をより安全に行うことができる集光式太陽光発電装置の太陽電池パネルの設置方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本第1発明の太陽追尾架台は、太陽電池パネル(2A〜2D)を載置する太陽追尾架台(1)であって、太陽電池パネル(2A〜2D)を載置する載置面の姿勢を調整する機構(22,44)を備えている。ここで、載置面の姿勢を調整する機構は、太陽電池パネル(2A〜2D)の下面に突設した三本以上の支持脚(22)と、これら支持脚(22)をそれぞれ受けるように太陽追尾架台(1)に設けた上下に移動調整可能な支持体(44)とで実現することができる。
【0006】
本第2発明の集光式太陽光発電装置の太陽電池パネルの設置方法は、上記太陽追尾架台(1)を使用した集光式太陽光発電装置であって、太陽追尾架台(1)上に設けた太陽追尾センサ(43)の検出面(47a)上の所定位置に太陽スポット光(L3)が入射するように太陽追尾架台(1)の姿勢を制御するようにした集光式太陽光発電装置において、水平定盤(62)上に太陽追尾センサ(43)を置いて、水平定盤(62)に対して垂直に入射するスポット光(L4)を太陽追尾センサ(43)の検出面(47a)上の上記所定位置に入射させ、この状態で太陽追尾センサ(43)に付設された第1水準器(48)が所定の指示位置を示すように調整するステップと、定盤(66)上に集光式太陽電池パネル(2A〜2D)を置いて、定盤(66)に対して垂直に入射する平行光(L1)が集光式太陽電池パネル(2A〜2D)に内設された太陽電池セル(212)の受光面上に集光されるように集光式太陽電池パネル(2A〜2D)の姿勢を調整するステップと、太陽追尾架台(1)上に太陽追尾センサ(43)を設置して第1水準器(48)が上記所定の指示位置を示すように太陽追尾架台(1)の姿勢を調整するステップと、第2水準器(7)によって上記載置面を水平姿勢に調整して、当該載置面上に、定盤(66)上で姿勢が調整された上記集光式太陽電池パネル(2A〜2D)を載置するステップとを具備している。
【0007】
本第2発明において、太陽追尾架台上に太陽追尾センサを設置して第1水準器が所定の指示位置を示すように太陽追尾架台の姿勢を調整することにより太陽追尾センサは水平面上に位置させられ、水平面に対して垂直な鉛直方向から入射する太陽スポット光は太陽追尾センサのセンサ素子の検出面上の所定位置に入射させられる。この状態で、第2水準器によって水平姿勢に調整された載置面上に、定盤上で姿勢が調整された集光式太陽電池パネルを載置すれば、載置面に対して垂直な鉛直方向から入射する平行太陽光は太陽電池セルの受光面上に集光される。このように太陽電池パネルの設置調整を行っておけば、太陽スポット光が太陽追尾センサのセンサ素子の検出面上の所定位置に入射するように太陽追尾架台の姿勢を制御することによって、太陽光は常に太陽電池セルの受光面上に良好に集光される。このような設置方法によれば、雨天等の太陽光が弱い状態でも太陽電池パネルの確実な設置ができるとともに、太陽追尾架台の追従動作を停止した状態で太陽電池パネルの設置を行うことができるから、より安全な設置作業が可能である。また、予め定盤上で傾きを調整した太陽電池パネルを準備しておけば、故障等をした太陽電池パネルを現場での調整を行うことなく速やかに交換することができる。
【0008】
なお、上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0009】
【発明の実施の形態】
(第1実施形態)
図1には集光式太陽光発電装置の一例を示す。図1において、装置本体は4個の集光式太陽電池パネル2A〜2Dを備えており、これら太陽電池パネル2A〜2Dは地表に据えた基板P上に立設した太陽追尾架台(以下、単に架台という)1に支持されている。各太陽電池パネル2A〜2Dは四角形の箱体で、架台1によって同一平面上に全体が略四角形をなすように支持されている。各太陽電池パネル2A〜2Dは複数の太陽電池モジュール21により構成されており、各太陽電池モジュール21は表面に四角形の集光用フレネルレンズ211を位置させるとともに、内部のレンズ焦点位置に太陽電池セル(図示略)を位置させている。
【0010】
上記架台1の支柱の上端には図2に示すように軸受け機構3が設置されている。軸受け機構3は、傾斜して設けられた略U字形の軸受け片31を有し、当該軸受け片31の内空間には軸受けブロック32が位置している。軸受けブロック32の両側面に突設された軸体33(一方のみ示す)が軸受け片31の両側壁311に回転自在に支持されるとともに、軸受けブロック32にはこれを上記軸体33と直交する方向へ貫通して軸体34が回転自在に支持されている。軸体34の両端にはそれぞれ支持枠4A,4B(図2に一方のみ示す)が装着されている。支持枠4Aは三角形の枠体で、その長辺の中央に設けた筒状鞘体41が軸体34に嵌着されている。支持枠4A,4Bは仕切枠42によってさらに三角形領域に二区分され、詳細を後述するように、各三角形領域のコーナ部に設けた有底の支持筒44内に、下面に突設された三本の調整脚22をそれぞれ挿入して太陽電池パネル2A,2Bと2C,2Dが搭載されている。また、上記支持枠4Aには詳細を後述する太陽追尾センサ43が設けられている。
【0011】
軸体33はその傾斜が架台1を設置した場所の緯度に応じて調整されて、後述のように軸体33に支持されて回動する太陽電池パネル2A〜2Dの、方位角方向の回転軸が地球自転軸とほぼ平行になるようにしてある。軸体33には、両端にフレキシブルジョイント部51,52(図1)を備えた駆動シャフト5が上記ジョイント部51を介して連結されており、駆動シャフト5の他端はフレキシブルジョイント部52を介して駆動モータ53の出力軸531に連結されている。駆動モータ53は基板Pに設けた架台54上に支持されている。なお、地球自転軸に対して平行にするための軸体33の傾斜調整は、駆動シャフト5を外した状態で、軸体33の端部に取り付けたジンバルミラー等を使って、光学的に高精度に行うことができる。
【0012】
図3には軸受け機構3の詳細を示す。軸受けブロック32上には駆動モ−タ55が設けられており、駆動モータ55の出力軸はこれに設けたウォームギヤ56によって円形ギヤ57に連結されている。駆動モータ55の駆動力は上記円形ギヤ57と同軸の円形ギヤ58を介して軸体34の外周に固定された大径の円形ギヤ59に伝達されるようになっている。
【0013】
このような構造により、駆動モータ55を作動させて太陽電池パネル2A〜2Dを軸体34回りに回動させることにより、パネル面の法線の天頂角(これを以下、単に太陽電池パネルの天頂角という)を独立に変更することができるとともに、駆動モータ53を作動させて太陽電池パネル2A〜2Dを軸体33回りに回動させることにより、パネル面の法線の方位角(これを以下、単に太陽電池パネルの方位角という)を独立に変更することができる。なお、基板P(図2)は軸体33の回転軸が地球自転軸と平行になるように設置される。また、各軸体33,34の回転角はこれらに付設された図略のロータリエンコーダによって検出される。なお、上記駆動モータ53,55の制御は太陽追尾センサ43の後述する検出面上の中心位置に太陽スポット光が入射するように行われ、これによって、太陽追尾センサ43と太陽電池パネル2A〜2Dが常に太陽の方向へ向けられる。
【0014】
図4には太陽追尾センサ43を設けた太陽追尾器STの外観を示す。太陽追尾センサ43は円筒形の筐体を備えており、筐体の上端開口には中心にピンホール431を設けた蓋体45が覆着されている。蓋体45は水平方向へ一定範囲で調整移動できるようにしてその周縁部が筐体開口縁にネジ止めされている。筐体の下端開口は基板46上に接合されており、上記ピンホール431と対向した下端開口内の基板46面にはセンサ素子47が接合されている。センサ素子47は図5に示すように、その検出面47aが南北線と東西線に沿ってA領域〜D領域へ四等分されて、各領域からはこれに入射する光量に応じた出力が発せられる。図4において、基板46上には全方位型の水準器48が設けられている。水準器48は矩形板体481の中心に気泡WBを封入した円形のガラス容器482を設けたもので、板体481の傾きを四隅の調整ネジ483で変えられるようになっている。
【0015】
図6に示すように、気泡WBを封入した円形ガラス容器611よりなる全方位型の水準器61を備えて水平姿勢に調整された定盤62上に、太陽追尾センサ43と水準器48を一体に設けた上記太陽追尾器STを置く。光出力装置63は、レーザ光源631から出力されたレーザ光を、一対の凸レンズ632,633よりなるビームエクスパンダで大径かつ平行な調整光L1にして出力するもので、調整光L1は反射鏡64によって下方の太陽追尾センサ43へ向けて反射される。反射鏡64によって反射された調整光L1は定盤62に垂直に入射するようになっている。これは、図6の鎖線で示すように定盤62上に鏡65を置き、光出力装置63から出力されて反射鏡64から鏡65に向けて送出された調整光L2が同一経路を辿って戻り、光出力装置63の凸レンズ632,633間に設けた遮蔽板634のピンホールを再び通過するように、鏡64の角度を調整しておくことにより実現される。次に、反射鏡64によって定盤62に向けて垂直に反射させられた調整光L1が太陽追尾センサ43のピンホール431(図4)を通過してスポット光L4として検出面47a(図5)上の中心位置に入射するように、蓋体45の位置を適宜水平方向へ移動させて調整する。そしてこの時に、水準器48の気泡WBがガラス容器482の中心位置に来るように調整ネジ483で板体481の傾きを調整しておく。
【0016】
一方、太陽電池パネル2A〜2Dの調整は以下のように行う。すなわち、図7に示すように、太陽電池パネル2Aを定盤66上に置き、上述した調整方法によって角度を調整した鏡64により、光出力装置63から出力された調整光L1を定盤62に対して垂直に反射させて太陽電池モジュール21の集光用フレネルレンズ211に入射させる。そしてフレネルレンズ211で集光された調整光L1が太陽電池セル212上に設けられた二次集光器213の上端面中心に入射するように、各調整脚22の長さを調整して太陽電池パネル2Aの傾きを調整しておく。太陽電池パネル2B〜2Cについても同様である。なお、この場合の定盤66は必ずしも水平姿勢である必要はない。
【0017】
図8に示す水準装置7は、基板71上に上述したような構造の全方位型水準器72を載置したもので、基板71には太陽電池パネル2A〜2Dの調整脚22と同一間隔の三本の調整脚73が下方へ突設してある。このような水準装置7を図示するように、全方位型水準器61を備えて水平姿勢に調整された定盤62上に置き、水準器72の気泡WBがガラス容器721の中心位置に来るように調整脚73で基板71の傾きを調整しておく。
【0018】
太陽電池パネル2A〜2Dを架台上に設置するに際しては、図9に示すように、架台1の支持枠4A上に水準器48と一体の太陽追尾センサ43を設けた太陽追尾器STを設置し、水準器48の気泡WBがガラス容器481の中心位置へ来るように架台1の姿勢を変更調整する。これにより、太陽追尾センサ43は水平面上に立設された状態となり、鉛直上方から入射する太陽光がピンホール431(図4)を通過して形成されるスポット光L4(図5)は検出面47a上の中心位置に入射する。この状態で、図9に示すように各支持筒44内に調整脚73を挿入して水準装置7を支持枠4A上に載置する。支持筒44は支持枠4Aに設けたネジ穴内に捩じ込まれており、支持筒44を正逆回転させることによって上下に移動させることができる。そこで、各支持筒44を適当に上下動させてその底壁の高さを変えることにより、水準装置7の水準器72の気泡WBがガラス容器721の中心位置に来るようにする。これにより、各支持筒44の底壁を連ねて形成される載置面は水平となる。なお、この調整は、太陽電池パネル2A〜2Dを支持する支持筒44の全てについて行っておく。
【0019】
このようにして調整された各支持筒44内に図10に示すように支持脚22を挿入して太陽電池パネル2Aを支持枠4A上に載置し、下方から支持枠4Aを貫通させて固定ネジ49をパネル底面に捩じ込んで太陽電池パネル2Aを固定する。これにより、載置面に垂直な鉛直方向から入射する太陽光は、太陽電池パネル2A内の各太陽電池モジュール21(図7)のフレネルレンズ211で集光されて二次集光器213の上端面中心に入射し、二次集光器213内で内部反射されつつ太陽電池セル212に均一に入射させられる。このように調整された集光式太陽光発電装置では、太陽追尾センサ43の検出面47a中心に常に太陽スポット光L4が位置するように支持枠4A,4Bの姿勢を駆動モータ53,55で制御すれば、太陽光は太陽電池パネル2A〜2Dに配設された各太陽電池モジュール21内の太陽電池セル212に良好に入射して効率的な発電が実現される。
【0020】
本実施形態で説明した設置方法によれば、雨天等の太陽光が弱い状態でも太陽電池パネルの確実な姿勢調整ができるとともに、太陽追尾架台の追従動作を停止した状態で設置調整を行うことができるから設置時に過度の注意をする必要がない。また、予め定盤上で傾きを調整した太陽電池パネルを準備しておけば、故障等した太陽電池パネルを現場での調整を行うことなく速やかに交換設置することができる。
【0021】
(第2実施形態)
太陽追尾器STは図11に示す構造のものとしても良い。すなわち、図11に示す太陽追尾器STでは、第1実施形態のように調整ネジ483(図4)を水準器48に設けるのに代えて、水準器48は基板46上に固定し、基板46の四隅にそれぞれ調整ネジ461を設けて基板46全体の傾きを変えるようにしてある。このような構造によっても、第1実施形態と同様の効果を得ることができる。
【0022】
(第3実施形態)
図12には太陽追尾器STのさらに他の構造を示す。本実施形態では太陽追尾センサ43の蓋体45は筐体に固定されている。そして、水準器48および基板46のいずれもが調整ネジ483,461で傾きを変更調整できるようになっている。このような構造によっても、第1実施形態と同様の効果を得ることができる。
【0023】
【発明の効果】
以上のように、本発明の設置方法によれば、太陽光の有無に無関係に太陽電池パネルの設置調整が可能であるとともに設置作業に過度な注意を必要としない。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す集光式太陽光発電装置の側面図である。
【図2】集光式太陽光発電装置の部分分解斜視図である。
【図3】軸受け機構の斜視図である。
【図4】太陽追尾器の斜視図である。
【図5】太陽追尾センサのセンサ部の正面図である。
【図6】太陽追尾器の調整方法を示す側面図である。
【図7】太陽電池パネルの調整方法を示す側面図である。
【図8】水準装置の調整方法を示す側面図である
【図9】調整時の太陽追尾架台の断面図である。
【図10】太陽電池パネル支持部の拡大断面図である。
【図11】本発明の第2実施形態を示す水準装置の側面図である。
【図12】本発明の第3実施形態を示す水準装置の側面図である。
【符号の説明】
1…太陽追尾架台、2A,2B,2C,2D…太陽電池パネル、212…太陽電池セル、22…支持脚、43…太陽追尾センサ、44…支持筒、47a…検出面、48…水準器、62…水平定盤、7…水準装置、L1…平行光、L4…太陽スポット光。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for installing a solar cell panel of a concentrating solar power generation device, and more particularly, to an improvement in a method for installing a solar cell panel on a sun tracking mount.
[0002]
[Prior art]
In a concentrating photovoltaic power generation device, there is a solar tracking mount in which a posture is controlled so as to follow the movement of the sun, and a solar cell panel in which a condensing lens and a solar cell are provided is mounted (Patent Document 1). ). Conventionally, when installing the solar cell panel, the power generation output from the solar cell panel is measured in a state where the solar tracking base is operated to follow, and the posture of the solar cell panel is adjusted so that the power generation output is maximized. Has been installed.
[Patent Document 1] JP-A-2002-202817
[0003]
[Problems to be solved by the invention]
However, the conventional installation method described above has a problem that the installation of the solar cell panel cannot be adjusted in a state where the sunlight is weak such as rainy weather, and the installation of the solar cell panel in a state where the sun tracking base is performing the following operation. Had the problem of requiring careful attention.
[0004]
SUMMARY OF THE INVENTION The present invention solves such a problem, and it is possible to adjust the installation of a solar cell panel irrespective of the presence or absence of sunlight and to perform the installation work more safely. An object of the present invention is to provide a method for installing a battery panel.
[0005]
[Means for Solving the Problems]
The solar tracking gantry of the first invention is a solar tracking gantry (1) on which solar cell panels (2A to 2D) are mounted, and the posture of a mounting surface on which the solar cell panels (2A to 2D) are mounted is shown. An adjusting mechanism (22, 44) is provided. Here, the mechanism for adjusting the attitude of the mounting surface is configured to receive three or more support legs (22) protruding from the lower surface of the solar cell panels (2A to 2D) and to receive the support legs (22), respectively. This can be realized with a support (44) provided on the sun tracking mount (1) and capable of adjusting the movement up and down.
[0006]
A method for installing a solar cell panel of a concentrating solar power generation device according to the second invention is a concentrating solar power generation device using the above-mentioned solar tracking gantry (1), wherein the solar tracking gantry (1) A concentrating photovoltaic power generator that controls the attitude of the sun tracking base (1) such that the sun spot light (L3) is incident on a predetermined position on a detection surface (47a) of the provided sun tracking sensor (43). In the apparatus, a sun tracking sensor (43) is placed on a horizontal surface plate (62), and a spot light (L4) perpendicularly incident on the horizontal surface plate (62) is detected by a detection surface (43) of the sun tracking sensor (43). 47a) making the first level (48) attached to the sun tracking sensor (43) indicate the predetermined indicated position in the state where the light is incident on the predetermined position on the surface plate (47a); Put the concentrating solar panel (2A ~ 2D) on top, The parallel light (L1) perpendicularly incident on the panel (66) is focused on the light receiving surface of the solar cell (212) provided in the concentrating solar cell panel (2A to 2D). Adjusting the attitude of the concentrating solar cell panels (2A to 2D), and installing a sun tracking sensor (43) on the sun tracking mount (1) so that the first level (48) is at the predetermined designated position Adjusting the attitude of the sun tracking gantry (1) so as to indicate the following, and adjusting the mounting surface to a horizontal attitude by the second level (7), and placing the surface plate (66) on the mounting surface. Mounting the concentrating solar cell panels (2A to 2D) whose posture has been adjusted above.
[0007]
In the second invention, the sun tracking sensor is positioned on the horizontal plane by installing the sun tracking sensor on the sun tracking gantry and adjusting the attitude of the sun tracking gantry so that the first level indicates a predetermined designated position. The sun spot light incident from a vertical direction perpendicular to the horizontal plane is incident on a predetermined position on the detection surface of the sensor element of the sun tracking sensor. In this state, if the concentrating solar cell panel whose posture has been adjusted on the surface plate is placed on the mounting surface that has been adjusted to a horizontal posture by the second level, it is perpendicular to the mounting surface. The parallel sunlight that enters from the vertical direction is collected on the light receiving surface of the solar cell. By adjusting the installation of the solar cell panel in this manner, by controlling the attitude of the sun tracking base so that the sun spot light is incident on a predetermined position on the detection surface of the sensor element of the sun tracking sensor, Is always well focused on the light receiving surface of the solar cell. According to such an installation method, the solar cell panel can be reliably installed even in a state where the sunlight is weak such as rainy weather, and the solar cell panel can be installed in a state where the tracking operation of the sun tracking base is stopped. Therefore, safer installation work is possible. In addition, if a solar cell panel whose inclination is adjusted on a surface plate is prepared in advance, a failed solar cell panel can be quickly replaced without performing on-site adjustment.
[0008]
In addition, the code | symbol in the said parenthesis shows the correspondence with the concrete means described in embodiment mentioned later.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
FIG. 1 shows an example of a concentrating solar power generation device. In FIG. 1, the apparatus main body is provided with four concentrating solar cell panels 2A to 2D. 1). Each of the solar cell panels 2A to 2D is a rectangular box, and is supported by the gantry 1 on the same plane so that the whole is substantially rectangular. Each of the solar cell panels 2A to 2D is constituted by a plurality of solar cell modules 21. Each of the solar cell modules 21 has a rectangular converging Fresnel lens 211 on the surface thereof, and a solar cell at a lens focal position inside. (Not shown).
[0010]
As shown in FIG. 2, a bearing mechanism 3 is installed at the upper end of the column of the gantry 1. The bearing mechanism 3 has a substantially U-shaped bearing piece 31 provided at an angle, and a bearing block 32 is located in the inner space of the bearing piece 31. Shafts 33 (only one is shown) protruding from both side surfaces of the bearing block 32 are rotatably supported on both side walls 311 of the bearing piece 31, and the bearing block 32 is orthogonal to the shaft body 33. The shaft body 34 is rotatably supported by penetrating in the direction. Support frames 4A and 4B (only one is shown in FIG. 2) are attached to both ends of the shaft body 34, respectively. The support frame 4A is a triangular frame, and a cylindrical sheath 41 provided at the center of the long side thereof is fitted to the shaft 34. The support frames 4A and 4B are further divided into two triangular regions by a partition frame 42. As will be described in detail later, three support protrusions 44 provided on the bottom surface in bottomed support cylinders 44 provided at the corners of each triangular region. The solar cell panels 2A, 2B and 2C, 2D are mounted by inserting the adjusting legs 22 respectively. The support frame 4A is provided with a sun tracking sensor 43 described in detail later.
[0011]
The axis of the shaft 33 is adjusted in accordance with the latitude of the place where the gantry 1 is installed, and the azimuth rotation axes of the solar cell panels 2A to 2D supported and rotated by the shaft 33 as described later. Is approximately parallel to the Earth's axis of rotation. A drive shaft 5 having flexible joints 51 and 52 (FIG. 1) at both ends is connected to the shaft 33 via the joint 51, and the other end of the drive shaft 5 is connected via the flexible joint 52. And is connected to an output shaft 531 of the drive motor 53. The drive motor 53 is supported on a gantry 54 provided on the substrate P. The tilt adjustment of the shaft 33 to make it parallel to the earth's rotation axis can be performed optically using a gimbal mirror or the like attached to the end of the shaft 33 with the drive shaft 5 removed. Can be done with precision.
[0012]
FIG. 3 shows details of the bearing mechanism 3. A drive motor 55 is provided on the bearing block 32, and an output shaft of the drive motor 55 is connected to a circular gear 57 by a worm gear 56 provided thereon. The driving force of the driving motor 55 is transmitted to a large-diameter circular gear 59 fixed to the outer periphery of the shaft body 34 via a circular gear 58 coaxial with the circular gear 57.
[0013]
With such a structure, by driving the drive motor 55 to rotate the solar cell panels 2A to 2D around the shaft 34, the zenith angle of the normal to the panel surface (hereinafter simply referred to as the zenith of the solar cell panel) Angle can be independently changed, and by driving the drive motor 53 to rotate the solar cell panels 2A to 2D around the shaft 33, the azimuth of the normal to the panel surface (hereinafter referred to as the , Simply referred to as the azimuth of the solar cell panel). The substrate P (FIG. 2) is set so that the rotation axis of the shaft 33 is parallel to the earth rotation axis. The rotation angles of the shaft bodies 33 and 34 are detected by a rotary encoder (not shown) attached thereto. The drive motors 53 and 55 are controlled so that the sun spot light is incident on a center position on a detection surface of the sun tracking sensor 43, which will be described later, whereby the sun tracking sensor 43 and the solar cell panels 2A to 2D are controlled. Is always pointed in the direction of the sun.
[0014]
FIG. 4 shows the appearance of a sun tracker ST provided with a sun tracking sensor 43. The sun tracking sensor 43 has a cylindrical housing, and a lid 45 provided with a pinhole 431 at the center is covered at the upper end opening of the housing. The lid 45 is screwed to the opening edge of the housing so that the lid 45 can be adjusted and moved in a predetermined range in the horizontal direction. The lower end opening of the housing is joined to the substrate 46, and the sensor element 47 is joined to the surface of the substrate 46 in the lower end opening facing the pinhole 431. As shown in FIG. 5, the sensing surface 47a of the sensor element 47 is divided into four regions A to D along the north-south line and the east-west line, and an output corresponding to the amount of light incident on each region is output from each region. Be emitted. In FIG. 4, an omnidirectional level 48 is provided on a substrate 46. The level 48 is provided with a circular glass container 482 enclosing a bubble WB at the center of a rectangular plate 481, and the inclination of the plate 481 can be changed by adjusting screws 483 at four corners.
[0015]
As shown in FIG. 6, a sun tracking sensor 43 and a level 48 are integrated on a surface plate 62 which is provided with an omnidirectional level 61 composed of a circular glass container 611 in which bubbles WB are sealed and which is adjusted to a horizontal position. Is placed. The light output device 63 outputs the laser light output from the laser light source 631 as a large diameter and parallel adjustment light L1 by a beam expander including a pair of convex lenses 632 and 633, and the adjustment light L1 is a reflecting mirror. The light 64 is reflected toward the sun tracking sensor 43 below. The adjustment light L <b> 1 reflected by the reflecting mirror 64 is perpendicularly incident on the surface plate 62. This is because the mirror 65 is placed on the surface plate 62 as shown by the chain line in FIG. 6, and the adjustment light L2 output from the light output device 63 and sent from the reflecting mirror 64 toward the mirror 65 follows the same path. This is realized by adjusting the angle of the mirror 64 so that the light passes through the pinhole of the shielding plate 634 provided between the convex lenses 632 and 633 of the light output device 63 again. Next, the adjustment light L1 vertically reflected by the reflecting mirror 64 toward the surface plate 62 passes through the pinhole 431 (FIG. 4) of the sun tracking sensor 43, and becomes the detection surface 47a (FIG. 5) as spot light L4. The position of the lid 45 is appropriately moved in the horizontal direction and adjusted so as to be incident on the upper center position. At this time, the inclination of the plate body 481 is adjusted with the adjusting screw 483 so that the bubble WB of the level 48 comes to the center position of the glass container 482.
[0016]
On the other hand, adjustment of the solar cell panels 2A to 2D is performed as follows. That is, as shown in FIG. 7, the solar cell panel 2A is placed on the surface plate 66, and the adjustment light L1 output from the light output device 63 is transmitted to the surface plate 62 by the mirror 64 whose angle has been adjusted by the above-described adjustment method. The light is reflected perpendicularly to the light-collecting Fresnel lens 211 of the solar cell module 21. The length of each adjustment leg 22 is adjusted by adjusting the length of each adjustment leg 22 so that the adjustment light L1 collected by the Fresnel lens 211 is incident on the center of the upper end surface of the secondary collector 213 provided on the solar cell 212. The inclination of the battery panel 2A is adjusted in advance. The same applies to solar cell panels 2B to 2C. In this case, the surface plate 66 does not necessarily need to be in a horizontal posture.
[0017]
The leveling device 7 shown in FIG. 8 has an omnidirectional level 72 having the above-described structure mounted on a substrate 71, and the substrate 71 has the same spacing as the adjustment legs 22 of the solar cell panels 2A to 2D. Three adjustment legs 73 project downward. As shown in the figure, such a level device 7 is placed on a surface plate 62 provided with an omnidirectional level 61 and adjusted in a horizontal posture, so that the bubbles WB of the level 72 come to the center position of the glass container 721. First, the inclination of the substrate 71 is adjusted by the adjusting legs 73.
[0018]
When installing the solar cell panels 2A to 2D on the gantry, as shown in FIG. 9, the solar tracker ST provided with the sun tracking sensor 43 integrated with the level 48 on the support frame 4A of the gantry 1 is installed. The attitude of the gantry 1 is changed and adjusted so that the bubble WB of the level 48 comes to the center of the glass container 481. As a result, the sun tracking sensor 43 is placed upright on the horizontal plane, and the spotlight L4 (FIG. 5) formed by passing sunlight incident from vertically above through the pinhole 431 (FIG. 4) is detected. The light enters the center position on 47a. In this state, the adjusting leg 73 is inserted into each support tube 44 as shown in FIG. 9 and the level device 7 is placed on the support frame 4A. The support cylinder 44 is screwed into a screw hole provided in the support frame 4A, and can be moved up and down by rotating the support cylinder 44 forward and backward. Therefore, the bubbles WB of the level 72 of the leveling device 7 are brought to the center position of the glass container 721 by appropriately moving each support cylinder 44 up and down to change the height of the bottom wall. Thus, the mounting surface formed by connecting the bottom walls of the support cylinders 44 becomes horizontal. This adjustment is performed for all the support cylinders 44 that support the solar cell panels 2A to 2D.
[0019]
As shown in FIG. 10, the support legs 22 are inserted into the support tubes 44 thus adjusted, and the solar cell panel 2A is placed on the support frame 4A, and is fixed by penetrating the support frame 4A from below. Screws 49 are screwed into the panel bottom to fix solar cell panel 2A. As a result, sunlight incident from the vertical direction perpendicular to the mounting surface is condensed by the Fresnel lens 211 of each solar cell module 21 (FIG. 7) in the solar cell panel 2A, and is condensed on the secondary concentrator 213. The light is incident on the center of the end face, and is uniformly incident on the solar cell 212 while being internally reflected in the secondary light collector 213. In the concentrator photovoltaic power generator adjusted in this way, the attitude of the support frames 4A and 4B is controlled by the drive motors 53 and 55 so that the sun spot light L4 is always located at the center of the detection surface 47a of the sun tracking sensor 43. In this case, the sunlight satisfactorily enters the solar cells 212 in each of the solar cell modules 21 disposed on the solar cell panels 2A to 2D, thereby realizing efficient power generation.
[0020]
According to the installation method described in the present embodiment, the position of the solar cell panel can be surely adjusted even in a state where the sunlight is weak such as rainy weather, and the installation adjustment can be performed in a state where the tracking operation of the sun tracking base is stopped. Because it can, there is no need to take undue care during installation. In addition, if a solar cell panel whose inclination is adjusted on a surface plate is prepared in advance, a failed solar cell panel can be promptly replaced and installed without performing on-site adjustment.
[0021]
(2nd Embodiment)
The sun tracker ST may have the structure shown in FIG. That is, in the solar tracker ST shown in FIG. 11, instead of providing the adjusting screw 483 (FIG. 4) on the level 48 as in the first embodiment, the level 48 is fixed on the substrate 46, and Adjustment screws 461 are provided at the four corners to change the inclination of the entire substrate 46. With such a structure, the same effect as in the first embodiment can be obtained.
[0022]
(Third embodiment)
FIG. 12 shows still another structure of the sun tracker ST. In the present embodiment, the lid 45 of the sun tracking sensor 43 is fixed to the housing. The level of both the level 48 and the substrate 46 can be changed and adjusted with the adjusting screws 483 and 461. With such a structure, the same effect as in the first embodiment can be obtained.
[0023]
【The invention's effect】
As described above, according to the installation method of the present invention, the installation adjustment of the solar cell panel can be performed regardless of the presence or absence of sunlight, and the installation work does not require excessive attention.
[Brief description of the drawings]
FIG. 1 is a side view of a concentrating solar power generation device according to a first embodiment of the present invention.
FIG. 2 is a partially exploded perspective view of the concentrating solar power generation device.
FIG. 3 is a perspective view of a bearing mechanism.
FIG. 4 is a perspective view of a sun tracker.
FIG. 5 is a front view of a sensor unit of the sun tracking sensor.
FIG. 6 is a side view showing an adjustment method of the sun tracker.
FIG. 7 is a side view showing a method for adjusting a solar cell panel.
FIG. 8 is a side view showing a method of adjusting the level device. FIG. 9 is a sectional view of the sun tracking gantry at the time of adjustment.
FIG. 10 is an enlarged sectional view of a solar cell panel support.
FIG. 11 is a side view of a level device according to a second embodiment of the present invention.
FIG. 12 is a side view of a level device according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sun tracking stand, 2A, 2B, 2C, 2D ... Solar cell panel, 212 ... Solar cell, 22 ... Support leg, 43 ... Sun tracking sensor, 44 ... Support cylinder, 47a ... Detection surface, 48 ... Level, 62: horizontal surface plate, 7: level device, L1: parallel light, L4: sun spot light.

Claims (2)

太陽電池パネルを載置する太陽追尾架台であって、前記太陽電池パネルを載置する載置面の姿勢を調整する機構を備えたことを特徴とする太陽追尾架台。What is claimed is: 1. A sun tracking base for mounting a solar cell panel, comprising: a mechanism for adjusting a posture of a mounting surface on which the solar cell panel is mounted. 請求項1に記載の太陽追尾架台を使用した集光式太陽光発電装置であって、前記太陽追尾架台上に設けた太陽追尾センサの検出面上の所定位置に太陽スポット光が入射するように前記太陽追尾架台の姿勢を制御するようにした集光式太陽光発電装置において、水平定盤上に前記太陽追尾センサを置いて、前記水平定盤に対して垂直に入射するスポット光を前記太陽追尾センサの検出面上の前記所定位置に入射させ、この状態で前記太陽追尾センサに付設された第1水準器が所定の指示位置を示すように調整するステップと、定盤上に集光式太陽電池パネルを置いて、定盤に対して垂直に入射する平行光が前記集光式太陽電池パネルに内設された太陽電池セルの受光面上に集光されるように前記集光式太陽電池パネルの姿勢を調整するステップと、前記太陽追尾架台上に前記太陽追尾センサを設置して前記第1水準器が前記所定の指示位置を示すように前記太陽追尾架台の姿勢を調整するステップと、第2水準器によって前記載置面を水平姿勢に調整して、当該載置面上に、前記姿勢が調整された前記集光式太陽電池パネルを載置するステップとを具備する集光式太陽光発電装置の太陽電池パネルの設置方法。A concentrating solar power generation apparatus using the sun tracking gantry according to claim 1, wherein a sun spot light is incident on a predetermined position on a detection surface of a sun tracking sensor provided on the sun tracking gantry. In the concentrator photovoltaic power generator configured to control the attitude of the sun tracking gantry, the sun tracking sensor is placed on a horizontal surface plate, and the spot light that is vertically incident on the horizontal surface plate is exposed to the sun. Making the light incident on the predetermined position on the detection surface of the tracking sensor, and adjusting the first level attached to the sun tracking sensor to indicate a predetermined designated position in this state; A solar cell panel is placed, and the condensing type solar cell is arranged such that parallel light incident perpendicularly to a surface plate is condensed on a light receiving surface of a solar cell provided in the concentrating type solar cell panel. Steps to adjust battery panel attitude Installing the sun tracking sensor on the sun tracking gantry and adjusting the attitude of the sun tracking gantry so that the first level indicates the predetermined designated position; Adjusting the surface to a horizontal position, and mounting the concentrating solar cell panel whose position has been adjusted on the mounting surface. Installation method.
JP2003019611A 2003-01-29 2003-01-29 Method for installing solar panel of concentrating solar power generation device Expired - Fee Related JP4253194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003019611A JP4253194B2 (en) 2003-01-29 2003-01-29 Method for installing solar panel of concentrating solar power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019611A JP4253194B2 (en) 2003-01-29 2003-01-29 Method for installing solar panel of concentrating solar power generation device

Publications (2)

Publication Number Publication Date
JP2004235284A true JP2004235284A (en) 2004-08-19
JP4253194B2 JP4253194B2 (en) 2009-04-08

Family

ID=32949434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019611A Expired - Fee Related JP4253194B2 (en) 2003-01-29 2003-01-29 Method for installing solar panel of concentrating solar power generation device

Country Status (1)

Country Link
JP (1) JP4253194B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038311A (en) * 2007-08-03 2009-02-19 Shinko Seisakusho Co Ltd Sunlight incident direction sensor, sunlight tracking device, and solar power generating device
JP2014070468A (en) * 2012-10-01 2014-04-21 Sharp Corp Photovoltaic power generation device, method of detecting positional deviation of photovoltaic power generation device, and method for constructing photovoltaic power generation device
JP2015127799A (en) * 2013-11-27 2015-07-09 株式会社半導体エネルギー研究所 Display device and display device frame
JP2017227408A (en) * 2016-06-24 2017-12-28 株式会社SolarFlame Heliostat device
WO2017222026A1 (en) * 2016-06-24 2017-12-28 株式会社SolarFlame Heliostat apparatus and solar power generation method
JP2017229195A (en) * 2016-06-24 2017-12-28 株式会社SolarFlame Photovoltaic power generation method
CN112503476A (en) * 2020-11-10 2021-03-16 河北地质大学 Novel underground space sunshine conduction device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038311A (en) * 2007-08-03 2009-02-19 Shinko Seisakusho Co Ltd Sunlight incident direction sensor, sunlight tracking device, and solar power generating device
JP2014070468A (en) * 2012-10-01 2014-04-21 Sharp Corp Photovoltaic power generation device, method of detecting positional deviation of photovoltaic power generation device, and method for constructing photovoltaic power generation device
JP2015127799A (en) * 2013-11-27 2015-07-09 株式会社半導体エネルギー研究所 Display device and display device frame
JP2017227408A (en) * 2016-06-24 2017-12-28 株式会社SolarFlame Heliostat device
WO2017222026A1 (en) * 2016-06-24 2017-12-28 株式会社SolarFlame Heliostat apparatus and solar power generation method
JP2017229195A (en) * 2016-06-24 2017-12-28 株式会社SolarFlame Photovoltaic power generation method
CN112503476A (en) * 2020-11-10 2021-03-16 河北地质大学 Novel underground space sunshine conduction device
CN112503476B (en) * 2020-11-10 2023-01-24 河北地质大学 Underground space sunlight conduction device

Also Published As

Publication number Publication date
JP4253194B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
US8528541B2 (en) Solar collection apparatus and methods
KR100913074B1 (en) Solar tracking device and method for high-effective concentration photovoltaic
KR100720925B1 (en) Condensing apparatus for solar photovoltaic generator
CN102089890A (en) Concentrating photovoltaic solar panel
JP3216549B2 (en) Concentrating solar cell device
JP5388357B2 (en) Solar power plant
JP2013513817A (en) A heliostat that controls the direction of reflection with a sensor
WO2000071942A1 (en) Solar tracing sensor and application thereof in solar auto-tracing device
WO2012077285A1 (en) Heliostat and solar-light condensing system
JP4253194B2 (en) Method for installing solar panel of concentrating solar power generation device
KR100916629B1 (en) Solar tracking apparatus
JP2004153202A (en) Concentrating photovoltaic power generator
JP2004153203A (en) Concentrating photovoltaic power generator
KR101652243B1 (en) Solar sensor and solar tracker including the solar sensor
JP4378257B2 (en) Solar tracking system
KR100751040B1 (en) Solar cell street-lamp with top of pole mounting structure
JP3128040U (en) Light source tracking device
KR101616757B1 (en) Device for concentrating optical radiation for localized heating by automatic solar tracking
GB2442982A (en) A solar tracking device
JP2001290537A (en) Solar power generating device
JP6854877B2 (en) Sun tracking device
CN117081485B (en) Photovoltaic power generation high-precision tracking system
JP3209221U (en) Light source tracking device
CN218583453U (en) Solar device capable of automatically adjusting angle according to sun irradiation angle
KR200414632Y1 (en) Solar cell street-lamp with top of pole mounting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees