JP2004153202A - Concentrating photovoltaic power generator - Google Patents

Concentrating photovoltaic power generator Download PDF

Info

Publication number
JP2004153202A
JP2004153202A JP2002319491A JP2002319491A JP2004153202A JP 2004153202 A JP2004153202 A JP 2004153202A JP 2002319491 A JP2002319491 A JP 2002319491A JP 2002319491 A JP2002319491 A JP 2002319491A JP 2004153202 A JP2004153202 A JP 2004153202A
Authority
JP
Japan
Prior art keywords
solar cell
concentrating solar
sun
spot light
concentrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002319491A
Other languages
Japanese (ja)
Inventor
Michio Kondo
道雄 近藤
Kenji Araki
建次 荒木
Toshio Egami
敏夫 江上
Masao Hiramatsu
雅男 平松
Noritoku Miyazaki
憲徳 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Daido Metal Co Ltd
Original Assignee
Daido Steel Co Ltd
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Daido Metal Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2002319491A priority Critical patent/JP2004153202A/en
Publication of JP2004153202A publication Critical patent/JP2004153202A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/455Horizontal primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/60Arrangements for controlling solar heat collectors responsive to wind
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a concentrating photovoltaic power generator in which solar cell panels are retreated or returned back to a power generation starting position quickly and inexpensively. <P>SOLUTION: Concentrating solar cell panels 2A-2D can turn independently in the direction of azimuth angle and in the direction of zenithal angle while being supported by a bearing mechanism 3 provided on a frame 1. A tracing sun sensor 43 rotatable integrally with the concentrating solar cell panels 2A-2D is provided and relative position of the sun in the direction of azimuth angle is detected from the incident position of a solar spot light on a detection plane provided in the tracing sun sensor 43. Upon elapsing a predetermined time after the solar spot light passed an origin on the detection plane, a controller operates a drive motor 53 for a predetermined time to turn the concentrating solar cell panels 2A-2D such that the solar spot light passes the origin to the opposite side. Subsequently, the time required for the solar spot light to return back to the origin is measured and upon elapsing the constant time, the drive motor 53 is operated for a predetermined time corrected by the returning time. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は集光式太陽光発電装置に関し、特に、集光式太陽光発電装置の太陽追尾制御を簡易かつ安価に実現して発電コストの低減を可能とした集光式太陽光発電装置に関する。
【0002】
【従来の技術】
集光式太陽光発電装置では効率的な発電を可能にするために太陽電池パネルを常に太陽に向けるように制御しており、この場合の制御を、例えば特許文献1に示されているように、太陽電池パネルを太陽の動きに常時連続的に追従させることにより行うものがある。
【0003】
【特許文献1】特開2002−202817号
【0004】
【発明が解決しようとする課題】
しかし、上記追従(追尾)制御に使用されるサーボモータや制御装置は比較的高価であるとともに、追尾制御の精度を確保するためにモータ出力軸に高ギヤ比の減速機を設けることが多く、強風時に太陽電池パネルを退避させたり、あるいは追尾終了時に太陽電池パネルをスタート位置へ戻すのに時間を要するという問題があった。
【0005】
そこで、本発明はこのような課題を解決するもので、安価でかつ太陽電池パネルの退避や発電開始位置への戻しを速やかに行うことができる集光式太陽光発電装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本第1発明では、集光式太陽電池パネル(2A〜2D)を地球自転軸とほぼ平行な回転軸のまわりに方位角方向へ回動させる駆動手段(33,5,53)と、集光式太陽電池パネル(2A〜2D)と同方向を向きこれと一体に回動させられる検出面(43a)を備え、当該検出面(43a)上への太陽スポット光(S)の入射位置より方位角方向での太陽の相対位置を検出する位置検出手段(43)と、太陽スポット光(S)が検出面(43a)上の所定位置(X)を越えた時から一定時間経過後に、駆動手段(33,5,53)を所定時間作動させて太陽スポット光(S)が所定位置(X)を反対側へ越えるように検出面(43a)を回動させ、その後、太陽スポット光(S)が所定位置(X)へ戻るまでの戻り時間を計測し、上記一定時間経過後に、上記戻り時間によって補正した所定時間だけ駆動手段(33,5,53)を作動させる駆動制御手段(66)とを具備している。なお、集光式太陽電池パネル(2A〜2D)を天頂角方向へ回動させる駆動手段(34,55)をさらに設けても良い。
【0007】
本第1発明においては、駆動手段の駆動負荷が変動しても、刻々と方位を変える太陽に対して、太陽スポット光が検出面上の所定位置に対し常に左右等距離範囲内にあるように太陽電池パネルの方位角が間欠的に変更されて太陽が追尾される。このような駆動制御はモータのオンオフ間欠制御により行うことができるから、信頼性の高い追尾制御を安価に実現することができる。また、サーボ制御のような連続制御をする場合に比してモータ減速比をそれほど大きくする必要がないため、強風に対する太陽電池パネルの退避動作や発電開始位置への回頭動作を速やかに行うことができる。
【0008】
本第2発明では、集光式太陽電池パネル(2A〜2D)を地球自転軸とほぼ平行な回転軸のまわりに方位角方向へ回動させるための第1軸体(33)と、第1軸体と直交し集光式太陽電池パネル(2A〜2D)を天頂角方向へ回動させるための第2軸体(34)とを設けて、これら軸体(33,34)を集光式太陽電池パネル(2A〜2D)の中心部に設ける。
【0009】
本第2発明においては、第1軸体と第2軸体を太陽電池パネルの中心部に設けているから、太陽電池パネルの重心位置を軸体の交点付近に位置させることができ、太陽電池パネルを回動させる際の駆動力を軽減することができる。
【0010】
本第3発明では、上記方位角方向へ回動させる駆動手段は回転伝達手段(5)を備え、上記第1軸体(33)を、回転伝達手段(5)を介して、集光式太陽電池パネル(2A〜2D)から離れた位置に設けた駆動モータ(53)に連結する。
【0011】
本第3発明においては、第1軸体を、回転伝達手段を介して、集光式太陽電池パネルから離れた位置に設けた駆動モータに連結するようにしたから、限られたスペースを太陽電池パネルで有効に使用することができる。
【0012】
なお、上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0013】
【発明の実施の形態】
(第1実施形態)
図1には集光式太陽光発電装置の装置本体の側面図を示す。図1において、装置本体は4個の集光式太陽電池パネル2A〜2Dを備えており、これら太陽電池パネル2A〜2Dは地表に据えた基板P上に立設した架台1に支持されている。各太陽電池パネル2A〜2Dは四角形の箱体で、架台1によって同一平面上に全体が略四角形をなすように支持されている。各太陽電池パネル2A〜2Dは複数の太陽電池モジュール21により構成されており、各太陽電池モジュール21は表面に四角形の集光用フレネルレンズ211を位置させるとともに、内部のレンズ焦点位置に太陽電池セル(図示略)を位置させている。
【0014】
上記架台1の上端には図2に示すように軸受け機構3が設置されている。軸受け機構3は、傾斜して設けられた略U字形の軸受け片31を有し、当該軸受け片31の内空間には軸受けブロック32が位置している。軸受けブロック32の両側面に突設された軸体33(一方のみ示す)が軸受け片31の両側壁311に回転自在に支持されるとともに、軸受けブロック32にはこれを上記軸体33と直交する方向へ貫通して軸体34が回転自在に支持されている。軸体34の両端にはそれぞれ支持枠4A,4B(図2に一方のみ示す)が装着されている。支持枠4Aは三角形の枠体で、その長辺の中央に設けた筒状鞘体41が軸体34に嵌着されている。支持枠4A,4Bは仕切枠42によってさらに三角形領域に二区分されてそれぞれに太陽電池パネル2A,2Bと2C,2Dが搭載されている。これにより、軸受け機構3は四角形に配置された太陽電池パネル2A〜2D(図1)のほぼ中心に位置している。また、支持枠4Aには太陽追尾センサ43が設けてあり、ピンホール431を設けたその前面は各太陽電池パネル2A〜2Dのパネル面と同一方向を向いている。
【0015】
軸体33はその傾斜が架台1を設置した場所の緯度に応じて調整されて、後述のように軸体33に支持されて回動する太陽電池パネル2A〜2Dの方位角方向の回転軸が地球自転軸とほぼ平行になるようにしてある。軸体33には、両端にフレキシブルジョイント部51,52(図1)を備えた駆動シャフト5が上記ジョイント部51を介して連結されており、駆動シャフト5の他端はフレキシブルジョイント部52を介して駆動モータ53の出力軸531に連結されている。、駆動モータ53は基板Pに設けた架台54上に支持されている。なお、地球自転軸に対して平行にするための軸体33の傾斜調整は、駆動シャフト5を外した状態で、軸体33の端部に取り付けたジンバルミラー等を使って、光学的に高精度に行うことができる。
【0016】
図3には軸受け機構3の詳細を示す。軸受けブロック32上には駆動モ−タ55が設けられており、駆動モータ55の出力軸はこれに設けたウォームギヤ56によって円形ギヤ57に連結されている。駆動モータ55の駆動力は上記円形ギヤ57と同軸の円形ギヤ58を介して軸体34の外周に固定された大径の円形ギヤ59に伝達されるようになっている。
【0017】
このような構造により、駆動モータ55を作動させて太陽電池パネル2A〜2Dを軸体34回りに回動させることにより、パネル面の法線の天頂角(これを以下、単に太陽電池パネルの天頂角という)を独立に変更することができるとともに、駆動モータ53を作動させて太陽電池パネル2A〜2Dを軸体33回りに回動させることにより、パネル面の法線の方位角(これを以下、単に太陽電池パネルの方位角という)を独立に変更することができる。なお、基板P(図1)は軸体33の回転軸が地球自転軸と平行になるように設置される。また、各軸体33,34の回転角はこれらに付設された図略のロータリエンコーダによって検出される。
【0018】
太陽追尾センサ43内にはそのピンホール431と対向するように検出面が配置されており、この検出面43aは図4に示すように、南北線と東西線に沿ってA領域〜D領域へ四等分されて、各領域からはこれに入射する光量に応じた出力が発せられる。図5には駆動制御装置の構成を示す。太陽追尾センサ43の検出面43aの、A領域〜D領域の出力信号はそれぞれ増幅器61A〜61Dに入力して増幅され、増幅信号はそれぞれ第1〜第3演算器62A〜62Cに入力する。第1演算器62AではA領域〜D領域の全ての増幅信号が加算される。第2演算器62BではA,D領域の増幅信号の和とB,C領域の増幅信号の和の比が算出される。第3演算器62CではA,B領域の増幅信号の和とC,D領域の増幅信号の和の比が算出される。第1演算器62Aの出力はノイズ除去フィルタ63Aを通過後、A/D変換器64Aでデジタル信号に変換され、CPU66からの信号で閾値が変更されるコンパレータ65に入力する。コンパレータ65の比較出力はCPU66の入力端子I1に入力している。第2,第3演算器62B,62Cの出力はノイズ除去フィルタ63B,63Cを通過後、A/D変換器64B,64Cでデジタル信号に変換されてそれぞれCPU66の入力端子I2,I3に入力している。
【0019】
駆動モータ53,55はその正逆回転を行うためのリレー回路68A,68Bにそれぞれ接続されており、リレー回路68A,68BにはCPU66の出力端子O1,O2からモータ正逆転指令信号が出力される。なお、軸体33(図3)の回転角(方位角)を検出したロータリエンコーダ67Aの出力信号はCPU66の入力端子I4に入力している。また、軸体34の回転角(天頂角)を検出したロータリエンコーダ67Bの出力信号はCPU66の入力端子I5に入力している。さらに、風速センサ69と、半球魚眼レンズとフォトダイオードで構成される全天照度センサ70がそれぞれCPU66の入力端子I6,I7に接続されている。
【0020】
図6にはCPU66における処理手順を示す。図6において、ステップ101では年月日時と装置の設置位置(緯度、経度)より太陽位置を計算する。計算の結果、太陽高度が発電可能な15°以上になっていれば(ステップ102)、季節等によって異なる閾値を設定してこれをコンパレータ65(図5)へ出力する(ステップ103)。ステップ104では、ステップ101で計算された太陽位置に基づいて、ロータリエンコーダ67Bからのフィードバック信号を参照しつつ駆動モータ55を作動させて太陽電池パネル2A〜2Dの天頂角をこの時の太陽の天頂角付近に合わせる。続くステップ105では、上記計算された太陽位置に基づいて、ロータリエンコーダ67Aからのフィードバック信号を参照しつつ駆動モータ53を作動させて太陽電池パネル2A〜2Dの方位角をこの時の太陽の方位角付近に合わせる。これにより、太陽追尾センサ43の検出面43a(図4)上のいずれかに、ピンホール431により形成される太陽スポット光が入射する。
【0021】
ステップ106では、太陽追尾センサ43の出力信号の大きさが閾値を越えたか否かをコンパレータ65の比較出力より判定し、閾値を越えていれば太陽スポット光が検出面43a上のいずれかに入射しているものとして以下のステップに進む。ステップ107では、入力端子I3に入力する信号を参照しつつ、入射する太陽スポット光S(図7参照)が上記検出面43aのA,B領域とC,D領域の境界に位置するように、すなわち太陽電池パネル2A〜2Dの天頂角がこの時の太陽の天頂角とほぼ一致するように駆動モータ55を作動させる。軸体33の回転軸が地球自転軸と平行になっている場合、太陽の天頂角は一日で殆ど変化しないので、以降、駆動モータ55を作動させる必要はない。
【0022】
これに対して太陽の方位角は、軸体33の傾斜角で見ると、一定の回転角速度で刻々と変化するため以下の処理を行う。すなわち、ステップ108では方位角追尾初期処理を行う。これは、駆動モータ53を作動させて、太陽スポット光Sが検出面43aのB,C領域側(東側)へ入射するようになるまで太陽電池パネル2A〜2D(太陽追尾センサ43)を方位角方向へ回動させるものである。続くステップ109の方位角追尾処理では、太陽が刻々と方位を変えて太陽スポット光Sが太陽追尾センサ43の検出面43aの原点X(図7(1))、すなわち太陽電池パネル2A〜2Dの方位角と太陽の方位角が一致した点に至った後、これをA,D領域側へ越えてから計時を開始する。そして、例えば1分(60秒)経過した後(図7(1)の状態)に駆動モータ53を1秒間作動させて、太陽スポット光Sが検出面43aのA,D領域側から原点Xを越えて再びB,C領域側へ戻るように(図7(2))太陽電池パネル2A〜2Dを回動させる。その後、太陽の移動によって再び太陽スポット光Sが原点Xに至る(図7(3))までの時間を計時する。これが例えば45秒だったとする。さらに計時を続けて、太陽スポット光Sが原点XからA,D領域へ入って1分経過した後(図7(4)の状態)に、駆動モータ53を今度は1.14秒間作動させて、太陽スポット光Sが原点Xを越えて再びB,C領域側へ戻るように太陽電池パネル2A〜2Dを回動させる。なお、上記1.14秒は下式(1)で算出される。
【0023】
1(秒)×2(分)/(1(分)+45/60(分))=1.14(秒)…(1)
【0024】
これにより、駆動モータ53の負荷が変動しても、刻々と方位を変える太陽を追って、太陽スポット光Sが常に原点Xの左右等距離範囲(太陽の移動につれて太陽スポット光が1分間で移動する距離範囲)内にあるように太陽電池パネル2A〜2Dの方位角が間欠的に変更されて太陽を追尾する。
【0025】
CPU66は所定の条件により以下の処理を行う。すなわち、風速センサ69によって検出される装置周囲の風速が大きくなった場合には、上述した太陽追尾処理を中止して、太陽電池パネル2A〜2Dを図8に示すように水平姿勢へ移動させ、太陽電池パネル2A〜2Dが横風を受けないように退避させる。風速が小さくなると図6のステップ101以下の太陽追尾処理を再開する。また、雨天等により全天照度センサ70で検出される照度が低い場合には太陽追尾処理を行わず、照度が高くなった場合にのみ図6のステップ101以下の太陽追尾処理を開始する。さらに、ロータリエンコーダ67Aで検出される太陽電池パネル2A〜2Dの方位角が日没位置に近くなった場合(例えば真東を0°として方位角165°)には太陽追尾処理を停止して、駆動モータ53により太陽電池パネル2A〜2Dを日の出位置近く(例えば方位角15°)へ回頭させる。
【0026】
本実施形態によれば、太陽電池パネル2A〜2Dを、軸体34回りに天頂角方向へ独立回動可能とするとともに軸体33回りに方位角方向へ独立回動可能な構造としたから、太陽電池パネル2A〜2Dの姿勢調整が容易である。そして、一定回転角速度で刻々と移動する太陽に対して1日のうちでは太陽電池パネル2A〜2Dを方位角方向でのみ追従させれば良いから追従制御が簡易なものとなる。そして、軸受け機構3を太陽電池パネル2A〜2Dのほぼ中心に位置させたから、太陽電池パネル2A〜2Dの重心位置を軸受け機構3の軸体33,34の交点付近に位置させることができ、太陽電池パネル2A〜2Dを回動させる際のモータ駆動力を軽減することができる。
【0027】
また、方位角方向への追尾制御を、サーボモータではない通常のモータの、リレーによるオンオフ間欠制御で行っているから、信頼性の高い追尾制御を安価に実現することができる。この場合、太陽電池モジュールとして太陽電池セルの前に2次光学系を有するものを使用すれば、追尾公差を大きくとることができるから、追尾制御をオンオフ間欠制御としても効率的な発電を維持することができる。そして、連続制御をする場合に比してモータ減速比をそれほど大きくする必要がないため、強風に対する太陽電池パネル2A〜2Dの退避動作や発電開始位置への回頭動作を速やかに行うことができる。さらに、本構造の架台1によれば、図8の状態で、太陽電池パネル2A〜2Dを軸体34回りにさらに天頂角方向へ180°回転させて、下向きに反転させることができる。これにより、砂嵐、降雪等によりレンズ211のレンズ面にキズを生じることが防止できる。また、レンズ面が下方を向いているから、これを容易に清掃することができる。
【0028】
さらに、ロータリエンコーダ67A,67Bからのフィードバック信号によって、計算された太陽位置へ太陽電池パネル2A〜2Dを向けるに当たっては、太陽スポット光Sを検出面43a上のいずこかへ入射させる程度の精度で良いから、ロータリエンコーダ67A,67Bの分解能をそれほど高いものとする必要はなく、これによっても装置の低コスト化が実現される。また、軸体33と駆動モータ53を駆動シャフト5で連結して、駆動モータ53を太陽電池パネル2A〜2D間に位置する軸受け機構3から分離したから、限られたスペースを太陽電池パネル2A〜2Dで有効に使用することができる。
【0029】
(第2実施形態)
緯度の高い(緯度20°以上)地域で本太陽光発電装置を使用する場合には第1実施形態で示した軸受け機構3に代えて図9に示す構造のものを使用すると良い。すなわち、図9に示す軸受け機構3においては、フレキシブルジョイント部51を介して一端が駆動シャフト5(図1)に連結される軸体33は、軸受けブロック35を貫通するように設けられている。軸受けブロック35に隣接する上方には上記軸体33の他端に固定されて軸受けブロック32が位置し、これに、支持枠4A,4B(図1)を固定する軸体34が上記軸体33と直交する方向へ貫通させてある。このような構造によれば、第1実施形態における効果に加えて、軸受けブロック32を大きく回転させることができるから、太陽電池パネル2A〜2Dを方位角方向へ180°の範囲を越えて移動させることができる。
【0030】
【発明の効果】
以上のように、本発明の集光式太陽光発電装置によれば、装置が安価に実現できるから発電原価を下げることができるとともに、太陽電池パネルの退避やスタート位置への戻しを速やかに行うことができる
【図面の簡単な説明】
【図1】
本発明の第1実施形態における、集光式太陽光発電装置の装置本体の側面図である。
【図2】集光式太陽光発電装置の装置要部の分解斜視図である。
【図3】集光式太陽光発電装置の軸受け機構の斜視図である。
【図4】太陽追尾センサの検出面の正面図である。
【図5】集光式太陽光発電装置の制御部のブロック構成図である。
【図6】CPUにおける処理手順を示すフローチャートである。
【図7】太陽追尾センサの検出面の正面図である。
【図8】集光式太陽光発電装置の装置本体の側面図である。
【図9】本発明の第2実施形態における、集光式太陽光発電装置の軸受け機構の斜視図である。
【符号の説明】
2A,2B,2C,2D…集光式太陽電池パネル、3…軸受け機構、33,34…軸体、43…太陽追尾センサ、43a…検出面、5…駆動シャフト、53,55…駆動モータ、66…CPU、S…太陽スポット光、X…原点。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a concentrating photovoltaic power generation device, and more particularly to a concentrating photovoltaic power generation device that can realize simple and inexpensive solar tracking control of a concentrating photovoltaic power generation device and can reduce power generation costs.
[0002]
[Prior art]
In a concentrating solar power generation device, the solar cell panel is controlled so as to always face the sun in order to enable efficient power generation, and the control in this case is performed, for example, as described in Patent Document 1. In some cases, the solar cell panel is made to continuously and continuously follow the movement of the sun.
[0003]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2002-202817
[Problems to be solved by the invention]
However, the servomotors and control devices used for the following (tracking) control are relatively expensive, and a high gear ratio reducer is often provided on the motor output shaft to secure the accuracy of the tracking control. There is a problem that it takes time to retract the solar cell panel in a strong wind or return the solar cell panel to the start position at the end of tracking.
[0005]
In view of the above, an object of the present invention is to solve such a problem, and an object of the present invention is to provide a concentrating solar power generation device that is inexpensive and that can quickly retract a solar cell panel and return to a power generation start position. And
[0006]
[Means for Solving the Problems]
In order to achieve the above object, in the first aspect of the present invention, a driving means (33, azimuthally rotating a concentrating solar cell panel (2A to 2D) around a rotation axis substantially parallel to the earth rotation axis. , 53), and a detection surface (43a) that is oriented in the same direction as the concentrating solar cell panels (2A to 2D) and is rotated integrally therewith, and the sun spot light on the detection surface (43a) is provided. Position detecting means (43) for detecting the relative position of the sun in the azimuthal direction from the incident position of (S), and when the sun spot light (S) exceeds a predetermined position (X) on the detection surface (43a). After a lapse of a predetermined time from, the driving means (33, 5, 53) is operated for a predetermined time to rotate the detection surface (43a) so that the sun spot light (S) passes the predetermined position (X) to the opposite side, Then, return until the sun spot light (S) returns to the predetermined position (X) Measuring the time, after a lapse of the predetermined time, and a drive control means for actuating (66) the predetermined time which is corrected by the return time drive means (33,5,53). In addition, driving means (34, 55) for rotating the concentrating solar cell panels (2A to 2D) in the zenith angle direction may be further provided.
[0007]
In the first aspect of the present invention, even if the driving load of the driving unit fluctuates, the sun spot light is always within the left and right equidistant range with respect to the predetermined position on the detection surface with respect to the sun whose direction changes every moment. The azimuth of the solar cell panel is intermittently changed and the sun is tracked. Since such drive control can be performed by intermittent on / off control of the motor, highly reliable tracking control can be realized at low cost. Also, since it is not necessary to increase the motor speed reduction ratio as much as in the case of performing continuous control such as servo control, it is possible to quickly perform the retreat operation of the solar cell panel against strong wind and the turning operation to the power generation start position. it can.
[0008]
In the second invention, a first shaft body (33) for rotating the concentrating solar cell panels (2A to 2D) in an azimuthal direction about a rotation axis substantially parallel to the earth rotation axis; A second shaft body (34) for rotating the concentrating solar cell panels (2A to 2D) in the direction of the zenith angle orthogonal to the shaft bodies is provided, and these shaft bodies (33, 34) are condensed. It is provided at the center of the solar cell panel (2A to 2D).
[0009]
In the second aspect of the invention, since the first shaft and the second shaft are provided at the center of the solar cell panel, the center of gravity of the solar cell panel can be positioned near the intersection of the shafts. The driving force when rotating the panel can be reduced.
[0010]
In the third aspect, the driving means for rotating in the azimuth direction includes a rotation transmitting means (5), and the first shaft body (33) is connected to the condensing solar light through the rotation transmitting means (5). It is connected to a drive motor (53) provided at a position away from the battery panels (2A to 2D).
[0011]
In the third aspect of the present invention, the first shaft body is connected to the drive motor provided at a position away from the concentrating solar cell panel via the rotation transmitting means, so that the limited space is limited to the solar cell. Can be used effectively in panels.
[0012]
In addition, the code | symbol in the said parenthesis shows the correspondence with the concrete means described in embodiment mentioned later.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
FIG. 1 shows a side view of the device main body of the concentrating solar power generation device. In FIG. 1, the apparatus main body includes four concentrating solar cell panels 2A to 2D, and these solar cell panels 2A to 2D are supported by a gantry 1 erected on a substrate P mounted on the ground. . Each of the solar cell panels 2A to 2D is a rectangular box, and is supported by the gantry 1 on the same plane so that the whole is substantially rectangular. Each of the solar cell panels 2A to 2D is constituted by a plurality of solar cell modules 21. Each of the solar cell modules 21 has a rectangular converging Fresnel lens 211 on the surface thereof, and a solar cell at a lens focal position inside. (Not shown).
[0014]
A bearing mechanism 3 is installed at the upper end of the gantry 1 as shown in FIG. The bearing mechanism 3 has a substantially U-shaped bearing piece 31 provided at an angle, and a bearing block 32 is located in the inner space of the bearing piece 31. Shafts 33 (only one is shown) protruding from both side surfaces of the bearing block 32 are rotatably supported on both side walls 311 of the bearing piece 31, and the bearing block 32 is orthogonal to the shaft body 33. The shaft body 34 is rotatably supported by penetrating in the direction. Support frames 4A and 4B (only one is shown in FIG. 2) are attached to both ends of the shaft body 34, respectively. The support frame 4A is a triangular frame, and a cylindrical sheath 41 provided at the center of the long side thereof is fitted to the shaft 34. The support frames 4A and 4B are further divided into two triangular regions by a partition frame 42, and solar cell panels 2A and 2B and 2C and 2D are respectively mounted thereon. Thus, the bearing mechanism 3 is located substantially at the center of the solar cell panels 2A to 2D (FIG. 1) arranged in a square. Further, a sun tracking sensor 43 is provided on the support frame 4A, and the front surface of the support frame 4A provided with the pinhole 431 faces in the same direction as the panel surfaces of the solar cell panels 2A to 2D.
[0015]
The inclination of the shaft body 33 is adjusted according to the latitude of the place where the gantry 1 is installed, and the rotation axis in the azimuth direction of the solar cell panels 2A to 2D that are supported and rotated by the shaft body 33 as described later is adjusted. It is designed to be almost parallel to the Earth's rotation axis. A drive shaft 5 having flexible joints 51 and 52 (FIG. 1) at both ends is connected to the shaft 33 via the joint 51. The other end of the drive shaft 5 is connected via the flexible joint 52. And is connected to an output shaft 531 of the drive motor 53. The drive motor 53 is supported on a gantry 54 provided on the substrate P. The tilt adjustment of the shaft 33 to make it parallel to the earth's rotation axis can be performed optically using a gimbal mirror or the like attached to the end of the shaft 33 with the drive shaft 5 removed. Can be done with precision.
[0016]
FIG. 3 shows details of the bearing mechanism 3. A drive motor 55 is provided on the bearing block 32, and an output shaft of the drive motor 55 is connected to a circular gear 57 by a worm gear 56 provided thereon. The driving force of the driving motor 55 is transmitted to a large-diameter circular gear 59 fixed to the outer periphery of the shaft body 34 via a circular gear 58 coaxial with the circular gear 57.
[0017]
With such a structure, by driving the drive motor 55 to rotate the solar cell panels 2A to 2D around the shaft 34, the zenith angle of the normal to the panel surface (hereinafter simply referred to as the zenith of the solar cell panel) Angle can be independently changed, and by driving the drive motor 53 to rotate the solar cell panels 2A to 2D around the shaft 33, the azimuth of the normal to the panel surface (hereinafter referred to as the , Simply referred to as the azimuth of the solar cell panel). The substrate P (FIG. 1) is set so that the rotation axis of the shaft 33 is parallel to the earth rotation axis. The rotation angles of the shaft bodies 33 and 34 are detected by a rotary encoder (not shown) attached thereto.
[0018]
A detection surface is arranged in the sun tracking sensor 43 so as to face the pinhole 431. As shown in FIG. 4, the detection surface 43a extends from the A region to the D region along the north-south line and the east-west line. The light is divided into four parts, and each area emits an output corresponding to the amount of light incident thereon. FIG. 5 shows the configuration of the drive control device. Output signals of the detection area 43a of the sun tracking sensor 43 in the areas A to D are input to and amplified by the amplifiers 61A to 61D, respectively, and the amplified signals are input to the first to third computing units 62A to 62C, respectively. In the first computing unit 62A, all the amplified signals in the A region to the D region are added. The second computing unit 62B calculates the ratio of the sum of the amplified signals in the A and D areas and the sum of the amplified signals in the B and C areas. The third calculator 62C calculates the ratio of the sum of the amplified signals in the A and B areas to the sum of the amplified signals in the C and D areas. The output of the first computing unit 62A passes through the noise removal filter 63A, is converted into a digital signal by the A / D converter 64A, and is input to the comparator 65 whose threshold value is changed by a signal from the CPU 66. The comparison output of the comparator 65 is input to the input terminal I1 of the CPU 66. The outputs of the second and third arithmetic units 62B and 62C pass through the noise removal filters 63B and 63C, are converted into digital signals by A / D converters 64B and 64C, and input to the input terminals I2 and I3 of the CPU 66, respectively. I have.
[0019]
The drive motors 53 and 55 are connected to relay circuits 68A and 68B for performing forward and reverse rotations thereof, respectively. Motor forward and reverse rotation command signals are output from the output terminals O1 and O2 of the CPU 66 to the relay circuits 68A and 68B. . The output signal of the rotary encoder 67A that detects the rotation angle (azimuth) of the shaft 33 (FIG. 3) is input to the input terminal I4 of the CPU 66. The output signal of the rotary encoder 67B that detects the rotation angle (zenith angle) of the shaft body 34 is input to the input terminal I5 of the CPU 66. Further, a wind speed sensor 69 and an all-sky illumination sensor 70 composed of a hemispheric fisheye lens and a photodiode are connected to input terminals I6 and I7 of the CPU 66, respectively.
[0020]
FIG. 6 shows a processing procedure in the CPU 66. 6, in step 101, the sun position is calculated from the date and time and the installation position (latitude, longitude) of the device. As a result of the calculation, if the solar altitude is equal to or higher than 15 ° at which power can be generated (step 102), a different threshold value is set depending on the season and the like, and is output to the comparator 65 (FIG. 5) (step 103). In step 104, based on the sun position calculated in step 101, the drive motor 55 is operated while referring to the feedback signal from the rotary encoder 67B to change the zenith angles of the solar cell panels 2A to 2D at this time. Adjust around the corner. In the following step 105, based on the calculated sun position, the driving motor 53 is operated while referring to the feedback signal from the rotary encoder 67A, and the azimuth of the solar cell panels 2A to 2D is changed to the azimuth of the sun at this time. Adjust to the vicinity. Thereby, the sun spot light formed by the pinhole 431 is incident on any of the detection surfaces 43a (FIG. 4) of the sun tracking sensor 43.
[0021]
In step 106, it is determined from the comparison output of the comparator 65 whether or not the magnitude of the output signal of the sun tracking sensor 43 has exceeded the threshold. If the magnitude of the output signal has exceeded the threshold, the sun spot light is incident on any of the detection surfaces 43a. And proceed to the following steps. In step 107, referring to the signal input to the input terminal I3, the incident sun spot light S (see FIG. 7) is located at the boundary between the A and B areas and the C and D areas on the detection surface 43a. That is, the drive motor 55 is operated such that the zenith angles of the solar cell panels 2A to 2D substantially coincide with the zenith angle of the sun at this time. When the rotation axis of the shaft body 33 is parallel to the earth's rotation axis, the zenith angle of the sun hardly changes in one day, so that there is no need to operate the drive motor 55 thereafter.
[0022]
On the other hand, the azimuth of the sun changes every moment at a constant angular velocity when viewed from the inclination angle of the shaft body 33, so the following processing is performed. That is, in step 108, azimuth tracking initial processing is performed. This means that the drive motor 53 is operated and the solar cell panels 2A to 2D (sun tracking sensor 43) are azimuthally shifted until the sun spot light S is incident on the B and C areas (east side) of the detection surface 43a. It is rotated in the direction. In the azimuth angle tracking processing of the subsequent step 109, the sun changes the direction every moment, and the sun spot light S becomes the origin X of the detection surface 43a of the sun tracking sensor 43 (FIG. 7A), that is, the solar cell panels 2A to 2D. After reaching the point where the azimuth coincides with the azimuth of the sun, the timing is started after the azimuth is moved to the A and D areas. Then, for example, after one minute (60 seconds) has elapsed (the state of FIG. 7A), the drive motor 53 is operated for one second, and the sun spot light S moves the origin X from the A and D area sides of the detection surface 43a. After that, the solar cell panels 2A to 2D are rotated so as to return to the areas B and C again (FIG. 7 (2)). Thereafter, the time until the sun spot light S reaches the origin X again by the movement of the sun (FIG. 7 (3)) is measured. Assume that this is, for example, 45 seconds. The timekeeping is further continued, and after one minute has passed after the sun spot light S has entered the areas A and D from the origin X (the state of FIG. 7D), the drive motor 53 is operated this time for 1.14 seconds. Then, the solar cell panels 2A to 2D are rotated so that the sun spot light S returns to the B and C areas again beyond the origin X. Note that 1.14 seconds is calculated by the following equation (1).
[0023]
1 (second) × 2 (minute) / (1 (minute) +45/60 (minute)) = 1.14 (second) (1)
[0024]
Thereby, even if the load of the drive motor 53 fluctuates, the sun spot light S always keeps the right and left equidistant range of the origin X (the sun spot light moves within one minute as the sun moves), following the sun whose direction changes every moment. The azimuths of the solar cell panels 2A to 2D are intermittently changed so as to be within the distance range) to track the sun.
[0025]
The CPU 66 performs the following processing under predetermined conditions. That is, when the wind speed around the device detected by the wind speed sensor 69 increases, the above-described sun tracking process is stopped, and the solar battery panels 2A to 2D are moved to the horizontal posture as shown in FIG. The solar cell panels 2A to 2D are evacuated so as not to receive the crosswind. When the wind speed decreases, the sun tracking processing of step 101 and subsequent steps in FIG. 6 is restarted. In addition, when the illuminance detected by the all-sky illuminance sensor 70 is low due to rainy weather or the like, the sun tracking processing is not performed, and only when the illuminance is high, the sun tracking processing starting from step 101 in FIG. 6 is started. Furthermore, when the azimuth of the solar cell panels 2A to 2D detected by the rotary encoder 67A is close to the sunset position (for example, azimuth 165 ° with true east being 0 °), the sun tracking process is stopped, The drive motor 53 turns the solar cell panels 2A to 2D near the sunrise position (for example, at an azimuth angle of 15 °).
[0026]
According to the present embodiment, the solar cell panels 2A to 2D are configured to be independently rotatable around the shaft 34 in the zenith angle direction and independently rotatable around the shaft 33 in the azimuth direction. It is easy to adjust the attitude of the solar cell panels 2A to 2D. Then, it is sufficient that the solar cell panels 2A to 2D follow only the azimuth direction within one day with respect to the sun moving at a constant rotational angular speed, so that the follow-up control is simplified. And, since the bearing mechanism 3 is located substantially at the center of the solar cell panels 2A to 2D, the position of the center of gravity of the solar cell panels 2A to 2D can be located near the intersection of the shaft bodies 33 and 34 of the bearing mechanism 3. The motor driving force when rotating the battery panels 2A to 2D can be reduced.
[0027]
In addition, since tracking control in the azimuth direction is performed by on-off intermittent control using a relay of a normal motor other than a servomotor, highly reliable tracking control can be realized at low cost. In this case, if a solar cell module having a secondary optical system in front of the solar cell is used, the tracking tolerance can be increased, so that efficient power generation is maintained even if the tracking control is set to the on-off intermittent control. be able to. And since it is not necessary to make the motor reduction ratio much larger than in the case of performing continuous control, the retreat operation of the solar cell panels 2A to 2D against strong wind and the turning operation to the power generation start position can be performed quickly. Furthermore, according to the gantry 1 of this structure, in the state of FIG. 8, the solar cell panels 2A to 2D can be further turned around the shaft 34 by 180 ° in the zenith angle direction and turned downward. Thus, it is possible to prevent the lens surface of the lens 211 from being damaged due to sandstorm, snowfall, or the like. Also, since the lens surface faces downward, it can be easily cleaned.
[0028]
Further, in directing the solar cell panels 2A to 2D to the calculated sun position by the feedback signals from the rotary encoders 67A and 67B, the accuracy is such that the solar spot light S is incident on somewhere on the detection surface 43a. Therefore, it is not necessary to make the resolution of the rotary encoders 67A and 67B so high, and this can also reduce the cost of the apparatus. Further, since the shaft 33 and the drive motor 53 are connected by the drive shaft 5 and the drive motor 53 is separated from the bearing mechanism 3 located between the solar cell panels 2A to 2D, a limited space is provided for the solar cell panels 2A to 2D. It can be used effectively in 2D.
[0029]
(2nd Embodiment)
When using the photovoltaic power generator in an area where the latitude is high (latitude 20 ° or more), the structure shown in FIG. 9 may be used instead of the bearing mechanism 3 shown in the first embodiment. That is, in the bearing mechanism 3 shown in FIG. 9, the shaft 33 whose one end is connected to the drive shaft 5 (FIG. 1) via the flexible joint 51 is provided so as to penetrate the bearing block 35. Above the bearing block 35, the bearing block 32 is fixed to the other end of the shaft 33, and the shaft 34 for fixing the support frames 4A and 4B (FIG. 1) is mounted on the shaft 33. It penetrates in the direction orthogonal to. According to such a structure, in addition to the effect of the first embodiment, the bearing block 32 can be largely rotated, so that the solar cell panels 2A to 2D are moved in the azimuthal direction beyond the range of 180 °. be able to.
[0030]
【The invention's effect】
As described above, according to the concentrator photovoltaic power generator of the present invention, the power generation cost can be reduced because the apparatus can be realized at low cost, and the solar cell panel can be quickly retracted and returned to the start position. [Brief description of drawings]
FIG.
It is a side view of a device main body of a concentrating solar power generation device in a first embodiment of the present invention.
FIG. 2 is an exploded perspective view of a main part of the concentrating solar power generation device.
FIG. 3 is a perspective view of a bearing mechanism of the concentrating solar power generation device.
FIG. 4 is a front view of a detection surface of the sun tracking sensor.
FIG. 5 is a block diagram of a control unit of the concentrating solar power generation device.
FIG. 6 is a flowchart illustrating a processing procedure in a CPU.
FIG. 7 is a front view of a detection surface of the sun tracking sensor.
FIG. 8 is a side view of a device main body of the concentrating solar power generation device.
FIG. 9 is a perspective view of a bearing mechanism of a concentrating solar power generation device according to a second embodiment of the present invention.
[Explanation of symbols]
2A, 2B, 2C, 2D: concentrating solar cell panel, 3: bearing mechanism, 33, 34: shaft body, 43: sun tracking sensor, 43a: detection surface, 5: drive shaft, 53, 55: drive motor, 66: CPU, S: sun spot light, X: origin.

Claims (4)

集光式太陽電池パネルを地球自転軸とほぼ平行な回転軸のまわりに方位角方向へ回動させる駆動手段と、前記集光式太陽電池パネルと同方向を向きこれと一体に回動させられる検出面を備え、当該検出面上への太陽スポット光の入射位置より方位角方向での太陽の相対位置を検出する位置検出手段と、前記太陽スポット光が前記検出面上の所定位置を越えた時から一定時間経過後に、前記駆動手段を所定時間作動させて前記太陽スポット光が前記所定位置を反対側へ越えるように前記検出面を回動させ、その後、前記太陽スポット光が前記所定位置へ戻るまでの戻り時間を計測し、前記一定時間経過後に、前記戻り時間によって補正した所定時間だけ前記駆動手段を作動させる駆動制御手段とを具備する集光式太陽光発電装置。A driving unit for rotating the concentrating solar cell panel in an azimuthal direction about a rotation axis substantially parallel to the earth rotation axis, and turning in the same direction as the concentrating solar cell panel and rotating integrally therewith. A position detecting means for detecting the relative position of the sun in the azimuthal direction from the incident position of the sun spot light on the detection surface, and the sun spot light having exceeded a predetermined position on the detection surface. After a lapse of a predetermined time from the time, the driving means is operated for a predetermined time to rotate the detection surface so that the sun spot light passes over the predetermined position to the opposite side, and thereafter, the sun spot light moves to the predetermined position. A concentrating solar power generation device comprising: a drive control unit that measures a return time until returning, and after a lapse of the predetermined time, activates the drive unit for a predetermined time corrected by the return time. 前記集光式太陽電池パネルを天頂角方向へ回動させる駆動手段をさらに設けた請求項1に記載の集光式太陽光発電装置。The concentrating solar power generation device according to claim 1, further comprising a driving unit that rotates the concentrating solar cell panel in a zenith angle direction. 前記集光式太陽電池パネルを地球自転軸とほぼ平行な回転軸のまわりに方位角方向へ回動させるための第1軸体と、前記第1軸体と直交し前記集光式太陽電池パネルを天頂角方向へ回動させるための第2軸体とを設けて、これら軸体を前記集光式太陽電池パネルの中心部に配設した請求項2に記載の集光式太陽光発電装置。A first shaft body for rotating the concentrating solar cell panel in an azimuthal direction about a rotation axis substantially parallel to the earth rotation axis; and the concentrating solar cell panel orthogonal to the first shaft body. 3. A concentrating photovoltaic power generation device according to claim 2, further comprising a second shaft for rotating the converging solar cell in a zenith angle direction, and disposing these shafts at a central portion of the concentrating solar cell panel. . 前記方位角方向へ回動させる駆動手段は回転伝達手段を備え、前記第1軸体を、前記回転伝達手段を介して、前記集光式太陽電池パネルから離れた位置に設けた駆動モータに連結した請求項3に記載の集光式太陽光発電装置。The driving unit for rotating in the azimuth direction includes a rotation transmitting unit, and the first shaft body is connected to a driving motor provided at a position away from the concentrating solar cell panel via the rotation transmitting unit. The concentrating solar power generation device according to claim 3.
JP2002319491A 2002-11-01 2002-11-01 Concentrating photovoltaic power generator Pending JP2004153202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002319491A JP2004153202A (en) 2002-11-01 2002-11-01 Concentrating photovoltaic power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002319491A JP2004153202A (en) 2002-11-01 2002-11-01 Concentrating photovoltaic power generator

Publications (1)

Publication Number Publication Date
JP2004153202A true JP2004153202A (en) 2004-05-27

Family

ID=32462324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002319491A Pending JP2004153202A (en) 2002-11-01 2002-11-01 Concentrating photovoltaic power generator

Country Status (1)

Country Link
JP (1) JP2004153202A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210454A (en) * 2005-01-26 2006-08-10 Fuji Electric Holdings Co Ltd Solar cell module, method of manufacturing the same, method of installing the same, and solar cell module attachment jig
WO2007125867A1 (en) 2006-04-24 2007-11-08 Sharp Kabushiki Kaisha Photovoltaic power generation system and photovoltaic power generation system control method
CN100458626C (en) * 2007-01-12 2009-02-04 刘津平 Sun tracker, and cluster
WO2009017806A2 (en) * 2007-07-31 2009-02-05 Sunpower Corporation Variable tilt tracker for photovoltaic arrays
KR100902882B1 (en) 2009-03-05 2009-06-16 주식회사 미래이앤지 Solar power generating device with solar tracking system
WO2009128422A1 (en) * 2008-04-17 2009-10-22 シャープ株式会社 Tracking-type photovoltaic power generation device
JP2010067983A (en) * 2008-09-10 2010-03-25 Paru Co Ltd Solar tracking device and its method for high-effective photovoltaic concentration
KR101003539B1 (en) 2007-07-30 2010-12-30 엠코어 솔라 파워 인코포레이티드 Terrestrial solar array
JP2012513102A (en) * 2008-12-03 2012-06-07 ホフマン,ジェームズ Solar energy collection system
CN103019254A (en) * 2011-09-20 2013-04-03 刘津平 Three-dimensional solar tracking system with only one motor and control method thereof
CN103117683A (en) * 2013-03-14 2013-05-22 英利集团有限公司 Solar photovoltaic module system
US8507837B2 (en) 2008-10-24 2013-08-13 Suncore Photovoltaics, Inc. Techniques for monitoring solar array performance and applications thereof
US8513514B2 (en) 2008-10-24 2013-08-20 Suncore Photovoltaics, Inc. Solar tracking for terrestrial solar arrays with variable start and stop positions
US9261630B2 (en) 2008-06-07 2016-02-16 Sun Synchrony, Inc. Solar energy collection system
WO2019193996A1 (en) * 2018-04-05 2019-10-10 住友電気工業株式会社 Solar power generator

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210454A (en) * 2005-01-26 2006-08-10 Fuji Electric Holdings Co Ltd Solar cell module, method of manufacturing the same, method of installing the same, and solar cell module attachment jig
US8288644B2 (en) 2006-04-24 2012-10-16 Sharp Kabushiki Kaisha Photovoltaic power generation system and photovoltaic power generation system control method
WO2007125867A1 (en) 2006-04-24 2007-11-08 Sharp Kabushiki Kaisha Photovoltaic power generation system and photovoltaic power generation system control method
US9086228B2 (en) 2006-04-24 2015-07-21 Sharp Kabushiki Kaisha Photovoltaic power generation system and photovoltaic power generation system control method
CN100458626C (en) * 2007-01-12 2009-02-04 刘津平 Sun tracker, and cluster
KR101003539B1 (en) 2007-07-30 2010-12-30 엠코어 솔라 파워 인코포레이티드 Terrestrial solar array
WO2009017806A2 (en) * 2007-07-31 2009-02-05 Sunpower Corporation Variable tilt tracker for photovoltaic arrays
WO2009017806A3 (en) * 2007-07-31 2009-04-16 Sunpower Corp Variable tilt tracker for photovoltaic arrays
US9455661B2 (en) 2007-07-31 2016-09-27 Sunpower Corporation Variable tilt tracker for photovoltaic arrays
US8776781B2 (en) 2007-07-31 2014-07-15 Sunpower Corporation Variable tilt tracker for photovoltaic arrays
US8946608B2 (en) 2008-02-01 2015-02-03 Suncore Photovoltaics, Inc. Solar tracking system
JP5153868B2 (en) * 2008-04-17 2013-02-27 シャープ株式会社 Tracking drive solar power generator
AU2009237000B2 (en) * 2008-04-17 2012-05-17 Sharp Kabushiki Kaisha Tracking drive type solar power generation apparatus
WO2009128422A1 (en) * 2008-04-17 2009-10-22 シャープ株式会社 Tracking-type photovoltaic power generation device
US9261630B2 (en) 2008-06-07 2016-02-16 Sun Synchrony, Inc. Solar energy collection system
JP2010067983A (en) * 2008-09-10 2010-03-25 Paru Co Ltd Solar tracking device and its method for high-effective photovoltaic concentration
US8507837B2 (en) 2008-10-24 2013-08-13 Suncore Photovoltaics, Inc. Techniques for monitoring solar array performance and applications thereof
US8513514B2 (en) 2008-10-24 2013-08-20 Suncore Photovoltaics, Inc. Solar tracking for terrestrial solar arrays with variable start and stop positions
US8890044B2 (en) 2008-10-24 2014-11-18 Suncore Photovoltaics, Incorporated Solar cell system
JP2012513102A (en) * 2008-12-03 2012-06-07 ホフマン,ジェームズ Solar energy collection system
US9065371B2 (en) 2008-12-03 2015-06-23 Sun Synchrony, Inc. Solar energy collection system
KR100902882B1 (en) 2009-03-05 2009-06-16 주식회사 미래이앤지 Solar power generating device with solar tracking system
CN103019254A (en) * 2011-09-20 2013-04-03 刘津平 Three-dimensional solar tracking system with only one motor and control method thereof
CN103117683A (en) * 2013-03-14 2013-05-22 英利集团有限公司 Solar photovoltaic module system
WO2019193996A1 (en) * 2018-04-05 2019-10-10 住友電気工業株式会社 Solar power generator

Similar Documents

Publication Publication Date Title
JP2004153202A (en) Concentrating photovoltaic power generator
Zhang et al. Error analysis and auto correction of hybrid solar tracking system using photo sensors and orientation algorithm
JPS585704A (en) Automatic tracking device for solar light
JP2010016331A (en) Solar tracking device and tracking method thereof
US8290207B2 (en) Solar power device
IL48809A (en) Tracking device
JP2004153203A (en) Concentrating photovoltaic power generator
CN110989695B (en) Automatic sun tracking device and method on mobile platform
JPH10117007A (en) Converging-type solar cell device
RU2286517C1 (en) Solar photoelectric plant
JP4901837B2 (en) Solar tracking device
RU2579169C1 (en) Positioning and solar tracking system for concentrator solar power plant
JP2001290537A (en) Solar power generating device
Chong et al. Open-loop azimuth-elevation sun-tracking system using on-axis general sun-tracking formula for achieving tracking accuracy of below 1 mrad
JPH11307801A (en) Sunlight tracking apparatus
Aiuchi et al. Sun tracking photo-sensor for solar thermal concentrating system
JP2004235284A (en) Method of installing solar cell panel for condensating solar power generation device
Prinsloo et al. Mechatronic platform with 12m2 solar thermal concentrator for rural power generation in Africa
CN207976770U (en) Uniaxial solar tracking system
JP2000196125A (en) Sun position sensor
JP5759235B2 (en) Sunlight detector
CN201828278U (en) Digital photoelectric angle sensor for sun precise tracking
US20130092152A1 (en) Adjusting Device of Solar Tracker for Testing Off-axis Beam Damage of A Concentrator Photovoltaic (CPV) Module
JP3209221U (en) Light source tracking device
CN111176340A (en) Solar energy compound tracking method