JPH11307801A - Sunlight tracking apparatus - Google Patents

Sunlight tracking apparatus

Info

Publication number
JPH11307801A
JPH11307801A JP10125230A JP12523098A JPH11307801A JP H11307801 A JPH11307801 A JP H11307801A JP 10125230 A JP10125230 A JP 10125230A JP 12523098 A JP12523098 A JP 12523098A JP H11307801 A JPH11307801 A JP H11307801A
Authority
JP
Japan
Prior art keywords
light receiving
receiving surface
weather information
external force
snow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10125230A
Other languages
Japanese (ja)
Inventor
Yukio Suzuki
幸夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP10125230A priority Critical patent/JPH11307801A/en
Publication of JPH11307801A publication Critical patent/JPH11307801A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/60Arrangements for controlling solar heat collectors responsive to wind
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent an external force acting on a light receiving surface or a mechanism for supporting the light receiving surface from becoming excessive due to weather conditions by inputting weather information that produces the external force acting on the light receiving surface and by driving the light receiving surface in such directions as to reduce the external force acting on the light receiving surface based on the inputted weather information. SOLUTION: A drive section 14 drives a light receiving surface 12 so as to track the direction of radiation with sunlight around a gravitational axis and left and right axes orthogonal to the gravity axis. An anemometer 24 provided in the vicinity of the surface 12 outputs a signal according to a wind direction, and outputs an electromotive force according to a wind velocity. Further, a snow coverage meter 26 provided in the vicinity of the surface 12 measures a time interval between the transmission of an emitted ultrasonic wave and its reception, and outputs a signal according to a snow coverage based on the measurement. Outputs from a solar direction sensor 12c, a proximity switch 22, and the meters 24 and 26 are sent to a control unit 18, and the unit 18, e.g. generates a sunlight tracking direction based on these input values.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、太陽光追尾装置
に関し、より具体的には、太陽光発電装置(太陽電池)
や太陽光集熱装置などの太陽光の入射方向(到来方向)
を追尾することによってエネルギ変換効率を向上させる
ようにした太陽光追尾装置において、風雪によって受光
面に作用する外力(力学的負荷)を低減させるようにし
たものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar tracking device, and more specifically, to a solar power generation device (solar cell).
Direction of arrival (arrival direction) of sunlight from solar panels and solar heat collectors
The present invention relates to a solar tracking device that improves the energy conversion efficiency by tracking the external force (mechanical load) acting on the light receiving surface due to wind and snow.

【0002】[0002]

【従来技術】上記した太陽光追尾装置の例としては、特
開平9−148610号、特開平9−129910号公
報および特開平9−140052号公報記載の技術など
を挙げることができる。これら従来技術においては入射
する太陽光が最大となるように受光面を3次元空間内で
駆動し、太陽光発電装置(太陽電池)の変換効率が最大
となるように制御している。
2. Description of the Related Art Examples of the above-described sunlight tracking apparatus include the techniques described in JP-A-9-148610, JP-A-9-129910, and JP-A-9-140052. In these prior arts, the light receiving surface is driven in a three-dimensional space so that incident sunlight is maximized, and control is performed so that the conversion efficiency of the solar power generation device (solar cell) is maximized.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな太陽光追尾装置は屋外に設置されると共に、受光面
の面積が比較的大きいことから、風雪などの気象状況に
よって受光面あるいはそれを支持する機構に作用する外
力(力学的負荷)が過大となることがあった。
However, such a solar tracking device is installed outdoors and has a relatively large light receiving surface area, so that the light receiving surface or the light receiving surface is supported by weather conditions such as wind and snow. The external force (mechanical load) acting on the mechanism sometimes became excessive.

【0004】従って、この発明は、上記した不都合を解
消することにあり、風雪などの気象状況によって受光面
あるいはそれを支持する機構に作用する外力(力学的負
荷)が過大となるのを回避するようにした太陽光追尾装
置を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention is to solve the above-mentioned inconvenience, and to prevent an external force (dynamic load) acting on a light receiving surface or a mechanism supporting the light receiving surface from being excessive due to weather conditions such as wind and snow. It is an object of the present invention to provide a solar tracking device as described above.

【0005】[0005]

【課題を解決するための手段】上記の問題を解決するた
めに、請求項1項においては、太陽光の受光面を入射方
向に応じて駆動する駆動手段を備えた太陽光追尾装置に
おいて、前記受光面に作用する外力を生じる気象情報を
入力する気象情報入力手段を設けると共に、前記駆動手
段は、前記入力された気象情報に基づいて前記受光面に
作用する外力が減少する方向に前記受光面を駆動する如
く構成した。これによって、風雪などの気象状況によっ
て受光面あるいはそれを支持する機構に作用する外力
(力学的負荷)が過大となるのを回避することができ
る。
According to a first aspect of the present invention, there is provided a solar tracking device including a driving unit for driving a light receiving surface of sunlight according to an incident direction. Weather information input means for inputting weather information that generates an external force acting on the light receiving surface; and the driving means includes a light receiving surface in a direction in which the external force acting on the light receiving surface is reduced based on the input weather information. Is configured to be driven. As a result, it is possible to prevent the external force (dynamic load) acting on the light receiving surface or the mechanism supporting the light receiving surface due to weather conditions such as wind and snow from becoming excessive.

【0006】請求項2項にあっては、前記気象情報入力
手段が、前記受光面に作用する風速および積雪のいずれ
かに応じた信号を出力する検出手段である如く構成し
た。これによって、前記した作用効果に加え、受光面あ
るいはそれを支持する機構に作用する外力(力学的負
荷)を精度良く検出することができる。
According to a second aspect of the present invention, the weather information input means is a detecting means for outputting a signal corresponding to one of a wind speed acting on the light receiving surface and snow. This makes it possible to accurately detect an external force (mechanical load) acting on the light receiving surface or a mechanism supporting the light receiving surface, in addition to the above-described effects.

【0007】請求項3項にあっては、前記気象情報入力
手段が、カレンダ時計である如く構成した。これによっ
て、前記した作用効果に加え、受光面あるいはそれを支
持する機構に作用する外力(力学的負荷)を簡易に検出
することができ、構成を簡易にすることができる。
According to a third aspect of the present invention, the weather information input means is configured to be a calendar clock. This makes it possible to easily detect an external force (mechanical load) acting on the light-receiving surface or a mechanism supporting the light-receiving surface in addition to the above-described operation and effect, thereby simplifying the configuration.

【0008】請求項4項にあっては、前記気象情報入力
手段が、操作者により操作されるスイッチである如く構
成した。これによって、前記した作用効果に加え、構成
を一層簡易にすることができる。
According to a fourth aspect of the present invention, the weather information input means is configured as a switch operated by an operator. Thereby, in addition to the above-described effects, the configuration can be further simplified.

【0009】[0009]

【発明の実施の形態】以下、添付図面に即してこの発明
の実施の形態を説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0010】図1はこの発明に係る太陽光追尾装置10
を全体的に示す概略図である。
FIG. 1 shows a solar tracking apparatus 10 according to the present invention.
It is the schematic which shows the whole.

【0011】太陽光追尾装置10は図示の如く、太陽光
の受光面12、駆動部14、受光面12と駆動部14と
を連結する支持機構16、およびマイクロコンピュータ
からなる制御ユニット18(駆動手段)を備える。
As shown in the figure, the sunlight tracking apparatus 10 includes a light receiving surface 12, a driving unit 14, a support mechanism 16 for connecting the light receiving surface 12 and the driving unit 14, and a control unit 18 (driving means) comprising a microcomputer. ).

【0012】受光面12は縦3.0m、横4.0m、厚
さ0.5mの平板状部材からなる。図2はその説明断面
図であるが、図示の如く、受光面上には太陽電池セル1
2aが複数個、より具体的には168個、連続して敷設
される。
The light receiving surface 12 is a flat member having a length of 3.0 m, a width of 4.0 m and a thickness of 0.5 m. FIG. 2 is an explanatory cross-sectional view, and as shown in FIG.
A plurality of 2a, more specifically, 168, are continuously laid.

【0013】太陽電池セル12aは集光レンズ12bで
覆われ、集光された太陽光が太陽電池セルを照射するよ
うに構成される。尚、理解の便宜のため、図2では太陽
電池セル12aの個数などを簡略化して示す。また、図
示の例では受光面12は1基のみ示すが、2基あるいは
それ以上設けても良い。
The solar cell 12a is covered with a condenser lens 12b, and the condensed sunlight irradiates the solar cell. For convenience of understanding, FIG. 2 shows the number of solar cells 12a in a simplified manner. Although only one light receiving surface 12 is shown in the illustrated example, two or more light receiving surfaces 12 may be provided.

【0014】受光面12には太陽方位センサ12cが1
個、中央付近に配置される。図3に示す如く、太陽方位
センサ12cは、2枚の遮蔽板12C1,12C2が直
交されてなり、2枚の遮蔽板12C1,12C2で区画
された4隅には4個の光検知素子(ホトダイオードな
ど)12C3,12C4,12C5,12C6が配置さ
れる。
On the light receiving surface 12, one sun direction sensor 12c is provided.
Pieces are arranged near the center. As shown in FIG. 3, the sun direction sensor 12c has two shielding plates 12C1 and 12C2 orthogonal to each other, and has four photodetectors (photodiodes) at four corners divided by the two shielding plates 12C1 and 12C2. Etc.) 12C3, 12C4, 12C5, 12C6 are arranged.

【0015】上記構成において、2枚の遮蔽板12C
1,12C2の交差軸12C7が照射光に対してずれて
いると、4個の光検知素子12C3,12C4,12C
5,12C6の一部は影となって、出力が他の検知素子
と相違する。従って、4個の光検知素子の出力を制御ユ
ニット18に入力して相互に比較することで、受光面1
2が照射光に垂直となるように太陽光を適正に追尾して
いるか否か判定することができる。
In the above configuration, the two shielding plates 12C
If the cross axis 12C7 of 1,1C2 is shifted with respect to the irradiation light, the four light detecting elements 12C3, 12C4, 12C
A part of 5, 12C6 is shaded, and the output is different from other detection elements. Therefore, the outputs of the four photodetectors are input to the control unit 18 and compared with each other, so that the light receiving surface 1
Thus, it can be determined whether or not the sunlight 2 is appropriately tracked so as to be perpendicular to the irradiation light.

【0016】さらに、受光面12の周縁には近接スイッ
チ22が複数個、配置され、受光面12が異物に接触し
たときオン信号を出力する。
Further, a plurality of proximity switches 22 are arranged on the periphery of the light receiving surface 12, and output an ON signal when the light receiving surface 12 comes into contact with foreign matter.

【0017】駆動部14は2個のパルスモータ(図示せ
ず)を備え、制御ユニット18からの指令に応じ、支持
機構16を介して太陽光の照射方向を追尾するように、
受光面12を重力軸(鉛直線)およびそれに直交する左
右軸(XあるいはY軸)まわりに駆動する。図4に、そ
れを模式的に示す。
The driving unit 14 includes two pulse motors (not shown), and follows the direction of sunlight through the support mechanism 16 in response to a command from the control unit 18.
The light receiving surface 12 is driven around a gravity axis (vertical line) and a right and left axis (X or Y axis) orthogonal thereto. FIG. 4 schematically shows this.

【0018】さらに、受光面12の付近には風速計24
が設けられる。風速計24は公知の風車型風向風速計
(商標名エエロベーン)からなり、飛行機状の基体の垂
直尾翼の動きをシンクロ装置を介して伝達して風向に応
じた信号を出力すると共に、前端に取り付けたプロペラ
状の風車は発電機に接続されて風速に応じた起電力を出
力する。
Further, near the light receiving surface 12, an anemometer 24 is provided.
Is provided. The anemometer 24 is composed of a well-known windmill type anemometer (trade name: Aerobane), transmits the movement of the vertical tail of the airplane-like base through a synchronizing device, outputs a signal corresponding to the wind direction, and is attached to the front end. The propeller-shaped windmill is connected to a generator and outputs an electromotive force according to the wind speed.

【0019】また、受光面12の付近には積雪計26が
設けられる。積雪計26は公知の長音波型からなり、送
信器から地表面に向けて発射した超音波を受信器で受信
し、発信してから受信するまでの時間を測定し、それに
基づいて積雪量(積雪の深さ)に応じた信号を出力す
る。尚、集光レンズ12bの上に感圧センサを張り付け
て圧力を検出し、検出した圧力値から積雪量を推定して
も良い。
A snow gauge 26 is provided near the light receiving surface 12. The snow gauge 26 is of a known long sound wave type, and the ultrasonic wave emitted from the transmitter toward the ground surface is received by the receiver, the time from transmission to reception is measured, and the snow amount ( (Depth of snow). Note that a pressure-sensitive sensor may be attached to the condenser lens 12b to detect the pressure, and the snow amount may be estimated from the detected pressure value.

【0020】制御ユニット18にはキーボード30が接
続され、操作者の指令、例えば受光面12の駆動停止、
風の退避方位(位置)への駆動、積雪の退避方位(位
置)への駆動指令などが入力される。
A keyboard 30 is connected to the control unit 18 so that commands from an operator, for example, stop of driving of the light receiving surface 12,
Driving to the evacuation direction (position) of the wind, driving instruction to the evacuation direction (position) of the snow cover, and the like are input.

【0021】太陽方位センサ12c、近接スイッチ2
2、風速計24、および積雪計26の出力は、制御ユニ
ット18に送られる。制御ユニット18は図1に示す如
く、入力値に基づいて太陽光の追尾方位発生などを行
う。また、受光面12内の太陽電池セル12aの出力
は、図示しない電気負荷(例えばエアコンディショナ)
に送られる。
Sun direction sensor 12c, proximity switch 2
2. The outputs of the anemometer 24 and the snow gauge 26 are sent to the control unit 18. As shown in FIG. 1, the control unit 18 generates a tracking direction of sunlight based on the input value. The output of the solar cell 12a in the light receiving surface 12 is indicated by an electric load (for example, an air conditioner) not shown.
Sent to

【0022】図5はこの装置の動作を示すフロー・チャ
ートである。
FIG. 5 is a flowchart showing the operation of this apparatus.

【0023】同図の説明に入る前に、この発明の課題に
ついて再説する。
Before entering the description of the figure, the subject of the present invention will be re-explained.

【0024】太陽電池の動作効率(エネルギ変換効率)
は入射光のエネルギに比例するが、受光面12が図6に
示すように垂直線(鉛直線)に対して傾斜を持つ場合、
その効率は以下の式1のように求められる。 cosθ=cosZcosΔ+sinZsinΔcos(A−Ψ)..式1
Operating efficiency of solar cell (energy conversion efficiency)
Is proportional to the energy of the incident light, but when the light receiving surface 12 has an inclination with respect to a vertical line (vertical line) as shown in FIG.
The efficiency is obtained as in the following Expression 1. cosθ = cosZcosΔ + sinZsinΔcos (A−Ψ). . Equation 1

【0025】式1で、Zは太陽の仰角、Aは太陽の方位
角、Δは垂直線(鉛直線)と受光面12の法線がなす
角、θは受光面12の法線と太陽方位のなす角、Ψは太
陽方位の基準(即ち、A=0)と受光面のなす角であ
る。図6において受光面と太陽方位のなす角θに対して
受光面の受ける光量は、cosθに比例する。
In equation (1), Z is the elevation angle of the sun, A is the azimuth angle of the sun, Δ is the angle between the vertical line (vertical line) and the normal line of the light receiving surface 12, and θ is the normal line of the light receiving surface 12 and the sun direction. Is an angle between the reference of the sun azimuth (that is, A = 0) and the light receiving surface. In FIG. 6, the amount of light received by the light receiving surface is proportional to cos θ with respect to the angle θ between the light receiving surface and the sun azimuth.

【0026】式1はθ=0で最大値1をとるので、θ=
0、換言すれば、受光面12の法線が太陽の方位に一致
するように、制御ユニット18は、受光面12を支持機
構16および駆動部14を介して駆動する。
Equation 1 takes the maximum value 1 at θ = 0, so that θ =
0, in other words, the control unit 18 drives the light receiving surface 12 via the support mechanism 16 and the driving unit 14 so that the normal of the light receiving surface 12 matches the direction of the sun.

【0027】ところで、受光面12は光を受けると同時
に、受光面12および支持機構16は、図7に示す如く
風によって力学的な負荷を受ける。受光面12および支
持機構16はまた、図8に示す如く、積雪によって力学
的な負荷を受ける。図7および図8は受光面12の側面
図である。
Meanwhile, at the same time as the light receiving surface 12 receives light, the light receiving surface 12 and the support mechanism 16 are subjected to a mechanical load by wind as shown in FIG. As shown in FIG. 8, the light receiving surface 12 and the support mechanism 16 are also subjected to a mechanical load due to snow. 7 and 8 are side views of the light receiving surface 12. FIG.

【0028】図7において受光面12に作用する力(外
力)N1は、風に起因する力をF1としたとき、以下の
式2で表される。 N1=F1cosθ1 ...式2
In FIG. 7, a force (external force) N1 acting on the light receiving surface 12 is represented by the following equation 2 when a force caused by wind is F1. N1 = F1 cos θ1. . . Equation 2

【0029】同様に、図8において受光面12に作用す
る力(外力)N2は、積雪に起因する力をF2としたと
き、以下の式3で表される。 N2=F2sinθ2 ...式3
Similarly, in FIG. 8, the force (external force) N2 acting on the light receiving surface 12 is expressed by the following equation 3 when the force caused by snow is F2. N2 = F2sin θ2. . . Equation 3

【0030】式2において、風の向きが水平のときθ1
でπ/2(=90度)でN1=0が導かれ、式3におい
てθ2=0でN2=0が導かれる。即ち、受光面12に
対する力学的負荷は、退避角度θを設けることによりキ
ャンセルすることができる。ただし、退避角度は風と積
雪とで相反し、横風に対する最良な退避角度は積雪に対
しては力学的負荷が最大となり、積雪に対する最良な退
避角度は風に対しては力学的負荷が最大となる。
In equation (2), when the wind direction is horizontal, θ1
In Equation 3, N1 = 0 is derived at π / 2 (= 90 degrees), and in Equation 3, N2 = 0 is derived at θ2 = 0. That is, the mechanical load on the light receiving surface 12 can be canceled by providing the retreat angle θ. However, the evacuation angle is opposite for wind and snow, and the best evacuation angle for crosswind is the maximum mechanical load for snow, and the best evacuation angle for snow is the maximum mechanical load for wind. Become.

【0031】上記を前提として図5フロー・チャートを
参照し、この装置の動作を説明する。この動作は制御ユ
ニット18によって行われ、図5フロー・チャートの動
作を図1にも機能的に示す。尚、図5に示すプログラム
は例えば、30secごとに起動される。
The operation of this apparatus will be described with reference to the flow chart of FIG. This operation is performed by the control unit 18, and the operation of the flow chart of FIG. 5 is also shown functionally in FIG. The program shown in FIG. 5 is started, for example, every 30 seconds.

【0032】先ず、S10において前記した風速計24
の出力から風が受光面12に向かって水平に吹いてお
り、かつ風速が適宜設定したしきい値を超えるか否か判
断し、肯定されるときはS12に進んで退避制御を行
う。
First, in S10, the anemometer 24
It is determined whether or not the wind is blowing horizontally toward the light receiving surface 12 from the output of (1) and the wind speed exceeds a threshold value appropriately set. If the result is affirmative, the process proceeds to S12 to perform the evacuation control.

【0033】具体的には、風の向きを水平とみなすと共
に、式2でN1が0となるようにθ1をπ/2=90
度、より具体的には受光面12が路面に対して水平とな
るように駆動する。
Specifically, it is assumed that the direction of the wind is horizontal, and θ1 is set to π / 2 = 90 so that N1 becomes 0 in Equation 2.
Specifically, the light receiving surface 12 is driven so as to be horizontal with respect to the road surface.

【0034】他方、S10で否定されるときはS14に
進み、キーボード30を介して操作者から入力があるか
否か判断する。ここで、受光面12を水平駆動するよう
な指示が入力されているときはS12に進んで同様の処
理を行う。
On the other hand, if the result in S10 is negative, the program proceeds to S14, in which it is determined whether or not there is an input from the operator via the keyboard 30. Here, if an instruction to horizontally drive the light receiving surface 12 has been input, the process proceeds to S12, and the same processing is performed.

【0035】S14で否定されるときはS16に進み、
積雪計26の出力から積雪量(積雪深度)が適宜設定し
たしきい値を超えるか否か判断し、肯定されるときはS
18に進んで退避制御を行う。
When the result in S14 is NO, the program proceeds to S16,
It is determined from the output of the snow gauge 26 whether or not the amount of snow (snow depth) exceeds an appropriately set threshold value.
Proceed to 18 to perform evacuation control.

【0036】具体的には、式3でN2が0となるように
θ2=0、より具体的には受光面12が路面に対して垂
直となるように駆動する。
More specifically, the driving is performed so that θ2 = 0 so that N2 becomes 0 in Equation 3, and more specifically, the light receiving surface 12 is driven perpendicular to the road surface.

【0037】他方、S16で否定されるときはS20に
進み、キーボード30を介して操作者から入力があるか
否か判断する。ここで、受光面12を垂直駆動するよう
な指示が入力されているときはS18に進んで同様の処
理を行う。
On the other hand, when the result in S16 is NO, the program proceeds to S20, in which it is determined whether or not there is an input from the operator via the keyboard 30. Here, when an instruction to vertically drive the light receiving surface 12 is input, the process proceeds to S18 and the same processing is performed.

【0038】S20で否定されるときはS22に進み、
近接スイッチ22の出力がオン、即ち、受光面12が異
物と接触しているか否か判断し、肯定されるときは受光
面12を損傷しないように以降の処理をスキップする。
When the result in S20 is NO, the program proceeds to S22,
It is determined whether or not the output of the proximity switch 22 is ON, that is, whether or not the light receiving surface 12 is in contact with a foreign substance. If the result is affirmative, the subsequent processing is skipped so as not to damage the light receiving surface 12.

【0039】S22で否定されるときはS24に進んで
太陽光の追尾制御を行う。即ち、式1のθが0となるよ
うに受光面12を駆動制御する。
When the result in S22 is NO, the program proceeds to S24, in which tracking control of sunlight is performed. That is, the light receiving surface 12 is drive-controlled so that θ in Expression 1 becomes 0.

【0040】この実施の形態は上記の如く構成したの
で、風雪などの気象状況によって受光面あるいはそれを
支持する機構に作用する外力(力学的負荷)が過大とな
るのを回避することができる。
Since the present embodiment is configured as described above, it is possible to prevent the external force (dynamic load) acting on the light receiving surface or the mechanism supporting the light receiving surface from becoming excessive due to weather conditions such as wind and snow.

【0041】さらに、風速計24および積雪計26を用
いて気象状況を検出するので、外力を精度良く検出する
ことができ、(力学的負荷)が過大となるのを一層適切
に回避することができる。
Further, since the weather condition is detected by using the anemometer 24 and the snow gauge 26, the external force can be detected with high accuracy, and the (dynamic load) can be more appropriately prevented from becoming excessive. it can.

【0042】図9はこの発明に係る太陽光追尾装置の第
2の実施の形態を示すブロック図であり、図10はその
動作を示すフロー・チャートである。
FIG. 9 is a block diagram showing a second embodiment of the solar tracking apparatus according to the present invention, and FIG. 10 is a flowchart showing the operation thereof.

【0043】図示の如く、第2の実施の形態では気象セ
ンサに代えてカレンダ時計32を用いた。即ち、経験的
に積雪の発生が冬から春先に集中し、風、特に強風(台
風など)の発生が春から秋に集中することから、それに
応じて受光面12を水平あるいは垂直に駆動するように
した。
As shown in the figure, in the second embodiment, a calendar clock 32 is used in place of the weather sensor. That is, empirically, the occurrence of snow cover is concentrated from winter to early spring, and the occurrence of wind, especially strong winds (typhoon, etc.) is concentrated from spring to autumn, so that the light receiving surface 12 is driven horizontally or vertically accordingly. I made it.

【0044】図10フロー・チャートに従って説明する
と、S100においてキーボード30を介して操作者か
ら入力があるか否か判断し、否定されるときはS102
に進み、カレンダ時計32を読み込んで現在時刻が日照
時間帯(昼間)か否か判断する。
Referring to the flow chart of FIG. 10, it is determined in S100 whether or not there is an input from the operator via the keyboard 30.
To read the calendar clock 32 and determine whether or not the current time is in the daylight hours (daytime).

【0045】S102で肯定されるときはS104に進
み、近接スイッチ22の出力がオンか否か判断し、肯定
されるときは以降の処理をスキップすると共に、否定さ
れるときはS106に進み、第1の実施の形態と同様
に、式1のθが0となるように受光面12を駆動し、太
陽光の追尾制御を行う。
When the result in S102 is affirmative, the process proceeds to S104, in which it is determined whether or not the output of the proximity switch 22 is ON. When the result is affirmative, the subsequent processing is skipped. As in the first embodiment, the light receiving surface 12 is driven so that θ in Expression 1 becomes 0, and tracking control of sunlight is performed.

【0046】他方、S102で否定、即ち、現在時刻が
夜間にあると判断されるとき(あるいはS100で肯定
されるとき)はS108に進み、カレンダ時計から見た
季節が春、夏、秋のいずれにあるか、あるいは冬にある
か判断する。
On the other hand, when the result in S102 is negative, that is, when it is determined that the current time is at night (or when the result in S100 is affirmative), the process proceeds to S108, and the season viewed from the calendar clock is any of spring, summer, and autumn. Or winter.

【0047】S108で春、夏、秋のいずれにあると判
断されるときはS110に進み、第1の実施の形態と同
様に、風の向きを水平とみなし、式2でN1が0となる
ように受光面12を路面に対して水平に駆動する。
If it is determined in S108 that it is in spring, summer, or autumn, the process proceeds to S110, where the direction of the wind is regarded as horizontal, and N1 becomes 0 in equation 2, as in the first embodiment. Thus, the light receiving surface 12 is driven horizontally with respect to the road surface.

【0048】また、S108で冬にあると判断されると
きはS112に進み、第1の実施の形態と同様に、式3
でN2が0となるように受光面12を路面に対して垂直
に駆動する。
If it is determined in step S108 that it is winter, the process proceeds to step S112, and as in the first embodiment, equation 3
To drive the light receiving surface 12 perpendicularly to the road surface so that N2 becomes zero.

【0049】第2の実施の形態は上記の如く構成したの
で、第1の実施の形態と同様の作用効果を得ることがで
きると共に、カレンダ時計32を用いるようにしたの
で、気象状況を簡易に検出することができ、構成を簡易
にすることができる。
Since the second embodiment is configured as described above, the same operation and effect as those of the first embodiment can be obtained. In addition, since the calendar clock 32 is used, the weather condition can be easily reduced. Detection can be performed, and the configuration can be simplified.

【0050】図11はこの発明に係る太陽光追尾装置の
第3の実施の形態を示すブロック図であり、図12はそ
の動作を示すフロー・チャートである。
FIG. 11 is a block diagram showing a third embodiment of the solar tracking apparatus according to the present invention, and FIG. 12 is a flowchart showing the operation thereof.

【0051】図示の如く、第3の実施の形態では操作者
によって操作されるスイッチ34を設け、風退避と積雪
退避の2位置のいずれかを選択させ、そのスイッチ34
の入力(選択)に応じて受光面12を水平あるいは垂直
に駆動するようにした。
As shown in the figure, in the third embodiment, a switch 34 operated by an operator is provided, and one of two positions, evacuation of wind and evacuation of snow, is selected.
The light receiving surface 12 is driven horizontally or vertically according to the input (selection).

【0052】図12フロー・チャートに従って説明する
と、S200においてキーボード30を介して操作者か
ら入力があるか否か判断し、否定されるときはS202
に進み、カレンダ時計32を読み込んで現在時刻が日照
時間帯(昼間)か否か判断する。
Referring to the flowchart of FIG. 12, it is determined in S200 whether or not there is an input from the operator via the keyboard 30.
To read the calendar clock 32 and determine whether or not the current time is in the daylight hours (daytime).

【0053】S202で肯定されるときはS204に進
み、近接スイッチ22の出力がオンか否か判断し、肯定
されるときは以降の処理をスキップすると共に、否定さ
れるときはS206に進み、従前の実施の形態と同様
に、式1のθが0となるように受光面12を駆動制御
し、太陽光の追尾制御を行う。
When the result in S202 is affirmative, the process proceeds to S204, in which it is determined whether or not the output of the proximity switch 22 is ON. When the result is affirmative, the subsequent processing is skipped. Similarly to the above embodiment, the light receiving surface 12 is drive-controlled so that θ in Expression 1 becomes 0, and tracking control of sunlight is performed.

【0054】他方、S202で否定されるとき(あるい
はS200で肯定されるとき)はS208に進み、スイ
ッチ34の入力(選択)を判断し、風退避が選択されて
いるときはS210に進んで従前の実施の形態と同様に
受光面12を路面に対して水平に駆動すると共に、積雪
退避が選択されているときはS212に進んで従前の実
施の形態と同様に受光面12を路面に対して垂直に駆動
する。
On the other hand, when the result in S202 is negative (or when the result in S200 is affirmative), the process proceeds to S208, where the input (selection) of the switch 34 is determined. The light receiving surface 12 is driven horizontally with respect to the road surface in the same manner as in the first embodiment, and when snow retreat is selected, the process proceeds to S212 and the light receiving surface 12 is moved relative to the road surface as in the previous embodiment. Drive vertically.

【0055】第3の実施の形態は上記の如く構成したの
で、第1の実施の形態と同様の作用効果を得ることがで
きると共に、構成を一層簡易にすることができる。
Since the third embodiment is configured as described above, the same operation and effect as those of the first embodiment can be obtained, and the configuration can be further simplified.

【0056】第1ないし第3の実施の形態は上記の如
く、太陽光の受光面を入射方向に応じて駆動する駆動手
段(制御ユニット18)を備えた太陽光追尾装置におい
て、前記受光面に作用する外力を生じる気象情報を入力
する気象情報入力手段(風速計24、積雪計26、カレ
ンダ時計32、スイッチ34)を設けると共に、前記駆
動手段(制御ユニット18)は、前記入力された気象情
報に基づいて前記受光面に作用する外力が減少する方向
に前記受光面を駆動する(S10からS24)如く構成
した。
As described above, in the first to third embodiments, in the solar light tracking device provided with the driving means (control unit 18) for driving the light receiving surface of sunlight according to the incident direction, the light receiving surface is In addition to providing weather information input means (anemometer 24, snow gauge 26, calendar clock 32, switch 34) for inputting weather information that produces an external force acting thereon, the driving means (control unit 18) provides the input weather information. , The light receiving surface is driven in a direction in which the external force acting on the light receiving surface decreases (S10 to S24).

【0057】また、前記気象情報入力手段が、前記受光
面に作用する風速および積雪のいずれかに応じた信号を
出力する検出手段である(風速計24、積雪計26)如
く構成した。
Further, the weather information input means is constituted as a detection means (anemometer 24, snow gauge 26) for outputting a signal corresponding to either the wind speed acting on the light receiving surface or snow.

【0058】また、前記気象情報入力手段が、カレンダ
時計である(カレンダ時計32)を如く構成した。
Further, the weather information input means is constituted as a calendar clock (calendar clock 32).

【0059】また、前記気象情報入力手段が、操作者に
より操作されるスイッチ34である如く構成した。
Further, the weather information input means is constituted by a switch 34 operated by an operator.

【0060】尚、この発明を発電機構として太陽電池を
用いた場合を例にとって説明したが、太陽光のエネルギ
は熱エネルギも含むため、熱機関による発電機構を設け
た場合にも妥当する。
Although the present invention has been described by taking a case where a solar cell is used as a power generation mechanism as an example, since the energy of sunlight includes heat energy, it is appropriate to provide a power generation mechanism using a heat engine.

【0061】[0061]

【発明の効果】請求項1項にあっては、風雪などの気象
状況によって受光面あるいはそれを支持する機構に作用
する外力(力学的負荷)が過大となるのを回避すること
ができる。
According to the present invention, it is possible to prevent the external force (dynamic load) acting on the light receiving surface or the mechanism supporting the light receiving surface from becoming excessive due to weather conditions such as wind and snow.

【0062】請求項2項にあっては、前記した作用効果
に加え、受光面あるいはそれを支持する機構に作用する
外力(力学的負荷)を精度良く検出することができる。
According to the second aspect, in addition to the above-described functions and effects, an external force (mechanical load) acting on the light receiving surface or a mechanism supporting the light receiving surface can be detected with high accuracy.

【0063】請求項3項にあっては、前記した作用効果
に加え、受光面あるいはそれを支持する機構に作用する
外力(力学的負荷)を簡易に検出することができ、構成
を簡易にすることができる。
According to the third aspect, in addition to the above-described functions and effects, an external force (mechanical load) acting on the light receiving surface or a mechanism supporting the light receiving surface can be easily detected, thereby simplifying the configuration. be able to.

【0064】請求項4項にあっては、前記した作用効果
に加え、構成を一層簡易にすることができる。
According to the fourth aspect, in addition to the above-described functions and effects, the configuration can be further simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る太陽光追尾装置の構成を全体的
に示す概略図である。
FIG. 1 is a schematic diagram showing the entire configuration of a solar tracking device according to the present invention.

【図2】図1装置の受光面の説明断面図である。FIG. 2 is an explanatory sectional view of a light receiving surface of the device in FIG. 1;

【図3】図1装置の受光面に配置される太陽方位センサ
の説明斜視図である。
FIG. 3 is an explanatory perspective view of a sun azimuth sensor arranged on a light receiving surface of the device in FIG. 1;

【図4】図1装置の受光面の駆動を示す説明図である。FIG. 4 is an explanatory diagram showing driving of a light receiving surface of the device in FIG. 1;

【図5】図1装置の動作を示すフロー・チャートであ
る。
FIG. 5 is a flowchart showing the operation of the apparatus in FIG. 1;

【図6】図1装置の太陽光追尾方位の算出を示す説明図
である。
FIG. 6 is an explanatory diagram showing calculation of a sunlight tracking direction of the apparatus in FIG. 1;

【図7】図1装置の受光面が風によって受ける力(力学
的負荷)を示す説明図である。
FIG. 7 is an explanatory diagram showing a force (dynamic load) received by a light on a light receiving surface of the apparatus in FIG. 1;

【図8】図1装置の受光面が積雪によって受ける力(力
学的負荷)を示す説明図である。
FIG. 8 is an explanatory diagram showing a force (dynamic load) received by snow on a light receiving surface of the apparatus in FIG. 1;

【図9】この発明の第2の実施の形態に係る太陽光追尾
装置の構成を全体的に示す概略図である。
FIG. 9 is a schematic diagram showing an overall configuration of a solar tracking device according to a second embodiment of the present invention.

【図10】図9装置の動作を示すフロー・チャートであ
る。
FIG. 10 is a flowchart showing the operation of the apparatus in FIG. 9;

【図11】この発明の第3の実施の形態に係る太陽光追
尾装置の構成を全体的に示す概略図である。
FIG. 11 is a schematic diagram showing an overall configuration of a solar tracking device according to a third embodiment of the present invention.

【図12】図11装置の動作を示すフロー・チャートで
ある。
FIG. 12 is a flowchart showing the operation of the apparatus in FIG. 11;

【符号の説明】[Explanation of symbols]

10 太陽光追尾装置 12 受光面 12a 太陽電池セル 12c 太陽方位センサ 14 駆動部 16 支持機構 18 制御ユニット(駆動手段) 22 近接スイッチ 24 風速計(気象情報入力手段、検出手段) 26 積雪計(気象情報入力手段、検出手段) 30 キーボード 32 カレンダ時計(気象情報入力手段) 34 スイッチ(気象情報入力手段) DESCRIPTION OF SYMBOLS 10 Solar tracker 12 Light receiving surface 12a Solar cell 12c Sun direction sensor 14 Drive unit 16 Support mechanism 18 Control unit (drive unit) 22 Proximity switch 24 Anemometer (weather information input unit, detection unit) 26 Snow meter (weather information) Input means, detection means) 30 keyboard 32 calendar clock (weather information input means) 34 switch (weather information input means)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 太陽光の受光面を入射方向に応じて駆動
する駆動手段を備えた太陽光追尾装置において、 a.前記受光面に作用する外力を生じる気象情報を入力
する気象情報入力手段、を設けると共に、前記駆動手段
は、前記入力された気象情報に基づいて前記受光面に作
用する外力が減少する方向に前記受光面を駆動すること
を特徴とする太陽光追尾装置。
1. A sunlight tracking device comprising a driving means for driving a light receiving surface of sunlight according to an incident direction, comprising: a. Weather information input means for inputting weather information that generates an external force acting on the light receiving surface, and the driving means, the driving means, in a direction in which the external force acting on the light receiving surface is reduced based on the input weather information A solar tracking device characterized by driving a light receiving surface.
【請求項2】 前記気象情報入力手段が、前記受光面に
作用する風速および積雪のいずれかに応じた信号を出力
する検出手段であることを特徴とする請求項1項記載の
太陽光追尾装置。
2. The sunlight tracking device according to claim 1, wherein said weather information input means is a detection means for outputting a signal corresponding to one of a wind speed and snow acting on said light receiving surface. .
【請求項3】 前記気象情報入力手段が、カレンダ時計
であることを特徴とする請求項1項記載の太陽光追尾装
置。
3. The solar tracking apparatus according to claim 1, wherein said weather information input means is a calendar clock.
【請求項4】 前記気象情報入力手段が、操作者により
操作されるスイッチであることを特徴とする請求項1項
記載の太陽光追尾装置。
4. The solar tracking apparatus according to claim 1, wherein the weather information input means is a switch operated by an operator.
JP10125230A 1998-04-20 1998-04-20 Sunlight tracking apparatus Withdrawn JPH11307801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10125230A JPH11307801A (en) 1998-04-20 1998-04-20 Sunlight tracking apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10125230A JPH11307801A (en) 1998-04-20 1998-04-20 Sunlight tracking apparatus

Publications (1)

Publication Number Publication Date
JPH11307801A true JPH11307801A (en) 1999-11-05

Family

ID=14905049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10125230A Withdrawn JPH11307801A (en) 1998-04-20 1998-04-20 Sunlight tracking apparatus

Country Status (1)

Country Link
JP (1) JPH11307801A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180464A (en) * 2005-12-28 2007-07-12 Kazuyuki Agata Automatic sunlight-tracking type highly efficient power generation apparatus
KR100819861B1 (en) 2007-04-19 2008-04-08 다울이엔씨(주) Solar tracker
KR100913073B1 (en) 2009-03-31 2009-08-21 주식회사 이멕스 Sigle axis tracking type solar generation and monitoring apparatus
KR100982263B1 (en) 2007-12-28 2010-09-14 이찬재 A solar photovoltaic cleaning and cooling system
CN101976977A (en) * 2010-10-27 2011-02-16 武汉理工大学 Pitching slowly-following quick-return solar two-dimensional tracking device
CN102566597A (en) * 2012-01-21 2012-07-11 渤海大学 Photovoltaic generation intelligent adaptive tracking control method and control system thereof
CN103066886A (en) * 2012-12-13 2013-04-24 上海唐辉电子有限公司 Self-adaption solar tracking disaster prevention generating set and control method
CN103713661A (en) * 2013-12-25 2014-04-09 青海中控太阳能发电有限公司 Method enabling speed change of heliostat to be achieved
JP2016111872A (en) * 2014-12-09 2016-06-20 東芝エレベータ株式会社 Photovoltaic power generation system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180464A (en) * 2005-12-28 2007-07-12 Kazuyuki Agata Automatic sunlight-tracking type highly efficient power generation apparatus
KR100819861B1 (en) 2007-04-19 2008-04-08 다울이엔씨(주) Solar tracker
KR100982263B1 (en) 2007-12-28 2010-09-14 이찬재 A solar photovoltaic cleaning and cooling system
KR100913073B1 (en) 2009-03-31 2009-08-21 주식회사 이멕스 Sigle axis tracking type solar generation and monitoring apparatus
CN101976977A (en) * 2010-10-27 2011-02-16 武汉理工大学 Pitching slowly-following quick-return solar two-dimensional tracking device
CN102566597A (en) * 2012-01-21 2012-07-11 渤海大学 Photovoltaic generation intelligent adaptive tracking control method and control system thereof
CN103066886A (en) * 2012-12-13 2013-04-24 上海唐辉电子有限公司 Self-adaption solar tracking disaster prevention generating set and control method
CN103713661A (en) * 2013-12-25 2014-04-09 青海中控太阳能发电有限公司 Method enabling speed change of heliostat to be achieved
CN103713661B (en) * 2013-12-25 2016-09-28 青海中控太阳能发电有限公司 A kind of method realizing heliostat speed change
JP2016111872A (en) * 2014-12-09 2016-06-20 東芝エレベータ株式会社 Photovoltaic power generation system

Similar Documents

Publication Publication Date Title
CN101588147B (en) Solar energy collecting system
KR101242410B1 (en) Photovoltaic power generation device and solar cell board adjusting method
CN101995233B (en) Angle measuring method for sun precision tracking and digital photoelectric angle sensor
KR100940479B1 (en) Solar tracking apparatus
US20090178668A1 (en) Central Receiver Solar Power Systems: Architecture And Controls Methods
KR100799094B1 (en) Sunlight detecting system for the solar cell and solar heat sink device
WO2013170563A1 (en) Real-time solar energy tracking system
US8290207B2 (en) Solar power device
KR20120067325A (en) Photovoltaic power generation device and solar cell board adjusting method
JPH11307801A (en) Sunlight tracking apparatus
JP2006005306A (en) Solar energy power generation system
KR20190070125A (en) Concentrate light device for sunlight generation of electric power
KR20080058301A (en) The operation control system for track type solar thermal electric power generation system
RU124440U1 (en) SOLAR PHOTOELECTRIC INSTALLATION
US20040261786A1 (en) Solar energy conversion system
JP4378257B2 (en) Solar tracking system
JP2000155026A (en) Sun position sensor
KR101412783B1 (en) Device and method for heliostat control using hybrid type solar tracking device
KR101612426B1 (en) Fixed type Solar Generator equipped with Reflector
JP2005129574A (en) Sunlight tracking device
KR101570741B1 (en) Fixed type Solar Generator equipped with Reflector
KR100959952B1 (en) Solar tracking device a large area of single-axis
CN103471265A (en) Sunlight directional reflection control device based on time-sharing competition mechanism and control method thereof
JP2013199847A (en) Sun tracker and solar generator with the sun tracker
CN201828278U (en) Digital photoelectric angle sensor for sun precise tracking

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705