JP2006005306A - Solar power system - Google Patents

Solar power system Download PDF

Info

Publication number
JP2006005306A
JP2006005306A JP2004182697A JP2004182697A JP2006005306A JP 2006005306 A JP2006005306 A JP 2006005306A JP 2004182697 A JP2004182697 A JP 2004182697A JP 2004182697 A JP2004182697 A JP 2004182697A JP 2006005306 A JP2006005306 A JP 2006005306A
Authority
JP
Japan
Prior art keywords
sun
power generation
solar cell
water flow
floating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004182697A
Other languages
Japanese (ja)
Inventor
Naoteru Yoshimi
直輝 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004182697A priority Critical patent/JP2006005306A/en
Publication of JP2006005306A publication Critical patent/JP2006005306A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/70Waterborne solar heat collector modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/422Vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve power generation efficiency and reduce the electric power required for tracking by utilizing, as a means for tracking the sun, a driving means other than the electric power acquired by solar energy power generation as well. <P>SOLUTION: The solar energy power generation system comprises a floating body 30 that floats on water surface while supporting a soar cell module 10, a direction recognizing device 40 for recognizing the direction of sun and that of the light receiving surface of he solar cell module 10, a rudder member 32 which receives water current to rotate the floating body 30 on the water surface, and a control unit 60 that controls rotation of the floating body 30 so that the light receiving surface of the solar cell module 10 faces the sun by controlling the rudder member 32 based on recognizing result of the direction recognizing device 40. The rudder member 32 is so provided for free rotation that it turns aside the water current except when controlled by the control unit 60. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、太陽光発電システムに係り、より詳細には、水上に浮遊した状態で太陽光を追尾する太陽光発電システムに関する。   The present invention relates to a photovoltaic power generation system, and more particularly to a photovoltaic power generation system that tracks sunlight while floating on water.

近い将来に化石燃料が枯渇すると予想されることから、近年、自然エネルギーに対する関心が高まっており、その中でも太陽光の光エネルギーを電気エネルギーに変換する太陽電池はますます普及する傾向にある。   Since fossil fuels are expected to be depleted in the near future, interest in natural energy has increased in recent years, and among these, solar cells that convert sunlight light energy into electrical energy are becoming increasingly popular.

太陽電池とは、一般に太陽電池セルと呼ばれる光電変換素子を指しており、これを複数個連結してガラスや樹脂などの中に封止したものを太陽電池モジュールと呼んでいる。そして、この太陽電池モジュールを複数個、目的に合った出力電流、出力電圧が得られるように直列もしくは並列に接続し、家庭用の電源として使用できるように直流から交流に変換する装置(インバーター)や蓄電池を備えたものを一般に太陽光発電システムと呼んでいる。   A solar battery generally refers to a photoelectric conversion element called a solar battery cell, and a plurality of the photoelectric conversion elements connected together and sealed in glass or resin is called a solar battery module. And a device (inverter) that converts a plurality of solar cell modules from DC to AC so that they can be used as a household power source by connecting them in series or in parallel so that output current and output voltage can be obtained. Those equipped with batteries and storage batteries are generally called solar power generation systems.

従来の太陽光発電システムは、主に住宅用と産業用とに区別される。住宅用は、太陽電池モジュールを各家庭の屋根の上に支持構造体(架台)を介して固定し、得られた電力を交流電源に変換するインバーターを備えている。また、発電して余った電力は電力会社に売電するシステムとなっているのが一般的である。一方、産業用は、設置の規模や支持構造体の形態が住宅用よりも一般に大きく、また蓄電池を備えており、電力会社から電力供給が受けられない場所に設置される場合が多い。このように太陽光発電システムを陸上に設置する場合の設置方法、発電方法はほぼ確立されてきている。   Conventional solar power generation systems are mainly classified into residential use and industrial use. For residential use, a solar cell module is fixed on the roof of each home via a support structure (base), and an inverter for converting the obtained power into an AC power source is provided. In general, the surplus power generated is a system for selling power to an electric power company. On the other hand, for industrial use, the scale of installation and the form of the support structure are generally larger than for residential use, and are equipped with storage batteries, and are often installed in places where power supply from electric power companies cannot be received. Thus, installation methods and power generation methods for installing a solar power generation system on land have been almost established.

これに対し、太陽光発電システムの水上での設置例はほとんどなく、最適な設置方法、発電方法は未確立と言える。今後、太陽光発電の設置が陸上だけでなく水上へも拡大していく上で、陸上とは異なる環境での設置、発電方法の最適化が急務である。   On the other hand, there are almost no installation examples of the photovoltaic power generation system on the water, and it can be said that the optimal installation method and power generation method have not been established. In the future, the installation of photovoltaic power generation will not only extend to land but also to water, and installation in an environment different from land and optimization of the power generation method are urgently needed.

陸上はもとより、水上での発電においても、発電効率の向上は重要な課題のひとつである。発電効率を向上させるための方法の一つとして、太陽光を追尾する発電装置ないしシステムが提案されている(例えば、特許文献1,特許文献2参照)。これは、時々刻々と位置を変え続ける太陽の方向に、太陽電池の受光面が常に向くように太陽電池モジュールを取り付けた支持構造体を傾斜、回転させる方法である。
特開昭61−133673号公報 実開昭62−40610号公報
Improving power generation efficiency is an important issue for power generation on land as well as on the water. As one of the methods for improving the power generation efficiency, a power generation device or system that tracks sunlight has been proposed (see, for example, Patent Document 1 and Patent Document 2). This is a method of tilting and rotating the support structure to which the solar cell module is attached so that the light-receiving surface of the solar cell always faces in the direction of the sun, the position of which changes every moment.
JP 61-133673 A Japanese Utility Model Publication No. 62-40610

しかしながら、上記特許文献1及び特許文献2の太陽電池システム及び太陽光追尾装置は、いずれも太陽を追尾するための回転や傾斜のための手段が、太陽光発電で得られた電力のみで賄われているため、効率的でないといった問題があった。すなわち、太陽光発電で得られた電力を本来の目的とは異なる目的で使用することになり、しかも、回転や傾斜のための手段をどのような部材で構成するのかにもよるが、太陽を追尾することにより得られる電力よりも太陽を追尾するために要した電力の方が大きかった場合には、むしろ逆効果となる。   However, the solar cell system and the solar light tracking device of Patent Document 1 and Patent Document 2 described above are all covered by only the electric power obtained by solar power generation as a means for rotation and inclination for tracking the sun. Therefore, there was a problem that it was not efficient. In other words, the electric power obtained by photovoltaic power generation is used for a purpose different from the original purpose, and depending on what kind of member is used for the means for rotation and tilting, If the power required to track the sun is greater than the power obtained by tracking, the effect is rather adverse.

本発明はかかる問題点を解決すべく創案されたもので、その目的は、太陽を追尾する手段として太陽光発電で得られた電力以外の駆動手段を合わせて利用することで、発電効率を向上させるとともに、追尾のために要する電力の削減を図った太陽光発電システムを提供することにある。   The present invention was devised to solve such problems, and its purpose is to improve power generation efficiency by using driving means other than electric power obtained by solar power generation as means for tracking the sun. And providing a photovoltaic power generation system that reduces the power required for tracking.

上記課題を解決するため、本発明では太陽を追尾するための駆動手段として水流を利用する。すなわち、本発明の太陽光発電システムは、太陽電池を支持した状態で水面上に浮遊する浮遊体と、太陽の方角と前記太陽電池の受光面の方角とを認識する方角認識手段と、水流を受け止めることにより前記浮遊体を水面上で回転させる回転手段と、前記方角認識手段の認識結果に基づいて前記回転手段を制御することにより、前記太陽電池の受光面が太陽に向くように前記浮遊体の回転を制御する制御手段とを備えたことを特徴としている。 また、本発明では、水流の向き及び速さを検知する水流検知手段をさらに備えており、前記制御手段は、前記水流検知手段の検知結果も加えて前記回転手段を制御する。   In order to solve the above-described problems, the present invention uses a water flow as a driving means for tracking the sun. That is, the photovoltaic power generation system of the present invention includes a floating body that floats on the water surface while supporting the solar cell, direction recognition means that recognizes the direction of the sun and the direction of the light receiving surface of the solar cell, and a water flow. Rotating means for rotating the floating body on the water surface by receiving the floating body, and controlling the rotating means based on the recognition result of the direction recognizing means, so that the light receiving surface of the solar cell faces the sun. And a control means for controlling the rotation of the motor. Further, the present invention further includes water flow detection means for detecting the direction and speed of the water flow, and the control means controls the rotation means by adding the detection result of the water flow detection means.

このように、本発明では太陽電池の受光面を常に太陽に向くように追従させることで、発電効率を向上させることができる。また、回転手段を回転させる駆動源として太陽光発電で得られた電力の利用は必要最小限とし、主として水流の力を利用することにより、太陽光発電で得られた電力の利用効率も向上させることができる。   Thus, in the present invention, the power generation efficiency can be improved by causing the light-receiving surface of the solar cell to always follow the sun. In addition, the use of electric power obtained by photovoltaic power generation as a driving source for rotating the rotating means is minimized, and the utilization efficiency of electric power obtained by photovoltaic power generation is improved mainly by utilizing the power of water flow. be able to.

この場合、前記回転手段は板状に形成された舵部材であり、この舵部材は、前記制御手段により制御されるとき以外は水流を受け流すように自由回転可能に設けられている。すなわち、太陽の方角と太陽電池の受光面の方角とが同じ方角を向いているときは、水中の舵部材は自由回転によって水流の力を受け流す。一方、太陽の方角と太陽電池の受光面の方角とが異なる方角となったときは、水流の力を受け止めるように舵部材を回転制御する。これにより、浮遊体が水面に対して鉛直方向を回転軸として回転し、太陽を追尾する。このように、本発明では、太陽光発電により得られた電力のうち、太陽を追尾するために使用する電力は、水流を受け止めるために舵部材を回転させる駆動源に供給する電力のみであり、上記従来技術の場合に比べて電力消費も僅かである。従って、その分、発電効率を向上させることが可能となる。   In this case, the rotating means is a plate-shaped rudder member, and this rudder member is provided so as to be freely rotatable so as to receive a water flow except when controlled by the control means. That is, when the direction of the sun and the direction of the light receiving surface of the solar cell are in the same direction, the underwater rudder member receives the force of the water flow by free rotation. On the other hand, when the direction of the sun is different from the direction of the light receiving surface of the solar cell, the rudder member is rotationally controlled so as to receive the force of the water flow. As a result, the floating body rotates about the vertical direction with respect to the water surface as a rotation axis, and tracks the sun. Thus, in the present invention, of the power obtained by solar power generation, the power used to track the sun is only the power supplied to the drive source that rotates the rudder member to catch the water flow, Compared with the above prior art, power consumption is also small. Therefore, it is possible to improve the power generation efficiency accordingly.

ここで、前記回転手段を回転させる駆動源として、本発明ではステッピングモータを使用するが、ステッピングモータに限定されるものではない。また、本発明では、太陽電池で発電された電力を蓄積する蓄電池を備えており、前記回転手段の駆動源への電力の供給は、この蓄電池の電力を利用する構成としている。   Here, a stepping motor is used as a drive source for rotating the rotating means in the present invention, but it is not limited to a stepping motor. Moreover, in this invention, the storage battery which accumulate | stores the electric power generated with the solar cell is provided, and supply of the electric power to the drive source of the said rotation means is set as the structure using the electric power of this storage battery.

また、太陽の方角を認識する前記方角認識手段として、本発明では、現在時刻を計測する計測手段と、予め用意されている日付データと前記計測手段による現在時刻とに基づいて太陽の方角を演算により求める演算手段とを用いた構成としている。方角認識手段としては、このような演算により求める方法に限らず、実際に太陽の方角を検出することも可能であるが、その場合には、太陽の方向を検知するためのセンサの制御や、当該センサを例えば左右方向に振らせて受光量の頂点を求めるための制御等に電力を必要とすることから、電力を消費しない方法としては演算による方法が好適である。また、太陽電池モジュールの受光面の方角を認識する手段としては、GPS(Global Positioning System)により方角を認識する構成とすることができる。   Further, as the direction recognizing means for recognizing the direction of the sun, in the present invention, the direction of the sun is calculated based on the measuring means for measuring the current time, the date data prepared in advance, and the current time by the measuring means. The calculation means obtained by the above is used. The direction recognizing means is not limited to the method obtained by such calculation, but it is also possible to actually detect the direction of the sun, but in that case, control of the sensor for detecting the direction of the sun, For example, a calculation method is suitable as a method that does not consume power because power is required for control for obtaining the peak of the amount of received light by shaking the sensor in the left-right direction, for example. Moreover, as a means to recognize the direction of the light-receiving surface of a solar cell module, it can be set as the structure which recognizes a direction by GPS (Global Positioning System).

本発明の太陽光発電システムによれば、太陽電池の受光面を常に太陽に向くように追従させることにより、発電効率を向上させることができる。また、回転手段を回転させる駆動源として太陽光発電で得られた電力の利用は必要最小限とし、主として水流の力を利用することにより、太陽光発電で得られた電力の利用効率も向上させることができる。   According to the solar power generation system of the present invention, power generation efficiency can be improved by causing the light receiving surface of the solar cell to always follow the sun. In addition, the use of electric power obtained by photovoltaic power generation as a driving source for rotating the rotating means is minimized, and the utilization efficiency of electric power obtained by photovoltaic power generation is improved mainly by utilizing the power of water flow. be able to.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[実施形態1]
図1は、本発明の太陽光発電システムの実施形態1を示す概略斜視図である。
[Embodiment 1]
FIG. 1 is a schematic perspective view showing Embodiment 1 of the photovoltaic power generation system of the present invention.

本実施形態1の太陽光発電システムは、大別すると、太陽電池モジュール10と、この太陽電池モジュール10を支持固定する架台20と、この架台20が取り付けられた水面上に浮遊する浮遊体30で構成されている。   The photovoltaic power generation system according to Embodiment 1 can be broadly divided into a solar cell module 10, a gantry 20 that supports and fixes the solar cell module 10, and a floating body 30 that floats on the water surface to which the gantry 20 is attached. It is configured.

太陽電池モジュール10は、光電変換素子である太陽電池セル10aを複数個連結してガラスや樹脂などの中に封止したものであり、本実施形態1では、太陽電池セル10aを横方向に4個、縦方向に8個並べて合計32個配置している。   The solar cell module 10 is formed by connecting a plurality of photovoltaic cells 10a, which are photoelectric conversion elements, and encapsulating them in glass, resin, or the like. A total of 32 pieces are arranged side by side in the vertical direction.

この太陽電池モジュール10を支持固定する架台20は、浮遊体30上に載置する直方体形状に組まれた枠台21と、太陽電池モジュール10を載置して支持固定するために同じく直方体形状に組まれた載置枠22と、この載置枠22の後端部と枠台21の後端部とを連結する左右一対の連結杆23,23とからなり、載置枠22は、この連結杆23,23によって、例えば45度に傾斜して設けられている。この載置枠22上に太陽電池モジュール10を載置固定することで、太陽電池モジュール10の受光面がほぼ太陽に向かうように、45度の角度で保持されることになる。   The stand 20 for supporting and fixing the solar cell module 10 has a rectangular parallelepiped shape for mounting and supporting and fixing the solar cell module 10 and a frame base 21 assembled in a rectangular parallelepiped shape placed on the floating body 30. The assembled mounting frame 22 includes a pair of left and right connecting rods 23 and 23 that connect the rear end portion of the mounting frame 22 and the rear end portion of the frame base 21. The mounting frame 22 is connected to the mounting frame 22. For example, the flanges 23 and 23 are inclined at 45 degrees. By mounting and fixing the solar cell module 10 on the mounting frame 22, the light-receiving surface of the solar cell module 10 is held at an angle of 45 degrees so that it substantially faces the sun.

また、浮遊体30の上面には、太陽の方角と太陽電池モジュール10の受光面の方角とが一致するか否かを認識する方角認識装置40、太陽電池モジュール10で発電された電力を蓄積する蓄電池50、この蓄電池50の電力を電源として後述する舵部材32の回転を制御する制御装置60が設けられている。   Moreover, the direction recognition device 40 for recognizing whether or not the direction of the sun and the direction of the light receiving surface of the solar cell module 10 coincide with each other, and the electric power generated by the solar cell module 10 are accumulated on the upper surface of the floating body 30. A storage battery 50 and a control device 60 that controls the rotation of a rudder member 32 to be described later using the power of the storage battery 50 as a power source are provided.

一方、浮遊体30は、水流の抵抗を受けにくい円盤形状に形成されており、水中に位置する下面中央部には、下方に垂下した例えば円柱形状の回転軸31が浮遊体30に対して自由回転可能に設けられている。この回転軸31には、水流を受け止めることにより浮遊体30を水面上で回転させるための上記した舵部材32が、回転軸31の軸心に対して垂直方向に延設する形で設けられている。一方、回転軸31は、図示は省略しているが駆動源であるステッピングモータに連係可能に設けられており、ステッピングモータに連係されたときには、制御装置60によるステッピングモータの駆動制御により、時計方向及び反時計方向のいずれにも回転制御されるようになっている。すなわち、この回転軸31に設けられた舵部材32を水中で回転制御できるようになっている。また、回転軸31の下端部には、水流の向き及び速さを検知する水流センサ33が設けられている。   On the other hand, the floating body 30 is formed in a disk shape that is not easily resisted by water flow, and, for example, a cylindrical rotating shaft 31 hanging downward is free from the floating body 30 at the center of the lower surface located in water. It is provided so as to be rotatable. The rotating shaft 31 is provided with the above-described rudder member 32 for rotating the floating body 30 on the water surface by receiving the water flow so as to extend in a direction perpendicular to the axis of the rotating shaft 31. Yes. On the other hand, the rotary shaft 31 is provided so as to be able to be linked to a stepping motor which is a driving source (not shown), and when linked to the stepping motor, the rotation of the stepping motor by the control device 60 is controlled clockwise. And counterclockwise rotation control. That is, the rudder member 32 provided on the rotary shaft 31 can be controlled to rotate in water. A water flow sensor 33 that detects the direction and speed of the water flow is provided at the lower end of the rotating shaft 31.

方角認識装置40は、本実施形態1では、現在時刻を計測する計測手段と、太陽の方角を演算する演算手段とを備えており、演算手段は、予め用意されている日付データと計測手段による現在時刻とに基づいて太陽の方角を演算により求めるようになっている。また、方角認識装置40は、太陽電池モジュール10の受光面が現在向いている方向(方角)も認識するようになっている。太陽電池モジュール10の受光面の方角を認識する方法としては、例えばGPS(Global Positioning System)により方角を認識する方法を採用することができる。なお、方角認識装置40としては、このような演算により太陽の方角を求める方法に限らず、各種センサを用いて実際に太陽の方角を検出することも可能である。   In the first embodiment, the direction recognition device 40 includes a measurement unit that measures the current time and a calculation unit that calculates the direction of the sun. The calculation unit is based on date data and measurement unit that are prepared in advance. The direction of the sun is obtained by calculation based on the current time. The direction recognition device 40 also recognizes the direction (direction) in which the light receiving surface of the solar cell module 10 is currently facing. As a method of recognizing the direction of the light receiving surface of the solar cell module 10, for example, a method of recognizing the direction by GPS (Global Positioning System) can be employed. The direction recognizing device 40 is not limited to the method for obtaining the direction of the sun by such a calculation, but it is also possible to actually detect the direction of the sun using various sensors.

制御装置60は、方角認識装置40による認識結果に基づいて回転軸31の回転、すなわち舵部材32の水流方向に対する角度を制御することにより、太陽電池モジュール10の受光面が常に太陽に向くように、水面上の浮遊体30の回転を制御する。このとき、制御装置60は、水流センサ33の検知結果を考慮して舵部材32の回転角度の制御や回転速度の制御を行う。   The control device 60 controls the rotation of the rotating shaft 31, that is, the angle of the rudder member 32 with respect to the water flow direction, based on the recognition result by the direction recognition device 40, so that the light receiving surface of the solar cell module 10 always faces the sun. The rotation of the floating body 30 on the water surface is controlled. At this time, the control device 60 controls the rotation angle and the rotation speed of the rudder member 32 in consideration of the detection result of the water flow sensor 33.

以下、制御装置60による舵部材32の制御により、太陽電池モジュール10の受光面が、移動する太陽の方向に常に向かうように浮遊体30を回転制御する制御動作について説明する。   Hereinafter, a control operation for controlling the rotation of the floating body 30 so that the light receiving surface of the solar cell module 10 is always directed in the direction of the moving sun by the control of the rudder member 32 by the control device 60 will be described.

まず、方角認識装置40によって太陽の方角と、太陽電池モジュール10の受光面が向いている方角とを演算により求める。その演算の結果、この2つの方角が一致する場合には、制御装置60は、ステッピングモータを回転軸31に連係させることなく、回転軸31を自由回転可能のままとする。これにより、図2に示すように、回転軸31に固定されている舵部材32は水流の力を受け流し(すなわち、水流の方向に沿うように舵部材32が自由回転し)、太陽電池モジュール10の受光面は、太陽70と同じ方角を向き続けることになる。   First, the direction of the sun and the direction in which the light receiving surface of the solar cell module 10 faces are obtained by calculation by the direction recognition device 40. As a result of the calculation, when the two directions coincide with each other, the control device 60 keeps the rotary shaft 31 freely rotatable without causing the stepping motor to link to the rotary shaft 31. Thereby, as shown in FIG. 2, the rudder member 32 fixed to the rotating shaft 31 receives the force of the water flow (that is, the rudder member 32 freely rotates along the direction of the water flow), and the solar cell module 10. Will continue to face the same direction as the sun 70.

一方、演算の結果、太陽70の方角と太陽電池モジュール10の受光面の方角とが一致しない場合には、制御装置60は、その演算結果による角度差に基づき、どちらの方向に浮遊体30が回転すれば太陽70を追尾できるかを計算し、さらに、水流センサ33からの水流の方向及び速さの情報を加味して、回転軸31に方向と角度の回転指示を出す。これにより、回転軸31に固定されている舵部材32が指示通りの方向に指示通りの角度だけ回転することにより、舵部材32が水流の力を受けて、浮遊体30が太陽70を追尾する方向に回転することになる。   On the other hand, when the direction of the sun 70 and the direction of the light receiving surface of the solar cell module 10 do not coincide with each other as a result of the calculation, the control device 60 determines whether the floating body 30 is in which direction based on the angle difference based on the calculation result. It calculates whether the sun 70 can be tracked if it rotates, and further gives direction and angle rotation instructions to the rotating shaft 31 by taking into account information on the direction and speed of the water flow from the water flow sensor 33. As a result, the rudder member 32 fixed to the rotating shaft 31 rotates in the indicated direction by the indicated angle, whereby the rudder member 32 receives the force of the water flow, and the floating body 30 tracks the sun 70. Will rotate in the direction.

具体例を挙げて説明すると、例えば図3に示すように、太陽70の方角に対して太陽電池モジュール10の受光面の方角が反時計方向(L)に角度θだけずれていた場合には、制御装置60は、水流を受け流すように自由回転していた舵部材32aを、同じ反時計方向(L)に角度θだけ回転(図3中、符号32bで示す位置まで回転)させる。これにより、舵部材32bが水流の力を受けて浮遊体30が時計方向(R)に角度θだけ回転し、太陽70の方角と太陽電池モジュール10の受光面の方角とが一致することになる。そして、方角が一致したときには、舵部材32bは図3中、符号32aで示す位置まで回転しているので、再び水流の力を受け流す状態となり、浮遊体30は、その方角で回転を停止することになる。また、制御装置60は、この状態でステッピングモータと回転軸31との連係を解除する。これにより、回転軸31は再び自由回転可能となるので、舵部材32は、その後も水流の力を受け流すように作用することになる。つまり、浮遊体30に回転力を伝えることはない。   For example, as shown in FIG. 3, when the direction of the light receiving surface of the solar cell module 10 is shifted counterclockwise (L) by an angle θ as shown in FIG. The control device 60 rotates the rudder member 32a that has been freely rotated so as to receive the water flow by an angle θ in the same counterclockwise direction (L) (rotates to a position indicated by reference numeral 32b in FIG. 3). As a result, the rudder member 32b receives the force of the water flow, and the floating body 30 rotates clockwise (R) by the angle θ, so that the direction of the sun 70 and the direction of the light receiving surface of the solar cell module 10 coincide. . When the directions coincide with each other, the rudder member 32b is rotated to the position indicated by reference numeral 32a in FIG. 3, so that the force of the water flow is again received, and the floating body 30 stops rotating in that direction. become. Further, the control device 60 releases the linkage between the stepping motor and the rotating shaft 31 in this state. Thereby, since the rotating shaft 31 becomes freely rotatable again, the rudder member 32 acts so as to receive the force of the water flow thereafter. That is, no rotational force is transmitted to the floating body 30.

ここで、図4に示すように、太陽70の方角に対して太陽電池モジュール10の受光面の方角が反時計方向(L)に角度θだけずれていた場合において、水流センサ33が水流無しを検知していた場合には、制御装置60は、舵部材32aをオールのように利用して浮遊体30を回転させる。すなわち、図4に示すように、舵部材32aを、最初の位置A1から反時計方向(L)に、位置A2、A3、A4、A5、・・・と一定速度で回転させる。これにより、舵部材32aと水との抵抗によって浮遊体30が時計方向(R)にゆっくりと回転する。そして、方角認識装置40により太陽電池モジュール10の受光面の方角と太陽70の方角が一致する手前で舵部材32aの回転速度を減速して行き、方角が一致したときに舵部材32aの回転を停止する。これにより、太陽70の方角と太陽電池モジュール10の受光面の方角とが一致することになる。この後、制御装置60は、ステッピングモータと回転軸31との連係を解除する。これにより、回転軸31は再び自由回転可能となるので、舵部材32は、その後に水流が発生したとしてもその力を受け流すように作用することになる。つまり、浮遊体30に回転力を伝えることはない。   Here, as shown in FIG. 4, when the direction of the light receiving surface of the solar cell module 10 is shifted counterclockwise (L) from the direction of the sun 70 by the angle θ, the water flow sensor 33 indicates that there is no water flow. When it has detected, the control apparatus 60 rotates the floating body 30 using the rudder member 32a like oar. That is, as shown in FIG. 4, the rudder member 32a is rotated from the initial position A1 in the counterclockwise direction (L) at positions A2, A3, A4, A5,. Thereby, the floating body 30 rotates slowly in the clockwise direction (R) by the resistance between the rudder member 32a and water. Then, the direction recognition device 40 decelerates the rotational speed of the rudder member 32a just before the direction of the light receiving surface of the solar cell module 10 coincides with the direction of the sun 70, and rotates the rudder member 32a when the directions coincide. Stop. Thereby, the direction of the sun 70 and the direction of the light-receiving surface of the solar cell module 10 will correspond. Thereafter, the control device 60 releases the linkage between the stepping motor and the rotating shaft 31. Thereby, since the rotating shaft 31 becomes freely rotatable again, the rudder member 32 acts so as to receive the force even if a water flow is subsequently generated. That is, no rotational force is transmitted to the floating body 30.

制御装置60は、このような制御、すなわち角度の一致、不一致の演算と、太陽を追尾するための舵部材32の回転制御とを、予め設定された所定時間(具体的には、数十秒〜数分)ごとに行っている。これにより、太陽電池モジュール10の受光面が、常に太陽の方を向くように制御することができる。   The control device 60 performs such control, that is, calculation of coincidence and mismatch of angles and rotation control of the rudder member 32 for tracking the sun for a predetermined time (specifically, several tens of seconds). ~ Every few minutes). Thereby, it can control so that the light-receiving surface of the solar cell module 10 always faces the sun.

また、日沈後は、舵部材32を制御して、太陽電池モジュール10の受光面が次の日の朝に太陽が昇る方角を向いているように調整しておく。   In addition, after the sun sets, the rudder member 32 is controlled so that the light receiving surface of the solar cell module 10 faces the direction in which the sun rises the next morning.

なお、上記した角度の一致、不一致の判断は、判断の基準となる閾値にある程度の角度幅(例えば、±5度の幅)を持たせておき、この閾値と演算により求めた角度との比較によって行うようにすればよい。   In addition, the above-described determination of the coincidence / non-coincidence of the angle is made by giving a certain threshold (for example, a width of ± 5 degrees) to the threshold used as a reference for comparison, and comparing this threshold with the calculated angle. It should be done by.

本実施形態1の太陽光発電システムによれば、太陽電池モジュール10の受光面が、太陽が東にある朝には東、昼には南、夕方には西を向くように浮遊体30を回転させることができる。これにより、太陽電池モジュール10の受光面を太陽光に対して常にほぼ垂直に保つことができるため、発電効率を向上させることが可能となる。   According to the photovoltaic power generation system of the first embodiment, the floating body 30 is rotated so that the light receiving surface of the solar cell module 10 faces east in the morning when the sun is east, south in the day, and west in the evening. Can be made. Thereby, since the light-receiving surface of the solar cell module 10 can always be kept substantially perpendicular to sunlight, it is possible to improve power generation efficiency.

なお、図1では、説明の便宜上、架台20上に太陽電池モジュール10を1個しか設置していないが、設置する太陽電池モジュール10が複数個でも可能であることは当然である。   In FIG. 1, for convenience of explanation, only one solar cell module 10 is installed on the gantry 20, but it is natural that a plurality of solar cell modules 10 can be installed.

また、架台20の材料としてはアルミニウムの使用が可能であり、浮遊体30の材料としては発泡スチロール樹脂の使用が可能であるが、これらの材料に限らず、例えば木材や金属など、様々な材料が使用可能である。さらに、水流の力を受ける舵部材32についても、その形状は特に限定されるものではなく、水流の力を受け流し、かつ受けることが可能であればどのような形状であってもよい。   Also, aluminum can be used as the material of the gantry 20, and polystyrene resin can be used as the material of the floating body 30, but not limited to these materials, various materials such as wood and metal can be used. It can be used. Further, the shape of the rudder member 32 that receives the force of the water flow is not particularly limited, and may be any shape as long as it can receive and receive the force of the water flow.

[実施形態2]
図5は、本発明の太陽光発電システムの実施形態2を示す概略斜視図である。
[Embodiment 2]
FIG. 5 is a schematic perspective view showing Embodiment 2 of the photovoltaic power generation system of the present invention.

本実施形態2の太陽光発電システムは、浮遊体30上に、架台20及び太陽電池モジュール10を複数個(この例では4×4=16個)設置している。この場合、各太陽電池モジュール10,10・・の各受光面は全て同じ向きに取り付けられる。また、本実施形態2では、回転軸31の下端部にロープ81を介して錨82が固定されている。これにより、浮遊体30が水流により所定の範囲外に流されていくことを防止している。その他の構成は、図1に示した実施形態1の太陽光発電システムの構成と同じであるので、ここでは同部材に同符号を付すこととし、詳細な説明は省略する。   In the photovoltaic power generation system of the second embodiment, a plurality of mounts 20 and solar cell modules 10 (4 × 4 = 16 in this example) are installed on the floating body 30. In this case, the light receiving surfaces of the solar cell modules 10, 10,... Are all attached in the same direction. Further, in the second embodiment, the collar 82 is fixed to the lower end portion of the rotating shaft 31 via the rope 81. Thereby, the floating body 30 is prevented from flowing out of a predetermined range by the water flow. Since the other configuration is the same as the configuration of the photovoltaic power generation system of Embodiment 1 shown in FIG. 1, the same reference numerals are given to the same members here, and detailed description thereof is omitted.

本発明の太陽光発電システムの実施形態1を示す概略斜視図である。It is a schematic perspective view which shows Embodiment 1 of the solar energy power generation system of this invention. 太陽電池モジュールの受光面が太陽と同じ方角を向いている場合の説明図である。It is explanatory drawing when the light-receiving surface of a solar cell module faces the same direction as the sun. 太陽電池モジュールの受光面が太陽と異なる方角を向いており、かつ、水流がある場合の舵部材の回転制御の様子を示す説明図である。It is explanatory drawing which shows the mode of rotation control of the rudder member in case the light-receiving surface of a solar cell module has faced the direction different from the sun, and there exists a water flow. 太陽電池モジュールの受光面が太陽と異なる方角を向いており、かつ、水流がない場合の舵部材の回転制御の様子を示す説明図である。It is explanatory drawing which shows the mode of rotation control of the steering member in case the light-receiving surface of a solar cell module has faced the direction different from the sun, and there is no water flow. 本発明の太陽光発電システムの実施形態2を示す概略斜視図である。It is a schematic perspective view which shows Embodiment 2 of the solar energy power generation system of this invention.

符号の説明Explanation of symbols

10 太陽電池モジュール
10太陽電池セル
20 架台
30 浮遊体
31 回転軸
32 舵部材
33 水流センサ
40 方角認識装置
50 蓄電池
60 制御装置
DESCRIPTION OF SYMBOLS 10 Solar cell module 10 Solar cell 20 Mounting stand 30 Floating body 31 Rotating shaft 32 Rudder member 33 Water flow sensor 40 Direction recognition apparatus 50 Storage battery 60 Control apparatus

Claims (6)

太陽電池を支持した状態で水面上に浮遊する浮遊体と、
太陽の方角と前記太陽電池の受光面の方角とを認識する方角認識手段と、
水流を受け止めることにより前記浮遊体を水面上で回転させる回転手段と、
前記方角認識手段の認識結果に基づいて前記回転手段を制御することにより、前記太陽電池の受光面が太陽に向くように前記浮遊体の回転を制御する制御手段とを備えたことを特徴とする太陽光発電システム。
A floating body floating on the surface of the water with the solar cell supported,
Direction recognition means for recognizing the direction of the sun and the direction of the light receiving surface of the solar cell;
Rotating means for rotating the floating body on the water surface by receiving the water flow;
Control means for controlling the rotation of the floating body so that the light receiving surface of the solar cell faces the sun by controlling the rotation means based on the recognition result of the direction recognition means. Solar power system.
水流の向き及び速さを検知する水流検知手段をさらに備えており、前記制御手段は、前記水流検知手段の検知結果も加えて前記回転手段を制御することを特徴とする請求項1に記載の太陽光発電システム。   The water flow detection means for detecting the direction and speed of the water flow is further provided, and the control means controls the rotation means in addition to the detection result of the water flow detection means. Solar power system. 前記回転手段が舵部材であり、この舵部材は、前記制御手段により制御されるとき以外は水流を受け流すように自由回転可能に設けられていることを特徴とする請求項1または請求項2に記載の太陽光発電システム。   The rotating device is a rudder member, and the rudder member is provided so as to be freely rotatable so as to receive a water flow except when controlled by the control device. The described solar power generation system. 前記回転手段を回転させる駆動部がステッピングモータであることを特徴とする請求項1に記載の太陽光発電システム。   The solar power generation system according to claim 1, wherein the driving unit that rotates the rotating unit is a stepping motor. 太陽の方角を認識する前記方角認識手段が、現在時刻を計測する計測手段と、予め用意されている日付データと前記計測手段による現在時刻とに基づいて太陽の方角を演算により求める演算手段とからなることを特徴とする請求項1に記載の太陽光発電システム。   The direction recognizing means for recognizing the direction of the sun includes a measuring means for measuring the current time, and a calculating means for calculating the sun direction by calculation based on date data prepared in advance and the current time by the measuring means. The photovoltaic power generation system according to claim 1, wherein 前記太陽電池で発電された電力を蓄積する蓄電池を備えており、前記回転手段は前記蓄電池の電力を利用して回転させることを特徴とする請求項1に記載の太陽光発電システム。   2. The solar power generation system according to claim 1, further comprising a storage battery that stores electric power generated by the solar battery, wherein the rotating unit rotates using the electric power of the storage battery.
JP2004182697A 2004-06-21 2004-06-21 Solar power system Pending JP2006005306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182697A JP2006005306A (en) 2004-06-21 2004-06-21 Solar power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182697A JP2006005306A (en) 2004-06-21 2004-06-21 Solar power system

Publications (1)

Publication Number Publication Date
JP2006005306A true JP2006005306A (en) 2006-01-05

Family

ID=35773385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182697A Pending JP2006005306A (en) 2004-06-21 2004-06-21 Solar power system

Country Status (1)

Country Link
JP (1) JP2006005306A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118925A (en) * 2005-06-07 2007-05-17 Kyocera Corp Floating power generator
WO2008025234A1 (en) * 2006-08-18 2008-03-06 Ge Pan Special platform for generating electricity using solar energy
DE102007029921B3 (en) * 2007-06-28 2008-11-20 Peter Nowak Apparatus for generating energy and fresh water in the sea
WO2011094803A1 (en) * 2010-02-02 2011-08-11 C & L Pastoral Company Pty Ltd Floatation device for solar panels
KR101221323B1 (en) 2011-01-26 2013-01-11 김승섭 Apparatus of inclination control for Solar-driven generator
KR101322893B1 (en) 2012-02-06 2013-10-29 한전케이디엔주식회사 Floating-Type Solar-track Device for having a Solar-light Module and Driving Method of the Same
CN104110898A (en) * 2013-04-19 2014-10-22 中国科学院工程热物理研究所 Variable-irradiation and active-control groove-type solar light condensing and heat collecting device and method
KR101486020B1 (en) 2013-11-20 2015-01-26 한국에너지기술연구원 Rotatable photovoltaic system on floating water
CN104834325A (en) * 2015-05-18 2015-08-12 郭其秀 Floating solar power generation single-axis tracking system and control method thereof
KR101545869B1 (en) * 2009-03-06 2015-08-21 이종호 Solar power generation system
KR101633812B1 (en) * 2015-11-23 2016-06-28 (주)에디넷 The realtime remote monitoring system of buoys on the sea
KR101744254B1 (en) * 2016-12-15 2017-06-08 오형석 Nonpowered rotary type floating solar power plant
CN106956751A (en) * 2016-01-08 2017-07-18 上海航士海洋装备有限公司 The flying wing type sea aerodone system and implementation of powered by wave energy
KR101787399B1 (en) * 2017-05-31 2017-10-19 김윤례 Floating facility for solar-cell power generation
CN109594797A (en) * 2019-01-23 2019-04-09 湖南科技大学 One kind sojourning in the automatic adaptive device of space equipment a home from home and control method
CN110500792A (en) * 2019-08-21 2019-11-26 合肥荣事达太阳能有限公司 A kind of solar water heater with rotating effect
WO2020149732A1 (en) * 2019-01-18 2020-07-23 Universiti Tenaga Nasional Modular floating solar apparatus
CN114212234A (en) * 2021-12-15 2022-03-22 中国船舶集团风电发展有限公司 Marine floating type ship power supply device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118925A (en) * 2005-06-07 2007-05-17 Kyocera Corp Floating power generator
WO2008025234A1 (en) * 2006-08-18 2008-03-06 Ge Pan Special platform for generating electricity using solar energy
DE102007029921B3 (en) * 2007-06-28 2008-11-20 Peter Nowak Apparatus for generating energy and fresh water in the sea
KR101545869B1 (en) * 2009-03-06 2015-08-21 이종호 Solar power generation system
WO2011094803A1 (en) * 2010-02-02 2011-08-11 C & L Pastoral Company Pty Ltd Floatation device for solar panels
KR101221323B1 (en) 2011-01-26 2013-01-11 김승섭 Apparatus of inclination control for Solar-driven generator
KR101322893B1 (en) 2012-02-06 2013-10-29 한전케이디엔주식회사 Floating-Type Solar-track Device for having a Solar-light Module and Driving Method of the Same
CN104110898A (en) * 2013-04-19 2014-10-22 中国科学院工程热物理研究所 Variable-irradiation and active-control groove-type solar light condensing and heat collecting device and method
KR101486020B1 (en) 2013-11-20 2015-01-26 한국에너지기술연구원 Rotatable photovoltaic system on floating water
CN104834325A (en) * 2015-05-18 2015-08-12 郭其秀 Floating solar power generation single-axis tracking system and control method thereof
KR101633812B1 (en) * 2015-11-23 2016-06-28 (주)에디넷 The realtime remote monitoring system of buoys on the sea
CN106956751A (en) * 2016-01-08 2017-07-18 上海航士海洋装备有限公司 The flying wing type sea aerodone system and implementation of powered by wave energy
KR101744254B1 (en) * 2016-12-15 2017-06-08 오형석 Nonpowered rotary type floating solar power plant
KR101787399B1 (en) * 2017-05-31 2017-10-19 김윤례 Floating facility for solar-cell power generation
WO2020149732A1 (en) * 2019-01-18 2020-07-23 Universiti Tenaga Nasional Modular floating solar apparatus
CN109594797A (en) * 2019-01-23 2019-04-09 湖南科技大学 One kind sojourning in the automatic adaptive device of space equipment a home from home and control method
CN109594797B (en) * 2019-01-23 2023-08-11 湖南科技大学 A device and control method for automatically adapting to a comfortable environment for living space equipment
CN110500792A (en) * 2019-08-21 2019-11-26 合肥荣事达太阳能有限公司 A kind of solar water heater with rotating effect
CN110500792B (en) * 2019-08-21 2024-03-15 合肥荣事达太阳能有限公司 Solar water heater with rotating effect
CN114212234A (en) * 2021-12-15 2022-03-22 中国船舶集团风电发展有限公司 Marine floating type ship power supply device

Similar Documents

Publication Publication Date Title
JP2006005306A (en) Solar power system
Huang et al. Long-term field test of solar PV power generation using one-axis 3-position sun tracker
KR100990752B1 (en) Photovoltaic device using reflector
KR101242410B1 (en) Photovoltaic power generation device and solar cell board adjusting method
JP5061047B2 (en) PV system tracking system
WO2012073705A1 (en) Photovoltaic device
KR20120067325A (en) Photovoltaic power generation device and solar cell board adjusting method
KR20100119007A (en) Sun tracker with a computation part calculating the location of the sun
KR100732616B1 (en) Photovoltaic Tracking Device and Control Method Using Differential Voltage Output Voltage of Solar Panel
Nahar et al. Single axis solar tracker for maximizing power production and sunlight overlapping removal on the sensors of tracker
CN115956338A (en) Single-axis tracking system for enhancing light intensity of component
KR20130092020A (en) Control mehtod for solar photovaltaic generating system improving generation efficiency
JP3315108B1 (en) Seesaw type solar power generation water heater system
TWI338114B (en) Solar tacking apparatus and method for mobile solar energy collecting system
CN110266257B (en) Unmanned ship fan-shaped solar charging device for water quality detection
TW201346198A (en) Sun-chasing device
KR20110124824A (en) Solar tracking drive
CN105159326A (en) Double-shaft integrated automatic tracking focusing solar device
JPS61223909A (en) solar tracking device
KR101017083B1 (en) Robot Solar Tracker
KR101770681B1 (en) Apparatus for collecting Solar radiation including a solar tracking sensor unit
KR100959952B1 (en) Uniaxial Large Area Solar Power Tracking Device
JP2005129574A (en) Sunlight tracking device
JPH11307801A (en) Sunlight tracking apparatus
JP2013199847A (en) Sun tracker and solar generator with the sun tracker