WO2012077285A1 - Heliostat and solar-light condensing system - Google Patents

Heliostat and solar-light condensing system Download PDF

Info

Publication number
WO2012077285A1
WO2012077285A1 PCT/JP2011/006485 JP2011006485W WO2012077285A1 WO 2012077285 A1 WO2012077285 A1 WO 2012077285A1 JP 2011006485 W JP2011006485 W JP 2011006485W WO 2012077285 A1 WO2012077285 A1 WO 2012077285A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
light receiving
heliostat
unit
light
Prior art date
Application number
PCT/JP2011/006485
Other languages
French (fr)
Japanese (ja)
Inventor
齊藤 誠
和彦 櫻井
田中 智
基大 田中
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Publication of WO2012077285A1 publication Critical patent/WO2012077285A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/876Reflectors formed by assemblies of adjacent reflective elements having different orientation or different features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • F24S2050/25Calibration means; Methods for initial positioning of solar concentrators or solar receivers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a heliostat having a mirror that reflects sunlight and a sunlight collecting system.
  • An object of the present invention is to provide a heliostat and a solar light collecting system capable of setting a reference position of a mirror accurately and easily.
  • the heliostat according to the present invention is a heliostat arranged around the central tower, A mirror that reflects sunlight, an inclined part that tilts the mirror, a turning part that turns the mirror, and a light emitting part that emits laser light to the light receiving part attached to the central tower side, or attached to the central tower side A light receiving unit that receives the laser light from the light emitting unit, and a reference angle setting unit that sets a reference angle of the mirror based on a light receiving state of the laser light by the light receiving unit.
  • the reference angle of the mirror when setting the reference angle of the mirror far away from the central tower, the reference angle of the mirror can be automatically changed based on the light receiving state of the laser light by the light receiving unit. As a result, the reference angle of the mirror can be set accurately and easily.
  • the reference angle of the mirror is an angle determined by the tilt angle of the mirror by the tilt portion and the swing angle of the mirror by the swivel portion.
  • the reference angle setting unit sets the reference angle of the mirror based on the deviation amount of the light receiving position of the laser beam by the light receiving unit with respect to the preset reference position of the light receiving unit.
  • the mirror reference angle can be set accurately and easily by measuring the deviation of the light receiving position of the laser beam from the reference position of the light receiving unit.
  • At least one of the inclined portion and the turning portion includes an eccentric oscillating speed reducer.
  • the mirror reference angle can be set more accurately by including at least one of the inclined portion and the turning portion including the eccentric rocking type reduction gear having high rigidity and low backlash.
  • the reference position setting unit sets the reference angle of the mirror during the night time.
  • solar energy can be obtained by collecting sunlight during the daytime period, and the reference angle of the mirror can be set during the nighttime period. That is, the mirror reference angle can be set using a time period during which sunlight after sunset cannot be collected.
  • the tilt angle calculation unit that calculates the tilt angle of the mirror based on the position of the sun, and the tilt based on the deformation amount of the mirror arranged at the tilt angle calculated by the tilt angle calculation unit.
  • an inclination angle correction unit for correcting the angle.
  • the tilt angle calculated by the tilt angle calculation unit can be corrected even when the mirror is deformed by its own weight. Therefore, even if the part which hold
  • the mirror assembly having the mirror, the inclined portion, and the turning portion is provided so as to be attachable to a support column that supports the mirror assembly at a predetermined height.
  • a heliostat can be easily installed only by attaching the mirror assembly assembled in the factory and unitized to the support
  • the above-described heliostat further includes an operation switch for manually operating the inclined portion and the turning portion.
  • the operator can roughly set the tilt angle and the turning angle of the mirror by operating the operation switch.
  • the reference angle of the mirror is automatically set by the laser light
  • the moving range of the mirror can be reduced.
  • the time required to set the mirror reference angle can be shortened.
  • the size of the light receiving portion can be reduced to some extent.
  • the solar light collecting system emits light from a mirror that reflects sunlight, a tilting part that tilts the mirror, a turning part that turns the mirror, a light emitting part that emits laser light, and a light emitting part.
  • a light receiving unit that receives the laser light, and a reference angle setting unit that sets a reference angle of the mirror based on a light receiving state of the laser light by the light receiving unit.
  • This solar condensing system is a heliostat or a system including a heliostat and a central tower. That is, the heliostat which is a sunlight condensing system according to the present invention includes the above-described mirror, an inclined part, a turning part, a light emitting part, a light receiving part, and a reference angle setting part. Further, the solar light collecting system according to the present invention includes a heliostat and a central tower, and the heliostat includes the above-described mirror, an inclined portion, a turning portion, and a reference angle setting portion, The central tower includes a light emitting unit and a light receiving unit. The reference angle setting unit may be provided in the central tower so as to be communicably connected to the heliostat.
  • the reference angle of the mirror when setting the reference angle of the mirror far from the central tower, the reference angle of the mirror can be automatically changed based on the light receiving state of the laser beam by the light receiving unit. As a result, the reference angle of the mirror can be set accurately and easily.
  • the reference position of the mirror is set accurately and easily.
  • FIG. 1 It is the schematic which showed the whole structure of the sunlight condensing system which concerns on one Embodiment of this invention. It is the perspective view which showed the whole structure of the sunlight condensing system shown in FIG. It is the schematic diagram which showed the light emission part (side surface) provided in a heliostat side, and the light-receiving part provided in the center tower side. It is the schematic diagram which showed the light emission part (plane) provided in the heliostat side, and the light-receiving part provided in the center tower side. It is the rear view which showed the state before the assembly
  • the solar light collecting system 100 includes a central tower 200 and a plurality of heliostats 300 arranged around the central tower 200. ing.
  • the solar light collecting system 100 is a power generation system of a tower type solar thermal power generation system, and condenses sunlight reflected by the mirrors 310 of the plurality of heliostats 300 on a receiver 210 arranged in the central tower 200, Electricity is generated by the heat from the condensed sunlight.
  • the sunlight reflected by the mirror 310 from sunrise to sunset is changed by changing the inclination angle and the turning angle of the mirror 310 of each heliostat 300 over time in accordance with the movement of the sun. Is always focused on the receiver 210.
  • the central tower 200 is disposed substantially at the center of the solar light collecting system 100 and includes a receiver 210 that collects the sunlight reflected by the mirror 310.
  • the receiver 210 functions as a heat exchanger that absorbs solar heat and conducts it to a heat medium.
  • a light receiving unit 220 that receives laser light is provided in the vicinity of the receiver 210.
  • the light receiving unit 220 receives a laser beam L emitted from a light emitting unit 320 of a heliostat 300 described later.
  • the light receiving unit 220 has a light receiving surface 221 composed of a plurality of elements, and a reference position P ⁇ b> 1 is provided at a substantially central position of the light receiving surface 221.
  • the “near the receiver 210” where the light receiving unit 220 is provided is a position where the relative position of the receiver 210 does not change.
  • the control unit 230 of the central tower 200 (hereinafter referred to as the central control unit 230) is the control unit 330 of the heliostat 300 (hereinafter referred to as the individual control unit 330). Is communicably connected.
  • the central controller 230 sets the reference angle to the heliostat 300.
  • the individual light receiving state of the laser beam L is transmitted to the individual control unit 330. As shown in FIG.
  • the “light receiving state” of the laser light L in the present embodiment is a shift amount D of the light receiving position P ⁇ b> 2 of the laser light L with respect to the reference position P ⁇ b> 1 of the light receiving unit 220.
  • This deviation amount D is a concept including a direction toward the light receiving position P2 with respect to the reference position P1 and a distance between the reference position P1 and the light receiving position P2.
  • the heliostat 300 is disposed around the central tower 200 and includes a mirror 310 that reflects sunlight.
  • the heliostat 300 includes a mirror 310, a frame 340 that supports the mirror 310, an inclined shaft 350 attached to the frame 340, and a horizontal axis (in the drawing).
  • An electric tilting motor 360 that rotates about a vertical axis (a one-dot chain line indicated by V in the drawing), and a column 380 that rotates the mirror 310 about a vertical axis (a one-dot chain line indicated by V in the drawing).
  • an operation switch 390 see FIG. 5).
  • the mirror 310 is a member that plays a role of reflecting sunlight.
  • a frame 340 that supports the mirror 310 is provided on the back surface of the mirror 310.
  • a light emitting unit 320 that emits laser light L is provided on the surface of the mirror 310.
  • a light emitting unit 320 that emits laser light L is attached to the light receiving unit 220 provided in the vicinity of the receiver 210 of the central tower 200 on the surface of the mirror 310. ing.
  • the light emitting unit 320 is provided so as to emit the laser light L in the normal direction (dotted line indicated by N in the drawing) of the surface of the mirror 310 (dotted line indicated by F in the drawing).
  • the laser beam L emitted from the light emitting unit 320 is received by the light receiving unit 220 of the central tower 200.
  • the light emitting unit 320 may be provided anywhere other than the surface of the mirror 310 as long as the light emitting unit 320 is attached so that the relative position with the mirror 310 does not change even when the mirror 310 is tilted or swiveled.
  • the frame 340 is provided on the back surface of the mirror 310 in the vertical direction (arrow Z direction) and the horizontal direction (arrow X direction).
  • An inclination shaft 350 that is rotatably supported by an inclination motor 360 described later is attached to the frame 340.
  • the tilting motor 360 and the turning motor 370 are responsible for changing the tilting angle and the turning angle of the mirror 310 so that the reflected light of the sunlight reflected by the mirror 310 is collected on the receiver 210 of the central tower 200.
  • the tilting motor 360 rotates the mirror 310 about the horizontal axis H by rotating the tilting shaft 350 extending in the horizontal direction about the horizontal axis H.
  • the turning motor 370 rotates the mirror 310 about the vertical axis V by rotating the tilting motor 360 disposed above the turning motor 370 about the vertical axis V.
  • the tilting motor 360 is provided with an encoder 361 that senses the rotation angle of the output portion (outer hub or flange) of the tilting motor 360.
  • the turning motor 370 is provided with an encoder 371 that senses the rotation angle of the output portion (outer hub or flange) of the turning motor 370.
  • a flange 372 is formed on the lower surface of the turning motor 370, and a flange 381 is formed on the upper surface of the support column 380.
  • the flange 372 of the turning motor 370 and the flange 381 of the support column 380 are fastened by bolts (not shown).
  • the tilting motor 360 and the turning motor 370 each have an eccentric oscillating speed reducer.
  • This eccentric oscillating speed reducer includes an internal gear, an external gear that rotates eccentrically around the axis of the internal gear and rotates with respect to the internal gear, and a carrier that supports the external gear. Yes.
  • the carrier rotates with respect to the internal gear as the external gear rotates.
  • the operation switch 390 is provided for manually changing the tilt angle and the turning angle of the mirror 310. Specifically, by operating the operation switch 390, the tilting motor 360 and the turning motor 370 are driven, and the tilt angle and the turning angle of the mirror 310 are changed.
  • the mirror 310, the frame 340, the tilt shaft 350, the tilting motor 360, and the turning motor 370 are assembled in a factory as a mirror assembly 400. Carried to the site. And the said mirror assembly 400 is attached to the support
  • the individual control unit 330 of the heliostat 300 is connected to the light emitting unit 320, the tilting motor 360, the turning motor 370, and the operation switch 390 so as to communicate with each other.
  • the individual control unit 330 receives a signal corresponding to the operation of the operation switch 390 by the operator.
  • the individual control unit 330 transmits a control signal to the light emitting unit 320 to control the light emitting unit 320 so that laser light having a desired intensity is emitted from the light emitting unit 320.
  • the individual control unit 330 transmits a control signal to the tilting motor 360 and the turning motor 370 to control the driving of the tilting motor 360 and the turning motor 370.
  • the individual control unit 330 is communicably connected to the central control unit 230 provided in the central tower 200.
  • the heliostat 300 transmits the laser light receiving state of the light receiving unit 220 from the central control unit 230 to the individual control unit 330, so that the heliostat 300 uses the tilting motor 360 and the turning motor based on the light receiving state.
  • the drive of the motor 370 can be controlled to set the reference angle (inclination angle R1 and turning angle R2 (see FIGS. 2A and 2B)) of the mirror 310.
  • the individual control unit 330 described above includes a reference angle setting unit 331, an inclination angle calculation unit 332, an inclination angle correction unit 333, a laser light control unit 334, a motor control unit 335, and a storage.
  • a section 336 and a timer section 337 are included.
  • the reference angle setting unit 331 sets the reference angle of the mirror 310 based on the light receiving state of the laser light L by the light receiving unit 220.
  • the “reference angle” of the mirror 310 is a reference angle when changing the tilt angle and the turning angle of the mirror 310 in accordance with the movement of the sun.
  • the reference angle setting unit 331 has a shift amount D of the light receiving position P2 of the laser light L with respect to a preset reference position P1 of the light receiving unit 220 (center position of the light receiving unit 220). Based on the above, the reference angle of the mirror 310 is set.
  • the reference angle setting unit 331 adjusts the tilt angle and the turning angle of the mirror 310 so that the light receiving position P2 of the laser light L coincides with the reference position P1 of the light receiving unit 220, and the light receiving position P2 and the reference position P1.
  • the tilt angle and the turning angle of the mirror 310 when the two coincide with each other are set as reference angles.
  • the tilt angle calculation unit 332 calculates the tilt angle of the mirror 310 according to the position of the sun. Specifically, as shown in FIG. 4, the tilt angle calculation unit 332 indicates that the normal direction of the mirror 310 (the direction of the dotted line indicated by N in the figure) is the direction (in the figure) toward the receiver 210 of the central tower 200. The tilt angle of the mirror 310 is calculated so as to be intermediate between the direction of the dotted line indicated by T and the direction of the sun (the direction indicated by the dotted line indicated by S in the figure). As a result, sunlight is reflected by the mirror 310 arranged at the tilt angle and proceeds to the receiver 210.
  • the position of the sun described above can be calculated from the position information (latitude, longitude) of the heliostat 300 and the current time.
  • sun trajectory data which is a change in the position of the sun over time, is stored in the storage unit 336.
  • the position (latitude, longitude) of the heliostat 300 can be acquired by GPS.
  • the position information of the heliostat 300 acquired by the GPS may be measured when the heliostat 300 is installed, the heliostat 300 is not necessarily provided with the GPS.
  • the current time is counted by the timer unit 337.
  • the inclination angle correction unit 333 shown in FIG. 6 corrects the inclination angle calculated by the inclination angle calculation unit 332 based on the deformation amount of the mirror 310 due to the weight of the mirror 310.
  • the mirror 310 is deformed downward by its own weight.
  • the amount of deformation differs depending on the inclination angle of the mirror 310, and the amount of deformation is calculated in advance in relation to the amount of inclination by structural calculation such as CAE (Computer Aided Engineering). Therefore, the tilt angle correcting unit 333 calculates the deformation amount of the mirror 310 based on the tilt angle calculated by the tilt angle calculating unit 332 and corrects the tilt angle according to the deformation amount.
  • the deformation amount is calculated in advance so that an arithmetic device with low calculation capability can be used.
  • the deformation amount is preliminarily calculated using an arithmetic device with high calculation capability. You may do it each time without calculating.
  • a strain gauge is attached to the mirror 310, and the deformation amount is calculated from the strain amount obtained from the strain gauge, or from the three-dimensional measurement data of the mirror 310 based on the laser scan or the camera image, The deformation amount may be calculated or may be calculated.
  • the laser light control unit 334 controls the light emitting unit 320 to emit the laser light L from the light emitting unit 320.
  • the motor control unit 335 controls the tilting motor 360 and the turning motor 370 to change the tilt angle and the turning angle of the mirror 310.
  • the storage unit 336 stores sun trajectory data, heliostat 300 position information (latitude, longitude), daytime time zone, night time zone, and the like.
  • the daytime time zone in the present embodiment is a time zone from sunrise to sunset, and is calculated based on position information (latitude and longitude) of the central tower 200 and a calendar.
  • the night time zone is a time zone from sunset to sunrise, and is calculated based on position information (latitude and longitude) of the central tower 200 and a calendar.
  • the timer unit 337 is provided for measuring the current time.
  • the current time measured by the timer unit 337 is used when the inclination angle calculation unit 332 calculates the position of the sun.
  • the operator manually points the mirror 310 toward the light receiving unit 220 of the central tower 200 by operating the operation switch 390 provided in the heliostat 300 (step S1). Then, the position (latitude, longitude, altitude) of the receiver 210 is acquired by GPS and stored in the storage unit 336 (step S2).
  • the light emitting unit 320 of the heliostat 300 emits the laser light L to the light receiving unit 220 disposed in the vicinity of the position (latitude, longitude, altitude) (step S3). Then, the light receiving unit 220 of the central tower 200 receives the laser light L emitted from the light emitting unit 320 (step S4).
  • the reference angle setting unit 331 calculates a deviation amount D between the light receiving position P2 of the laser light L in the light receiving unit 220 and the reference position P1 (step S5).
  • the motor control unit 335 drives the tilting motor 360 and the turning motor 370 in accordance with the deviation amount D, and the tilt angle of the mirror 310 and The turning angle is changed (step S7).
  • the process returns to step S5 again, and the operations of steps S5 to S7 are repeated until the amount of deviation D between the light receiving position P2 of the laser beam L and the reference position P1 in the light receiving unit 220 disappears.
  • step S6 of this embodiment it is determined whether or not the deviation amount D disappears. However, when the deviation amount D becomes smaller than a predetermined value, the process may proceed to step S8 in the subsequent stage.
  • step S6 when the amount of deviation D between the light receiving position P2 of the laser light L and the reference position P1 in the light receiving unit 220 disappears (step S6: No), the laser light control unit 334 is controlled by the light emitting unit 320 of the heliostat 300. The emission of the laser beam L is stopped (step S8). At this time, the light receiving position P2 of the laser light L in the light receiving unit 220 and the reference position P1 of the light receiving unit 220 are in a matched state. Then, the reference angle setting unit 331 sets the tilt angle and the turning angle of the mirror 310 when the shift amount D between the light receiving position P2 of the laser light L and the reference position P1 in the light receiving unit 220 disappears as a reference angle (step) S9). The reference angle is stored in the storage unit 336.
  • the central control unit 230 calculates solar trajectory data from the position (latitude, longitude, altitude) of the central tower 200 or the receiver 210 and the current time (step S10).
  • the position of the central tower 200 is acquired by the GPS unit 500 (see FIG. 5), and the current time is acquired by the timer of the central control unit 230.
  • the tilt angle calculation unit 332 calculates the tilt angle and the turning angle of the mirror 310 based on the position of the sun (step S11).
  • the tilt angle correcting unit 333 calculates the deformation amount of the mirror 310 from the calculated tilt angle, and calculates the corrected tilt angle based on the deformation amount of the mirror 310 (step S12).
  • the motor control unit 335 drives the inclination motor 360 and the turning motor 370 to change the inclination angle and the turning angle of the mirror 310 (step S13). .
  • the mirror 310 is tilted and turned with reference to the reference angle stored in the storage unit 336. Steps S10 to S13 described above are repeated until sunset (step S14: No).
  • the normal line from the center of the mirror 310 and the optical axis of the laser light L from the light emitting unit 320 do not necessarily match due to the relationship with the mounting position of the light emitting unit 320.
  • the reference angle or the calculated sun position is corrected by a constant coefficient so that the normal from the center of the mirror 310 is directed to the receiver 210. Needless to say.
  • the reference angle setting unit 331 sets the reference angle (step S20).
  • This reference angle setting (step S20) does not have to be performed every day.
  • the setting of the reference angle (step S20) may be performed once a year.
  • step S20 the details of the reference angle setting (step S20) by the reference angle setting unit 331 will be described.
  • the motor control unit 335 drives the tilting motor 360 and the turning motor 370 so that the mirror 310 is arranged at the reference angle stored in the storage unit 336 (step S21).
  • the light emitting unit 320 of the heliostat 300 emits the laser light L to the light receiving unit 220 of the central tower 200 (step S22).
  • the light receiving unit 220 of the central tower 200 receives the laser light L emitted from the light emitting unit 320 (step S23).
  • the reference angle setting unit 331 calculates a deviation amount D between the light receiving position P2 of the laser light L in the light receiving unit 220 and the reference position P1 (step S24).
  • the motor control unit 335 drives the tilting motor 360 and the turning motor 370 according to the deviation amount D, and the tilt angle of the mirror 310 and The turning angle is changed (step S26).
  • the process returns to step S24 again, and the operations of steps S24 to S26 are repeated until the amount of deviation D between the light receiving position P2 of the laser beam L and the reference position P1 in the light receiving unit 220 disappears.
  • step S25 of the present embodiment it is determined whether or not the deviation amount D disappears. However, when the deviation amount D becomes smaller than a predetermined value, the process may proceed to step S27 in the subsequent stage.
  • step S25 when the shift amount D between the light receiving position P2 of the laser light L and the reference position P1 in the light receiving unit 220 is lost (step S25: No), the laser light control unit 334 is controlled by the light emitting unit 320 of the heliostat 300. The emission of the laser beam L is stopped (step S27). At this time, the light receiving position P2 of the laser light L in the light receiving unit 220 and the reference position P1 of the light receiving unit 220 are in a matched state. Then, the reference angle setting unit 331 sets the tilt angle and the turning angle of the mirror 310 when the deviation amount D between the light receiving position P2 of the laser light L and the reference position P1 in the light receiving unit 220 disappears as a new reference angle. (Step S28). The reference angle is stored in the storage unit 336.
  • step S15 the motor control unit 335 drives the tilting motor 360 and the turning motor 370 to set the tilt angle and the turning angle of the mirror 310 (step S15).
  • step S16 Yes
  • the process returns to step S10 and the above-described control (steps S10 to S14, S20, S15, and S16) is repeated.
  • the reference angle of the mirror 310 is automatically set based on the light receiving state of the laser light L by the light receiving unit 220. Can be changed. As a result, the reference position P1 of the mirror 310 can be set accurately and easily.
  • the reference position of the mirror 310 can be set accurately and easily by measuring the deviation D of the light receiving position P2 of the laser light L with respect to the reference position P1 of the light receiving section 220.
  • the tilting motor 360 and the turning motor 370 include a highly rigid and low backlash eccentric oscillating speed reducer, so that the reference angle of the mirror 310 can be set more accurately. it can.
  • solar energy can be obtained by collecting sunlight during the daytime period, and the reference angle of the mirror 310 can be set during the nighttime period. That is, the reference angle of the mirror 310 can be set using a time period during which sunlight after sunset cannot be collected.
  • the tilt angle calculated by the tilt angle calculation unit 332 can be corrected. Therefore, even if the rigidity of the frame 340 holding the mirror 310 and the mirror is relatively low in relation to the weight of the mirror 310, sunlight can be accurately reflected to the receiver 210.
  • the heliostat 300 can be easily installed simply by attaching the mirror assembly 400 assembled at the factory to the column 380 installed on site. Specifically, the heliostat 300 can be easily installed simply by fastening the flange 372 of the mirror assembly 400 and the flange 381 of the support column 380 with bolts. That is, the mirror assembly 400 in which the tilt angle and the turning angle of the mirror 310 are accurately assembled in the factory can be installed on site as it is.
  • the mirror assembly 400 assembled at the factory can be installed on the site as it is, so that the manufacturing error is reduced and the manufacturing accuracy varies as compared with the case where the heliostat 300 is assembled on site.
  • the mass production of the heliostat 300 with a small amount becomes easy.
  • the operator can roughly set the tilt angle and the turning angle of the mirror 310 by operating the operation switch 390.
  • the operation switch 390 when the reference angle of the mirror 310 is automatically set by the laser light L, the moving range of the mirror 310 can be reduced.
  • the time required for setting the reference angle of the mirror 310 during installation and operation of the heliostat 300 it is possible to reduce the time required for setting the reference angle of the mirror 310 during installation and operation of the heliostat 300.
  • the size of the light receiving portion can be reduced to some extent.
  • the present invention is not limited to this, and is illustrated in the first modified example in FIG.
  • the light receiving unit 320A may be provided in the heliostat
  • the light emitting unit 220A may be provided in the central tower. That is, the heliostat according to the first modification shown in FIG.
  • a mirror 310 that reflects sunlight, a tilting part that tilts the mirror 310 (tilting motor 360), and a turning part that turns the mirror 310 (turning) Motor 370), a light receiving unit 320A that receives laser light L from a light emitting unit 220A attached to a receiver 210 that collects sunlight reflected by the mirror 310, and a light receiving state of the laser light L by the light receiving unit 320A And a reference angle setting unit 331 for setting the reference angle of the mirror 310.
  • the configuration other than the light receiving unit 320A of this heliostat is the same as that of the above embodiment.
  • the heliostat is provided with either the light emitting unit or the light receiving unit
  • the central tower is provided with either the light emitting unit or the light receiving unit.
  • both the light emitting unit 320B1 and the light receiving unit 320B2 may be provided in the heliostat as in the second modified example shown in FIG.
  • the laser light L emitted from the light emitting part 320B1 of the heliostat is reflected by the reflection part 220B of the central tower and received by the light receiving part 320B2 of the heliostat.
  • the reference angle of the mirror 310 of the heliostat is set with respect to the reference position P1 (the emission position P1 of the laser light L) based on the deviation amount D of the light receiving position P2 in the light receiving unit 320B2 of the reflected light.
  • the above-described heliostat includes a mirror 310 that reflects sunlight, an inclined portion that tilts the mirror 310 (tilting motor 360), a turning portion that turns the mirror 310 (turning motor 370), and a laser beam L.
  • the light emitting unit 320B1 that emits light, the light receiving unit 320B2 that receives the laser light L emitted from the light emitting unit 320B1 and reflected by the reflecting unit 220B of the central tower, and the light receiving state of the laser light L by the light receiving unit 320B2 A reference angle setting unit 331 for setting the reference angle of the mirror 310.
  • both the light emitting unit 320B1 and the light receiving unit 320B2 are provided in the heliostat.
  • the present invention is not limited thereto, and as illustrated in the third modified example of FIG. You may provide both the light emission part 220C1 and the light-receiving part 220C2 in a central tower.
  • the heliostat is provided with a reflecting portion 320C, and the laser light L emitted from the light emitting portion 220C1 of the central tower is reflected by the reflecting portion 320C of the heliostat and received by the light receiving portion 220C2 of the central tower. .
  • the reference angle of the heliostat mirror 310 is set with respect to the reference position P1 (the emission position P1 of the laser light L) based on the deviation amount D of the light receiving position P2 in the light receiving unit 220C2 of the reflected light.
  • the above-described solar light collecting system includes a heliostat and a central tower.
  • the central tower includes a light emitting unit 220C1 that emits laser light L and a light receiving unit 220C2 that receives the laser light L emitted from the light emitting unit 220C1 and reflected by the reflecting unit 320C of the heliostat. .
  • the heliostat also reflects a mirror 310 that reflects sunlight, an inclined portion that tilts the mirror 310 (tilting motor 360), a turning portion that turns the mirror 310 (turning motor 370), and a laser beam that reflects. And a reference angle setting unit 331 for setting the reference angle of the mirror 310 based on the light receiving state of the laser light L by the light receiving unit 220C2.
  • both the tilting motor 360 and the turning motor 370 include the eccentric oscillating speed reducer.
  • the present invention is not limited thereto, and the tilting motor 360 and the turning motor 370 are included. Any one of these may include an eccentric oscillating speed reducer.
  • the present invention is not limited to this, in addition to the mirror tilt and the mirror swing, You may change the height of the mirror.
  • the heliostat 300 corresponds to the “heliostat”
  • the mirror 310 corresponds to the “mirror”
  • the tilting motor 360 corresponds to the “tilting portion”
  • the turning motor 370 corresponds to the “turning portion”.
  • the light emitting units 320, 220A, 320B1, and 220C1 correspond to “light emitting units”
  • the light receiving units 220, 320A, 320B2, and 220C2 correspond to “light receiving units”
  • the reference angle setting unit 331 includes “reference angle setting”.
  • the inclination angle calculation unit 332 corresponds to the “inclination angle calculation unit”
  • the inclination angle correction unit 333 corresponds to the “inclination angle correction unit”
  • the mirror assembly 400 corresponds to the “mirror assembly”.
  • the support column 380 corresponds to the “support column”
  • the operation switch 390 corresponds to the “operation switch”
  • the solar light collecting system 100 corresponds to the “solar light collecting system”.

Abstract

Provided is a heliostat which enables the accurate and simple setting of a mirror reference position. A heliostat (300) is provided with: a mirror (310) which reflects solar light; a tilting portion (360) which tilts the mirror (310); a rotating portion (370) which rotates the mirror (310); a light emitting portion (320) which emits laser light to a light receiving portion mounted on a central tower; and a reference angle setting unit which sets the reference angle of the mirror (310) on the basis of the status of the laser light reception by the light receiving portion. Thus, the mirror reference position can be accurately and simply set.

Description

ヘリオスタットおよび太陽光集光システムHeliostat and solar condensing system
 本発明は、太陽光を反射するミラーを備えたヘリオスタットおよび太陽光集光システムに関する。 The present invention relates to a heliostat having a mirror that reflects sunlight and a sunlight collecting system.
 近年、地球環境への関心が高まっており、太陽光、風力、地熱などの再生可能エネルギーが注目されている。特に、太陽光を集光して熱エネルギーに変え、その熱エネルギーを電気エネルギーに変える太陽熱発電システムが注目されている(例えば、特許文献1および2参照)。 In recent years, interest in the global environment has increased, and renewable energy such as sunlight, wind power, and geothermal heat has attracted attention. In particular, solar power generation systems that collect sunlight and convert it into thermal energy and convert the thermal energy into electrical energy have attracted attention (see, for example, Patent Documents 1 and 2).
 上記特許文献1および2に記載される太陽光集光システムでは、発電効率を上げるために、ひとつの中央塔に対して多数のヘリオスタットを並べているので、中央塔から遠く離れた位置にもヘリオスタットを設置する必要がある。現在、実用化されているタワー式の太陽光集光システムでは、中央塔とヘリオスタットとの最長距離が500m程度であるが、今後は、当該距離が1500m以上の太陽光熱発電システムが計画されている。 In the solar light collecting systems described in Patent Documents 1 and 2, a large number of heliostats are arranged on one central tower in order to increase power generation efficiency. It is necessary to install a stat. Currently, in the tower type solar condensing system in practical use, the maximum distance between the central tower and the heliostat is about 500 m. In the future, a solar thermal power generation system with the distance of 1500 m or more is planned. Yes.
特開2009-198120号公報JP 2009-198120 A 特開平11-119105号公報JP 11-119105 A
 上記特許文献1および2に記載される太陽光集光システムにおいて、太陽光の反射光を中央塔のレシーバに正確に当てるためには、ミラーの角度調整に高い精度が要求される。しかしながら、この精度には、製作寸法誤差、経年変化によるヘリオスタット及び中央塔の変形、自重によるミラーの変形などが影響しており、太陽光の反射光を中央塔のレシーバに正確に集光させるのは、困難であった。
 また、太陽光集光システムにおいては、中央塔の周囲に多数のヘリオスタットが配置されている。今後計画されている大規模な太陽光集光システムでは、ヘリオスタットが20000基に達する。そのため、ミラーの傾斜角の調整作業が膨大な作業量となり、今後、ミラーの傾斜角の調整作業が簡単にすることが求められる。
In the solar light collecting systems described in Patent Documents 1 and 2, high accuracy is required for adjusting the angle of the mirror in order to accurately apply the reflected sunlight to the receiver of the central tower. However, this accuracy is affected by manufacturing dimensional errors, deformation of the heliostat and central tower due to secular change, mirror deformation due to its own weight, etc., and accurately reflects the reflected sunlight to the central tower receiver. It was difficult.
In the solar light collecting system, a large number of heliostats are arranged around the central tower. In a large-scale solar condensing system planned in the future, the number of heliostats reaches 20000. Therefore, the adjustment work of the tilt angle of the mirror becomes a huge amount of work, and it is required that the adjustment work of the tilt angle of the mirror be simplified in the future.
 本発明の目的は、正確かつ簡単に、ミラーの基準位置の設定を行うこと可能なヘリオスタットおよび太陽光集光システムを提供することである。 An object of the present invention is to provide a heliostat and a solar light collecting system capable of setting a reference position of a mirror accurately and easily.
 本発明に係るヘリオスタットは、中央塔の周囲に配置されるヘリオスタットであって、
 太陽光を反射するミラーと、ミラーを傾斜させる傾斜部と、ミラーを旋回させる旋回部と、中央塔側に取り付けられた受光部にレーザ光を発光する発光部、又は、中央塔側に取り付けられた発光部からのレーザ光を受光する受光部と、受光部によるレーザ光の受光状態に基づいて、ミラーの基準角の設定を行う基準角設定部と、を備える。
The heliostat according to the present invention is a heliostat arranged around the central tower,
A mirror that reflects sunlight, an inclined part that tilts the mirror, a turning part that turns the mirror, and a light emitting part that emits laser light to the light receiving part attached to the central tower side, or attached to the central tower side A light receiving unit that receives the laser light from the light emitting unit, and a reference angle setting unit that sets a reference angle of the mirror based on a light receiving state of the laser light by the light receiving unit.
 上記構成によれば、中央塔から遠く離れたミラーの基準角の設定を行う場合、受光部によるレーザ光の受光状態に基づいて、ミラーの基準角を自動的に変更することができる。その結果、正確かつ簡単に、ミラーの基準角の設定を行うことができる。
 なお、ミラーの基準角とは、傾斜部によるミラーの傾斜角と、旋回部によるミラーの旋回角と、によって決定する角度である。
According to the above configuration, when setting the reference angle of the mirror far away from the central tower, the reference angle of the mirror can be automatically changed based on the light receiving state of the laser light by the light receiving unit. As a result, the reference angle of the mirror can be set accurately and easily.
The reference angle of the mirror is an angle determined by the tilt angle of the mirror by the tilt portion and the swing angle of the mirror by the swivel portion.
 上記したヘリオスタットにおいて、基準角設定部は、予め設定された受光部の基準位置に対する受光部によるレーザ光の受光位置のずれ量に基づいて、ミラーの基準角の設定を行う。 In the above-described heliostat, the reference angle setting unit sets the reference angle of the mirror based on the deviation amount of the light receiving position of the laser beam by the light receiving unit with respect to the preset reference position of the light receiving unit.
 上記構成によれば、受光部の基準位置に対するレーザ光の受光位置のずれ量を測定することにより、正確かつ簡単に、ミラーの基準角の設定を行うことができる。 According to the above configuration, the mirror reference angle can be set accurately and easily by measuring the deviation of the light receiving position of the laser beam from the reference position of the light receiving unit.
 上記したヘリオスタットにおいて、傾斜部及び旋回部の少なくとも一方は、偏心揺動型減速機を含む。 In the above-described heliostat, at least one of the inclined portion and the turning portion includes an eccentric oscillating speed reducer.
 上記構成によれば、傾斜部及び旋回部の少なくとも一方が、高剛性かつ低バックラッシュの偏心揺動型減速機を含むことにより、ミラーの基準角の設定をより正確に行うことができる。 According to the above configuration, the mirror reference angle can be set more accurately by including at least one of the inclined portion and the turning portion including the eccentric rocking type reduction gear having high rigidity and low backlash.
 上記したヘリオスタットにおいて、基準位置設定部は、夜間時間帯にミラーの基準角の設定を行う。 In the above-mentioned heliostat, the reference position setting unit sets the reference angle of the mirror during the night time.
 上記構成によれば、昼間時間帯に太陽光の集光を行うことにより太陽エネルギーを得ることができると共に、夜間時間帯にミラーの基準角の設定を行うことができる。つまり、日没後の太陽光を集光できない時間帯を利用して、ミラーの基準角の設定を行うことができる。 According to the above configuration, solar energy can be obtained by collecting sunlight during the daytime period, and the reference angle of the mirror can be set during the nighttime period. That is, the mirror reference angle can be set using a time period during which sunlight after sunset cannot be collected.
 上記したヘリオスタットにおいて、太陽の位置に基づいて、ミラーの傾斜角を算出する傾斜角算出部と、傾斜角算出部により算出された傾斜角で配置されるミラーの変形量に基づいて、当該傾斜角を修正する傾斜角修正部と、をさらに備える。 In the above-described heliostat, the tilt angle calculation unit that calculates the tilt angle of the mirror based on the position of the sun, and the tilt based on the deformation amount of the mirror arranged at the tilt angle calculated by the tilt angle calculation unit. And an inclination angle correction unit for correcting the angle.
 上記構成によれば、ミラーが自重により変形する場合でも、傾斜角算出部により算出された傾斜角を修正することができる。これにより、ミラーを保持する部分やミラーの剛性が、ミラーの重量との関係で相対的に低くなっても、太陽光をレシーバに正確に反射することができる。 According to the above configuration, the tilt angle calculated by the tilt angle calculation unit can be corrected even when the mirror is deformed by its own weight. Thereby, even if the part which hold | maintains a mirror and the rigidity of a mirror become relatively low in relation to the weight of a mirror, sunlight can be correctly reflected to a receiver.
 上記したヘリオスタットにおいて、ミラー、傾斜部、及び、旋回部を有するミラー組立体は、当該ミラー組立体を所定の高さで支持する支柱に取り付け可能に設けられる。 In the above-described heliostat, the mirror assembly having the mirror, the inclined portion, and the turning portion is provided so as to be attachable to a support column that supports the mirror assembly at a predetermined height.
 上記構成によれば、工場で組み立てられてユニット化されたミラー組立体を、現地に設置される支柱に取り付けるだけで、容易にヘリオスタットを設置することができる。すなわち、工場においてミラーの傾斜角および旋回角が正確に組み付けられたミラー組立体を、そのまま現地に設置することができる。
 また、工場で組み立てられたミラー組立体を、そのまま現地に設置することができるので、ヘリオスタットを現地で組み立てる場合に比べて、製造誤差が少なくなり、製作精度のばらつきが少ないヘリオスタットの量産が容易になる。
According to the said structure, a heliostat can be easily installed only by attaching the mirror assembly assembled in the factory and unitized to the support | pillar installed in the field. That is, a mirror assembly in which the mirror tilt angle and swivel angle are accurately assembled in a factory can be installed on site as it is.
In addition, since the mirror assembly assembled at the factory can be installed on site as it is, mass production of heliostats with fewer manufacturing errors and less variation in production accuracy than when assembling heliostats locally. It becomes easy.
 上記したヘリオスタットにおいて、傾斜部および旋回部を手動により操作するための操作スイッチをさらに備える。 The above-described heliostat further includes an operation switch for manually operating the inclined portion and the turning portion.
 上記構成によれば、操作スイッチの操作により作業者がミラーの傾斜角および旋回角を大まかに設定することができる。これにより、レーザ光によるミラーの基準角の自動設定時に、ミラーの移動範囲を小さくすることができる。その結果、例えば、設置時に行う、最初の調整において、ミラーの基準角の設定までに要する時間を短縮することができる。また、受光部の大きさをある程度小さくすることもできる。 According to the above configuration, the operator can roughly set the tilt angle and the turning angle of the mirror by operating the operation switch. Thereby, when the reference angle of the mirror is automatically set by the laser light, the moving range of the mirror can be reduced. As a result, for example, in the initial adjustment performed at the time of installation, the time required to set the mirror reference angle can be shortened. In addition, the size of the light receiving portion can be reduced to some extent.
 本発明に係る太陽光集光システムは、太陽光を反射するミラーと、ミラーを傾斜させる傾斜部と、ミラーを旋回させる旋回部と、レーザ光を発光する発光部と、発光部から発光されたレーザ光を受光する受光部と、受光部によるレーザ光の受光状態に基づいて、ミラーの基準角の設定を行う基準角設定部と、を備える。 The solar light collecting system according to the present invention emits light from a mirror that reflects sunlight, a tilting part that tilts the mirror, a turning part that turns the mirror, a light emitting part that emits laser light, and a light emitting part. A light receiving unit that receives the laser light, and a reference angle setting unit that sets a reference angle of the mirror based on a light receiving state of the laser light by the light receiving unit.
 この太陽光集光システムは、ヘリオスタット、又は、ヘリオスタット及び中央塔を含むシステムである。すなわち、本発明に係る太陽光集光システムであるヘリオスタットは、上記したミラーと、傾斜部と、旋回部と、発光部と、受光部と、基準角設定部と、を備える。また、本発明に係る太陽光集光システムは、ヘリオスタットおよび中央塔を備えており、そのヘリオスタットは、上記したミラーと、傾斜部と、旋回部と、基準角設定部とを備えると共に、中央塔は、発光部と、受光部と、を備える。なお、基準角設定部は、ヘリオスタットと通信可能に接続して、中央塔に設けても良い。 This solar condensing system is a heliostat or a system including a heliostat and a central tower. That is, the heliostat which is a sunlight condensing system according to the present invention includes the above-described mirror, an inclined part, a turning part, a light emitting part, a light receiving part, and a reference angle setting part. Further, the solar light collecting system according to the present invention includes a heliostat and a central tower, and the heliostat includes the above-described mirror, an inclined portion, a turning portion, and a reference angle setting portion, The central tower includes a light emitting unit and a light receiving unit. The reference angle setting unit may be provided in the central tower so as to be communicably connected to the heliostat.
 上記構成によれば、中央塔から遠く離れたミラーの基準角の設定を行う場合、受光部によるレーザ光の受光状態に基づいて、ミラーの基準角を自動的に変更することができる。その結果、正確かつ簡単に、ミラーの基準角の設定を行うことができる。 According to the above configuration, when setting the reference angle of the mirror far from the central tower, the reference angle of the mirror can be automatically changed based on the light receiving state of the laser beam by the light receiving unit. As a result, the reference angle of the mirror can be set accurately and easily.
 本発明に係るヘリオスタット及び太陽光集光システムによれば、正確かつ簡単に、ミラーの基準位置の設定を行う。 According to the heliostat and the sunlight condensing system according to the present invention, the reference position of the mirror is set accurately and easily.
本発明の一実施形態に係る太陽光集光システムの全体構成を示した概略図である。It is the schematic which showed the whole structure of the sunlight condensing system which concerns on one Embodiment of this invention. 図1に示した太陽光集光システムの全体構成を示した斜視図である。It is the perspective view which showed the whole structure of the sunlight condensing system shown in FIG. ヘリオスタット側に設けられる発光部(側面)および中央塔側に設けられる受光部とを示した模式図である。It is the schematic diagram which showed the light emission part (side surface) provided in a heliostat side, and the light-receiving part provided in the center tower side. ヘリオスタット側に設けられる発光部(平面)および中央塔側に設けられる受光部とを示した模式図である。It is the schematic diagram which showed the light emission part (plane) provided in the heliostat side, and the light-receiving part provided in the center tower side. ヘリオスタットの組み付け前の状態を示した背面図である。It is the rear view which showed the state before the assembly | attachment of a heliostat. ヘリオスタットの組み付け後の状態を示した背面図である。It is the rear view which showed the state after the assembly | attachment of a heliostat. ミラーの傾斜角の設定方法を説明するための模式図である。It is a schematic diagram for demonstrating the setting method of the inclination-angle of a mirror. ヘリオスタットおよび中央塔のブロック図である。It is a block diagram of a heliostat and a central tower. ヘリオスタットの個別制御部のブロック図である。It is a block diagram of the individual control part of a heliostat. ミラーの基準角を設定する方法を示したフローチャートである。It is the flowchart which showed the method of setting the reference angle of a mirror. 運用時におけるヘリオスタットの動作を示したフローチャートである。It is the flowchart which showed operation | movement of the heliostat at the time of operation. 第1変形例に係る発光部と受光部とを示した模式図である。It is the schematic diagram which showed the light emission part and light-receiving part which concern on a 1st modification. 第2変形例に係る発光部と受光部とを示した模式図である。It is the schematic diagram which showed the light emission part and light-receiving part which concern on a 2nd modification. 第3変形例に係る発光部と受光部とを示した模式図である。It is the schematic diagram which showed the light emission part and light-receiving part which concern on a 3rd modification.
 100 太陽光集光システム
 200 中央塔
 220,320A,320B2,220C2 受光部
 300 ヘリオスタット
 310 ミラー
 320,220A,320B1,220C1 発光部
 331 基準角設定部
 332 傾斜角算出部
 333 傾斜角修正部
 360 傾斜用モータ
 370 旋回用モータ
 380 支柱
 390 操作スイッチ
 400 ミラー組立体
DESCRIPTION OF SYMBOLS 100 Sunlight collection system 200 Central tower 220,320A, 320B2,220C2 Light-receiving part 300 Heliostat 310 Mirror 320,220A, 320B1,220C1 Light emission part 331 Reference angle setting part 332 Inclination angle calculation part 333 Inclination angle correction part 360 For inclination Motor 370 Rotating motor 380 Post 390 Operation switch 400 Mirror assembly
 以下、本発明の一実施形態に係る太陽光集光システムについて図面を参照しながら説明する。 Hereinafter, a solar light collecting system according to an embodiment of the present invention will be described with reference to the drawings.
 <太陽光集光システムの全体構成>
 本実施形態に係る太陽光集光システム100は、図1(a)及び(b)に示すように、中央塔200と、中央塔200の周囲に配置される複数のヘリオスタット300と、を備えている。この太陽光集光システム100は、タワー式太陽熱発電方式の発電システムであって、複数のヘリオスタット300のミラー310により反射された太陽光を中央塔200に配置されるレシーバ210に集光し、その集光した太陽光による熱で発電を行う。この太陽光集光システム100では、太陽の動きに合わせて各ヘリオスタット300のミラー310の傾斜角および旋回角を経時的に変化させることにより、日の出から日の入りまで、ミラー310によって反射された太陽光が常時、レシーバ210に集光するようにしている。
<Overall configuration of solar condensing system>
As shown in FIGS. 1A and 1B, the solar light collecting system 100 according to the present embodiment includes a central tower 200 and a plurality of heliostats 300 arranged around the central tower 200. ing. The solar light collecting system 100 is a power generation system of a tower type solar thermal power generation system, and condenses sunlight reflected by the mirrors 310 of the plurality of heliostats 300 on a receiver 210 arranged in the central tower 200, Electricity is generated by the heat from the condensed sunlight. In the sunlight collecting system 100, the sunlight reflected by the mirror 310 from sunrise to sunset is changed by changing the inclination angle and the turning angle of the mirror 310 of each heliostat 300 over time in accordance with the movement of the sun. Is always focused on the receiver 210.
 <中央塔200>
 この中央塔200は、太陽光集光システム100の略中央に配置されており、ミラー310により反射された太陽光を集光するレシーバ210を有している。レシーバ210は、太陽熱を吸熱して熱媒体へ伝導する熱交換器として機能する。
<Central tower 200>
The central tower 200 is disposed substantially at the center of the solar light collecting system 100 and includes a receiver 210 that collects the sunlight reflected by the mirror 310. The receiver 210 functions as a heat exchanger that absorbs solar heat and conducts it to a heat medium.
 ここで、本実施形態では、レシーバ210の近傍には、レーザ光を受光する受光部220が設けられている。この受光部220は、図2に示すように、後述するヘリオスタット300の発光部320から発光されるレーザ光Lを受光する。受光部220は、複数の素子から構成された受光面221を有しており、受光面221の略中心位置に基準位置P1が設けられている。なお、受光部220が設けられる「レシーバ210の近傍」とは、レシーバ210と相対位置が変わらない位置である。 Here, in the present embodiment, a light receiving unit 220 that receives laser light is provided in the vicinity of the receiver 210. As shown in FIG. 2, the light receiving unit 220 receives a laser beam L emitted from a light emitting unit 320 of a heliostat 300 described later. The light receiving unit 220 has a light receiving surface 221 composed of a plurality of elements, and a reference position P <b> 1 is provided at a substantially central position of the light receiving surface 221. The “near the receiver 210” where the light receiving unit 220 is provided is a position where the relative position of the receiver 210 does not change.
 また、本実施形態では、図5に示すように、中央塔200の制御部230(以下、中央制御部230とする)は、ヘリオスタット300の制御部330(以下、個別制御部330とする)と通信可能に接続されている。ヘリオスタット300の基準角(傾斜角R1および旋回角R2(図2(a)及び(b)参照))を設定するときに、中央制御部230は、当該基準角の設定を実施するヘリオスタット300の個別制御部330に対して、レーザ光Lの受光状態を送信する。図2に示すように、本実施形態におけるレーザ光Lの『受光状態』とは、受光部220の基準位置P1に対するレーザ光Lの受光位置P2のずれ量Dである。このずれ量Dは、基準位置P1に対する受光位置P2への方向と、基準位置P1と受光位置P2との間の距離と、を含む概念である。 In the present embodiment, as shown in FIG. 5, the control unit 230 of the central tower 200 (hereinafter referred to as the central control unit 230) is the control unit 330 of the heliostat 300 (hereinafter referred to as the individual control unit 330). Is communicably connected. When setting the reference angle (inclination angle R1 and turning angle R2 (see FIGS. 2A and 2B)) of the heliostat 300, the central controller 230 sets the reference angle to the heliostat 300. The individual light receiving state of the laser beam L is transmitted to the individual control unit 330. As shown in FIG. 2, the “light receiving state” of the laser light L in the present embodiment is a shift amount D of the light receiving position P <b> 2 of the laser light L with respect to the reference position P <b> 1 of the light receiving unit 220. This deviation amount D is a concept including a direction toward the light receiving position P2 with respect to the reference position P1 and a distance between the reference position P1 and the light receiving position P2.
 <ヘリオスタット300>
 ヘリオスタット300は、図1(b)に示すように、上記した中央塔200の周囲に配置されており、太陽光を反射するミラー310を備えている。ヘリオスタット300は、図3(a)および(b)に示すように、ミラー310と、ミラー310を支持するフレーム340と、フレーム340に取り付けられる傾斜軸350と、ミラー310を水平軸(図中のHで示す1点鎖線)回りに回転させる電動の傾斜用モータ360と、ミラー310を鉛直軸(図中のVで示す1点鎖線)回りに回転させる電動の旋回用モータ370と、支柱380と、操作スイッチ390(図5参照)と、を有している。
<Heliostat 300>
As shown in FIG. 1B, the heliostat 300 is disposed around the central tower 200 and includes a mirror 310 that reflects sunlight. As shown in FIGS. 3A and 3B, the heliostat 300 includes a mirror 310, a frame 340 that supports the mirror 310, an inclined shaft 350 attached to the frame 340, and a horizontal axis (in the drawing). An electric tilting motor 360 that rotates about a vertical axis (a one-dot chain line indicated by V in the drawing), and a column 380 that rotates the mirror 310 about a vertical axis (a one-dot chain line indicated by V in the drawing). And an operation switch 390 (see FIG. 5).
 ミラー310は、太陽光を反射する役目を担う部材である。このミラー310の裏面には、当該ミラー310を支持するフレーム340が設けられている。また、ミラー310の表面には、レーザ光Lを発光する発光部320が設けられている。 The mirror 310 is a member that plays a role of reflecting sunlight. A frame 340 that supports the mirror 310 is provided on the back surface of the mirror 310. A light emitting unit 320 that emits laser light L is provided on the surface of the mirror 310.
 ここで、本実施形態では、ミラー310の表面には、図2に示すように、中央塔200のレシーバ210の近傍に設けられる受光部220に、レーザ光Lを発光する発光部320が取り付けられている。この発光部320は、ミラー310の表面(図中のFで示す点線)の法線(図中のNで示す点線)方向にレーザ光Lを発光するように設けられている。この発光部320から発光されたレーザ光Lは、中央塔200の受光部220で受光される。なお、発光部320は、ミラー310の表面以外でも、ミラー310が傾斜や旋回しても、ミラー310と相対位置が変わらないように取り付けられれば、どこに設けても構わない。 Here, in the present embodiment, as shown in FIG. 2, a light emitting unit 320 that emits laser light L is attached to the light receiving unit 220 provided in the vicinity of the receiver 210 of the central tower 200 on the surface of the mirror 310. ing. The light emitting unit 320 is provided so as to emit the laser light L in the normal direction (dotted line indicated by N in the drawing) of the surface of the mirror 310 (dotted line indicated by F in the drawing). The laser beam L emitted from the light emitting unit 320 is received by the light receiving unit 220 of the central tower 200. The light emitting unit 320 may be provided anywhere other than the surface of the mirror 310 as long as the light emitting unit 320 is attached so that the relative position with the mirror 310 does not change even when the mirror 310 is tilted or swiveled.
 フレーム340は、図3(a)および(b)に示すように、ミラー310の裏面において、上下方向(矢印Z方向)および左右方向(矢印X方向)にわたって設けられている。このフレーム340には、後述する傾斜用モータ360により回転可能に支持される傾斜軸350が取り付けられている。 As shown in FIGS. 3A and 3B, the frame 340 is provided on the back surface of the mirror 310 in the vertical direction (arrow Z direction) and the horizontal direction (arrow X direction). An inclination shaft 350 that is rotatably supported by an inclination motor 360 described later is attached to the frame 340.
 傾斜用モータ360および旋回用モータ370は、ミラー310により反射された太陽光の反射光が中央塔200のレシーバ210に集光するようにミラー310の傾斜角および旋回角を変更する役目を担う。図3(a)および(b)に示すように、傾斜用モータ360は、水平方向に延びる傾斜軸350を水平軸H回りに回転させることにより、ミラー310を水平軸H回りに回転させる。また、旋回用モータ370は、当該旋回用モータ370の上部に配置される傾斜用モータ360を鉛直軸V回りに回転させることにより、ミラー310を鉛直軸V回りに回転させる。 The tilting motor 360 and the turning motor 370 are responsible for changing the tilting angle and the turning angle of the mirror 310 so that the reflected light of the sunlight reflected by the mirror 310 is collected on the receiver 210 of the central tower 200. As shown in FIGS. 3A and 3B, the tilting motor 360 rotates the mirror 310 about the horizontal axis H by rotating the tilting shaft 350 extending in the horizontal direction about the horizontal axis H. Further, the turning motor 370 rotates the mirror 310 about the vertical axis V by rotating the tilting motor 360 disposed above the turning motor 370 about the vertical axis V.
 図5に示すように、傾斜用モータ360には、当該傾斜用モータ360の出力部(外側ハブまたはフランジ)の回転角度を感知するエンコーダ361が設けられている。また、同様に、旋回用モータ370には、当該旋回用モータ370の出力部(外側ハブまたはフランジ)の回転角度を感知するエンコーダ371が設けられている。 As shown in FIG. 5, the tilting motor 360 is provided with an encoder 361 that senses the rotation angle of the output portion (outer hub or flange) of the tilting motor 360. Similarly, the turning motor 370 is provided with an encoder 371 that senses the rotation angle of the output portion (outer hub or flange) of the turning motor 370.
 そして、本実施形態では、図3(a)および(b)に示すように、旋回用モータ370の下面にはフランジ372が形成されると共に、支柱380の上面にはフランジ381が形成されている。旋回用モータ370のフランジ372と支柱380のフランジ381とは、ボルト(図示せず)により締結される。 In this embodiment, as shown in FIGS. 3A and 3B, a flange 372 is formed on the lower surface of the turning motor 370, and a flange 381 is formed on the upper surface of the support column 380. . The flange 372 of the turning motor 370 and the flange 381 of the support column 380 are fastened by bolts (not shown).
 傾斜用モータ360および旋回用モータ370は、それぞれ偏心揺動型減速機を有している。この偏心揺動型減速機は、内歯歯車と、内歯歯車の軸線の回りを偏心回転すると共に内歯歯車に対して回転する外歯歯車と、外歯歯車を支持するキャリアとを備えている。キャリアは、外歯歯車の回転に伴って、内歯歯車に対して回転する。 The tilting motor 360 and the turning motor 370 each have an eccentric oscillating speed reducer. This eccentric oscillating speed reducer includes an internal gear, an external gear that rotates eccentrically around the axis of the internal gear and rotates with respect to the internal gear, and a carrier that supports the external gear. Yes. The carrier rotates with respect to the internal gear as the external gear rotates.
 また、操作スイッチ390は、手動によりミラー310の傾斜角および旋回角を変更するために設けられている。具体的には、当該操作スイッチ390の操作により、傾斜用モータ360および旋回用モータ370が駆動されて、ミラー310の傾斜角および旋回角が変更される。 The operation switch 390 is provided for manually changing the tilt angle and the turning angle of the mirror 310. Specifically, by operating the operation switch 390, the tilting motor 360 and the turning motor 370 are driven, and the tilt angle and the turning angle of the mirror 310 are changed.
 <ミラー組立体>
 図3(a)および図3(b)に示すように、上記したミラー310、フレーム340、傾斜軸350、傾斜用モータ360および旋回用モータ370は、工場において組み付けられて、ミラー組立体400として現地に運ばれる。そして、当該ミラー組立体400は、現地において、地上に設置される支柱380に取り付けられる。具体的には、鉛直(矢印Z方向)に設置される支柱380のフランジ381(この際、フランジ面382は水平面となっている)に、ミラー組立体400の旋回用モータ370のフランジ372を設置し、両フランジ372,381をボルトにより締結することにより、支柱380にミラー組立体400が組み付けられる。
<Mirror assembly>
As shown in FIGS. 3A and 3B, the mirror 310, the frame 340, the tilt shaft 350, the tilting motor 360, and the turning motor 370 are assembled in a factory as a mirror assembly 400. Carried to the site. And the said mirror assembly 400 is attached to the support | pillar 380 installed on the ground in the field. Specifically, the flange 372 of the turning motor 370 of the mirror assembly 400 is installed on the flange 381 of the support column 380 installed in the vertical direction (in the direction of arrow Z) (in this case, the flange surface 382 is a horizontal plane). The mirror assembly 400 is assembled to the column 380 by fastening both flanges 372 and 381 with bolts.
 <ヘリオスタット300の制御部>
 図5に示すように、ヘリオスタット300の個別制御部330は、発光部320、傾斜用モータ360、旋回用モータ370、操作スイッチ390と通信可能に接続されている。そして、個別制御部330は、作業者による操作スイッチ390の操作に応じた信号を受信する。また、個別制御部330は、発光部320に制御信号を送信して、当該発光部320から所望の強度のレーザ光が発光するように、発光部320を制御する。また、個別制御部330は、傾斜用モータ360および旋回用モータ370に制御信号を送信して、傾斜用モータ360および旋回用モータ370の駆動を制御する。
<Control unit of heliostat 300>
As shown in FIG. 5, the individual control unit 330 of the heliostat 300 is connected to the light emitting unit 320, the tilting motor 360, the turning motor 370, and the operation switch 390 so as to communicate with each other. The individual control unit 330 receives a signal corresponding to the operation of the operation switch 390 by the operator. The individual control unit 330 transmits a control signal to the light emitting unit 320 to control the light emitting unit 320 so that laser light having a desired intensity is emitted from the light emitting unit 320. Further, the individual control unit 330 transmits a control signal to the tilting motor 360 and the turning motor 370 to control the driving of the tilting motor 360 and the turning motor 370.
 また、個別制御部330は、中央塔200に設けられる中央制御部230と通信可能に接続されている。これにより、中央塔200とヘリオスタット300との間で、情報の送受信が可能となる。そして、本実施形態では、受光部220によるレーザ光の受光状態を中央制御部230から個別制御部330に送信することにより、ヘリオスタット300では当該受光状態に基づいて、傾斜用モータ360および旋回用モータ370の駆動を制御して、ミラー310の基準角(傾斜角R1および旋回角R2(図2(a)および(b)参照))の設定を行うことができる。 Further, the individual control unit 330 is communicably connected to the central control unit 230 provided in the central tower 200. As a result, information can be transmitted and received between the central tower 200 and the heliostat 300. In this embodiment, the heliostat 300 transmits the laser light receiving state of the light receiving unit 220 from the central control unit 230 to the individual control unit 330, so that the heliostat 300 uses the tilting motor 360 and the turning motor based on the light receiving state. The drive of the motor 370 can be controlled to set the reference angle (inclination angle R1 and turning angle R2 (see FIGS. 2A and 2B)) of the mirror 310.
 図6に示すように、上記した個別制御部330は、基準角設定部331と、傾斜角算出部332と、傾斜角修正部333と、レーザ光制御部334と、モータ制御部335と、記憶部336と、タイマ部337と、を含んでいる。 As shown in FIG. 6, the individual control unit 330 described above includes a reference angle setting unit 331, an inclination angle calculation unit 332, an inclination angle correction unit 333, a laser light control unit 334, a motor control unit 335, and a storage. A section 336 and a timer section 337 are included.
 本実施形態では、基準角設定部331は、受光部220によるレーザ光Lの受光状態に基づいて、ミラー310の基準角の設定を行う。図2に示すように、このミラー310の『基準角』とは、太陽の動きに合わせてミラー310の傾斜角および旋回角を変化させるときの基準となる角度である。本実施形態では、基準角設定部331は、図2に示すように、予め設定された受光部220の基準位置P1(受光部220の中心位置)に対するレーザ光Lの受光位置P2のずれ量Dに基づいて、ミラー310の基準角の設定を行う。すなわち、基準角設定部331は、レーザ光Lの受光位置P2が受光部220の基準位置P1に一致するようにミラー310の傾斜角および旋回角を調節し、当該受光位置P2と基準位置P1とが一致したときのミラー310の傾斜角および旋回角を基準角とする。 In the present embodiment, the reference angle setting unit 331 sets the reference angle of the mirror 310 based on the light receiving state of the laser light L by the light receiving unit 220. As shown in FIG. 2, the “reference angle” of the mirror 310 is a reference angle when changing the tilt angle and the turning angle of the mirror 310 in accordance with the movement of the sun. In the present embodiment, as shown in FIG. 2, the reference angle setting unit 331 has a shift amount D of the light receiving position P2 of the laser light L with respect to a preset reference position P1 of the light receiving unit 220 (center position of the light receiving unit 220). Based on the above, the reference angle of the mirror 310 is set. That is, the reference angle setting unit 331 adjusts the tilt angle and the turning angle of the mirror 310 so that the light receiving position P2 of the laser light L coincides with the reference position P1 of the light receiving unit 220, and the light receiving position P2 and the reference position P1. The tilt angle and the turning angle of the mirror 310 when the two coincide with each other are set as reference angles.
 傾斜角算出部332は、太陽の位置に応じてミラー310の傾斜角を算出する。具体的には、図4に示すように、傾斜角算出部332は、ミラー310の法線方向(図中のNで示す点線の方向)が、中央塔200のレシーバ210への方向(図中のTで示す点線の方向)と太陽の方向(図中のSで示す点線の方向)との中間になるように、ミラー310の傾斜角を算出する。これにより、太陽光が当該傾斜角で配置されるミラー310で反射されてレシーバ210に進行する。上記した太陽の位置は、ヘリオスタット300の位置情報(緯度、経度)と現在時刻とから算出可能である。なお、太陽の位置の経時的変化である太陽の軌跡データは、記憶部336に記憶されている。また、ヘリオスタット300の位置(緯度、経度)は、GPSにより取得できる。なお、当該GPSにより取得したヘリオスタット300の位置情報は、ヘリオスタット300の設置時に計測しておけばよいので、必ずしもヘリオスタット300がGPSを備える必要はない。また、現在時刻は、タイマ部337により計時される。 The tilt angle calculation unit 332 calculates the tilt angle of the mirror 310 according to the position of the sun. Specifically, as shown in FIG. 4, the tilt angle calculation unit 332 indicates that the normal direction of the mirror 310 (the direction of the dotted line indicated by N in the figure) is the direction (in the figure) toward the receiver 210 of the central tower 200. The tilt angle of the mirror 310 is calculated so as to be intermediate between the direction of the dotted line indicated by T and the direction of the sun (the direction indicated by the dotted line indicated by S in the figure). As a result, sunlight is reflected by the mirror 310 arranged at the tilt angle and proceeds to the receiver 210. The position of the sun described above can be calculated from the position information (latitude, longitude) of the heliostat 300 and the current time. Note that sun trajectory data, which is a change in the position of the sun over time, is stored in the storage unit 336. Further, the position (latitude, longitude) of the heliostat 300 can be acquired by GPS. In addition, since the position information of the heliostat 300 acquired by the GPS may be measured when the heliostat 300 is installed, the heliostat 300 is not necessarily provided with the GPS. The current time is counted by the timer unit 337.
 図6に示した傾斜角修正部333は、ミラー310の自重によるミラー310の変形量に基づいて、上記した傾斜角算出部332により算出された傾斜角を修正する。ミラー310は、自重により下方に変形する。この変形量は、ミラー310の傾斜角によって異なっており、当該変形量は、CAE(Computer Aided Engineering)などの構造計算により傾斜量との関係が予め算出される。したがって、傾斜角修正部333は、傾斜角算出部332により算出された傾斜角に基づいて、ミラー310の変形量を計算すると共に、当該変形量に応じて当該傾斜角を修正する。なお、ヘリオスタット300のコストを抑えるため、計算能力の低い演算装置が利用可能なように当該変形量を予め算出するようにしたが、計算能力の高い演算装置を利用し、当該変形量は予め算出せずに、その都度行っても構わない。また構造計算によらず、例えばミラー310にひずみゲージを添付し、そのひずみゲージから得られるひずみ量から当該変形量を算出したり、レーザスキャンやカメラ画像に基づくミラー310の三次元計測データから、当該変形量を算出したり、しても構わない。 The inclination angle correction unit 333 shown in FIG. 6 corrects the inclination angle calculated by the inclination angle calculation unit 332 based on the deformation amount of the mirror 310 due to the weight of the mirror 310. The mirror 310 is deformed downward by its own weight. The amount of deformation differs depending on the inclination angle of the mirror 310, and the amount of deformation is calculated in advance in relation to the amount of inclination by structural calculation such as CAE (Computer Aided Engineering). Therefore, the tilt angle correcting unit 333 calculates the deformation amount of the mirror 310 based on the tilt angle calculated by the tilt angle calculating unit 332 and corrects the tilt angle according to the deformation amount. In order to reduce the cost of the heliostat 300, the deformation amount is calculated in advance so that an arithmetic device with low calculation capability can be used. However, the deformation amount is preliminarily calculated using an arithmetic device with high calculation capability. You may do it each time without calculating. Also, without depending on the structural calculation, for example, a strain gauge is attached to the mirror 310, and the deformation amount is calculated from the strain amount obtained from the strain gauge, or from the three-dimensional measurement data of the mirror 310 based on the laser scan or the camera image, The deformation amount may be calculated or may be calculated.
 さて、レーザ光制御部334は、基準角を設定するときに、発光部320を制御して、当該発光部320からレーザ光Lを発光させる。また、モータ制御部335は、傾斜用モータ360および旋回用モータ370を制御して、ミラー310の傾斜角および旋回角を変更する。 Now, when setting the reference angle, the laser light control unit 334 controls the light emitting unit 320 to emit the laser light L from the light emitting unit 320. In addition, the motor control unit 335 controls the tilting motor 360 and the turning motor 370 to change the tilt angle and the turning angle of the mirror 310.
 記憶部336は、太陽の軌跡データ、ヘリオスタット300の位置情報(緯度、経度)、昼間時間帯、夜間時間帯などを記憶する。本実施形態における昼間時間帯とは、日の出から日の入りまでの時間帯であって、中央塔200の位置情報(緯度、経度)および暦に基づいて算出される。また、夜間時間帯とは、日の入りから日の出までの時間帯であって、中央塔200の位置情報(緯度、経度)および暦に基づいて算出される。 The storage unit 336 stores sun trajectory data, heliostat 300 position information (latitude, longitude), daytime time zone, night time zone, and the like. The daytime time zone in the present embodiment is a time zone from sunrise to sunset, and is calculated based on position information (latitude and longitude) of the central tower 200 and a calendar. The night time zone is a time zone from sunset to sunrise, and is calculated based on position information (latitude and longitude) of the central tower 200 and a calendar.
 タイマ部337は、現在時刻を計時するために設けられている。タイマ部337により計時される現在時刻は、傾斜角算出部332により太陽の位置を算出する際に用いられる。 The timer unit 337 is provided for measuring the current time. The current time measured by the timer unit 337 is used when the inclination angle calculation unit 332 calculates the position of the sun.
 <ヘリオスタットの設置時のフロー>
 次に、図7を参照して、ヘリオスタット300の設置時におけるミラー310の基準角(傾斜角R1および旋回角R2(図2(a)及び(b)参照))の設定方法について説明する。
<Flow when installing a heliostat>
Next, with reference to FIG. 7, a method for setting the reference angle (inclination angle R1 and turning angle R2 (see FIGS. 2A and 2B)) of the mirror 310 when the heliostat 300 is installed will be described.
 まず、作業者は、ヘリオスタット300に設けられる操作スイッチ390の操作により、手動でミラー310を中央塔200の受光部220に向ける(ステップS1)。そして、GPSによりレシーバ210の位置(緯度、経度、高度)を取得し、記憶部336に記憶する(ステップS2)。 First, the operator manually points the mirror 310 toward the light receiving unit 220 of the central tower 200 by operating the operation switch 390 provided in the heliostat 300 (step S1). Then, the position (latitude, longitude, altitude) of the receiver 210 is acquired by GPS and stored in the storage unit 336 (step S2).
 次に、ヘリオスタット300の発光部320は、上記した位置(緯度、経度、高度)の近傍に配置される受光部220に対して、レーザ光Lを発光する(ステップS3)。そして、中央塔200の受光部220は、発光部320から発光されたレーザ光Lを受光する(ステップS4)。 Next, the light emitting unit 320 of the heliostat 300 emits the laser light L to the light receiving unit 220 disposed in the vicinity of the position (latitude, longitude, altitude) (step S3). Then, the light receiving unit 220 of the central tower 200 receives the laser light L emitted from the light emitting unit 320 (step S4).
 次に、基準角設定部331は、受光部220におけるレーザ光Lの受光位置P2と基準位置P1とのずれ量Dを算出する(ステップS5)。そして、ずれ量Dが算出されると(ステップS6:Yes)、モータ制御部335は、当該ずれ量Dに応じて傾斜用モータ360および旋回用モータ370を駆動して、ミラー310の傾斜角および旋回角を変更する(ステップS7)。そして、再びステップS5に戻り、受光部220におけるレーザ光Lの受光位置P2と基準位置P1とのずれ量Dがなくなるまで、ステップS5~ステップS7の動作を繰り返す。なお、本実施形態のステップS6では、ずれ量Dがなくなるか否かの判断を行っているが、当該ずれ量Dが所定の値より小さくなった時に、後段のステップS8に進むようにしても良い。 Next, the reference angle setting unit 331 calculates a deviation amount D between the light receiving position P2 of the laser light L in the light receiving unit 220 and the reference position P1 (step S5). When the deviation amount D is calculated (step S6: Yes), the motor control unit 335 drives the tilting motor 360 and the turning motor 370 in accordance with the deviation amount D, and the tilt angle of the mirror 310 and The turning angle is changed (step S7). Then, the process returns to step S5 again, and the operations of steps S5 to S7 are repeated until the amount of deviation D between the light receiving position P2 of the laser beam L and the reference position P1 in the light receiving unit 220 disappears. In step S6 of this embodiment, it is determined whether or not the deviation amount D disappears. However, when the deviation amount D becomes smaller than a predetermined value, the process may proceed to step S8 in the subsequent stage.
 ステップS6において、受光部220におけるレーザ光Lの受光位置P2と基準位置P1とのずれ量Dが無くなったとき(ステップS6:No)、レーザ光制御部334は、ヘリオスタット300の発光部320によるレーザ光Lの発光を停止する(ステップS8)。このとき、受光部220におけるレーザ光Lの受光位置P2と、受光部220の基準位置P1とが一致した状態となっている。そして、基準角設定部331は、受光部220におけるレーザ光Lの受光位置P2と基準位置P1とのずれ量Dが無くなったときのミラー310の傾斜角および旋回角を基準角に設定する(ステップS9)。この基準角は、記憶部336に記憶される。 In step S6, when the amount of deviation D between the light receiving position P2 of the laser light L and the reference position P1 in the light receiving unit 220 disappears (step S6: No), the laser light control unit 334 is controlled by the light emitting unit 320 of the heliostat 300. The emission of the laser beam L is stopped (step S8). At this time, the light receiving position P2 of the laser light L in the light receiving unit 220 and the reference position P1 of the light receiving unit 220 are in a matched state. Then, the reference angle setting unit 331 sets the tilt angle and the turning angle of the mirror 310 when the shift amount D between the light receiving position P2 of the laser light L and the reference position P1 in the light receiving unit 220 disappears as a reference angle (step) S9). The reference angle is stored in the storage unit 336.
 <ヘリオスタットの運用時のフロー>
 次に、図8を参照して、ヘリオスタット300の運用時におけるミラー310の動作について説明する。
<Flow during operation of heliostat>
Next, the operation of the mirror 310 when the heliostat 300 is operated will be described with reference to FIG.
 まず、中央制御部230は、中央塔200またはレシーバ210の位置(緯度、経度、高度)と、現在時刻と、から太陽の軌跡データを算出する(ステップS10)。中央塔200の位置は、GPS部500(図5参照)により取得されると共に、現在時刻は、中央制御部230のタイマにより取得される。そして、各ヘリオスタット300において、傾斜角算出部332は、当該太陽の位置に基づいて、ミラー310の傾斜角と旋回角を算出する(ステップS11)。そして、本実施形態では、傾斜角修正部333は、算出した傾斜角からミラー310の変形量を算出すると共に、そのミラー310の変形量に基づいて修正傾斜角を算出する(ステップS12)。そして、ステップS12で算出された修正傾斜角に基づいて、モータ制御部335は、傾斜用モータ360および旋回用モータ370を駆動して、ミラー310の傾斜角と旋回角を変化させる(ステップS13)。この際、ミラー310は、記憶部336に記憶される基準角を基準として、傾斜および旋回される。上記したステップS10~ステップS13を、日没になるまで繰り返し行う(ステップS14:No)。なお、発光部320の取り付け位置との関係から、ミラー310の中心からの法線と、発光部320からのレーザ光Lの光軸とは、必ずしも一致しない。また、レシーバ210と受光部220も異なる位置に設けられるので、ミラー310の中心からの法線がレシーバ210に向かうように、基準角または算出される太陽の位置が、一定の係数で補正されるのはいうまでも無い。 First, the central control unit 230 calculates solar trajectory data from the position (latitude, longitude, altitude) of the central tower 200 or the receiver 210 and the current time (step S10). The position of the central tower 200 is acquired by the GPS unit 500 (see FIG. 5), and the current time is acquired by the timer of the central control unit 230. In each heliostat 300, the tilt angle calculation unit 332 calculates the tilt angle and the turning angle of the mirror 310 based on the position of the sun (step S11). In this embodiment, the tilt angle correcting unit 333 calculates the deformation amount of the mirror 310 from the calculated tilt angle, and calculates the corrected tilt angle based on the deformation amount of the mirror 310 (step S12). Then, based on the corrected inclination angle calculated in step S12, the motor control unit 335 drives the inclination motor 360 and the turning motor 370 to change the inclination angle and the turning angle of the mirror 310 (step S13). . At this time, the mirror 310 is tilted and turned with reference to the reference angle stored in the storage unit 336. Steps S10 to S13 described above are repeated until sunset (step S14: No). Note that the normal line from the center of the mirror 310 and the optical axis of the laser light L from the light emitting unit 320 do not necessarily match due to the relationship with the mounting position of the light emitting unit 320. In addition, since the receiver 210 and the light receiving unit 220 are also provided at different positions, the reference angle or the calculated sun position is corrected by a constant coefficient so that the normal from the center of the mirror 310 is directed to the receiver 210. Needless to say.
 そして、日没になると(ステップS14:Yes)、基準角設定部331は、基準角の設定を行う(ステップS20)。この基準角の設定(ステップS20)は、毎日する必要は無い。例えば、この基準角の設定(ステップS20)は、年に1度行っても良い。 Then, when it is sunset (step S14: Yes), the reference angle setting unit 331 sets the reference angle (step S20). This reference angle setting (step S20) does not have to be performed every day. For example, the setting of the reference angle (step S20) may be performed once a year.
 以下、基準角設定部331による基準角の設定(ステップS20)の詳細を説明する。
 まず、日没後において、記憶部336に記憶されている基準角でミラー310が配置されるように、モータ制御部335は、傾斜用モータ360および旋回用モータ370を駆動する(ステップS21)。そして、ヘリオスタット300の発光部320は、中央塔200の受光部220に対して、レーザ光Lを発光する(ステップS22)。そして、中央塔200の受光部220は、発光部320から発光されたレーザ光Lを受光する(ステップS23)。
Hereinafter, the details of the reference angle setting (step S20) by the reference angle setting unit 331 will be described.
First, after sunset, the motor control unit 335 drives the tilting motor 360 and the turning motor 370 so that the mirror 310 is arranged at the reference angle stored in the storage unit 336 (step S21). Then, the light emitting unit 320 of the heliostat 300 emits the laser light L to the light receiving unit 220 of the central tower 200 (step S22). Then, the light receiving unit 220 of the central tower 200 receives the laser light L emitted from the light emitting unit 320 (step S23).
 次に、基準角設定部331は、受光部220におけるレーザ光Lの受光位置P2と基準位置P1とのずれ量Dを算出する(ステップS24)。そして、ずれ量Dが算出されると(ステップS25:Yes)、モータ制御部335は、当該ずれ量Dに応じて傾斜用モータ360および旋回用モータ370を駆動して、ミラー310の傾斜角および旋回角を変更する(ステップS26)。そして、再びステップS24に戻り、受光部220におけるレーザ光Lの受光位置P2と基準位置P1とのずれ量Dがなくなるまで、ステップS24~ステップS26の動作を繰り返す。なお、本実施形態のステップS25では、ずれ量Dがなくなるか否かの判断を行っているが、当該ずれ量Dが所定の値より小さくなった時に、後段のステップS27に進むようにしても良い。 Next, the reference angle setting unit 331 calculates a deviation amount D between the light receiving position P2 of the laser light L in the light receiving unit 220 and the reference position P1 (step S24). When the deviation amount D is calculated (step S25: Yes), the motor control unit 335 drives the tilting motor 360 and the turning motor 370 according to the deviation amount D, and the tilt angle of the mirror 310 and The turning angle is changed (step S26). Then, the process returns to step S24 again, and the operations of steps S24 to S26 are repeated until the amount of deviation D between the light receiving position P2 of the laser beam L and the reference position P1 in the light receiving unit 220 disappears. In step S25 of the present embodiment, it is determined whether or not the deviation amount D disappears. However, when the deviation amount D becomes smaller than a predetermined value, the process may proceed to step S27 in the subsequent stage.
 ステップS25において、受光部220におけるレーザ光Lの受光位置P2と基準位置P1とのずれ量Dが無くなったとき(ステップS25:No)、レーザ光制御部334は、ヘリオスタット300の発光部320によるレーザ光Lの発光を停止する(ステップS27)。このとき、受光部220におけるレーザ光Lの受光位置P2と、受光部220の基準位置P1とが一致した状態となっている。そして、基準角設定部331は、受光部220におけるレーザ光Lの受光位置P2と基準位置P1とのずれ量Dが無くなったときのミラー310の傾斜角および旋回角を新たな基準角として設定する(ステップS28)。この基準角は、記憶部336に記憶される。 In step S25, when the shift amount D between the light receiving position P2 of the laser light L and the reference position P1 in the light receiving unit 220 is lost (step S25: No), the laser light control unit 334 is controlled by the light emitting unit 320 of the heliostat 300. The emission of the laser beam L is stopped (step S27). At this time, the light receiving position P2 of the laser light L in the light receiving unit 220 and the reference position P1 of the light receiving unit 220 are in a matched state. Then, the reference angle setting unit 331 sets the tilt angle and the turning angle of the mirror 310 when the deviation amount D between the light receiving position P2 of the laser light L and the reference position P1 in the light receiving unit 220 disappears as a new reference angle. (Step S28). The reference angle is stored in the storage unit 336.
 次に、翌日の日の出に対応するために、モータ制御部335は、傾斜用モータ360および旋回用モータ370を駆動して、ミラー310の傾斜角および旋回角を設定する(ステップS15)。そして、日の出になったときに(ステップS16:Yes)、ステップS10に戻り、上記した制御(ステップS10~S14、S20、S15およびS16)を繰り返す。 Next, in order to respond to the sunrise of the next day, the motor control unit 335 drives the tilting motor 360 and the turning motor 370 to set the tilt angle and the turning angle of the mirror 310 (step S15). When sunrise occurs (step S16: Yes), the process returns to step S10 and the above-described control (steps S10 to S14, S20, S15, and S16) is repeated.
 (本実施形態における効果)
 本実施形態に係るヘリオスタット300では、レシーバ210から遠く離れたミラー310の基準角の設定を行う場合、受光部220によるレーザ光Lの受光状態に基づいて、ミラー310の基準角を自動的に変更することができる。その結果、正確かつ簡単に、ミラー310の基準位置P1の設定を行うことができる。
(Effect in this embodiment)
In the heliostat 300 according to the present embodiment, when setting the reference angle of the mirror 310 far from the receiver 210, the reference angle of the mirror 310 is automatically set based on the light receiving state of the laser light L by the light receiving unit 220. Can be changed. As a result, the reference position P1 of the mirror 310 can be set accurately and easily.
 また、本実施形態では、受光部220の基準位置P1に対するレーザ光Lの受光位置P2のずれ量Dを測定することにより、正確かつ簡単に、ミラー310の基準位置の設定を行うことができる。 In this embodiment, the reference position of the mirror 310 can be set accurately and easily by measuring the deviation D of the light receiving position P2 of the laser light L with respect to the reference position P1 of the light receiving section 220.
 また、本実施形態では、傾斜用モータ360および旋回用モータ370が、高剛性かつ低バックラッシュの偏心揺動型減速機を含むことにより、ミラー310の基準角の設定をより正確に行うことができる。 In the present embodiment, the tilting motor 360 and the turning motor 370 include a highly rigid and low backlash eccentric oscillating speed reducer, so that the reference angle of the mirror 310 can be set more accurately. it can.
 また、本実施形態では、昼間時間帯に太陽光の集光を行うことにより太陽エネルギーを得ることができると共に、夜間時間帯にミラー310の基準角の設定を行うことができる。つまり、日没後の太陽光を集光できない時間帯を利用して、ミラー310の基準角の設定を行うことができる。 Further, in this embodiment, solar energy can be obtained by collecting sunlight during the daytime period, and the reference angle of the mirror 310 can be set during the nighttime period. That is, the reference angle of the mirror 310 can be set using a time period during which sunlight after sunset cannot be collected.
 また、本実施形態では、ミラー310が自重により変形する場合でも、傾斜角算出部332により算出された傾斜角を修正することができる。これにより、ミラー310を保持するフレーム340やミラーの剛性が、ミラー310の重量との関係で相対的に低くなっても、太陽光をレシーバ210に正確に反射することができる。 In this embodiment, even when the mirror 310 is deformed by its own weight, the tilt angle calculated by the tilt angle calculation unit 332 can be corrected. Thereby, even if the rigidity of the frame 340 holding the mirror 310 and the mirror is relatively low in relation to the weight of the mirror 310, sunlight can be accurately reflected to the receiver 210.
 また、本実施形態では、工場で組み立てられたミラー組立体400を、現地に設置される支柱380に取り付けるだけで、容易にヘリオスタット300を設置することができる。具体的には、ミラー組立体400のフランジ372と、支柱380のフランジ381とをボルトにより締結するだけで、容易にヘリオスタット300を設置することができる。すなわち、工場においてミラー310の傾斜角および旋回角が正確に組み付けられたミラー組立体400を、そのまま現地に設置することができる。 Further, in this embodiment, the heliostat 300 can be easily installed simply by attaching the mirror assembly 400 assembled at the factory to the column 380 installed on site. Specifically, the heliostat 300 can be easily installed simply by fastening the flange 372 of the mirror assembly 400 and the flange 381 of the support column 380 with bolts. That is, the mirror assembly 400 in which the tilt angle and the turning angle of the mirror 310 are accurately assembled in the factory can be installed on site as it is.
 また、本実施形態では、工場で組み立てられたミラー組立体400を、そのまま現地に設置することができるので、ヘリオスタット300を現地で組み立てる場合に比べて、製造誤差が少なくなり、製作精度のばらつきが少ないヘリオスタット300の量産が容易になる。 Further, in this embodiment, the mirror assembly 400 assembled at the factory can be installed on the site as it is, so that the manufacturing error is reduced and the manufacturing accuracy varies as compared with the case where the heliostat 300 is assembled on site. The mass production of the heliostat 300 with a small amount becomes easy.
 また、本実施形態では、操作スイッチ390の操作により作業者がミラー310の傾斜角および旋回角を大まかに設定することができる。これにより、レーザ光Lによるミラー310の基準角の自動設定時に、ミラー310の移動範囲を小さくすることができる。その結果、ヘリオスタット300の設置時および運用時において、ミラー310の基準角の設定までに要する時間を短縮することができる。また、受光部の大きさをある程度小さくすることもできる。 In the present embodiment, the operator can roughly set the tilt angle and the turning angle of the mirror 310 by operating the operation switch 390. Thereby, when the reference angle of the mirror 310 is automatically set by the laser light L, the moving range of the mirror 310 can be reduced. As a result, it is possible to reduce the time required for setting the reference angle of the mirror 310 during installation and operation of the heliostat 300. In addition, the size of the light receiving portion can be reduced to some extent.
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。 As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is indicated not only by the above description of the embodiments but also by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.
 例えば、上記実施形態では、ヘリオスタット300に発光部320を設けると共に、中央塔200に受光部220を設ける例について説明したが、本発明はこれに限らず、図9の第1変形例に示すように、ヘリオスタットに受光部320Aを設けると共に、中央塔に発光部220Aを設けても良い。
 つまり、図9に示した第1変形例に係るヘリオスタットは、太陽光を反射するミラー310と、ミラー310を傾斜させる傾斜部(傾斜用モータ360)と、ミラー310を旋回させる旋回部(旋回用モータ370)と、ミラー310により反射された太陽光を集光するレシーバ210に取り付けられた発光部220Aからのレーザ光Lを受光する受光部320Aと、受光部320Aによるレーザ光Lの受光状態に基づいて、ミラー310の基準角の設定を行う基準角設定部331と、を備える。このヘリオスタットの受光部320A以外の構成は、上記実施形態と同様である。
For example, in the above-described embodiment, the example in which the light emitting unit 320 is provided in the heliostat 300 and the light receiving unit 220 is provided in the central tower 200 has been described. However, the present invention is not limited to this, and is illustrated in the first modified example in FIG. As described above, the light receiving unit 320A may be provided in the heliostat, and the light emitting unit 220A may be provided in the central tower.
That is, the heliostat according to the first modification shown in FIG. 9 includes a mirror 310 that reflects sunlight, a tilting part that tilts the mirror 310 (tilting motor 360), and a turning part that turns the mirror 310 (turning) Motor 370), a light receiving unit 320A that receives laser light L from a light emitting unit 220A attached to a receiver 210 that collects sunlight reflected by the mirror 310, and a light receiving state of the laser light L by the light receiving unit 320A And a reference angle setting unit 331 for setting the reference angle of the mirror 310. The configuration other than the light receiving unit 320A of this heliostat is the same as that of the above embodiment.
 また、上記実施形態および第1変形例では、ヘリオスタットに発光部および受光部のいずれか一方を、中央塔に発光部および受光部のいずれか他方を設ける例について説明したが、本発明はこれに限らず、図10に示した第2変形例のように、ヘリオスタットに発光部320B1および受光部320B2の両方を設けても良い。この際、中央塔に反射部220Bを設けることによって、ヘリオスタットの発光部320B1から発光されたレーザ光Lは、中央塔の反射部220Bで反射されて、ヘリオスタットの受光部320B2で受光される。この場合、基準位置P1(レーザ光Lの発光位置P1)に対して、反射光の受光部320B2における受光位置P2のずれ量Dに基づいて、ヘリオスタットのミラー310の基準角の設定を行う。
 すなわち、上記したヘリオスタットは、太陽光を反射するミラー310と、ミラー310を傾斜させる傾斜部(傾斜用モータ360)と、ミラー310を旋回させる旋回部(旋回用モータ370)と、レーザ光Lを発光する発光部320B1と、発光部320B1から発光されて、中央塔の反射部220Bにより反射されたレーザ光Lを受光する受光部320B2と、受光部320B2によるレーザ光Lの受光状態に基づいて、ミラー310の基準角の設定を行う基準角設定部331と、を備える。
In the embodiment and the first modification, the heliostat is provided with either the light emitting unit or the light receiving unit, and the central tower is provided with either the light emitting unit or the light receiving unit. Not limited to this, both the light emitting unit 320B1 and the light receiving unit 320B2 may be provided in the heliostat as in the second modified example shown in FIG. At this time, by providing the reflection part 220B in the central tower, the laser light L emitted from the light emitting part 320B1 of the heliostat is reflected by the reflection part 220B of the central tower and received by the light receiving part 320B2 of the heliostat. . In this case, the reference angle of the mirror 310 of the heliostat is set with respect to the reference position P1 (the emission position P1 of the laser light L) based on the deviation amount D of the light receiving position P2 in the light receiving unit 320B2 of the reflected light.
That is, the above-described heliostat includes a mirror 310 that reflects sunlight, an inclined portion that tilts the mirror 310 (tilting motor 360), a turning portion that turns the mirror 310 (turning motor 370), and a laser beam L. The light emitting unit 320B1 that emits light, the light receiving unit 320B2 that receives the laser light L emitted from the light emitting unit 320B1 and reflected by the reflecting unit 220B of the central tower, and the light receiving state of the laser light L by the light receiving unit 320B2 A reference angle setting unit 331 for setting the reference angle of the mirror 310.
 また、上記した第2変形例では、ヘリオスタットに発光部320B1および受光部320B2の両方を設ける例について説明したが、本発明はこれに限らず、図11の第3変形例に示すように、中央塔に発光部220C1および受光部220C2の両方を設けても良い。この際、ヘリオスタットに反射部320Cを設けておき、中央塔の発光部220C1から発光されたレーザ光Lは、ヘリオスタットの反射部320Cで反射されて、中央塔の受光部220C2で受光される。この場合、基準位置P1(レーザ光Lの発光位置P1)に対して、反射光の受光部220C2における受光位置P2のずれ量Dに基づいて、ヘリオスタットのミラー310の基準角の設定を行う。
 すなわち、上記した太陽光集光システムは、ヘリオスタットおよび中央塔を備えている。そして、中央塔は、レーザ光Lを発光する発光部220C1と、発光部220C1から発光され、ヘリオスタットの反射部320Cで反射されたレーザ光Lを受光する受光部220C2と、を有している。また、当該ヘリオスタットは、太陽光を反射するミラー310と、ミラー310を傾斜させる傾斜部(傾斜用モータ360)と、ミラー310を旋回させる旋回部(旋回用モータ370)と、レーザ光を反射する反射部320Cと、受光部220C2によるレーザ光Lの受光状態に基づいて、ミラー310の基準角の設定を行う基準角設定部331と、を備える。
Further, in the second modified example described above, an example in which both the light emitting unit 320B1 and the light receiving unit 320B2 are provided in the heliostat has been described. However, the present invention is not limited thereto, and as illustrated in the third modified example of FIG. You may provide both the light emission part 220C1 and the light-receiving part 220C2 in a central tower. At this time, the heliostat is provided with a reflecting portion 320C, and the laser light L emitted from the light emitting portion 220C1 of the central tower is reflected by the reflecting portion 320C of the heliostat and received by the light receiving portion 220C2 of the central tower. . In this case, the reference angle of the heliostat mirror 310 is set with respect to the reference position P1 (the emission position P1 of the laser light L) based on the deviation amount D of the light receiving position P2 in the light receiving unit 220C2 of the reflected light.
That is, the above-described solar light collecting system includes a heliostat and a central tower. The central tower includes a light emitting unit 220C1 that emits laser light L and a light receiving unit 220C2 that receives the laser light L emitted from the light emitting unit 220C1 and reflected by the reflecting unit 320C of the heliostat. . The heliostat also reflects a mirror 310 that reflects sunlight, an inclined portion that tilts the mirror 310 (tilting motor 360), a turning portion that turns the mirror 310 (turning motor 370), and a laser beam that reflects. And a reference angle setting unit 331 for setting the reference angle of the mirror 310 based on the light receiving state of the laser light L by the light receiving unit 220C2.
 また、上記実施形態では、傾斜用モータ360および旋回用モータ370の両方が偏心揺動型減速機を含む例について説明したが、本発明はこれに限らず、傾斜用モータ360および旋回用モータ370のいずれか一方が、偏心揺動型減速機を含めば良い。 In the above-described embodiment, the example in which both the tilting motor 360 and the turning motor 370 include the eccentric oscillating speed reducer has been described. However, the present invention is not limited thereto, and the tilting motor 360 and the turning motor 370 are included. Any one of these may include an eccentric oscillating speed reducer.
 また、上記実施形態では、ミラーの傾斜およびミラーの旋回によりミラーの傾斜角および旋回角を設定する例について説明したが、本発明はこれに限らず、ミラーの傾斜およびミラーの旋回に加えて、ミラーの高さを変更しても良い。 In the above-described embodiment, the example in which the mirror tilt angle and the swivel angle are set by the mirror tilt and the mirror swing has been described, but the present invention is not limited to this, in addition to the mirror tilt and the mirror swing, You may change the height of the mirror.
 (請求項の各構成要素と上記実施形態の各部との対応関係)
 上記実施形態においては、ヘリオスタット300が「ヘリオスタット」に相当し、ミラー310が「ミラー」に相当し、傾斜用モータ360が「傾斜部」に相当し、旋回用モータ370が「旋回部」に相当し、発光部320,220A,320B1,220C1が「発光部」に相当し、受光部220,320A,320B2,220C2が「受光部」に相当し、基準角設定部331が「基準角設定部」に相当し、傾斜角算出部332が「傾斜角算出部」に相当し、傾斜角修正部333が「傾斜角修正部」に相当し、ミラー組立体400が「ミラー組立体」に相当し、支柱380が「支柱」に相当し、操作スイッチ390が「操作スイッチ」に相当し、太陽光集光システム100が「太陽光集光システム」に相当する。
(Correspondence between each component of claims and each part of the embodiment)
In the above embodiment, the heliostat 300 corresponds to the “heliostat”, the mirror 310 corresponds to the “mirror”, the tilting motor 360 corresponds to the “tilting portion”, and the turning motor 370 corresponds to the “turning portion”. The light emitting units 320, 220A, 320B1, and 220C1 correspond to “light emitting units”, the light receiving units 220, 320A, 320B2, and 220C2 correspond to “light receiving units”, and the reference angle setting unit 331 includes “reference angle setting”. The inclination angle calculation unit 332 corresponds to the “inclination angle calculation unit”, the inclination angle correction unit 333 corresponds to the “inclination angle correction unit”, and the mirror assembly 400 corresponds to the “mirror assembly”. The support column 380 corresponds to the “support column”, the operation switch 390 corresponds to the “operation switch”, and the solar light collecting system 100 corresponds to the “solar light collecting system”.

Claims (8)

  1.  中央塔の周囲に配置されるヘリオスタットであって、
     太陽光を反射するミラーと、
     前記ミラーを傾斜させる傾斜部と、
     前記ミラーを旋回させる旋回部と、
     前記中央塔側に取り付けられた受光部にレーザ光を発光する発光部、又は、前記中央塔側に取り付けられた発光部からのレーザ光を受光する受光部と、
     前記受光部による前記レーザ光の受光状態に基づいて、前記ミラーの基準角の設定を行う基準角設定部と、を備えることを特徴とする、ヘリオスタット。
    A heliostat placed around the central tower,
    A mirror that reflects sunlight,
    An inclined portion for inclining the mirror;
    A turning part for turning the mirror;
    A light emitting unit that emits laser light to the light receiving unit attached to the central tower side, or a light receiving unit that receives laser light from the light emitting unit attached to the central tower side,
    A heliostat, comprising: a reference angle setting unit configured to set a reference angle of the mirror based on a light receiving state of the laser beam by the light receiving unit.
  2.  前記基準角設定部は、予め設定された前記受光部の基準位置に対する前記受光部による前記レーザ光の受光位置のずれ量に基づいて、前記ミラーの基準角の設定を行うことを特徴とする、請求項1に記載のヘリオスタット。 The reference angle setting unit sets the reference angle of the mirror based on a deviation amount of the light receiving position of the laser light by the light receiving unit with respect to a preset reference position of the light receiving unit, The heliostat according to claim 1.
  3.  前記傾斜部及び前記旋回部の少なくとも一方は、偏心揺動型減速機を含むことを特徴とする、請求項1又は2に記載のヘリオスタット。 The heliostat according to claim 1 or 2, wherein at least one of the inclined portion and the turning portion includes an eccentric oscillating speed reducer.
  4.  前記基準角設定部は、夜間時間帯に前記ミラーの基準角の設定を行うことを特徴とする、請求項1~3のいずれか1項に記載のヘリオスタット。 The heliostat according to any one of claims 1 to 3, wherein the reference angle setting unit sets the reference angle of the mirror during night time.
  5.  太陽の位置に基づいて、前記ミラーの傾斜角を算出する傾斜角算出部と、
     前記傾斜角算出部により算出された傾斜角で配置される前記ミラーの変形量に基づいて、当該傾斜角を修正する傾斜角修正部と、をさらに備えることを特徴とする、請求項1~4のいずれか1項に記載のヘリオスタット。
    An inclination angle calculation unit for calculating an inclination angle of the mirror based on the position of the sun;
    5. An inclination angle correction unit that corrects the inclination angle based on a deformation amount of the mirror arranged at the inclination angle calculated by the inclination angle calculation unit. The heliostat according to any one of the above.
  6.  前記ミラー、前記傾斜部、及び、前記旋回部を有するミラー組立体は、当該ミラー組立体を所定の高さで支持する支柱に取り付け可能に設けられることを特徴とする、請求項1~5のいずれか1項に記載のヘリオスタット。 The mirror assembly including the mirror, the inclined portion, and the turning portion is provided so as to be attachable to a support column that supports the mirror assembly at a predetermined height. The heliostat according to any one of the above.
  7.  前記傾斜部および前記旋回部を手動により操作するための操作スイッチをさらに備えることを特徴とする、請求項1~6のいずれか1項に記載のヘリオスタット。 The heliostat according to any one of claims 1 to 6, further comprising an operation switch for manually operating the inclined portion and the turning portion.
  8.  太陽光を反射するミラーと、
     前記ミラーを傾斜させる傾斜部と、
     前記ミラーを旋回させる旋回部と、
     レーザ光を発光する発光部と、
     前記発光部から発光されたレーザ光を受光する受光部と、
     前記受光部による前記レーザ光の受光状態に基づいて、前記ミラーの基準角の設定を行う基準角設定部と、を備えることを特徴とする、太陽光集光システム。
    A mirror that reflects sunlight,
    An inclined portion for inclining the mirror;
    A turning part for turning the mirror;
    A light emitting unit for emitting laser light;
    A light receiving unit that receives the laser light emitted from the light emitting unit;
    And a reference angle setting unit configured to set a reference angle of the mirror based on a light receiving state of the laser light by the light receiving unit.
PCT/JP2011/006485 2010-12-06 2011-11-22 Heliostat and solar-light condensing system WO2012077285A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-271965 2010-12-06
JP2010271965A JP2012122635A (en) 2010-12-06 2010-12-06 Heliostat and solar-light condensing system

Publications (1)

Publication Number Publication Date
WO2012077285A1 true WO2012077285A1 (en) 2012-06-14

Family

ID=46206800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006485 WO2012077285A1 (en) 2010-12-06 2011-11-22 Heliostat and solar-light condensing system

Country Status (2)

Country Link
JP (1) JP2012122635A (en)
WO (1) WO2012077285A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103197691A (en) * 2013-03-28 2013-07-10 柳州市智博科技有限公司 Method for tracking sun and solar tracking device
CN103472860A (en) * 2013-09-24 2013-12-25 王新庚 Novel method for controlling two-dimensional tracking of sun according to time and application device
CN104614837A (en) * 2014-11-21 2015-05-13 国家电网公司 Reflecting mirror bracket structure for heliostat
US9518566B2 (en) 2012-05-25 2016-12-13 Cambridge Mechatronics Limited Shape memory alloy actuation apparatus
US9609219B2 (en) 2012-11-27 2017-03-28 Cambridge Mechatronics Limited Suspension system for a camera lens element
CN114151982A (en) * 2020-09-07 2022-03-08 浙江中光新能源科技有限公司 Non-uniformly arranged circular heliostat field and arrangement method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101891581B1 (en) * 2016-09-21 2018-08-27 나노씨엠에스(주) Device for measuring accuracy of light concentration of reflector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122858A (en) * 1983-12-07 1985-07-01 Hitachi Ltd Sun tracking solar ray collector
JP2002098415A (en) * 2000-09-22 2002-04-05 Mitaka Koki Co Ltd Solar light condensing device
JP2006283983A (en) * 2006-07-14 2006-10-19 Nabtesco Corp Eccentric swing type reduction gear
JP2010007976A (en) * 2008-06-27 2010-01-14 Mitsui Eng & Shipbuild Co Ltd Calibration method and calibration apparatus for heliostat
JP2010151982A (en) * 2008-12-24 2010-07-08 Mitaka Koki Co Ltd Sunlight collection system
JP2010151934A (en) * 2008-12-24 2010-07-08 Mitaka Koki Co Ltd Optical positioning method and structure of sunlight collection system
JP2010159962A (en) * 2010-01-12 2010-07-22 Mitsui Eng & Shipbuild Co Ltd Method of readjusting sunlight tracking sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122858A (en) * 1983-12-07 1985-07-01 Hitachi Ltd Sun tracking solar ray collector
JP2002098415A (en) * 2000-09-22 2002-04-05 Mitaka Koki Co Ltd Solar light condensing device
JP2006283983A (en) * 2006-07-14 2006-10-19 Nabtesco Corp Eccentric swing type reduction gear
JP2010007976A (en) * 2008-06-27 2010-01-14 Mitsui Eng & Shipbuild Co Ltd Calibration method and calibration apparatus for heliostat
JP2010151982A (en) * 2008-12-24 2010-07-08 Mitaka Koki Co Ltd Sunlight collection system
JP2010151934A (en) * 2008-12-24 2010-07-08 Mitaka Koki Co Ltd Optical positioning method and structure of sunlight collection system
JP2010159962A (en) * 2010-01-12 2010-07-22 Mitsui Eng & Shipbuild Co Ltd Method of readjusting sunlight tracking sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9518566B2 (en) 2012-05-25 2016-12-13 Cambridge Mechatronics Limited Shape memory alloy actuation apparatus
US9609219B2 (en) 2012-11-27 2017-03-28 Cambridge Mechatronics Limited Suspension system for a camera lens element
CN103197691A (en) * 2013-03-28 2013-07-10 柳州市智博科技有限公司 Method for tracking sun and solar tracking device
CN103472860A (en) * 2013-09-24 2013-12-25 王新庚 Novel method for controlling two-dimensional tracking of sun according to time and application device
CN103472860B (en) * 2013-09-24 2016-03-02 王新庚 A kind of method of two-dimensional sun-tracing of controlling by time variable and device for carrying out said
CN104614837A (en) * 2014-11-21 2015-05-13 国家电网公司 Reflecting mirror bracket structure for heliostat
CN114151982A (en) * 2020-09-07 2022-03-08 浙江中光新能源科技有限公司 Non-uniformly arranged circular heliostat field and arrangement method thereof

Also Published As

Publication number Publication date
JP2012122635A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
WO2012077285A1 (en) Heliostat and solar-light condensing system
JP4541395B2 (en) Direction setting method of solar light tracking sensor
US9182470B2 (en) Inclinometer for a solar array and associated systems, methods, and computer program products
CN102369400B (en) solar concentrator system
JP4564553B2 (en) Heliostat calibration method and calibration apparatus
US8381718B1 (en) Actuator for controlling rotation about two axes using a single motor
US20080011288A1 (en) Solar Collection Apparatus and Methods Using Accelerometers and Magnetic Sensors
US20140174430A1 (en) Pyramid lamp medallion control for solar thermal power generation system
JP2013513817A (en) A heliostat that controls the direction of reflection with a sensor
CN102667656A (en) A solar central receiver system employing common positioning mechanism for heliostats
JP5789142B2 (en) Solar tracking device
WO2007034717A1 (en) Reflecting mirror support device of heliostat
JP5153953B1 (en) Heliostat and control method thereof
JP2009109443A (en) Device for measuring mounting attitude
KR101230559B1 (en) A solar tracking apparatus
JP4253194B2 (en) Method for installing solar panel of concentrating solar power generation device
Prinsloo et al. Mechatronic platform with 12m2 solar thermal concentrator for rural power generation in Africa
JP2005129574A (en) Sunlight tracking device
KR20180056073A (en) Automatic correction system during real-time operation of HelioStart field
JP3209221U (en) Light source tracking device
JP4852649B2 (en) How to readjust the solar tracking sensor
KR101312096B1 (en) A solar tracking apparatus
KR101003465B1 (en) Apparatus for tracking sunlight using projected shadow and method of web based controlling tracking sunlight monitoring
KR101085172B1 (en) A solar tracking apparatus
TW201226821A (en) Solar tracking motor control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847049

Country of ref document: EP

Kind code of ref document: A1