TW201226821A - Solar tracking motor control system - Google Patents

Solar tracking motor control system Download PDF

Info

Publication number
TW201226821A
TW201226821A TW99147143A TW99147143A TW201226821A TW 201226821 A TW201226821 A TW 201226821A TW 99147143 A TW99147143 A TW 99147143A TW 99147143 A TW99147143 A TW 99147143A TW 201226821 A TW201226821 A TW 201226821A
Authority
TW
Taiwan
Prior art keywords
solar
unit
panel
motor
control system
Prior art date
Application number
TW99147143A
Other languages
Chinese (zh)
Inventor
Chiag-Hsiang Huang
Original Assignee
Univ Kun Shan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Kun Shan filed Critical Univ Kun Shan
Priority to TW99147143A priority Critical patent/TW201226821A/en
Publication of TW201226821A publication Critical patent/TW201226821A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Photovoltaic Devices (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

The present invention discloses a solar tracking motor control system. The solar tracking motor control system is applied in a solar apparatus and comprises a computing/judgment unit, a timing unit, a storage unit, a driving unit, a first position sensor, and a first motor rotary motion sensing device. As the location of the sun in the space varies over time and different observation locations, the computing/judgment unit of the solar tracking motor control system calculates the position of the sun according to time data from the timing unit and latitude and longitude data in storage unit. Subsequently, the computing/judgment unit adjusts the inclination angle of panels of the solar apparatus, thereby enabling the best working efficiency for the solar apparatus. The solar tracking motor control system can also carry out zeroing calibration on the inclination angle of panels of the solar apparatus in order to maintain the working efficiency of solar installations. During implementation of the zeroing calibration, if the first position sensor can sense the panels, the zeroing calibration is completed.

Description

201226821 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明是有關於一種太陽能追曰系統,特別是有關於一 種太陽能追日系統之太陽能追曰馬達控制系統。 【先前技4标】 [0002] 太陽能對地球來說是源源不絕的能源,所以相關之太陽 能裝置一直推陳出新。例如透過太陽能板將光能轉換成 電能之太陽能發電裝置,以及透過反射鏡或吸熱板將光 能轉成熱能之太陽能集熱裝置。其中,陽光係透過反射 ❹ 鏡聚焦於集熱裝置上,以達到加熱物體之目的。或者反 射鏡係將陽光反射到太陽能板上,以供太陽能板發電。 隨著太陽能裝置之發展,由原本固定式裝置演變為可調 式裝置,後者係能隨太陽之位置而透過馬達調整太陽能 板、反射鏡或吸熱板之傾斜角或偏向角,使太陽能裝置 有較高之工作效率。由於太陽能裝置在經年累月的工作 之後,傾斜角或偏向角會有累積誤差之情形發生,進而 大大降低太陽能裝置之工作效率。 【發明内容】 [0003] 有鑑於上述習知技藝之問題,所以本發明之太陽能追日 馬達控制系統除了能使太陽能裝置有較高的工作效率外 ,還利用第一位置感測器,來對太陽能裝置之面板即太 陽能板、反射鏡或吸熱板之傾斜度做歸零校正,以避免 累積誤差之情形發生。其中,除了調整太陽能裝置之面 板之傾斜角外,更包含調整面板之偏向角,且更利用第 二位置感測器及第三位置感測器來做偏向角之歸零校正 099147143 表單編號A0101 第3頁/共26頁 0992080991-0 201226821 [0004] 為達上述目的,本發明之太陽能追日馬達控制系統係包 含計算/判斷單元、計時單元、儲存單元、驅動單元、第 一位置感測器及第一馬達轉圈感應裝置,且更可選擇性 包含、第二位置感測器、第三位置感測器及第二馬達轉 圈感應裝置。其中,計算/判斷單元接收來自計時單元之 時間資料及儲存單元之經緯度資料,然後計算出能讓太 陽能裝置達到最佳工作效率之面板傾斜角或偏向角,再 透過驅動單元來驅動太陽能裝置之傾斜角馬達或偏向角 馬達。然後此兩馬達會間接將太陽能裝置之面板轉至所 要求之傾斜角或偏向角,以求太陽能裝置之最佳工作效 率。 [0005] 此太陽能追日馬達控制系統會定時對太陽能裝置之面板 之傾斜角及偏向角做歸零校正。當執行歸零校正時,此 太陽能追日馬達控制系統會促使太陽能裝置之面板之傾 斜角轉到其初始角度。此時,計算/判斷單元會依據接收 自第一位置感測器之訊號來判定是否完成歸零校正。藉 由定時之歸零校正,可使太陽能裝置一直保有最佳之工 作效率。 [0006] 假如遇上陰天或雨天就沒有調整太陽能裝置之面板之必 要,所以本太陽能追日馬達控制系統更包含一光感單元 。此光感單元可以感測陽光是否足能使太陽能裝置發揮 效用,若陽光太弱,就不用調整太陽能裝置之面板之傾 斜角。 【實施方式】 099147143 表單編號 A0101 第 4 頁/共 26 頁 0992080991-0 201226821 [0007] 以下將參照相關圖式,說明依本發明之太陽能追日馬達 ❹ [0_ 〇 控制系統之實施例及應用,為使便於理解,下述實施例 中之相同元件係以相同之符號標示來說明。且太陽能裝 置係例如為太陽能發電裝置及太陽能集熱裝置。其中, 太陽能發電裝置係透過太陽能板將光能轉為電能,而太 陽能集熱裝置是透過反射鏡將陽光聚焦於集熱裝置方式 或吸熱板方式將光能轉成熱能。其中,太陽能板、反射 鏡及吸熱板均泛稱為太陽能裝置之面板。 請參閱第1圖,其係為本發明之太陽能追日馬達控制系統 之架構示意圖。此太陽能追曰馬達控制系統1至少包含計 算/判斷單元10、計時單元20、儲存單元30、驅動單元 40、第一位置感測器50及第一馬達轉圈感應裝置60,且 此太陽能追日馬達控制系統更可選擇性包含光感單元70 、第二位置感測器51、第三位置感測器52及第二馬達轉 圈感應裝置61。其中,計時單元20、儲存單元30、驅動 單元40、第一位置感測器50、第一馬達轉圈感應裝置60 、光感單元70、第二位置感測器51、第三位置感測器52 及第二馬達轉圈感應裝置61係分別電性連接計算/判斷單 元10。其中,計時單元2 0之時間資料係例如包含格倫威 治標準時間之分、時、曰、月及年。而儲存單元30係儲 存當地之經緯度資料,且此經緯度資料係例如由全球衛 星定位系統提供或人為直接輸入。 [0009] 請參考第2圖,第2圖係為本發明之太陽能追日馬達控制 系統之第一實施例應用於太陽能裝置之結構示意圖。本 發明之太陽能追日馬達控制系統之第一實施例係包含如 099147143 表單編號A0101 第5頁/共26頁 099208099卜0 201226821 第1圖所示之計算/判斷單元10、計時單元20、儲存單元 30、驅動單元40、第一位置感測器50及第一馬達轉圈感 應裝置60。且太陽能裝置係包括支架81、設於支架81上 之可調式承載座82以及設於可調式承載座82上之面板83 、傾斜角馬達(未繪示)、偏向角馬達(未繪示)及齒輪模 組(未繪示)。詳言之,太陽能裝置之支架81係設置於地 上,且可調式承載座82係固接於支架81上且同時固接面 板83,其中固接之方式係例如以螺絲旋入螺帽之方式固 接。其中,太陽能裝置係例如配合東、西、南及北方位 來架設,然第1圖所示之第一位置感測器50係例如設置在 支架81之東側之凸出部811上。其中,第一位置感測器50 係例如極限開關或近接感應開關關。而第1圖所示之計算 /判斷單元10、計時單元20、儲存單元30及驅動單元40 係設置於固定在支架81上之控制盒100裡。其中,驅動單 元40係電性連接傾斜角馬達(未繪示),且驅動單元40更 可選擇性電性連接偏向角馬達(未繪示)。 [0010] 請參考第3圖,第3圖係為繪示第2圖所示之可調式承載座 之結構示意圖,且第3圖係同時繪示傾斜角馬達85、偏向 角馬達86及齒輪模組。其中,齒輪模組包含傾斜角齒輪 93、偏向角齒輪94、第一齒輪91及第二齒輪92。此可調 式承載座82具有第一固定部821,且第一固定部821上設 有第一孔洞828及設置有第一軸承823。其中,第一孔洞 828係用來固接支架81之螺絲穿孔,且第一軸承823係用 以支持第一轉軸824轉動。第一轉軸824上設置有第二軸 承825,且第二軸承825係用以支持第二轉軸826轉動。 099147143 表單編號ΑϋΙΟΙ 第6頁/共26頁 0992080991-0 201226821 [0011]201226821 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a solar tracking system, and more particularly to a solar tracking motor control system for a solar solar tracking system. [Previous skill 4 standard] [0002] Solar energy is an endless source of energy for the earth, so the related solar energy devices have been innovated. For example, a solar power generation device that converts light energy into electric energy through a solar panel, and a solar heat collecting device that converts light energy into heat through a mirror or a heat absorbing plate. Among them, the sunlight is focused on the heat collecting device through the reflecting mirror to achieve the purpose of heating the object. Or the mirror reflects sunlight onto the solar panel for solar panels to generate electricity. With the development of solar devices, the original fixed device has evolved into an adjustable device. The latter can adjust the tilt angle or deflection angle of the solar panel, mirror or heat absorbing plate through the motor according to the position of the sun, so that the solar device has a higher Work efficiency. Since the solar device has a cumulative error after the years of work, the tilt angle or the deflection angle occurs, which greatly reduces the working efficiency of the solar device. SUMMARY OF THE INVENTION [0003] In view of the above-mentioned problems of the prior art, the solar tracking motor control system of the present invention not only enables the solar device to have a higher working efficiency, but also utilizes the first position sensor to The slope of the solar panel, ie the solar panel, the mirror or the heat sink, is zeroed to avoid cumulative errors. In addition to adjusting the tilt angle of the panel of the solar device, the deflection angle of the adjustment panel is further included, and the second position sensor and the third position sensor are used to perform the zero correction of the deflection angle. 099147143 Form No. A0101 3 pages/total 26 pages 0992080991-0 201226821 [0004] In order to achieve the above object, the solar solar tracking control system of the present invention comprises a calculation/judging unit, a timing unit, a storage unit, a driving unit, a first position sensor and The first motor turns sensing device, and more optionally, the second position sensor, the third position sensor and the second motor ring sensing device. The calculation/judging unit receives the time data from the timing unit and the latitude and longitude data of the storage unit, and then calculates the panel tilt angle or the deflection angle that enables the solar device to achieve the best working efficiency, and then drives the tilt of the solar device through the driving unit. An angle motor or a deflection angle motor. The two motors then indirectly turn the panel of the solar unit to the desired tilt or deflection angle for optimum efficiency of the solar unit. [0005] The solar tracking motor control system periodically corrects the tilt angle and the deflection angle of the panel of the solar device. When the zero correction is performed, the solar tracking motor control system causes the tilt angle of the solar panel to be turned to its initial angle. At this time, the calculation/judging unit determines whether or not the zero correction is completed based on the signal received from the first position sensor. With timed zero correction, solar installations are always optimally productive. [0006] If there is no need to adjust the panel of the solar device in case of cloudy or rainy days, the solar solar tracking control system further includes a light sensing unit. The light sensing unit can sense whether the sunlight is sufficient for the solar device to function. If the sunlight is too weak, the tilt angle of the panel of the solar device is not adjusted. [Embodiment] 099147143 Form No. A0101 Page 4 of 26 0992080991-0 201226821 [0007] Embodiments and applications of the solar tracking motor ❹ [0_ 〇 control system according to the present invention will be described below with reference to the related drawings. For ease of understanding, the same elements in the following embodiments are denoted by the same reference numerals. Further, the solar energy device is, for example, a solar power generation device and a solar heat collection device. Among them, the solar power generation device converts light energy into electric energy through a solar panel, and the solar energy collecting device converts the light energy into heat energy by focusing the sunlight on the heat collecting device or the heat absorbing plate through the mirror. Among them, solar panels, mirrors and heat absorbing panels are generally referred to as panels of solar devices. Please refer to FIG. 1 , which is a schematic structural diagram of a solar solar tracking control system of the present invention. The solar tracking motor control system 1 includes at least a calculation/determination unit 10, a timing unit 20, a storage unit 30, a driving unit 40, a first position sensor 50, and a first motor rotation sensing device 60, and the solar tracking motor The control system further selectively includes a light sensing unit 70, a second position sensor 51, a third position sensor 52, and a second motor turning sensing device 61. The timing unit 20, the storage unit 30, the driving unit 40, the first position sensor 50, the first motor rotation sensing device 60, the light sensing unit 70, the second position sensor 51, and the third position sensor 52 are provided. The second motor rotation sensing device 61 is electrically connected to the calculation/determination unit 10, respectively. The time data of the timing unit 20 includes, for example, the minutes, hours, months, months, and years of the Glenn Standard Time. The storage unit 30 stores local latitude and longitude data, and the latitude and longitude data is provided, for example, by the global satellite positioning system or directly input by humans. Please refer to FIG. 2, which is a schematic structural view of a solar energy vehicle control system according to a first embodiment of the present invention applied to a solar device. The first embodiment of the solar solar tracking control system of the present invention includes, for example, 099147143, form number A0101, page 5, total 26 pages, 099208099, and 0 201226821. The calculation/judging unit 10, the timing unit 20, and the storage unit shown in FIG. 30. The driving unit 40, the first position sensor 50 and the first motor rotation sensing device 60. The solar device includes a bracket 81, an adjustable carrier 82 disposed on the bracket 81, a panel 83 disposed on the adjustable carrier 82, a tilt angle motor (not shown), a deflection angle motor (not shown), and Gear module (not shown). In detail, the bracket 81 of the solar device is disposed on the ground, and the adjustable carrier 82 is fixed to the bracket 81 and simultaneously fixed to the panel 83. The manner of fixing is fixed by screwing into the nut, for example. Pick up. Here, the solar device is erected, for example, in the east, west, south, and north positions. However, the first position sensor 50 shown in Fig. 1 is disposed, for example, on the convex portion 811 on the east side of the bracket 81. The first position sensor 50 is, for example, a limit switch or a proximity sensor switch. The calculation/determination unit 10, the timing unit 20, the storage unit 30, and the drive unit 40 shown in Fig. 1 are disposed in the control box 100 fixed to the holder 81. The driving unit 40 is electrically connected to the tilting angle motor (not shown), and the driving unit 40 is selectively electrically connected to the deflection angle motor (not shown). [0010] Please refer to FIG. 3, which is a schematic structural view of the adjustable carrier shown in FIG. 2, and FIG. 3 simultaneously shows the tilting angle motor 85, the deflection angle motor 86 and the gear mode. group. The gear module includes a tilt angle gear 93, a deflection angle gear 94, a first gear 91, and a second gear 92. The adjustable carrier 82 has a first fixing portion 821, and the first fixing portion 821 is provided with a first hole 828 and a first bearing 823. The first hole 828 is for fixing the screw perforation of the bracket 81, and the first bearing 823 is for supporting the rotation of the first rotating shaft 824. A second bearing 825 is disposed on the first rotating shaft 824, and the second bearing 825 is configured to support the rotation of the second rotating shaft 826. 099147143 Form number ΑϋΙΟΙ Page 6 of 26 0992080991-0 201226821 [0011]

[0012] Ο [0013] 099147143 另外,第二轉軸826上係設置第二固定部⑽,且此第二 固定部822上具有第二孔洞829。其+,第二孔洞829係 用來固接面板83之螺絲穿孔。 於第3圖中’傾斜角馬達85及偏向角馬達86係分別固定在 第一軸承823及第二軸承825上,且傾斜角馬達⑽及偏向 角馬達86之轉軸之一端分別裝設有傾斜角齒輪93及偏向 角齒輪94。第一轉軸824及第二轉軸826之一端亦分別設 置第一齒輪91及第二齒輪92。當傾斜角馬達μ之轉軸轉 動時傾斜角齒輪93就同步跟著轉,進而帶動第一齒輪91 及第一轉轴824轉動,所以當傾斜角馬達85運作時就會帶 動第一轉軸824轉動。同理’當偏向角馬達μ運作時就會 帶動第二轉軸826轉動。 請參考第4圖’第4圖係為繪示第2圖所示之面板之傾斜角 及偏向角示意圖。由於太陽能裝置之設置係配合東、西 、南及北方位的’所以面板83之側邊可分為東西向側邊 836及南北向側邊837。當面板83被轉到陽光能直射此面 板83時,鉛錘線101到東西向側邊836之夾角定義為傾斜 角831 ’且鉛錘線101到南北向側邊837之夾角定義為偏 向角832。請同時參考第3圖。當傾斜角馬達85帶動第一 轉軸824轉動時會改變傾斜角831,而偏向角馬達86帶動 第一轉軸826轉動時會改變偏向角832。 承上,儲存單元30更儲存一比例參數,且此比例參數係 表不傾斜角馬達85之轉圈數對應面板83之傾斜角831之變 化量之關係。此比例參數係例如當傾斜角馬達85轉一圈 時’傾斜角831之變化量為〇. 5。。此外’儲存單元30儲 第7頁/共26頁 表單編號Α0101 0992080991-0 201226821 存單元更儲存另一比例參數,且此另一比例參數係表示 偏向角馬達86之轉圈數對應面板83之一偏向角832之變化 量之關係。此另一比例參數係例如當偏向角馬達86轉一 圈時,偏向角832之變化量為0.2°。 [0014] 請參考第4圖。面板83轉動時會受到地形及地物影響,若 面板83之西側有障礙物,為使面板83不至於撞到西側之 障礙物,則於儲存單元30更儲存傾斜角831之極限角度。 當面板83之傾斜角831轉至此極限角度時,計算/判斷單 元10就不會再往增加傾斜角831之方向調整面板83。且當 面板83之傾斜角831轉到此極限角度時,其距離該障礙物 還有一適當距離,所以不至於使該面板83因些微誤差而 碰撞到障礙物。請同時參考第2圖,面板83之傾斜角831 每曰都會被回轉到初始角度,此初始角度係例如1 0 °、2 0 。或30°,或此初始角度以面板83不碰撞到其他物體為主 。且當面板83之傾斜角被回轉到初始角度時,同時會被 第一位置感測器50所感測到,而第一位置感測器50會傳 送一訊號給計算/判斷單元10,使計算/判斷單元10停止 轉動面板83。且計算/判斷單元10因此得知目前面板之傾 斜角831係為初始角度。此外,計算/判斷單元10計算出 面板83之傾斜角831要大於上述之初始角度,才會調整面 板83之傾斜角831。 [0015] 前揭係說明本發明之太陽能追日馬達控制系統1及太陽能 裝置之結構,後續將說明本發明之太陽能追日馬達控制 系統1應用於太陽能裝置之運作方式。 [0016] 請參考1、2、3及4圖。於架設本發明之太陽能追日馬達 099147143 表單編號A0101 第8頁/共26頁 0992080991-0 201226821[0012] In addition, the second rotating portion 826 is provided with a second fixing portion (10), and the second fixing portion 822 has a second hole 829. Its +, second hole 829 is used to secure the screw perforations of the panel 83. In FIG. 3, the tilting angle motor 85 and the deflection angle motor 86 are respectively fixed to the first bearing 823 and the second bearing 825, and the tilting angle motor (10) and one of the rotating shafts of the deflection angle motor 86 are respectively provided with inclination angles. Gear 93 and deflection angle gear 94. The first gear 91 and the second gear 92 are also disposed at one end of the first rotating shaft 824 and the second rotating shaft 826, respectively. When the rotating shaft of the tilting angle motor μ rotates, the tilting angle gear 93 rotates synchronously, thereby driving the first gear 91 and the first rotating shaft 824 to rotate, so that when the tilting angle motor 85 operates, the first rotating shaft 824 is rotated. Similarly, when the deflection motor μ is operated, the second rotating shaft 826 is rotated. Please refer to Fig. 4'. Fig. 4 is a schematic view showing the inclination angle and the deflection angle of the panel shown in Fig. 2. Since the solar device is arranged to match the east, west, south and north positions, the side of the panel 83 can be divided into an east-west side 836 and a north-south side 837. When the panel 83 is turned to direct sunlight to the panel 83, the angle between the plumb line 101 to the east-west side 836 is defined as the angle of inclination 831 ' and the angle between the plumb line 101 and the north-south side 837 is defined as the deflection angle 832. . Please also refer to Figure 3. When the tilting angle motor 85 drives the first rotating shaft 824 to rotate, the tilting angle 831 is changed, and the deflecting angle motor 86 causes the first rotating shaft 826 to rotate to change the deflecting angle 832. In addition, the storage unit 30 further stores a proportional parameter, and the proportional parameter indicates the relationship between the number of revolutions of the tilt angle motor 85 and the variation of the tilt angle 831 of the panel 83. The proportional parameter is, for example, when the tilt angle motor 85 makes one revolution, the amount of change of the tilt angle 831 is 〇. . In addition, the storage unit 30 stores the 7th page/the total 26 page form number Α0101 0992080991-0 201226821 The storage unit stores another proportional parameter, and the other proportional parameter indicates that the number of revolutions of the deflection angle motor 86 corresponds to one of the panels 83. The relationship between the amount of change in angle 832. This other proportional parameter is such that when the deflection angle motor 86 makes one revolution, the deflection angle 832 varies by 0.2. [0014] Please refer to FIG. 4. When the panel 83 is rotated, it is affected by the terrain and the ground. If there is an obstacle on the west side of the panel 83, in order to prevent the panel 83 from colliding with the obstacle on the west side, the storage unit 30 further stores the limit angle of the tilt angle 831. When the tilt angle 831 of the panel 83 is turned to the limit angle, the calculation/determination unit 10 does not adjust the panel 83 in the direction of increasing the tilt angle 831. And when the tilt angle 831 of the panel 83 is turned to the extreme angle, it is also at an appropriate distance from the obstacle, so that the panel 83 does not collide with the obstacle due to slight errors. Please refer to Fig. 2 at the same time. The tilt angle 831 of the panel 83 will be rotated to the initial angle. The initial angle is, for example, 10 °, 2 0 . Or 30°, or this initial angle is based on the panel 83 not colliding with other objects. And when the tilt angle of the panel 83 is rotated to the initial angle, it is simultaneously sensed by the first position sensor 50, and the first position sensor 50 transmits a signal to the calculation/judging unit 10 to make the calculation/ The judging unit 10 stops rotating the panel 83. The calculation/judging unit 10 thus knows that the tilt angle 831 of the current panel is the initial angle. Further, the calculation/determination unit 10 calculates that the inclination angle 831 of the panel 83 is larger than the above-described initial angle, and the inclination angle 831 of the panel 83 is adjusted. [0015] The foregoing describes the structure of the solar solar tracking control system 1 and the solar device of the present invention, and the operation mode of the solar solar tracking control system 1 of the present invention applied to the solar device will be described later. [0016] Please refer to Figures 1, 2, 3 and 4. Solar solar tracking motor for erecting the present invention 099147143 Form No. A0101 Page 8 of 26 0992080991-0 201226821

[0017] 099147143 控制系統及太陽能裝置時,架設人員係例如直接將該地 經緯度資料輸入儲存單元30。計算/判斷單元10接收來自 計時單元20之時間資料及儲存單元30之經緯度資料。由 於此時間資料係例如為格林威治標準時間,所以計算/判 斷單元10會再根據經緯度資料換算成當地之標準時間, 以推算出太陽在天空之精確的仰角角度。然後計算/判斷 單元10再計算出面板83對應此仰角角度之傾斜角831,並 計算出與目前傾斜角831之差值。計算/判斷單元10再將 此差值換算成傾斜角馬達85所應轉動之驅動訊息,然後 根據此驅動訊息控制驅動單元40驅動傾斜角馬達85完成 所需動作。其中,此驅動訊息包括傾斜角馬達85應正轉 或反轉及轉動的圈數。由於傾斜角馬達85會間接轉動可 調式承載座82之第一轉軸824,所以當傾斜角馬達85轉動 時會同時調整固接於可調式承載座82上之面板83並將其 轉至所要求之傾斜角831。其中,傾斜角831係例如設定 為每1、10、15、20、30、40、45 ' 50或60分鐘調整一 次。 第一馬達轉圈感應裝置60係例如為碰觸式開關或旋轉編 碼器。請參閱第5圖,第5圖係為本發明之太陽能追曰馬 達控制系統之第一馬達轉圈感應裝置之設置示意圖,且 第5圖係繪示碰觸式開關之設置情形。請同時參考第1、2 、3及4圖。本太陽能追曰馬達控制系統利用第一馬達轉 圈感應裝置60來精準控制面板83之傾斜角831之轉動圈數 。第一馬達轉圈感應裝置60係例如設置於傾斜角馬達85 上。當傾斜角齒輪93之牙齒碰觸到第一馬達轉圈感應裝 表單編號A0101 第9頁/共26頁 0992080991-0 201226821 置60之彈性片6〇1時,並使彈性片6〇1產生彈性位移,就 曰使碰觸式開關開關一次。此開關動作會電性連接到計 算/判斷單元10,而使計算/判斷單元10計數一次。若傾 斜角齒輪93是6齒,則當計算/判斷單元10計數6次就表示 傾斜角馬達85之轉軸轉了一圈。藉此,傾斜角馬達85可 透過第一馬達轉圈感應裝置6〇回授當次轉動圈數給計算/ 判斷單元10,以確定是否達到計算/判斷單元1〇的要求。 [0018] [0019] 凊參考第1、2及4圖。為了確保太陽能裝置在經年累月的 使用之後,還能保有最佳工作效率,所以此太陽能追曰 馬達控制系統1設計有面板8 3之傾斜角8 31之歸零校正功 旎。儲存單元3〇更儲存第一時間參數,且此第一時間參 數係例如經轉換後為當地晚上9點之格林威治標準時間。 當計算/判斷單元1〇判斷第一時間參數相同於計時單元之 時間資料時,計算/判斷單元10就會促使面板83回轉。在 回轉的過程中,當面板83轉動到第一位置感測器5〇所能 感測到之傾斜角831之初始角度時,第一位置感測器5〇會 tx送一訊號給計算/判斷單元,進而促使面板83停止轉 動,即完成面板83之傾斜角831之歸零校正。且計算/判 斷單元10亦得知目前面板83之傾斜角831係為初始角度。 經由每日對面板83之傾斜角831之歸零校正,可維持精確 地調整傾斜角831,以確保太陽能裝置之工作效率。 請參考第6圖,第6圖係為本發明之太陽能追曰馬達控制 系統之第二實施例應用於太陽能裝置之結構示意圖。請 同時參考第1、3及4圖。本發明之太陽能追日馬達控制系 統之第二實施例係包含如第1圖所示之計算/判斷單元1 〇 099147143 表單編號A0101 第10頁/共26頁 0992080991-0 201226821 、計時單元20、儲存單元3〇、驅動單元4〇、第一位置感 測器50、第二位置❹i|§5l、第三位置感測器^、第— 馬達轉圈感應裝置60及第:馬達轉_應裝置61。且第 三位置感測器52係設置於支架81南側之凸出部811上但 因為觀看角度之關係所以第6圖未綠示支架8】北側之凸出 部及第二位置感測器《而且驅動單元4〇亦電性連接 角馬達86。藉此,本發明之太陽能追曰馬達控制系則更 包含能隨太陽方位角而改變面板83之偏向角832之功能。 〇 _]承上,計算/麟單元1()根據來自料單元緯度資 . 料及計時單元2 0之時間資料,進而計算出當地及當時之 太陽的方位角及面板83對應此方位角之偏向角832,並計 算出與目前偏向角832之差值。計算/判斷單元1〇再將此 差值換算成偏向角馬達86所應轉動之另一驅動訊息,並 根據此另一驅動訊息控制驅動單元4〇驅動偏向角馬達86 完成所需動作。此另一駆動訊息包括偏向角馬達86應正 轉或反轉及轉動的圈數。由於偏向角馬達86間接轉動可 〇 調式承載座82之第二轉軸826,所以當偏向角馬達86轉動 時會同時調整固接於可調式承載座82上之面板83並將其 轉至要求之偏向角832之位置。其中,偏向角832係例如 設定為每小時、每半曰或每曰調整一次。 [0021]請參考1及3圖。計算/判斷單元1〇係透過第二馬達轉圈感 應裝置61來精準控制偏向角馬達86之運轉。第二馬達轉 圈感應裝置61係例如設置在偏向角爲達86上,且其設置 方式如同第5圖所示之第一馬達轉圈威應裝置60與傾斜角 馬達85之設置方式。第二馬達轉圈威應裝置61係用以偵 099147143 表單編號A0101 第11頁/共26頁 0992080991-0 201226821 測偏向角馬達86之轉動狀況,並將偏向角馬達86之轉動 狀況回授給計算/判斷單元10。而且,第二馬達轉圈感應 裝置61之特徵及運作方式如同第5圖所繪示之第一馬達轉 圈感應裝置60。藉此’偏向角馬達86透過第二馬達轉圈 感應裝置61回授當次轉動圈數給計算/判斷單元1〇,以確 定是否達到計算/判斷單元1 〇的要求。 [0022] 請參考第1、4及6圖。當然面板83之偏向角832亦需歸零 校正。此時更包含設置於支架81北侧之凸出部(未繪示) 上之第二位置感測器(未繪示)及支架81南側凸出部811之 第二位置感測器52。且儲存單元30更儲存第二時間參數 及第三時間參數。第二時間參數係例如經換算後為當地 夏至晚上11點之格林威治標準時間,而第三時間參數係 例如經換算後為當地冬至晚上丨丨點之格林威治標準時間 。當計算/判斷單元1〇判斷第二時間參數相同於計時單元 之時間資料時’計算/判斷單元1()就會促使面板83轉向第 一位置感測器(未繪示)。且當第二位置感測器(未繪示) 感測到面板83時’第二位置感辨器(未繪示)會發送一訊 號給計算/判斷單元1〇,進而促使停止轉動面板83,即完 成面板83之偏向角832之歸零校正◊且計算/判斷單元1〇 亦得知目前面板83之偏向角832係為第一初始角度。同理 田。十算/判斷單元1〇判斷第三時間參數相同於計時單元 之時間貝料時,計算/判斷單元1〇就會促使面板83轉向第 位置感測器52。且當第三位置感測器52感測到面板83 夺第一位置感測器5 2會發送一訊號給計算/判斷單元j 〇 ’進而促使停止轉動面板83,即再-次完成面板83之偏 099147143 表單編號A0101 第12頁/共26頁 0992080991-0 201226821 [0023] Ο [0024] Ο [0025] 099147143 °角832之歸零校正。且計算/判斷單元丄〇亦得知目前面 之傾斜角832係為第二初始角度。此外,當計算/判 *單疋10汁算出面板83之偏向角832介於第一初始角度與 第—初始角度之間’才會調整面板83之偏向角832。 氣上,非因第二時間參數及第三時間參數而調整面板83 $向角832時’若面板83轉動的過程中能被第二位置感 =态51或第三位置感測器52所感測到時,第二位置感測 ° 1或第一位置感測器52會發送一訊號給計算/判斷單元 進而促使面板83停止轉動,即算執行了面板83之偏 °角8 3 2之歸零校正。 曰考第1 2 4及6圖。綜合上敘,本發明之太陽能追 =馬達控制系統1可隨太陽南北移動之轨跡即方位角之改 之來調整面板83之偏向角832,以及隨太陽由東向西移動 適^跡即仰角之改變來調整面板83之傾斜角831。又由於 長:之歸零校正’可避免此太陽能追曰馬達控制系統1因 此間工作所累積之偏向角832或傾斜角831之誤差。如 可精準的控制面板83隨太陽軌跡轉動’以保持太陽 把裝置之最佳工作致率。 系參考第7圖’第7圖係為本發明之太陽能追日馬達控制 同統之第三實施例應用於太陽能裝置之結構示意圖。請 感^參考第1圖,此太陽能追曰馬達控制系統1更包括光 早凡7G ’且此光感單元70係電性連接計算/判斷單 :,感單元70係例如呈半圓球形狀之太陽能電池。其中 D十算/判斷單TC1G就會持續收到來自域單元^之 號或^訊號)’當陽光不足使太陽能敦置發 弟13頁/共26 1 0992080! 201226821 揮效用時,此電訊號就會低於一特定準位。所以,當計 算/判斷單元10接收到來自光感單元70之電訊號是低於一 特定準位時,計算/判斷單元10就不執行當次對傾斜角馬 達85的運轉動作,且此功能不會影響歸零功能。其中, 原本當次傾斜角馬達85所應完成之動作將會被記錄在計 算/判斷單元10,且將在下次執行傾斜角馬達85運轉時一 併執行。 [0026] 光感單元70係例如設置於一空曠地方或一制高點。如此 ,不管太陽在東邊或西邊,光感單元70都能準破的感測 到陽光之強度。第7圖中所示之光感單元70係設置在立竿 上之制高點且不會被太陽能裝置遮擋到陽光。 【圖式簡單說明】 [0027] 第1圖係為本發明之太陽能追日馬達控制系統之架構示意 圖。 第2圖係為本發明之太陽能追曰馬達控制系統之第一實施 例應用於太陽能裝置之結構示意圖。 第3圖係為繪示第2圖所示之可調式承載座之結構示意圖 〇 第4圖係為繪示第2圖所示之面板之傾斜角及偏向角示意 圖。 第5圖係為本發明之太陽能追曰馬達控制系統之第一馬達 轉圈感應裝置之設置示意圖。 第6圖係為本發明之太陽能追日馬達控制系統之第二實施 例應用於太陽能裝置之結構示意圖。 第7圖係為本發明之太陽能追曰馬達控制系統之第三實施 099147143 表單編號A0101 第14頁/共26頁 0992080991-0 201226821 例應用於太陽能裝置之結構示意圖。 【主要元件符號說明】 [0028] 100 :控制盒 101 :鉛錘線 1〇 :計算/判斷單元 2 0 :計時單元 30 :儲存單元 40 :驅動單元 50 :第一位置感測器 θ 51 :第二位置感測器 52 :第三位置感測器 60 :第一馬達轉圈感應裝置 601 :彈性片 61 :第二馬達轉圈感應裝置 70 :光感單元 81 :支架[0017] 099147143 When controlling the system and the solar device, the erector is directly input the latitude and longitude data into the storage unit 30, for example. The calculation/judging unit 10 receives the time data from the timing unit 20 and the latitude and longitude data of the storage unit 30. Since the time data is, for example, Greenwich Mean Time, the calculation/judgment unit 10 converts the latitude and longitude data into local standard time to estimate the precise elevation angle of the sun in the sky. Then, the calculation/judging unit 10 calculates the inclination angle 831 of the panel 83 corresponding to the elevation angle, and calculates the difference from the current inclination angle 831. The calculation/judging unit 10 then converts the difference into a drive message that the tilt angle motor 85 should rotate, and then controls the drive unit 40 to drive the tilt angle motor 85 to perform the desired action based on the drive message. The driving message includes the number of turns of the tilting angle motor 85 which should be rotated forward or reversed and rotated. Since the tilting angle motor 85 indirectly rotates the first rotating shaft 824 of the adjustable carrier 82, when the tilting angle motor 85 rotates, the panel 83 fixed to the adjustable carrier 82 is simultaneously adjusted and transferred to the required position. Tilt angle 831. Here, the inclination angle 831 is set, for example, to be adjusted every 1, 10, 15, 20, 30, 40, 45' 50 or 60 minutes. The first motor turn sensing device 60 is, for example, a touch switch or a rotary encoder. Please refer to FIG. 5. FIG. 5 is a schematic diagram showing the arrangement of the first motor rotating ring sensing device of the solar tracking control system of the present invention, and FIG. 5 is a view showing the setting of the touch switch. Please also refer to Figures 1, 2, 3 and 4. The solar tracking motor control system utilizes the first motor revolving sensing device 60 to precisely control the number of revolutions of the tilt angle 831 of the panel 83. The first motor turn sensing device 60 is provided, for example, on the tilt angle motor 85. When the teeth of the inclined angle gear 93 touch the first motor rotation ring induction form No. A0101, page 9 / 26 pages 0992080991-0 201226821 when the elastic piece 6 of 60 is set, the elastic piece 6〇1 is elastically displaced. , so that the touch switch is turned on once. This switching action is electrically connected to the calculation/judging unit 10, and the calculation/judging unit 10 is counted once. If the tilting angle gear 93 is 6 teeth, when the counting/determining unit 10 counts 6 times, it means that the rotating shaft of the tilting angle motor 85 makes one revolution. Thereby, the tilt angle motor 85 can pass back the number of times of rotation to the calculation/judging unit 10 through the first motor loop sensing device 6 to determine whether the request of the calculation/determination unit 1 is reached. [0019] Referring to Figures 1, 2 and 4. In order to ensure that the solar device maintains optimum operating efficiency after years of use, the solar tracking motor control system 1 is designed with a zero correction function of the tilt angle 8 31 of the panel 83. The storage unit 3 further stores the first time parameter, and the first time parameter is, for example, converted to a local Greenwich Mean Time of 9:00 pm. When the calculation/judging unit 1 determines that the first time parameter is the same as the time data of the timing unit, the calculation/judging unit 10 causes the panel 83 to rotate. During the turning process, when the panel 83 is rotated to the initial angle of the tilt angle 831 that can be sensed by the first position sensor 5, the first position sensor 5 will send a signal to the calculation/judgment. The unit, which in turn causes the panel 83 to stop rotating, i.e., completes the zero correction of the tilt angle 831 of the panel 83. The calculation/judgment unit 10 also knows that the tilt angle 831 of the panel 83 is the initial angle. By zeroing the daily correction of the tilt angle 831 of the panel 83, the tilt angle 831 can be accurately adjusted to ensure the efficiency of the solar device. Please refer to FIG. 6. FIG. 6 is a schematic structural view of a second embodiment of the solar tracking motor control system of the present invention applied to a solar device. Please also refer to Figures 1, 3 and 4. The second embodiment of the solar solar tracking control system of the present invention comprises the calculation/judging unit 1 as shown in Fig. 1 〇099147143 Form No. A0101 Page 10/26 pages 0992080991-0 201226821, Timing unit 20, Storage The unit 3〇, the driving unit 4〇, the first position sensor 50, the second position ❹i|§51, the third position sensor^, the first motor rotation sensing device 60 and the: motor rotation device 61. The third position sensor 52 is disposed on the protruding portion 811 on the south side of the bracket 81. However, because of the viewing angle relationship, the sixth position is not shown in the north side of the bracket 8 and the second position sensor. The drive unit 4〇 is also electrically connected to the angle motor 86. Thereby, the solar tracking motor control system of the present invention further includes the function of changing the deflection angle 832 of the panel 83 in accordance with the azimuth of the sun. 〇 _ _ 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 832, and calculate the difference from the current deflection angle 832. The calculation/determination unit 1 换算 converts the difference into another drive message that the deflection motor 86 should rotate, and controls the drive unit 4 to drive the deflection angle motor 86 to perform the desired action based on the other drive message. This other swaying message includes the number of turns that the yaw angle motor 86 should rotate forward or reverse and rotate. Since the deflection angle motor 86 indirectly rotates the second rotation shaft 826 of the adjustable carrier 82, when the deflection angle motor 86 rotates, the panel 83 fixed to the adjustable carrier 82 is simultaneously adjusted and turned to the required bias. The position of the corner 832. Here, the deflection angle 832 is set, for example, to be adjusted every hour, every half turn or every turn. [0021] Please refer to Figures 1 and 3. The calculation/determination unit 1 is configured to precisely control the operation of the deflection angle motor 86 through the second motor rotation sensing device 61. The second motor revolving sensing device 61 is disposed, for example, at a deflection angle of up to 86, and is disposed in the same manner as the first motor revolving device 60 and the tilting angle motor 85 shown in Fig. 5. The second motor rotation device 61 is used to detect 099147143 Form No. A0101 Page 11 / Total 26 page 0992080991-0 201226821 The rotation state of the deflection motor 86 is measured, and the rotation state of the deflection angle motor 86 is fed back to the calculation / Judging unit 10. Moreover, the second motor-turning sensing device 61 is characterized and operated in the same manner as the first motor-turning sensing device 60 illustrated in FIG. Thereby, the deflection motor 86 is fed back to the calculation/determination unit 1 by the second motor rotation sensing means 61 to determine whether or not the calculation/determination unit 1 is reached. [0022] Please refer to Figures 1, 4 and 6. Of course, the deflection angle 832 of the panel 83 also needs to be zero corrected. At this time, the second position sensor (not shown) disposed on the north side of the bracket 81 (not shown) and the second position sensor 52 of the south side protrusion 811 of the bracket 81 are further included. And the storage unit 30 further stores the second time parameter and the third time parameter. The second time parameter is, for example, converted to Greenwich Mean Time at 11 o'clock in the local summer solstice, and the third time parameter is, for example, the Greenwich Mean Time of the local winter solstice evening. When the calculation/judging unit 1 determines that the second time parameter is the same as the time data of the timing unit, the calculation/determination unit 1() causes the panel 83 to be turned to the first position sensor (not shown). And when the second position sensor (not shown) senses the panel 83, the second position sensor (not shown) sends a signal to the calculation/judging unit 1 〇, thereby causing the rotation of the panel 83 to stop. That is, the zeroing correction of the deflection angle 832 of the panel 83 is completed, and the calculation/determination unit 1〇 also knows that the deflection angle 832 of the panel 83 is the first initial angle. The same reason Tian. When the ten calculation/judging unit 1 determines that the third time parameter is the same as the timing of the timing unit, the calculation/judging unit 1 促使 causes the panel 83 to turn to the position sensor 52. And when the third position sensor 52 senses that the panel 83 takes the first position sensor 52, it sends a signal to the calculation/judging unit j 〇 ', thereby causing the rotation of the panel 83 to be stopped, that is, the panel 83 is again completed. Partial 099147143 Form No. A0101 Page 12 of 26 0992080991-0 201226821 [0023] Ο [0025] 099147143 ° Zero correction of angle 832. And the calculation/judging unit 丄〇 also knows that the tilt angle 832 of the current plane is the second initial angle. Further, the deflection angle 832 of the panel 83 is adjusted when the calculation/judgment 10 of the juice calculation panel 83 has a deflection angle 832 between the first initial angle and the first initial angle. In the air, when the panel 83 is adjusted to the angle 832 due to the second time parameter and the third time parameter, 'the second position sensor=51 or the third position sensor 52 can be sensed during the rotation of the panel 83. At that time, the second position sensing ° 1 or the first position sensor 52 sends a signal to the calculation/judging unit to cause the panel 83 to stop rotating, that is, the zero angle 8 3 2 of the panel 83 is executed. Correction. Refer to Figures 1 2 4 and 6 for reference. In summary, the solar chasing motor control system 1 of the present invention can adjust the deflection angle 832 of the panel 83 as the trajectory of the north-south movement of the sun, that is, the azimuth angle, and the eastward and westward movement of the sun as the sun, Change to adjust the tilt angle 831 of the panel 83. Further, since the long: zero return correction can avoid the error of the deflection angle 832 or the tilt angle 831 accumulated by the solar tracking motor control system 1 due to the work. For example, the precision control panel 83 can be rotated with the sun's trajectory to keep the sun's optimum working rate of the device. Referring to Fig. 7', Fig. 7 is a schematic view showing the structure of a solar-powered solar motor control system according to a third embodiment of the present invention applied to a solar device. Please refer to FIG. 1 , the solar tracking motor control system 1 further includes a light-precision 7G′ and the light-sensing unit 70 is electrically connected to the calculation/judgment list: the sensing unit 70 is, for example, a semi-spherical shaped solar energy. battery. Among them, the D ten count / judgment list TC1G will continue to receive the number from the domain unit ^ or ^ signal) 'When the sun is not enough, the solar power will be set to 13 pages / a total of 26 1 0992080! 201226821 When the effect is used, this signal will be Will be below a certain level. Therefore, when the calculation/determination unit 10 receives the electrical signal from the light sensing unit 70 that is lower than a certain level, the calculation/judging unit 10 does not perform the operation of the current tilt angle motor 85, and the function is not Will affect the zeroing function. Among them, the operation that should be completed by the current tilt angle motor 85 will be recorded in the calculation/judging unit 10, and will be executed together when the tilt angle motor 85 is operated next time. [0026] The light sensing unit 70 is disposed, for example, in an open space or a commanding height. In this way, regardless of whether the sun is on the east or west, the light-sensing unit 70 can be broken to sense the intensity of the sunlight. The light sensing unit 70 shown in Fig. 7 is disposed at the height of the stand and is not blocked by the solar device to sunlight. BRIEF DESCRIPTION OF THE DRAWINGS [0027] Fig. 1 is a schematic view showing the structure of a solar tracking motor control system of the present invention. Fig. 2 is a structural schematic view showing the first embodiment of the solar tracking motor control system of the present invention applied to a solar device. Fig. 3 is a schematic view showing the structure of the adjustable carrier shown in Fig. 2. 〇 Fig. 4 is a schematic view showing the inclination angle and the deflection angle of the panel shown in Fig. 2. Fig. 5 is a schematic view showing the arrangement of the first motor rotating ring sensing device of the solar tracking motor control system of the present invention. Fig. 6 is a structural schematic view showing the second embodiment of the solar solar tracking control system of the present invention applied to a solar device. Figure 7 is a third embodiment of the solar tracking motor control system of the present invention. 099147143 Form No. A0101 Page 14 of 26 0992080991-0 201226821 Example of a structure applied to a solar device. [Description of Main Component Symbols] [0028] 100: Control Box 101: Plumb Line 1: Calculation/Judgement Unit 2 0: Timing Unit 30: Storage Unit 40: Drive Unit 50: First Position Sensor θ 51: Two position sensor 52: third position sensor 60: first motor rotation sensing device 601: elastic piece 61: second motor rotation sensing device 70: light sensing unit 81: bracket

811 :凸出部 82 :可調式乘載座 821 :第一固定部 822 ··第二固定部 823 :第一軸承 824 :第一轉軸 825 :第二軸承 826 :第二轉軸 828 :第一孔洞 829 :第二孔洞 099147143 表單編號Α0101 第15頁/共26頁 0992080991-0 201226821 83 : 面板 831 :傾斜角 832 :偏向角 836 :東西向側邊 837 :南北向側邊 85 :傾斜角馬達 86 :偏向角馬達 91 :第一齒輪 92 :第二齒輪 93 :傾斜角齒輪 94 :偏向角齒輪 099147143 表單編號A0101 第16頁/共26頁 0992080991-0811: protrusion 82: adjustable carrier 821: first fixing portion 822 · second fixing portion 823: first bearing 824: first shaft 825: second bearing 826: second shaft 828: first hole 829: second hole 099147143 Form No. 1010101 Page 15 of 26 0992080991-0 201226821 83 : Panel 831: Tilt angle 832: Deflection angle 836: East-West side 837: North-south side 85: Tilt angle motor 86: Deflection angle motor 91: First gear 92: Second gear 93: Tilt angle gear 94: Deflection angle gear 099147143 Form No. A0101 Page 16 of 26 0992080991-0

Claims (1)

201226821 七、申請專利範圍: 1 種太陽能追曰馬達控制系統,其係應用於一太陽能裝置 上,且該太陽能裝置係具有一面板,該太陽能追日馬達控 制系統係包含: 一儲存單元,係用以儲存一經緯度資料; 一計時單元,係用以提供一時間資料; 一驅動單元,係電性連接該太陽能裝置之一傾斜角馬達, 其用以驅動該傾斜角馬達完成所需之動作,進而旋轉該面 板以完成調整該面板之一傾斜角; Ο 一第一馬達轉圈感應裝置,其係設置於該太陽能裝置上, 且其係用以偵測該傾斜角馬達之轉動狀況; 一計算/判斷單元,係電性連接該計時單元、該儲存單元 、該驅動單元及該第一馬達轉圈感應裝置,且根據來自該 計時單元之該時間資料及該儲存單元之該經緯度資料計算 " 出一驅動訊息,然後該計算/判斷單元會根據該驅動訊息 控制該驅動單元,並以該第一馬達轉圈感應裝置偵測該傾 Λ 斜角馬達是否已滿足該驅動訊息之内容;以及 〇 一第一位置感測器,係電性連接該計算/判斷單元且係設 置於該太陽能裝置上,當該面板轉動到能被該第一位置感 測器所能感測之該傾斜角之一初始角度時,該第一位置感 測器會傳送一訊號給該計算/判斷單元,該計算/判斷單元 因而得知該面板之該傾斜角係為該初始角度。 2 .如申請專利範圍第1項所述之太陽能追日馬達控制系統, 其中,該計時單元之該時間資料係為格林威治標準時間且 係包含分、時、日、月及年。 099147143 表單編號Α0101 第17頁/共26頁 0992080991-0 201226821 •如申請專利範圍第1項所述之太陽能追日馬達控制系統, 其中,該儲存單元之該經緯度資料係來自全球衛星定位系 統或人為自行輸入。 ’、 .如申請專利範圍第1項所述之太陽能追日馬達控制系統, 其中,該儲存單元更儲存一比例參數,該比例參數係表示 該傾斜角馬達之轉圈數對應該面板之該傾斜角之變化旦: 關係。 •如申請專利範圍第W所述之太陽能追日馬達控制系統, 其中,該儲存單元更儲;^該傾斜角之一極限角度。 •如申請專利範圍第1項所述之太陽能追日馬達控制系統, 其中’該儲存單元更健存一第一時間參數,當該計算/判 斷單元判斷該第-時間參數相同於該計時單元之該時間資 料時,就會促使該太陽能裝置之該面板回轉,直至該第二 位置感測器感測到該面板而停止。 .如申請專利範圍第1項所述之太陽能追日馬達控制系統, 其中,該驅動單元更電性連接該太儀能裝置之一偏向角馬 達,且該儲存單元更儲存一比例參數,該比例參數係表示 該偏向角馬達之轉圏數對應該面板I一偏向角之變化量之 5係’而該計算/躺單元根據來自料時單元之該時間 貝料及該儲存單元之該經緯度資料計算出另-驅動訊息, 然後該計算/判斷單元會根據該另一驅動訊息控制該聪動 單元驅動該偏向角馬達完成所需之動作,進而旋轉該面板 以完成調整該面板之該偏向角;且該太陽能追日馬達控制 系統更包含: 099147143 第-馬達轉圈感絲置H馬達轉圈感應裝置係電 性連接該計算/判斷單元且係設置於該太陽能裝置上,其 表單編號A0101 第18頁/共26頁 0992080991-0 201226821 係用以偵測該偏向角馬達之轉動狀況; 一第二位置感測器,其係電性連接該計算/判斷單元,且 係設置於該太陽能裝置上;以及 一第三位置感測器,其係電性連接該計算/判斷單元,且 係設置於該太陽能裝置上。 8 .如申請專利範圍第7項所述之太陽能追日馬達控制系統, 其中,該儲存單元更儲存一第二時間參數,當該計算/判 斷單元判斷該第二時間參數相同於該計時單元之該時間資 料時,就會促使該太陽能裝置之該面板旋轉,直至該第二 位置感測器感測到該面板而停止,且在此同時該偏向角係 為一第一初始角度。 9 .如申請專利範圍第8項所述之太陽能追曰馬達控制系統, 其中,該儲存單元更儲存一第三時間參數,當該計算/判 斷單元判斷該第三時間參數相同於該計時單元之該時間資 料時,就會促使該太陽能裝置之該面板旋轉,直至該第三 位置感測器感測到該面板而停止,且在此同時該偏向角係 為一第二初始角度。 10 .如申請專利範圍第1項所述之太陽能追曰馬達控制系統, 更包含一光感單元,且該光感單元係電性連接該計算/判 斷單元,該計算/判斷單元係接收來自該光感單元之一電 訊號,當該電訊號低於一特定準位時,該計算/判斷單元 會暫停驅動該傾斜角馬達。 099147143 表單編號A0101 第19頁/共26頁 0992080991-0201226821 VII. Patent application scope: 1 solar tracking motor control system, which is applied to a solar device, and the solar device has a panel, the solar tracking motor control system comprises: a storage unit, which is used For storing a latitude and longitude data; a timing unit for providing a time data; a driving unit electrically connecting the tilting angle motor of the solar device, wherein the driving device is driven to perform the required action, and further Rotating the panel to complete adjusting one of the tilt angles of the panel; Ο a first motor loop sensing device disposed on the solar device, and configured to detect the rotation state of the tilt angle motor; The unit is electrically connected to the timing unit, the storage unit, the driving unit and the first motor rotation sensing device, and is calculated according to the time data from the timing unit and the latitude and longitude data of the storage unit. Message, and then the calculation/judging unit controls the drive unit according to the drive message, and Detecting, by the first motor-turning sensing device, whether the tilting-angle motor has satisfied the content of the driving message; and a first position sensor electrically connected to the calculating/determining unit and disposed on the solar energy The first position sensor transmits a signal to the calculation/judging unit when the panel is rotated to an initial angle that can be sensed by the first position sensor. The calculation/judging unit thus knows that the tilt angle of the panel is the initial angle. 2. The solar solar tracking control system according to claim 1, wherein the time data of the timing unit is Greenwich Mean Time and includes minutes, hours, days, months and years. 099147143 Form No. 1010101 Page 17 of 26 0992080991-0 201226821 • The solar tracking motor control system of claim 1, wherein the latitude and longitude data of the storage unit is from a global satellite positioning system or artificial Enter it yourself. The solar solar tracking control system of claim 1, wherein the storage unit further stores a proportional parameter, wherein the proportional parameter indicates that the number of revolutions of the tilting angle motor corresponds to the tilt angle of the panel. The change of Dan: relationship. • The solar solar tracking motor control system of claim W, wherein the storage unit further stores a limit angle of one of the tilt angles. The solar solar tracking motor control system according to claim 1, wherein the storage unit is more sensitive to a first time parameter, and when the calculating/determining unit determines that the first time parameter is the same as the timing unit The time data causes the panel of the solar device to rotate until the second position sensor senses the panel and stops. The solar solar tracking control system of claim 1, wherein the driving unit is more electrically connected to one of the solar energy devices, and the storage unit further stores a proportional parameter, the ratio The parameter indicates that the number of turns of the deflection angle motor corresponds to the change amount of the deflection angle of the panel I, and the calculation/lying unit is calculated according to the time and the data of the unit from the material time unit and the latitude and longitude data of the storage unit. And driving the message, and then the calculating/determining unit controls the smart unit to drive the deflection angle motor to perform the required action according to the another driving message, thereby rotating the panel to complete the adjustment of the deflection angle of the panel; The solar chasing motor control system further comprises: 099147143 The first motor-turning wire-setting H-motor rotating sensing device is electrically connected to the calculating/determining unit and is disposed on the solar device, and the form number A0101 is 18 of 26 Page 0992080991-0 201226821 is used to detect the rotation condition of the deflection angle motor; a second position sensor electrically connected to the calculation And a judging unit disposed on the solar device; and a third position sensor electrically connected to the computing/judging unit and disposed on the solar device. 8. The solar solar tracking control system of claim 7, wherein the storage unit further stores a second time parameter, and the calculating/determining unit determines that the second time parameter is the same as the timing unit. The time data causes the panel of the solar device to rotate until the second position sensor senses the panel to stop, and at the same time the deflection angle is a first initial angle. 9. The solar tracking motor control system of claim 8, wherein the storage unit further stores a third time parameter, and the calculating/determining unit determines that the third time parameter is the same as the timing unit. The time data causes the panel of the solar device to rotate until the third position sensor senses the panel to stop, and at the same time the deflection angle is a second initial angle. 10. The solar tracking motor control system of claim 1, further comprising a light sensing unit, wherein the light sensing unit is electrically connected to the calculating/determining unit, the calculating/determining unit receiving the The electrical signal of one of the light sensing units, when the electrical signal is lower than a certain level, the calculating/determining unit suspends driving the tilting angle motor. 099147143 Form No. A0101 Page 19 of 26 0992080991-0
TW99147143A 2010-12-31 2010-12-31 Solar tracking motor control system TW201226821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99147143A TW201226821A (en) 2010-12-31 2010-12-31 Solar tracking motor control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99147143A TW201226821A (en) 2010-12-31 2010-12-31 Solar tracking motor control system

Publications (1)

Publication Number Publication Date
TW201226821A true TW201226821A (en) 2012-07-01

Family

ID=46932982

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99147143A TW201226821A (en) 2010-12-31 2010-12-31 Solar tracking motor control system

Country Status (1)

Country Link
TW (1) TW201226821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI577921B (en) * 2015-10-20 2017-04-11 Atomic Energy Council- Inst Of Nuclear Energy Res Daily wall light-receiving device for flat wall-mounted built-in sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI577921B (en) * 2015-10-20 2017-04-11 Atomic Energy Council- Inst Of Nuclear Energy Res Daily wall light-receiving device for flat wall-mounted built-in sensor

Similar Documents

Publication Publication Date Title
JP5771698B2 (en) Robotic solar tracking system
US8481906B2 (en) Tilting/tracking system for solar devices
JP5061047B2 (en) PV system tracking system
TW201003933A (en) Solar tracking device and method for tracking thereof
CN102447422A (en) Photovoltaic array maximum power point tracking servo system and control method
KR101136543B1 (en) Tracking Photovoltaic System
US20140202521A1 (en) Self-powered solar tracker
WO2012077285A1 (en) Heliostat and solar-light condensing system
JP3177911U (en) Single-axis fixed tracking solar power generator with angle adjustment function
KR101652243B1 (en) Solar sensor and solar tracker including the solar sensor
KR20090010531A (en) Tracking photovoltaic system based on location information
JP4901837B2 (en) Solar tracking device
CN201518463U (en) Full process sun tracker
KR100986818B1 (en) Method and Apparatus for Tracking The Sun
Subramaniam Real time clock based energy efficient automatic dual axis solar tracking system
TW201226821A (en) Solar tracking motor control system
JP2005129574A (en) Sunlight tracking device
KR20100001445A (en) Apparatus for measuring solar collector tilt
CN103455047A (en) Solar tracking device and method
TWI451054B (en) Design and Control Method of Single Axis Fixed Rotation Angle Tracking Sun
Al-Naima et al. Design and implementation of a smart dual axis sun tracker based on astronomical equations
Engin et al. Design of real time embedded PID controller for sun tracking robot manipulator
JP3209221U (en) Light source tracking device
CN110597299A (en) Design of flexible solar energy collection counterweight type tracking system based on sundial projection
CN101446489B (en) Sun position direction discerning device and use method thereof