JP4253194B2 - Method for installing solar panel of concentrating solar power generation device - Google Patents

Method for installing solar panel of concentrating solar power generation device Download PDF

Info

Publication number
JP4253194B2
JP4253194B2 JP2003019611A JP2003019611A JP4253194B2 JP 4253194 B2 JP4253194 B2 JP 4253194B2 JP 2003019611 A JP2003019611 A JP 2003019611A JP 2003019611 A JP2003019611 A JP 2003019611A JP 4253194 B2 JP4253194 B2 JP 4253194B2
Authority
JP
Japan
Prior art keywords
solar
solar cell
concentrating
cell panel
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003019611A
Other languages
Japanese (ja)
Other versions
JP2004235284A (en
Inventor
道雄 近藤
建次 荒木
敏夫 江上
雅男 平松
憲徳 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Daido Metal Co Ltd
Original Assignee
Daido Steel Co Ltd
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Daido Metal Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2003019611A priority Critical patent/JP4253194B2/en
Publication of JP2004235284A publication Critical patent/JP2004235284A/en
Application granted granted Critical
Publication of JP4253194B2 publication Critical patent/JP4253194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は集光式太陽光発電装置の太陽電池パネルの設置方法に関し、特に、太陽追尾架台への太陽電池パネルの設置方法の改良に関する。
【0002】
【従来の技術】
集光式太陽光発電装置において、太陽の移動に追従するように姿勢が制御される太陽追尾架台に、集光レンズと太陽電池を内設した太陽電池パネルを搭載したものがある(特許文献1)。従来、上記太陽電池パネルを設置するに当たっては、太陽追尾架台を追従作動させた状態で太陽電池パネルからの発電出力を測定し、発電出力が最大になるように太陽電池パネルの姿勢を調整して設置している。
【特許文献1】
特開2002−202817
【0003】
【発明が解決しようとする課題】
しかし、上記従来の設置方法では、雨天等の太陽光が弱い状態では太陽電池パネルの設置調整ができないという問題があるとともに、太陽追尾架台が追従動作を行っている状態での太陽電池パネルの設置には十分な注意を要するという問題があった。
【0004】
本発明はこのような課題を解決するもので、太陽光の有無に無関係に太陽電池パネルの設置調整が可能であるとともに設置作業をより安全に行うことができる集光式太陽光発電装置の太陽電池パネルの設置方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の集光式太陽光発電装置の太陽電池パネルの設置方法は、太陽電池パネル(2A〜2D)を載置する載置面の姿勢を調整する機構(22,44)を備える太陽追尾架台(1)を使用した集光式太陽光発電装置であって、上記載置面以外の太陽追尾架台(1)上に設けた太陽追尾センサ(43)の検出面(47a)上の所定位置に太陽スポット光(L3)が入射するように太陽追尾架台(1)の姿勢を制御するようにした集光式太陽光発電装置において、水平定盤(62)上に太陽追尾センサ(43)を置いて、水平定盤(62)に対して垂直に入射するスポット光(L4)を太陽追尾センサ(43)の検出面(47a)上の上記所定位置に入射させ、この状態で太陽追尾センサ(43)に付設された第1水準器(48)が所定の指示位置を示すように調整する第1ステップと、定盤(66)上に集光式太陽電池パネル(2A〜2D)を置いて、定盤(66)に対して垂直に入射する平行光(L1)が集光式太陽電池パネル(2A〜2D)に内設された太陽電池セル(212)の受光面上に集光されるように集光式太陽電池パネル(2A〜2D)の姿勢を調整する第2ステップと、太陽追尾架台(1)上に太陽追尾センサ(43)を設置して第1水準器(48)が上記所定の指示位置を示すように太陽追尾架台(1)の姿勢を調整する第3ステップと、第2水準器(7)によって上記載置面を水平姿勢に調整して、当該載置面上に、定盤(66)上で姿勢が調整された上記集光式太陽電池パネル(2A〜2D)を載置する第4ステップとを具備している。ここで、上記載置面の姿勢を調整する機構は、太陽電池パネル(2A〜2D)の下面に突設した三本以上の支持脚(22)と、これら支持脚(22)をそれぞれ受けるように太陽追尾架台(1)に設けた上下に移動調整可能な支持体(44)とで実現することができる。
【0007】
本発明において、太陽追尾架台上に上記第1ステップにより調整した太陽追尾センサを設置して第1水準器が所定の指示位置を示すように太陽追尾架台の姿勢を調整する(第3ステップ)ことにより、水平面に対して垂直な鉛直方向から入射する太陽スポット光は太陽追尾センサのセンサ素子の検出面上の所定位置に入射させられる。この状態で、第2水準器によって水平姿勢に調整された載置面上に、上記第2ステップにより定盤上で姿勢が調整された集光式太陽電池パネルを載置すれば(第4ステップ)、載置面に対して垂直な鉛直方向から入射する平行太陽光は太陽電池セルの受光面上に集光される。このように太陽電池パネルの設置調整を行っておけば、太陽スポット光が太陽追尾センサのセンサ素子の検出面上の所定位置に入射するように太陽追尾架台の姿勢を制御することによって、太陽光は常に太陽電池セルの受光面上に良好に集光される。このような設置方法によれば、雨天等の太陽光が弱い状態でも太陽電池パネルの確実な設置ができるとともに、太陽追尾架台の追従動作を停止した状態で太陽電池パネルの設置を行うことができるから、より安全な設置作業が可能である。また、予め定盤上で傾きを調整した太陽電池パネルを準備しておけば、故障等をした太陽電池パネルを現場での調整を行うことなく速やかに交換することができる。
【0008】
なお、上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0009】
【発明の実施の形態】
(第1実施形態)
図1には集光式太陽光発電装置の一例を示す。図1において、装置本体は4個の集光式太陽電池パネル2A〜2Dを備えており、これら太陽電池パネル2A〜2Dは地表に据えた基板P上に立設した太陽追尾架台(以下、単に架台という)1に支持されている。各太陽電池パネル2A〜2Dは四角形の箱体で、架台1によって同一平面上に全体が略四角形をなすように支持されている。各太陽電池パネル2A〜2Dは複数の太陽電池モジュール21により構成されており、各太陽電池モジュール21は表面に四角形の集光用フレネルレンズ211を位置させるとともに、内部のレンズ焦点位置に太陽電池セル(図示略)を位置させている。
【0010】
上記架台1の支柱の上端には図2に示すように軸受け機構3が設置されている。軸受け機構3は、傾斜して設けられた略U字形の軸受け片31を有し、当該軸受け片31の内空間には軸受けブロック32が位置している。軸受けブロック32の両側面に突設された軸体33(一方のみ示す)が軸受け片31の両側壁311に回転自在に支持されるとともに、軸受けブロック32にはこれを上記軸体33と直交する方向へ貫通して軸体34が回転自在に支持されている。軸体34の両端にはそれぞれ支持枠4A,4B(図2に一方のみ示す)が装着されている。支持枠4Aは三角形の枠体で、その長辺の中央に設けた筒状鞘体41が軸体34に嵌着されている。支持枠4A,4Bは仕切枠42によってさらに三角形領域に二区分され、詳細を後述するように、各三角形領域のコーナ部に設けた有底の支持筒44内に、下面に突設された三本の調整脚22をそれぞれ挿入して太陽電池パネル2A,2Bと2C,2Dが搭載されている。また、上記支持枠4Aには詳細を後述する太陽追尾センサ43が設けられている。
【0011】
軸体33はその傾斜が架台1を設置した場所の緯度に応じて調整されて、後述のように軸体33に支持されて回動する太陽電池パネル2A〜2Dの、方位角方向の回転軸が地球自転軸とほぼ平行になるようにしてある。軸体33には、両端にフレキシブルジョイント部51,52(図1)を備えた駆動シャフト5が上記ジョイント部51を介して連結されており、駆動シャフト5の他端はフレキシブルジョイント部52を介して駆動モータ53の出力軸531に連結されている。駆動モータ53は基板Pに設けた架台54上に支持されている。なお、地球自転軸に対して平行にするための軸体33の傾斜調整は、駆動シャフト5を外した状態で、軸体33の端部に取り付けたジンバルミラー等を使って、光学的に高精度に行うことができる。
【0012】
図3には軸受け機構3の詳細を示す。軸受けブロック32上には駆動モ−タ55が設けられており、駆動モータ55の出力軸はこれに設けたウォームギヤ56によって円形ギヤ57に連結されている。駆動モータ55の駆動力は上記円形ギヤ57と同軸の円形ギヤ58を介して軸体34の外周に固定された大径の円形ギヤ59に伝達されるようになっている。
【0013】
このような構造により、駆動モータ55を作動させて太陽電池パネル2A〜2Dを軸体34回りに回動させることにより、パネル面の法線の天頂角(これを以下、単に太陽電池パネルの天頂角という)を独立に変更することができるとともに、駆動モータ53を作動させて太陽電池パネル2A〜2Dを軸体33回りに回動させることにより、パネル面の法線の方位角(これを以下、単に太陽電池パネルの方位角という)を独立に変更することができる。なお、基板P(図2)は軸体33の回転軸が地球自転軸と平行になるように設置される。また、各軸体33,34の回転角はこれらに付設された図略のロータリエンコーダによって検出される。なお、上記駆動モータ53,55の制御は太陽追尾センサ43の後述する検出面上の中心位置に太陽スポット光が入射するように行われ、これによって、太陽追尾センサ43と太陽電池パネル2A〜2Dが常に太陽の方向へ向けられる。
【0014】
図4には太陽追尾センサ43を設けた太陽追尾器STの外観を示す。太陽追尾センサ43は円筒形の筐体を備えており、筐体の上端開口には中心にピンホール431を設けた蓋体45が覆着されている。蓋体45は水平方向へ一定範囲で調整移動できるようにしてその周縁部が筐体開口縁にネジ止めされている。筐体の下端開口は基板46上に接合されており、上記ピンホール431と対向した下端開口内の基板46面にはセンサ素子47が接合されている。センサ素子47は図5に示すように、その検出面47aが南北線と東西線に沿ってA領域〜D領域へ四等分されて、各領域からはこれに入射する光量に応じた出力が発せられる。図4において、基板46上には全方位型の水準器48が設けられている。水準器48は矩形板体481の中心に気泡WBを封入した円形のガラス容器482を設けたもので、板体481の傾きを四隅の調整ネジ483で変えられるようになっている。
【0015】
図6に示すように、気泡WBを封入した円形ガラス容器611よりなる全方位型の水準器61を備えて水平姿勢に調整された定盤62上に、太陽追尾センサ43と水準器48を一体に設けた上記太陽追尾器STを置く。光出力装置63は、レーザ光源631から出力されたレーザ光を、一対の凸レンズ632,633よりなるビームエクスパンダで大径かつ平行な調整光L1にして出力するもので、調整光L1は反射鏡64によって下方の太陽追尾センサ43へ向けて反射される。反射鏡64によって反射された調整光L1は定盤62に垂直に入射するようになっている。これは、図6の鎖線で示すように定盤62上に鏡65を置き、光出力装置63から出力されて反射鏡64から鏡65に向けて送出された調整光L2が同一経路を辿って戻り、光出力装置63の凸レンズ632,633間に設けた遮蔽板634のピンホールを再び通過するように、鏡64の角度を調整しておくことにより実現される。次に、反射鏡64によって定盤62に向けて垂直に反射させられた調整光L1が太陽追尾センサ43のピンホール431(図4)を通過してスポット光L4として検出面47a(図5)上の中心位置に入射するように、蓋体45の位置を適宜水平方向へ移動させて調整する。そしてこの時に、水準器48の気泡WBがガラス容器482の中心位置に来るように調整ネジ483で板体481の傾きを調整しておく。
【0016】
一方、太陽電池パネル2A〜2Dの調整は以下のように行う。すなわち、図7に示すように、太陽電池パネル2Aを定盤66上に置き、上述した調整方法によって角度を調整した鏡64により、光出力装置63から出力された調整光L1を定盤62に対して垂直に反射させて太陽電池モジュール21の集光用フレネルレンズ211に入射させる。そしてフレネルレンズ211で集光された調整光L1が太陽電池セル212上に設けられた二次集光器213の上端面中心に入射するように、各調整脚22の長さを調整して太陽電池パネル2Aの傾きを調整しておく。太陽電池パネル2B〜2Cについても同様である。なお、この場合の定盤66は必ずしも水平姿勢である必要はない。
【0017】
図8に示す水準装置7は、基板71上に上述したような構造の全方位型水準器72を載置したもので、基板71には太陽電池パネル2A〜2Dの調整脚22と同一間隔の三本の調整脚73が下方へ突設してある。このような水準装置7を図示するように、全方位型水準器61を備えて水平姿勢に調整された定盤62上に置き、水準器72の気泡WBがガラス容器721の中心位置に来るように調整脚73で基板71の傾きを調整しておく。
【0018】
太陽電池パネル2A〜2Dを架台上に設置するに際しては、図9に示すように、架台1の支持枠4A上に水準器48と一体の太陽追尾センサ43を設けた太陽追尾器STを設置し、水準器48の気泡WBがガラス容器481の中心位置へ来るように架台1の姿勢を変更調整する。これにより、太陽追尾センサ43は水平面上に立設された状態となり、鉛直上方から入射する太陽光がピンホール431(図4)を通過して形成されるスポット光L4(図5)は検出面47a上の中心位置に入射する。この状態で、図9に示すように各支持筒44内に調整脚73を挿入して水準装置7を支持枠4A上に載置する。支持筒44は支持枠4Aに設けたネジ穴内に捩じ込まれており、支持筒44を正逆回転させることによって上下に移動させることができる。そこで、各支持筒44を適当に上下動させてその底壁の高さを変えることにより、水準装置7の水準器72の気泡WBがガラス容器721の中心位置に来るようにする。これにより、各支持筒44の底壁を連ねて形成される載置面は水平となる。なお、この調整は、太陽電池パネル2A〜2Dを支持する支持筒44の全てについて行っておく。
【0019】
このようにして調整された各支持筒44内に図10に示すように支持脚22を挿入して太陽電池パネル2Aを支持枠4A上に載置し、下方から支持枠4Aを貫通させて固定ネジ49をパネル底面に捩じ込んで太陽電池パネル2Aを固定する。これにより、載置面に垂直な鉛直方向から入射する太陽光は、太陽電池パネル2A内の各太陽電池モジュール21(図7)のフレネルレンズ211で集光されて二次集光器213の上端面中心に入射し、二次集光器213内で内部反射されつつ太陽電池セル212に均一に入射させられる。このように調整された集光式太陽光発電装置では、太陽追尾センサ43の検出面47a中心に常に太陽スポット光L4が位置するように支持枠4A,4Bの姿勢を駆動モータ53,55で制御すれば、太陽光は太陽電池パネル2A〜2Dに配設された各太陽電池モジュール21内の太陽電池セル212に良好に入射して効率的な発電が実現される。
【0020】
本実施形態で説明した設置方法によれば、雨天等の太陽光が弱い状態でも太陽電池パネルの確実な姿勢調整ができるとともに、太陽追尾架台の追従動作を停止した状態で設置調整を行うことができるから設置時に過度の注意をする必要がない。また、予め定盤上で傾きを調整した太陽電池パネルを準備しておけば、故障等した太陽電池パネルを現場での調整を行うことなく速やかに交換設置することができる。
【0021】
(第2実施形態)
太陽追尾器STは図11に示す構造のものとしても良い。すなわち、図11に示す太陽追尾器STでは、第1実施形態のように調整ネジ483(図4)を水準器48に設けるのに代えて、水準器48は基板46上に固定し、基板46の四隅にそれぞれ調整ネジ461を設けて基板46全体の傾きを変えるようにしてある。このような構造によっても、第1実施形態と同様の効果を得ることができる。
【0022】
(第3実施形態)
図12には太陽追尾器STのさらに他の構造を示す。本実施形態では太陽追尾センサ43の蓋体45は筐体に固定されている。そして、水準器48および基板46のいずれもが調整ネジ483,461で傾きを変更調整できるようになっている。このような構造によっても、第1実施形態と同様の効果を得ることができる。
【0023】
【発明の効果】
以上のように、本発明の設置方法によれば、太陽光の有無に無関係に太陽電池パネルの設置調整が可能であるとともに設置作業に過度な注意を必要としない。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す集光式太陽光発電装置の側面図である。
【図2】集光式太陽光発電装置の部分分解斜視図である。
【図3】軸受け機構の斜視図である。
【図4】太陽追尾器の斜視図である。
【図5】太陽追尾センサのセンサ部の正面図である。
【図6】太陽追尾器の調整方法を示す側面図である。
【図7】太陽電池パネルの調整方法を示す側面図である。
【図8】水準装置の調整方法を示す側面図である
【図9】調整時の太陽追尾架台の断面図である。
【図10】太陽電池パネル支持部の拡大断面図である。
【図11】本発明の第2実施形態を示す水準装置の側面図である。
【図12】本発明の第3実施形態を示す水準装置の側面図である。
【符号の説明】
1…太陽追尾架台、2A,2B,2C,2D…太陽電池パネル、212…太陽電池セル、22…支持脚、43…太陽追尾センサ、44…支持筒、47a…検出面、48…水準器、62…水平定盤、7…水準装置、L1…平行光、L4…太陽スポット光。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for installing a solar cell panel of a concentrating solar power generation device, and more particularly to an improvement in a method for installing a solar cell panel on a solar tracking stand.
[0002]
[Prior art]
In a concentrating solar power generation device, there is one in which a solar cell panel in which a condensing lens and a solar cell are installed is mounted on a solar tracking frame whose posture is controlled so as to follow the movement of the sun (Patent Document 1). ). Conventionally, when installing the solar cell panel, the power output from the solar cell panel is measured in a state in which the solar tracking base is operated to follow, and the attitude of the solar cell panel is adjusted so that the power output is maximized. It is installed.
[Patent Document 1]
JP2002-202817
[0003]
[Problems to be solved by the invention]
However, in the above conventional installation method, there is a problem that the installation adjustment of the solar cell panel cannot be performed when the sunlight is weak such as rainy weather, and the solar cell panel is installed in a state where the solar tracking stand is performing the tracking operation. Had the problem of requiring sufficient attention.
[0004]
The present invention solves such a problem, and the solar power of a concentrating solar power generation device that can be installed and adjusted regardless of the presence or absence of sunlight and can be installed more safely. It aims at providing the installation method of a battery panel.
[0006]
[Means for Solving the Problems]
The solar cell panel installation method of the concentrating solar power generation device of the present invention includes a solar tracking gantry provided with a mechanism (22, 44) for adjusting the posture of the mounting surface on which the solar cell panels (2A to 2D) are mounted. It is a concentrating solar power generation apparatus using (1), and is at a predetermined position on the detection surface (47a) of the solar tracking sensor (43) provided on the solar tracking stand (1) other than the mounting surface described above. In the concentrating solar power generation apparatus that controls the attitude of the solar tracking platform (1) so that the solar spot light (L3) is incident, the solar tracking sensor (43) is placed on the horizontal surface plate (62). Then, the spot light (L4) incident perpendicularly to the horizontal surface plate (62) is incident on the predetermined position on the detection surface (47a) of the solar tracking sensor (43), and in this state, the solar tracking sensor (43 ) The first level (48) attached to the A first step of adjusting to indicate, platen (66) at a light collecting type photovoltaic cell panel (2A-2D) on, parallel light incident normal to the surface plate (66) (L1) Of the concentrating solar cell panel (2A to 2D) is adjusted so that the light is condensed on the light receiving surface of the solar cell (212) provided in the concentrating solar cell panel (2A to 2D). In the second step, the sun tracking sensor (43) is installed on the sun tracking stand (1), and the attitude of the sun tracking stand (1) is adjusted so that the first level (48) indicates the predetermined indicated position. The above-mentioned concentrating sun in which the placement surface is adjusted to a horizontal posture by the third step and the second level (7), and the posture is adjusted on the surface plate (66) on the placement surface And a fourth step of placing the battery panels (2A to 2D). Here, the mechanism for adjusting the posture of the placement surface is configured to receive three or more support legs (22) projecting from the lower surface of the solar cell panels (2A to 2D) and the support legs (22), respectively. And a support body (44) that can be moved up and down provided on the sun tracking base (1).
[0007]
In the present invention , the solar tracking sensor adjusted in the first step is installed on the solar tracking frame, and the attitude of the solar tracking frame is adjusted so that the first level indicates a predetermined indicated position (third step). Thus, the solar spot light incident from the vertical direction perpendicular to the horizontal plane is made incident at a predetermined position on the detection surface of the sensor element of the solar tracking sensor. In this state, if the concentrating solar cell panel whose posture is adjusted on the surface plate by the second step is placed on the placement surface adjusted to the horizontal posture by the second level (fourth step). ) The parallel sunlight incident from the vertical direction perpendicular to the placement surface is condensed on the light receiving surface of the solar battery cell. By adjusting the installation of the solar battery panel in this way, the solar tracking light can be controlled by controlling the attitude of the solar tracking frame so that the solar spot light is incident on a predetermined position on the detection surface of the sensor element of the solar tracking sensor. Is always well condensed on the light receiving surface of the solar cell. According to such an installation method, the solar cell panel can be reliably installed even in a weak sunlight such as rainy weather, and the solar cell panel can be installed in a state where the tracking operation of the solar tracking stand is stopped. Therefore, safer installation work is possible. In addition, if a solar cell panel whose inclination is adjusted on a surface plate is prepared in advance, a failed solar cell panel can be quickly replaced without any on-site adjustment.
[0008]
In addition, the code | symbol in the said parenthesis shows the correspondence with the specific means as described in embodiment mentioned later.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 shows an example of a concentrating solar power generation device. In FIG. 1, the apparatus main body includes four concentrating solar cell panels 2A to 2D, and these solar cell panels 2A to 2D are solar tracking stands (hereinafter simply referred to as “simply”) installed on a substrate P placed on the ground surface. It is supported by 1). Each of the solar cell panels 2A to 2D is a rectangular box, and is supported by the gantry 1 so as to form a substantially square shape on the same plane. Each of the solar battery panels 2A to 2D includes a plurality of solar battery modules 21, and each solar battery module 21 has a rectangular condensing Fresnel lens 211 on the surface and a solar battery cell at an internal lens focal position. (Not shown) is located.
[0010]
As shown in FIG. 2, a bearing mechanism 3 is installed at the upper end of the column of the gantry 1. The bearing mechanism 3 has a substantially U-shaped bearing piece 31 provided at an inclination, and a bearing block 32 is located in the inner space of the bearing piece 31. Shaft bodies 33 (only one is shown) projecting on both side surfaces of the bearing block 32 are rotatably supported on both side walls 311 of the bearing piece 31, and the bearing block 32 is orthogonal to the shaft body 33. The shaft body 34 is rotatably supported through the direction. Support frames 4A and 4B (only one is shown in FIG. 2) are attached to both ends of the shaft body 34, respectively. The support frame 4 </ b> A is a triangular frame body, and a cylindrical sheath body 41 provided at the center of the long side is fitted to the shaft body 34. The support frames 4A and 4B are further divided into two triangular regions by the partition frame 42. As will be described in detail later, the support frames 4A and 4B are provided with three bottom projections provided in the bottomed support cylinders 44 provided at the corners of each triangular region. The solar battery panels 2A, 2B and 2C, 2D are mounted by inserting the adjusting legs 22 of the books, respectively. The support frame 4A is provided with a sun tracking sensor 43, which will be described in detail later.
[0011]
The inclination of the shaft body 33 is adjusted according to the latitude of the place where the gantry 1 is installed, and the rotation axis in the azimuth direction of the solar cell panels 2A to 2D that is supported by the shaft body 33 and rotates as will be described later. Is almost parallel to the Earth's axis of rotation. A drive shaft 5 having flexible joint portions 51 and 52 (FIG. 1) at both ends is connected to the shaft body 33 via the joint portion 51, and the other end of the drive shaft 5 is connected via the flexible joint portion 52. The drive shaft 53 is connected to the output shaft 531. The drive motor 53 is supported on a mount 54 provided on the substrate P. The tilt adjustment of the shaft body 33 to be parallel to the earth rotation axis is performed optically by using a gimbal mirror or the like attached to the end of the shaft body 33 with the drive shaft 5 removed. Can be done with precision.
[0012]
FIG. 3 shows details of the bearing mechanism 3. A drive motor 55 is provided on the bearing block 32, and an output shaft of the drive motor 55 is connected to a circular gear 57 by a worm gear 56 provided thereon. The driving force of the drive motor 55 is transmitted to a large-diameter circular gear 59 fixed to the outer periphery of the shaft body 34 via a circular gear 58 coaxial with the circular gear 57.
[0013]
With such a structure, the driving motor 55 is operated to rotate the solar cell panels 2A to 2D around the shaft body 34, whereby the normal zenith angle of the panel surface (hereinafter referred to simply as the zenith of the solar cell panel). Can be changed independently, and the driving motor 53 is operated to rotate the solar cell panels 2A to 2D around the shaft body 33, whereby the normal angle of the panel surface (hereinafter referred to as the azimuth angle). , Simply referred to as the azimuth of the solar panel). In addition, the board | substrate P (FIG. 2) is installed so that the rotating shaft of the shaft body 33 may become parallel to the earth rotation axis. Further, the rotation angles of the shaft bodies 33 and 34 are detected by a rotary encoder (not shown) attached thereto. The drive motors 53 and 55 are controlled such that the solar spot light is incident on a center position on a detection surface, which will be described later, of the solar tracking sensor 43, whereby the solar tracking sensor 43 and the solar cell panels 2A to 2D. Is always directed toward the sun.
[0014]
FIG. 4 shows an external appearance of the solar tracker ST provided with the sun tracking sensor 43. The sun tracking sensor 43 includes a cylindrical casing, and a cover body 45 having a pinhole 431 at the center is covered with an upper end opening of the casing. The lid 45 is screwed to the opening edge of the housing so that the lid 45 can be adjusted and moved in a horizontal range within a certain range. A lower end opening of the housing is bonded onto the substrate 46, and a sensor element 47 is bonded to the surface of the substrate 46 in the lower end opening facing the pinhole 431. As shown in FIG. 5, the sensor element 47 has its detection surface 47a divided into four regions A to D along the north-south and east-west lines, and each region outputs an output corresponding to the amount of light incident thereon. Be emitted. In FIG. 4, an omnidirectional level 48 is provided on the substrate 46. The level 48 is provided with a circular glass container 482 in which bubbles WB are sealed in the center of a rectangular plate 481, and the inclination of the plate 481 can be changed by adjusting screws 483 at four corners.
[0015]
As shown in FIG. 6, the sun tracking sensor 43 and the level 48 are integrated on a surface plate 62 provided with an omnidirectional level 61 composed of a circular glass container 611 filled with bubbles WB and adjusted to a horizontal posture. The solar tracker ST provided in is placed. The light output device 63 outputs the laser light output from the laser light source 631 as a large-diameter and parallel adjustment light L1 by a beam expander composed of a pair of convex lenses 632 and 633. The adjustment light L1 is a reflecting mirror. 64 is reflected toward the sun tracking sensor 43 below. The adjustment light L <b> 1 reflected by the reflecting mirror 64 enters the surface plate 62 perpendicularly. This is because the mirror 65 is placed on the surface plate 62 as shown by the chain line in FIG. 6, and the adjustment light L2 output from the light output device 63 and transmitted from the reflecting mirror 64 toward the mirror 65 follows the same path. This is realized by adjusting the angle of the mirror 64 so as to pass again through the pinhole of the shielding plate 634 provided between the convex lenses 632 and 633 of the light output device 63. Next, the adjustment light L1 vertically reflected by the reflecting mirror 64 toward the surface plate 62 passes through the pinhole 431 (FIG. 4) of the sun tracking sensor 43 and is detected as the spot light L4, thereby detecting the surface 47a (FIG. 5). The position of the lid 45 is adjusted by moving it in the horizontal direction as appropriate so that it enters the upper center position. At this time, the inclination of the plate body 481 is adjusted with the adjusting screw 483 so that the bubble WB of the level 48 comes to the center position of the glass container 482.
[0016]
On the other hand, adjustment of the solar cell panels 2A to 2D is performed as follows. That is, as shown in FIG. 7, the adjustment light L <b> 1 output from the light output device 63 is applied to the surface plate 62 by the mirror 64 in which the solar cell panel 2 </ b> A is placed on the surface plate 66 and the angle is adjusted by the adjustment method described above. On the other hand, the light is reflected vertically and is incident on the condensing Fresnel lens 211 of the solar cell module 21. Then, the length of each adjustment leg 22 is adjusted so that the adjustment light L1 collected by the Fresnel lens 211 is incident on the center of the upper end surface of the secondary condenser 213 provided on the solar battery cell 212. The inclination of the battery panel 2A is adjusted. The same applies to the solar cell panels 2B to 2C. In this case, the surface plate 66 is not necessarily in a horizontal posture.
[0017]
The level device 7 shown in FIG. 8 has an omnidirectional level 72 having the above-described structure placed on a substrate 71. The substrate 71 has the same interval as the adjustment legs 22 of the solar cell panels 2A to 2D. Three adjustment legs 73 project downward. As shown in the figure, the level device 7 is placed on a surface plate 62 that is provided with an omnidirectional level device 61 and adjusted to a horizontal posture so that the bubble WB of the level device 72 comes to the center position of the glass container 721. In addition, the inclination of the substrate 71 is adjusted with the adjusting leg 73.
[0018]
When installing the solar cell panels 2A to 2D on the gantry, as shown in FIG. 9, a solar tracker ST provided with a sun tracking sensor 43 integrated with the level 48 is installed on the support frame 4A of the gantry 1. The attitude of the gantry 1 is changed and adjusted so that the bubble WB of the level 48 comes to the center position of the glass container 481. As a result, the sun tracking sensor 43 is erected on the horizontal plane, and the sunlight L4 (FIG. 5) formed by the sunlight incident from vertically above the pinhole 431 (FIG. 4) is detected on the detection surface. The light enters the central position on 47a. In this state, as shown in FIG. 9, the adjustment leg 73 is inserted into each support cylinder 44, and the level device 7 is placed on the support frame 4A. The support cylinder 44 is screwed into a screw hole provided in the support frame 4A, and can be moved up and down by rotating the support cylinder 44 forward and backward. Therefore, the bubble WB of the level 72 of the level device 7 is brought to the center position of the glass container 721 by appropriately moving each support cylinder 44 up and down to change the height of its bottom wall. Thereby, the mounting surface formed by connecting the bottom walls of the support cylinders 44 becomes horizontal. In addition, this adjustment is performed about all the support cylinders 44 which support solar cell panel 2A-2D.
[0019]
As shown in FIG. 10, the support legs 22 are inserted into the respective support cylinders 44 adjusted in this way, the solar cell panel 2A is placed on the support frame 4A, and the support frame 4A is penetrated from below and fixed. Screws 49 are screwed into the bottom of the panel to fix the solar cell panel 2A. As a result, sunlight incident from a vertical direction perpendicular to the mounting surface is condensed by the Fresnel lens 211 of each solar cell module 21 (FIG. 7) in the solar cell panel 2 </ b> A, and is incident on the secondary condenser 213. The light enters the center of the end face and is uniformly incident on the solar cells 212 while being internally reflected in the secondary condenser 213. In the concentrating solar power generation apparatus adjusted in this way, the attitudes of the support frames 4A and 4B are controlled by the drive motors 53 and 55 so that the solar spot light L4 is always located at the center of the detection surface 47a of the sun tracking sensor 43. If it does, sunlight will inject favorably into the photovoltaic cell 212 in each solar cell module 21 arrange | positioned at solar cell panel 2A-2D, and efficient electric power generation is implement | achieved.
[0020]
According to the installation method described in the present embodiment, the solar panel can be reliably adjusted in posture even when sunlight is weak, such as rainy weather, and the installation adjustment can be performed in a state where the tracking operation of the solar tracking stand is stopped. Because it is possible, there is no need to take excessive care during installation. Moreover, if a solar cell panel whose inclination is adjusted on a surface plate is prepared in advance, a failed solar cell panel can be quickly replaced and installed without performing on-site adjustment.
[0021]
(Second Embodiment)
The solar tracker ST may have the structure shown in FIG. That is, in the solar tracker ST shown in FIG. 11, instead of providing the adjustment screw 483 (FIG. 4) in the level 48 as in the first embodiment, the level 48 is fixed on the substrate 46. Adjustment screws 461 are provided at the four corners, respectively, to change the inclination of the entire substrate 46. Even with such a structure, the same effect as in the first embodiment can be obtained.
[0022]
(Third embodiment)
FIG. 12 shows still another structure of the solar tracker ST. In the present embodiment, the lid body 45 of the sun tracking sensor 43 is fixed to the housing. Both the level 48 and the substrate 46 can be adjusted and adjusted with the adjusting screws 483 and 461. Even with such a structure, the same effect as in the first embodiment can be obtained.
[0023]
【The invention's effect】
As described above, according to the installation method of the present invention, the installation adjustment of the solar cell panel is possible regardless of the presence or absence of sunlight, and the installation work does not require excessive attention.
[Brief description of the drawings]
FIG. 1 is a side view of a concentrating solar power generation device showing a first embodiment of the present invention.
FIG. 2 is a partially exploded perspective view of a concentrating solar power generation device.
FIG. 3 is a perspective view of a bearing mechanism.
FIG. 4 is a perspective view of a sun tracker.
FIG. 5 is a front view of a sensor unit of a sun tracking sensor.
FIG. 6 is a side view showing a method of adjusting the sun tracker.
FIG. 7 is a side view showing a method for adjusting a solar cell panel.
FIG. 8 is a side view showing a method for adjusting the level device. FIG. 9 is a cross-sectional view of the solar tracking platform during adjustment.
FIG. 10 is an enlarged cross-sectional view of a solar cell panel support portion.
FIG. 11 is a side view of a level device showing a second embodiment of the present invention.
FIG. 12 is a side view of a level device showing a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Solar tracking stand, 2A, 2B, 2C, 2D ... Solar cell panel, 212 ... Solar cell, 22 ... Supporting leg, 43 ... Solar tracking sensor, 44 ... Support cylinder, 47a ... Detection surface, 48 ... Level 62 ... Horizontal platen, 7 ... Level device, L1 ... Parallel light, L4 ... Solar spot light.

Claims (1)

太陽電池パネルを載置する載置面の姿勢を調整する機構を備える太陽追尾架台を使用した集光式太陽光発電装置であって、前記載置面以外の前記太陽追尾架台上に設けた太陽追尾センサの検出面上の所定位置に太陽スポット光が入射するように前記太陽追尾架台の姿勢を制御するようにした集光式太陽光発電装置において、水平定盤上に前記太陽追尾センサを置いて、前記水平定盤に対して垂直に入射するスポット光を前記太陽追尾センサの検出面上の前記所定位置に入射させ、この状態で前記太陽追尾センサに付設された第1水準器が所定の指示位置を示すように調整する第1ステップと、定盤上に集光式太陽電池パネルを置いて、定盤に対して垂直に入射する平行光が前記集光式太陽電池パネルに内設された太陽電池セルの受光面上に集光されるように前記集光式太陽電池パネルの姿勢を調整する第2ステップと、前記太陽追尾架台上に前記太陽追尾センサを設置して前記第1水準器が前記所定の指示位置を示すように前記太陽追尾架台の姿勢を調整する第3ステップと、第2水準器によって前記載置面を水平姿勢に調整して、当該載置面上に、前記姿勢が調整された前記集光式太陽電池パネルを載置する第4ステップとを具備する集光式太陽光発電装置の太陽電池パネルの設置方法。A concentrating solar power generation apparatus using a solar tracking gantry equipped with a mechanism for adjusting the attitude of a mounting surface on which a solar cell panel is mounted, the sun provided on the solar tracking gantry other than the mounting surface described above In the concentrating solar power generation apparatus that controls the attitude of the solar tracking gantry so that the solar spot light is incident on a predetermined position on the detection surface of the tracking sensor, the solar tracking sensor is placed on a horizontal surface plate. Then, the spot light incident perpendicularly to the horizontal surface plate is incident on the predetermined position on the detection surface of the solar tracking sensor, and in this state, the first level attached to the solar tracking sensor is a predetermined level. A first step of adjusting the indication position to be indicated, and a concentrating solar cell panel placed on the surface plate, parallel light incident perpendicularly to the surface plate is installed in the concentrating solar cell panel. Collected on the light-receiving surface of the solar cell A second step of adjusting the orientation of the current-light solar panels to be, as the sun said on the tracking frame by installing a solar tracking sensor the first spirit level indicates said predetermined instruction position The concentrating solar cell in which the third step of adjusting the attitude of the solar tracking gantry and the mounting surface is adjusted to a horizontal attitude by a second level, and the attitude is adjusted on the mounting surface The installation method of the solar cell panel of the concentrating solar power generation device which comprises the 4th step which mounts a panel.
JP2003019611A 2003-01-29 2003-01-29 Method for installing solar panel of concentrating solar power generation device Expired - Fee Related JP4253194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003019611A JP4253194B2 (en) 2003-01-29 2003-01-29 Method for installing solar panel of concentrating solar power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019611A JP4253194B2 (en) 2003-01-29 2003-01-29 Method for installing solar panel of concentrating solar power generation device

Publications (2)

Publication Number Publication Date
JP2004235284A JP2004235284A (en) 2004-08-19
JP4253194B2 true JP4253194B2 (en) 2009-04-08

Family

ID=32949434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019611A Expired - Fee Related JP4253194B2 (en) 2003-01-29 2003-01-29 Method for installing solar panel of concentrating solar power generation device

Country Status (1)

Country Link
JP (1) JP4253194B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038311A (en) * 2007-08-03 2009-02-19 Shinko Seisakusho Co Ltd Sunlight incident direction sensor, sunlight tracking device, and solar power generating device
JP6042159B2 (en) * 2012-10-01 2016-12-14 シャープ株式会社 Photovoltaic power generation device and method for detecting misalignment of solar power generation device
US9804405B2 (en) * 2013-11-27 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Display device and display device frame
US20190165721A1 (en) * 2016-06-24 2019-05-30 Sfi Corporation Heliostat apparatus and solar power generating method
JP2017227408A (en) * 2016-06-24 2017-12-28 株式会社SolarFlame Heliostat device
JP2017229195A (en) * 2016-06-24 2017-12-28 株式会社SolarFlame Photovoltaic power generation method
CN112503476B (en) * 2020-11-10 2023-01-24 河北地质大学 Underground space sunlight conduction device

Also Published As

Publication number Publication date
JP2004235284A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
US8528541B2 (en) Solar collection apparatus and methods
US20080011288A1 (en) Solar Collection Apparatus and Methods Using Accelerometers and Magnetic Sensors
KR100720925B1 (en) Condensing apparatus for solar photovoltaic generator
CN102089890A (en) Concentrating photovoltaic solar panel
KR100727283B1 (en) A sunlight sensor, an apparatus and method for condensing sunlight using the sunlight sensor
US20110036388A1 (en) Tracking drive type solar power generation apparatus
JP3216549B2 (en) Concentrating solar cell device
JP5388357B2 (en) Solar power plant
KR101947422B1 (en) Solar photovoltaic device with a solar ground surface reflection module
JP4253194B2 (en) Method for installing solar panel of concentrating solar power generation device
CN109302136A (en) A kind of solar-tracking system
JP2012122635A (en) Heliostat and solar-light condensing system
JP2000091612A (en) Condensing and tracking power generator
KR20080098919A (en) An apparatus for condensing sunlight
JP4378257B2 (en) Solar tracking system
KR100751040B1 (en) Solar cell street-lamp with top of pole mounting structure
JP3128040U (en) Light source tracking device
JP2004146760A (en) Differential voltage driven sun tracking solar electric power plant
KR20110009023U (en) Apparatus Condensing for Solar Photovoltaic Generation
JPH0752601B2 (en) Solar collector
GB2442982A (en) A solar tracking device
JP2001290537A (en) Solar power generating device
WO2009038307A2 (en) Generating apparatus using a high concentrator photovoltaic module
JP2005129574A (en) Sunlight tracking device
JPS6277546A (en) Tracking device tracking solar-energy receiver to movement of sun

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees