JP2004235264A - Package for housing semiconductor element and semiconductor device - Google Patents

Package for housing semiconductor element and semiconductor device Download PDF

Info

Publication number
JP2004235264A
JP2004235264A JP2003019487A JP2003019487A JP2004235264A JP 2004235264 A JP2004235264 A JP 2004235264A JP 2003019487 A JP2003019487 A JP 2003019487A JP 2003019487 A JP2003019487 A JP 2003019487A JP 2004235264 A JP2004235264 A JP 2004235264A
Authority
JP
Japan
Prior art keywords
input
semiconductor element
output terminal
base
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003019487A
Other languages
Japanese (ja)
Inventor
Masaki Ikuji
正樹 生地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003019487A priority Critical patent/JP2004235264A/en
Publication of JP2004235264A publication Critical patent/JP2004235264A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a package for housing a semiconductor element, which hardly breaks the input-output terminals and is excellent in airtightness, and to provide a semiconductor device. <P>SOLUTION: The package for housing a semiconductor element is provided with a square plate-shaped metallic substrate 1 having a placing section 1a on which a semiconductor element 4 is placed on its upper main surface, a metallic frame body 2 attached to the outer peripheral section of the upper main surface of the substrate 1 to surround the placing section 1a and having attaching sections 2a composed of notches on the undersides of its sides and used for the ceramic input-output terminals 3, and the input-output terminals 3 fitted into the attaching sections 2a and having metallized wiring layers which electrically connect the inside and outside of the frame body 2 to each other. The substrate 1 has grooves having larger areas than the lower surfaces of the input-output terminals 3 positioned on the inside of the frame body 2 at portions immediately below the input-output terminals 3 on its upper main surface on the inside of the frame body 2. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子を収納するための半導体素子収納用パッケージおよび半導体装置に関し、特に気密性に優れた半導体素子収納用パッケージおよび半導体装置に関する。
【0002】
【従来の技術】
従来の半導体素子を収納するための半導体素子収納用パッケージ(以下、パッケージともいう)を図3、図4に示す。図3はパッケージの平面図、図4は図3のパッケージの断面図である。これらの図において、21は基体、22は枠体、23は入出力端子を示し、これら基体21、枠体22、入出力端子23で、内部空間に半導体素子24を収容する容器が基本的に構成される。
【0003】
基体21は、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金等の金属から成り、その上側主面の外周部には、載置部21aを囲繞するようにして接合された枠体22が立設されている。この枠体22は、Fe−Ni−Co合金等の金属から成り、基体21に銀(Ag)−銅(Cu)ロウ等のロウ材を介してロウ付けされる。
【0004】
枠体22は、側部の下側に切欠きから成る入出力端子23を取り付けるための取付部22aが形成されている。そして、アルミナ(Al)質焼結体等のセラミックスから成る入出力端子23が枠体22の取付部22a、および基体21にAg−Cuロウ等のロウ材を介してロウ付けされる(例えば、下記の特許文献1参照)。
【0005】
そして、載置部21aに半導体素子24を載置し、ボンディングワイヤ等で半導体素子24の電極と入出力端子3に被着形成されているメタライズ配線層とを電気的に接続した後、枠体22の上面に蓋体25をロウ付け法やシームウエルド法等の溶接法によって接合し、基体21、枠体22および蓋体25から成る容器内部に半導体素子24を収容し気密に封止することによって製品としての半導体装置となる。
【0006】
【特許文献1】
特開2001−217333号公報
【0007】
【発明が解決しようとする課題】
従来の構成においては、入出力端子23を枠体22の取付部22aにロウ付けする際に、Al質焼結体(熱膨張係数7×10−6〜8×10−6/℃)等のセラミックス製の入出力端子23にクラック等の破損が生じることがないように、基体21および枠体22として入出力端子23と熱膨張係数が近い値のFe−Ni−Co合金(熱膨張係数5×10−6〜10×10−6/℃)等の金属材料を用いている。しかしながら、近年、半導体素子24の高集積化が急速に進み、半導体素子24の作動時に発生する発熱量が急激に増大してきているのに対して、例えばFe−Ni−Co合金の熱伝導率は17W/m・Kと低い値であるために、半導体素子24で発生する熱を外部に十分に放散できず、半導体素子24の温度が上昇して半導体素子24が誤作動等を起こし正常に作動しなくなるという問題点があった。
【0008】
このため、熱伝導率が150〜400W/m・Kと高い値をもつ無酸素Cu等のCu系材料で基体21および枠体22を形成することが考えられるが、Cu系材料の熱膨張係数は10×10−6〜20×10−6/℃であり、基体21および枠体22とセラミックス製の入出力端子23とでは、熱膨張差が大きいために枠体22の取付部に入出力端子23をロウ付けする際に入出力端子23にクラック等の破損が生じ、パッケージ内部を気密に保持できなくなる場合があった。その結果、半導体素子24が誤作動等を起こし正常に作動しなくなるという問題点があった。
【0009】
従って、本発明は上記従来の問題点に鑑み完成されたものであり、その目的は、入出力端子を破損し難くし、気密性に優れた半導体素子収納用パッケージおよび半導体装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明の半導体素子収納用パッケージは、上側主面に半導体素子が載置される載置部が形成された四角平板状の金属製の基体と、該基体の前記上側主面の外周部に前記載置部を囲繞するように取着され、側部の下側に切欠きから成る入出力端子の取付部が形成された金属製の枠体と、前記取付部に嵌着された、前記枠体の内外を電気的に導通するメタライズ配線層を有するセラミックス製の入出力端子とを具備しており、前記基体は、その上面の前記枠体の内側で前記入出力端子の直下の部位に、前記枠体の内側に位置する前記入出力端子の下面よりも大きな面積の溝が形成されていることを特徴とする。
【0011】
本発明の半導体素子収納用パッケージは、基体の上面の枠体の内側で入出力端子の直下の部位に、枠体の内側に位置する入出力端子の下面よりも大きな面積の溝が形成されていることから、入出力端子と基体との接合面積を小さくすることができ、取付部に入出力端子をロウ付けする際の熱膨張係数の違いにより発生する応力を有効に低減することができる。また、溝により半導体素子から発生した熱が枠体直下の基体と入出力端子との接合部に最短距離で伝えられるのを防ぐことができ、基体と入出力端子との接合部に大きな熱応力が生じるのを有効に抑制できる。その結果、セラミックス製の入出力端子にクラック等の破損が生じ難くなり、半導体素子収納用パッケージの内部を気密に保持する信頼性の高いものとなる。
【0012】
本発明の半導体装置は、上記本発明の半導体素子収納用パッケージと、前記載置部に載置固定されるとともに前記入出力端子に電気的に接続された半導体素子と、前記枠体の上面に取着された蓋体とを具備していることを特徴とする。
【0013】
本発明の半導体装置は、上記構成により、上記本発明の半導体素子収納用パッケージを用いた気密信頼性の高いものとなる。
【0014】
【発明の実施の形態】
本発明の半導体素子収納用パッケージについて以下に詳細に説明する。図1は本発明のパッケージについて実施の形態の一例を示す平面図、図2は図1のパッケージの断面図である。これらの図において、1は基体、2は枠体、3は入出力端子を示し、これら基体1、枠体2、入出力端子3で、内部空間に半導体素子4を収容する容器が基本的に構成される。
【0015】
本発明のパッケージは、図1、図2に示すように、上側主面に半導体素子4が載置される載置部1aが形成された四角平板状の金属製の基体1と、この基体1の上側主面の外周部に載置部1aを囲繞するように取着され、側部の下側に切欠きから成る入出力端子3の取付部2aが形成された金属製の枠体2と、取付部2aに嵌着された、枠体2の内外を電気的に導通するメタライズ配線層を有するセラミックス製の入出力端子3とを具備しており、基体1の上面の枠体2の内側で入出力端子3の直下の部位に、枠体2の内側に位置する入出力端子3の下面よりも大きな面積の溝1bが形成されている。
【0016】
本発明の基体1は、無酸素Cu,Cu−Mo合金,Cu−W等のCu系材料やFe−Ni−Co合金、Fe−Ni合金等の金属から成り、特に、熱伝導性をよくして内部に収容する半導体素子4から発生した熱を効率よく放散させるという観点からは、Cu系材料が好ましい。
【0017】
このような基体1は、金属のインゴットに圧延加工や打ち抜き加工等の従来周知の金属加工法を施したり、射出成型と切削加工等を施すことによって所定形状に製作される。
【0018】
基体1の上側主面には、半導体素子4を載置する載置部1aが設けられている。この基体1は、半導体素子4が作動時に発する熱を外部に放熱させる放熱板の役割をも果たす。基体1の表面には、酸化腐食の防止や半導体素子4のロウ付け等による載置固定を良好にするために、厚さ0.5〜9μmのNi層や厚さ0.5〜5μmの金(Au)層から成る金属層をめっき法等により被着させておくとよい。また、半導体素子4の熱を効率よく外部へ放熱させるために、半導体素子4がペルチェ素子等の熱電冷却素子(図示せず)に搭載された状態で載置部1aに載置固定されていてもよい。
【0019】
また、基体1の上側主面の外周部には、載置部1aを囲繞するようにしてAg−Cuロウ等のロウ材を介して接合された枠体2が立設されており、枠体2は基体1とともにその内側に半導体素子4を収容する空所を形成する。枠体2は、Fe−Ni−Co合金、Cu、Cu−W等の金属から成る枠状体であり、そのインゴットに圧延加工や打ち抜き加工等の従来周知の金属加工法を施したり、射出成形と切削加工等を施すことによって所定形状に製作され、基体1にAg−Cuロウ等のロウ材を介して接続される。また、枠体2の表面には、酸化腐食の防止や入出力端子3のロウ付け等による嵌着を良好にするために、厚さ0.5〜9μmのNi層や厚さ0.5〜5μmのAu層から成る金属層をめっき法等により被着させておくとよい。
【0020】
また、基体1は、上面の枠体2の内側で入出力端子3の直下の部位に、枠体2の内側に位置する入出力端子3の下面よりも大きな面積の溝1bが形成されている。これにより、入出力端子3と基体1との接合面積を小さくすることができ、取付部2aに入出力端子3をロウ付けする際の熱膨張係数の違いにより発生する応力を有効に低減することができる。また、溝1bにより半導体素子4から発生した熱が枠体2直下の基体1と入出力端子3との接合部に最短距離で伝えられるのを防ぐことができ、基体1と入出力端子3との接合部に大きな熱応力が生じるのを有効に抑制できる。その結果、セラミックス製の入出力端子3にクラック等の破損が生じ難くなり、パッケージの内部を気密に保持する信頼性の高いものとなる。
【0021】
溝1bは、幅をY、入出力端子3の枠体2の内側に位置する部分の幅をXとした場合、Y>Xとなっている。これにより、入出力端子3と基体1との接合面積が小さくなって入出力端子3と基体1との熱膨張係数差による応力を低減できる。また、半導体素子4からの熱を入出力端子3と基体1との接合部に最短距離で伝わるのを有効に抑制できる。特に、半導体素子4の高温化を防止するという観点からは、X<Y<3Xであることが好ましい。この範囲とすることで、基体1の体積が小さくなり過ぎず、半導体素子4から基体1への熱伝導性を良好に維持することができる。即ち、基体1の体積が小さくなると、基体1の温度が上昇し易くなって半導体素子4からの熱伝導性が低下するため、基体1の体積を適度に維持することによって熱伝導性を維持し、半導体素子4が高温になるのを有効に抑制することができる。
【0022】
なお、Y≦Xであると、入出力端子3に基体1との熱膨張差による応力が加わり、入出力端子3にクラック等の破損が生じ易くなる。また、Y≧3Xであると、基体1の体積が小さくなり、半導体素子4の高温化を抑制するのが困難となる。
【0023】
また、溝1bは、長さをT、取付部2aを有する枠体2の側部に平行な方向における入出力端子3の長さをSとした場合、S>Tとなっている。これにより、入出力端子3と基体1との接合面積が小さくなって入出力端子3と基体1との熱膨張係数差による応力を低減できる。また、半導体素子4からの熱を入出力端子3と基体1との接合部に最短距離で伝わるのを有効に抑制できる。特に、半導体素子4の高温化を防止するという観点からは、S<T≦2Sであることが好ましい。この範囲とすることで、基体1の体積が小さくなり過ぎず、半導体素子4から基体1への熱伝導性を良好に維持することができる。即ち、基体1の体積が小さくなると、基体1の温度が上昇し易くなって半導体素子4からの熱伝導性が低下するため、基体1の体積を適度に維持することによって熱伝導性を維持し、半導体素子4が高温になるのを有効に抑制することができる。
【0024】
なお、T≦Sであると、入出力端子3に基体1との熱膨張差による応力が加わり、入出力端子3にクラック等の破損が生じ易くなる。また、T>2Sであると、基体1の体積が小さくなり、半導体素子4の高温化を抑制するのが困難となる。
【0025】
また、溝1bは、深さが0.2〜2mmであるのがよい。これにより、入出力端子3に応力が加わるのを抑制できるとともに、半導体素子4から発生する熱を良好に放熱することができる。0.2mm未満であると、半導体素子4から発生した熱が比較的短距離で入出力端子3と基体1との接合部に伝達され、入出力端子に応力が加わりやすくなる。また、2mmを超えると、基体1の体積が小さくなり、半導体素子4の高温化を抑制するのが困難となる。
【0026】
さらに、溝1bは、底面に取付部2aが形成された枠体2の側部に平行な堤状の突部(入出力端子3に接触しない突部)を形成してもよい。この場合、半導体素子4から入出力端子3までの伝熱経路が長くなり、基体1と入出力端子3との接合部に大きな熱応力が生じるのをより有効に抑制できる。
【0027】
また、基体1は、載置部1aを含む載置領域の方が入出力端子3との接合部よりも高くなっていてもよい。この場合、半導体素子4から入出力端子3までの伝熱経路が長くなり、基体1と入出力端子3との接合部に大きな熱応力が生じるのをより有効に抑制できる。
【0028】
枠体2は、側部に基体1側を切り欠いた切欠きから成る入出力端子3を取り付けるための取付部2aが形成されている。そして、入出力端子3が枠体2の取付部2aにAg−Cuロウ等のロウ材を介してロウ付けされる。
【0029】
入出力端子3は、上面に一辺から対向する他辺にかけて形成された枠体2の内外を電気的に導通するメタライズ配線層を有する四角平板状の平板部およびこの平板部の上面にメタライズ配線層の一部を間に挟んで接合された直方体状の立壁部とから構成され、枠体2の側部に設けられた取付部2aにAg−Cuロウ等のロウ材を介してロウ付けされる。
【0030】
入出力端子3を構成する上記の平板部および立壁部は、Al質焼結体、窒化アルミニウム(AlN)質焼結体等のセラミックスから成り、セラミックグリーンシートを打ち抜き加工し、セラミックグリーンシートを多層積層し焼成することによって形成される。
【0031】
入出力端子3の平板部の上面に設けられたメタライズ配線層は、W,Mo,Mn等の導体ペーストを焼成することにより形成されている。そして、枠体2外側のメタライズ配線層には、Fe−Ni−Co合金等の金属から成るリード端子がAg−Cuロウ等のロウ材を介して電気的に接続されていてもよい。
【0032】
上記構成のパッケージの載置部1aに半導体素子4を載置固定した後、半導体素子4の電極と入出力端子3のメタライズ配線層の枠体2内側の部位とをボンディングワイヤ等で電気的に接続し、枠体2の上面にFe−Ni−Co合金等の金属から成る蓋体5をシーム溶接法等により取着し、半導体素子4を気密に封止することにより、製品としての半導体装置となる。
【0033】
【実施例】
本発明の半導体素子収納用パッケージの実施例を以下に説明する。
【0034】
(実施例1)
図1の本発明のパッケージのサンプルを以下のようにして作製した。無酸素Cuからなり縦11mm×横10mmで厚さが0.5mmと1mmの2種類の直方体の基体1を用意し、この上面の枠体2の内側の入出力端子3が設置される部位に、種々の大きさの溝2b(表1参照)を形成した。
【0035】
そして、Fe−Ni−Co合金からなり縦10mm×横10mm×高さ3mmで厚さ1mmの枠体2を用意し、枠体2の一側部とそれに対向する他側部の下側に長さ7mm×高さ2mmの切欠きからなる取付部2aを設けた。
【0036】
さらに、上面にWから成るメタライズ配線層を有する長さ7mm×高さ1mm×幅3mmのAl質焼結体製の平板部と長さ7mm×高さ1mm×幅1mmのAl質焼結体製の立壁部とからなる入出力端子3を枠体2の内側に平板部が1mm突出するようにして嵌め込み、基体1、枠体2および入出力端子3をAg−Cuロウ(融点780℃)で接合し、これらを常温(25℃)まで均一に冷却することによりパッケージを作製した(サンプルP1〜P4)。
【0037】
これらのサンプルP1〜P4において、常温まで均一に冷却した際の入出力端子3に発生する最大主応力を有限要素法によるシミュレーション解析によって求めた。これらの評価結果を表1に示す。
【0038】
【表1】

Figure 2004235264
【0039】
表1より、本発明のサンプルP2,P4における入出力端子3に発生する最大主応力値は、溝部1bを形成していない比較例(サンプルP1,P3)に対して、約1/3〜1/2の値に低減し、本発明のパッケージが入出力端子3のクラックの抑制に有効であることが判った。
【0040】
(実施例2)
次に、溝2bの幅を種々の値(表2参照)にすること以外は実施例1と同様にして各サンプルについて10個ずつパッケージを作製した(サンプルP21〜P26)。
【0041】
これらのサンプル全てについて、基体1に半導体素子4を固定して半導体素子4を100時間連続作動させ、作動中に半導体素子4が誤作動を起こしたものを不良品とした。その不良品の数を表2に示す。
【0042】
【表2】
Figure 2004235264
【0043】
溝2bの幅Yが入出力端子3の枠体2の内側に位置する部分の幅Xに対して、Y≧3XであるサンプルP24,P25,P26では半導体素子4の温度が上昇し、半導体素子4に誤作動が起きるのに対して、X<Y<3XであるサンプルP2,P21,P22,P23では誤作動を起こしたサンプルは無く優れていることが判った。
【0044】
なお、本発明は上記実施の形態および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何等支障ない。
【0045】
【発明の効果】
本発明の半導体素子収納用パッケージは、上側主面に半導体素子が載置される載置部が形成された四角平板状の金属製の基体と、この基体の上側主面の外周部に載置部を囲繞するように取着され、側部の下側に切欠きから成る入出力端子の取付部が形成された金属製の枠体と、取付部に嵌着された、枠体の内外を電気的に導通するメタライズ配線層を有するセラミックス製の入出力端子とを具備しており、基体は、その上面の枠体の内側で入出力端子の直下の部位に、枠体の内側に位置する入出力端子の下面よりも大きな面積の溝が形成されていることから、入出力端子と基体との接合面積を小さくすることができ、取付部に入出力端子をロウ付けする際の熱膨張係数の違いにより発生する応力を有効に低減することができる。また、溝により半導体素子から発生した熱が枠体直下の基体と入出力端子との接合部に最短距離で伝えられるのを防ぐことができ、基体と入出力端子との接合部に大きな熱応力が生じるのを有効に抑制できる。その結果、セラミックス製の入出力端子にクラック等の破損が生じ難くなり、半導体素子収納用パッケージの内部を気密に保持する信頼性の高いものとなる。
【0046】
本発明の半導体装置は、上記本発明の半導体素子収納用パッケージと、載置部に載置固定されるとともに入出力端子に電気的に接続された半導体素子と、枠体の上面に取着された蓋体とを具備していることにより、上記本発明の半導体素子収納用パッケージを用いた気密信頼性の高いものとなる。
【図面の簡単な説明】
【図1】本発明の半導体素子収納用パッケージについて実施の形態の例を示す平面図である。
【図2】図1の半導体素子収納用パッケージの断面図である。
【図3】従来の半導体素子収納用パッケージの平面図である。
【図4】図3の半導体素子収納用パッケージの断面図である。
【符号の説明】
1:基体
1a:載置部
1b:溝
2:枠体
2a:取付部
3:入出力端子
4:半導体素子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor element housing package and a semiconductor device for housing a semiconductor element, and more particularly to a semiconductor element housing package and a semiconductor device having excellent airtightness.
[0002]
[Prior art]
FIGS. 3 and 4 show a conventional semiconductor element housing package (hereinafter, also referred to as a package) for housing a semiconductor element. FIG. 3 is a plan view of the package, and FIG. 4 is a sectional view of the package of FIG. In these figures, 21 is a base, 22 is a frame, and 23 is an input / output terminal. The base 21, the frame 22, and the input / output terminal 23 are basically a container for accommodating the semiconductor element 24 in the internal space. Be composed.
[0003]
The base 21 is made of a metal such as an iron (Fe) -nickel (Ni) -cobalt (Co) alloy, and is joined to an outer peripheral portion of an upper main surface thereof so as to surround the mounting portion 21a. 22 is erected. The frame 22 is made of a metal such as an Fe-Ni-Co alloy and is brazed to the base 21 via a brazing material such as silver (Ag) -copper (Cu) brazing.
[0004]
The frame 22 has a mounting portion 22a for mounting an input / output terminal 23 formed of a notch below the side portion. Then, the input / output terminal 23 made of ceramics such as alumina (Al 2 O 3 ) sintered body is brazed to the mounting portion 22 a of the frame 22 and the base 21 via a brazing material such as Ag-Cu brazing. (For example, see Patent Document 1 below).
[0005]
Then, the semiconductor element 24 is mounted on the mounting portion 21a, and the electrodes of the semiconductor element 24 are electrically connected to the metallized wiring layers formed on the input / output terminals 3 by bonding wires or the like. A lid 25 is joined to the upper surface of the base 22 by a welding method such as a brazing method or a seam welding method, and the semiconductor element 24 is accommodated in a container including the base 21, the frame 22 and the lid 25, and hermetically sealed. Thereby, a semiconductor device as a product is obtained.
[0006]
[Patent Document 1]
JP 2001-217333 A
[Problems to be solved by the invention]
In the conventional configuration, when the input / output terminal 23 is brazed to the mounting portion 22a of the frame 22, the Al 2 O 3 based sintered body (coefficient of thermal expansion: 7 × 10 −6 to 8 × 10 −6 / ° C.) ), Etc., the input / output terminal 23 made of ceramics having a thermal expansion coefficient close to that of the input / output terminal 23 (heat A metal material having an expansion coefficient of 5 × 10 −6 to 10 × 10 −6 / ° C.) is used. However, in recent years, the high integration of the semiconductor element 24 has been rapidly progressing, and the calorific value generated during the operation of the semiconductor element 24 has been rapidly increasing. On the other hand, for example, the thermal conductivity of an Fe—Ni—Co alloy is Since the value is as low as 17 W / m · K, the heat generated in the semiconductor element 24 cannot be sufficiently dissipated to the outside, and the temperature of the semiconductor element 24 rises, causing the semiconductor element 24 to malfunction and operate normally. There was a problem that it would not be.
[0008]
For this reason, it is conceivable to form the base 21 and the frame 22 with a Cu-based material such as oxygen-free Cu having a high thermal conductivity of 150 to 400 W / m · K, but the thermal expansion coefficient of the Cu-based material is considered. Is 10 × 10 −6 to 20 × 10 −6 / ° C., and since the thermal expansion difference between the base 21 and the frame 22 and the ceramic input / output terminal 23 is large, the input / output When the terminal 23 is brazed, the input / output terminal 23 may be damaged, such as a crack, and the inside of the package may not be kept airtight. As a result, there has been a problem that the semiconductor element 24 malfunctions and does not operate normally.
[0009]
Therefore, the present invention has been completed in view of the above-mentioned conventional problems, and an object of the present invention is to provide a semiconductor element housing package and a semiconductor device which are hard to damage input / output terminals and have excellent airtightness. is there.
[0010]
[Means for Solving the Problems]
A semiconductor element housing package according to the present invention includes a square plate-shaped metal base on which a mounting portion on which a semiconductor element is mounted is formed on an upper main surface, and an outer peripheral portion of the upper main surface of the base. A metal frame body attached to surround the mounting portion and having an input / output terminal attachment portion formed of a notch below a side portion; and the frame fitted to the attachment portion. A ceramic input / output terminal having a metallized wiring layer that electrically connects the inside and outside of the body, and the base is located inside the frame on the upper surface and immediately below the input / output terminal, A groove having an area larger than the lower surface of the input / output terminal located inside the frame is formed.
[0011]
In the package for housing a semiconductor element of the present invention, a groove having a larger area than the lower surface of the input / output terminal located inside the frame is formed in a portion immediately below the input / output terminal inside the frame on the upper surface of the base. Therefore, the joint area between the input / output terminal and the base can be reduced, and the stress generated due to the difference in the thermal expansion coefficient when the input / output terminal is brazed to the mounting portion can be effectively reduced. In addition, the groove prevents heat generated from the semiconductor element from being transmitted to the joint between the base directly below the frame and the input / output terminal at the shortest distance, and a large thermal stress is applied to the joint between the base and the input / output terminal. Can be effectively suppressed. As a result, damage such as cracks is less likely to occur in the ceramic input / output terminals, and the reliability of maintaining the inside of the semiconductor element housing package airtight is high.
[0012]
The semiconductor device of the present invention includes the semiconductor element housing package of the present invention, a semiconductor element mounted and fixed to the mounting portion and electrically connected to the input / output terminal, and an upper surface of the frame body. And an attached lid.
[0013]
According to the above configuration, the semiconductor device of the present invention has high hermetic reliability using the semiconductor element housing package of the present invention.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The package for housing a semiconductor element of the present invention will be described in detail below. FIG. 1 is a plan view showing an example of an embodiment of the package of the present invention, and FIG. 2 is a sectional view of the package of FIG. In these figures, 1 is a base, 2 is a frame, and 3 is an input / output terminal. The base 1, the frame 2, and the input / output terminal 3 are basically a container for accommodating the semiconductor element 4 in the internal space. Be composed.
[0015]
As shown in FIGS. 1 and 2, the package of the present invention has a rectangular flat metal base 1 having a mounting portion 1 a on which a semiconductor element 4 is mounted on an upper main surface; A metal frame 2 attached to the outer peripheral portion of the upper main surface of the upper portion so as to surround the mounting portion 1a and having a mounting portion 2a for the input / output terminal 3 formed of a notch below the side portion; And a ceramic input / output terminal 3 having a metallized wiring layer electrically connected between the inside and outside of the frame 2 fitted to the mounting portion 2a, and the inside of the frame 2 on the upper surface of the base 1. A groove 1b having a larger area than the lower surface of the input / output terminal 3 located inside the frame body 2 is formed immediately below the input / output terminal 3.
[0016]
The substrate 1 of the present invention is made of a Cu-based material such as oxygen-free Cu, Cu-Mo alloy, or Cu-W, or a metal such as Fe-Ni-Co alloy or Fe-Ni alloy. From the viewpoint of efficiently dissipating the heat generated from the semiconductor element 4 housed therein, a Cu-based material is preferable.
[0017]
Such a base 1 is manufactured in a predetermined shape by applying a conventionally known metal working method such as rolling or punching to a metal ingot, or by performing injection molding and cutting.
[0018]
A mounting portion 1 a on which the semiconductor element 4 is mounted is provided on the upper main surface of the base 1. The base 1 also functions as a heat radiating plate for radiating heat generated when the semiconductor element 4 operates to the outside. On the surface of the base 1, a Ni layer having a thickness of 0.5 to 9 μm or a gold layer having a thickness of 0.5 to 5 μm It is preferable that a metal layer composed of the (Au) layer is applied by a plating method or the like. Further, in order to efficiently radiate the heat of the semiconductor element 4 to the outside, the semiconductor element 4 is mounted and fixed on the mounting portion 1a while being mounted on a thermoelectric cooling element (not shown) such as a Peltier element. Is also good.
[0019]
Further, a frame 2 joined via a brazing material such as Ag-Cu brazing so as to surround the mounting portion 1a is provided upright on an outer peripheral portion of the upper main surface of the base 1. 2 forms a cavity for accommodating the semiconductor element 4 inside the base 1 together with the base 1. The frame 2 is a frame made of a metal such as an Fe—Ni—Co alloy, Cu, or Cu—W. The ingot is subjected to a conventionally known metal working method such as rolling or punching, or injection molding. Then, it is manufactured into a predetermined shape by performing cutting and the like, and is connected to the base 1 via a brazing material such as Ag-Cu brazing. On the surface of the frame 2, a Ni layer having a thickness of 0.5 to 9 μm or a Ni layer having a thickness of 0.5 to 9 μm is provided in order to prevent oxidation corrosion and improve the fitting of the input / output terminals 3 by brazing. It is preferable that a metal layer made of a 5 μm Au layer be applied by plating or the like.
[0020]
In the base 1, a groove 1 b having a larger area than the lower surface of the input / output terminal 3 located inside the frame 2 is formed in a portion of the upper surface immediately below the input / output terminal 3 inside the frame 2. . Thereby, the joint area between the input / output terminal 3 and the base 1 can be reduced, and the stress generated due to the difference in thermal expansion coefficient when the input / output terminal 3 is brazed to the mounting portion 2a can be effectively reduced. Can be. Further, the groove 1b can prevent heat generated from the semiconductor element 4 from being transmitted to the joint between the base 1 and the input / output terminal 3 immediately below the frame 2 in the shortest distance. A large thermal stress can be effectively prevented from being generated at the joint. As a result, cracks and the like are less likely to occur in the ceramic input / output terminals 3 and the reliability of maintaining the inside of the package airtight is high.
[0021]
When the width of the groove 1b is Y and the width of a portion of the input / output terminal 3 located inside the frame 2 is X, Y> X. As a result, the joint area between the input / output terminal 3 and the base 1 is reduced, and the stress due to the difference in the thermal expansion coefficient between the input / output terminal 3 and the base 1 can be reduced. In addition, it is possible to effectively suppress the transfer of heat from the semiconductor element 4 to the joint between the input / output terminal 3 and the base 1 in the shortest distance. In particular, it is preferable that X <Y <3X from the viewpoint of preventing the semiconductor element 4 from being heated to a high temperature. In this range, the volume of the base 1 does not become too small, and the thermal conductivity from the semiconductor element 4 to the base 1 can be maintained satisfactorily. That is, when the volume of the base 1 is reduced, the temperature of the base 1 is likely to rise and the thermal conductivity from the semiconductor element 4 is reduced. Therefore, the thermal conductivity is maintained by maintaining the volume of the base 1 appropriately. In addition, it is possible to effectively suppress the temperature of the semiconductor element 4 from becoming high.
[0022]
If Y ≦ X, stress is applied to the input / output terminal 3 due to a difference in thermal expansion from the base 1, and the input / output terminal 3 is liable to be damaged such as a crack. Also, if Y ≧ 3X, the volume of the base 1 becomes small, and it becomes difficult to suppress the semiconductor element 4 from becoming hot.
[0023]
When the length of the groove 1b is T and the length of the input / output terminal 3 in a direction parallel to the side of the frame 2 having the mounting portion 2a is S, S> T. As a result, the joint area between the input / output terminal 3 and the base 1 is reduced, and the stress due to the difference in the thermal expansion coefficient between the input / output terminal 3 and the base 1 can be reduced. In addition, it is possible to effectively suppress the transfer of heat from the semiconductor element 4 to the joint between the input / output terminal 3 and the base 1 in the shortest distance. In particular, it is preferable that S <T ≦ 2S from the viewpoint of preventing the semiconductor element 4 from becoming hot. In this range, the volume of the base 1 does not become too small, and the thermal conductivity from the semiconductor element 4 to the base 1 can be maintained satisfactorily. That is, when the volume of the base 1 is reduced, the temperature of the base 1 is likely to rise and the thermal conductivity from the semiconductor element 4 is reduced. Therefore, the thermal conductivity is maintained by maintaining the volume of the base 1 appropriately. In addition, it is possible to effectively suppress the temperature of the semiconductor element 4 from becoming high.
[0024]
If T ≦ S, stress is applied to the input / output terminal 3 due to a difference in thermal expansion from the base 1, and the input / output terminal 3 is liable to be damaged such as a crack. If T> 2S, the volume of the base 1 becomes small, and it becomes difficult to suppress the semiconductor element 4 from becoming hot.
[0025]
The groove 1b preferably has a depth of 0.2 to 2 mm. Thus, stress applied to the input / output terminals 3 can be suppressed, and the heat generated from the semiconductor element 4 can be radiated well. When the thickness is less than 0.2 mm, heat generated from the semiconductor element 4 is transmitted to the joint between the input / output terminal 3 and the base 1 over a relatively short distance, and stress is easily applied to the input / output terminal. On the other hand, if it exceeds 2 mm, the volume of the base 1 becomes small, and it becomes difficult to suppress the semiconductor element 4 from becoming hot.
[0026]
Furthermore, the groove 1b may form a bank-shaped protrusion (a protrusion that does not contact the input / output terminal 3) parallel to a side portion of the frame 2 having the attachment portion 2a formed on the bottom surface. In this case, the heat transfer path from the semiconductor element 4 to the input / output terminal 3 becomes longer, and the occurrence of a large thermal stress at the joint between the base 1 and the input / output terminal 3 can be more effectively suppressed.
[0027]
Further, in the base 1, the mounting region including the mounting portion 1 a may be higher than the joint portion with the input / output terminal 3. In this case, the heat transfer path from the semiconductor element 4 to the input / output terminal 3 becomes longer, and the occurrence of a large thermal stress at the joint between the base 1 and the input / output terminal 3 can be more effectively suppressed.
[0028]
The frame 2 has a mounting portion 2a for mounting the input / output terminal 3 formed of a notch formed by cutting the side of the base 1 on a side portion. Then, the input / output terminal 3 is brazed to the mounting portion 2a of the frame 2 via a brazing material such as Ag-Cu brazing.
[0029]
The input / output terminal 3 has a square flat plate portion having a metallized wiring layer that electrically connects the inside and the outside of the frame 2 formed from one side to the other side facing the upper surface, and a metallized wiring layer on the upper surface of the flat portion. And a rectangular parallelepiped standing wall portion joined with a part of the frame portion interposed therebetween, and brazed to a mounting portion 2a provided on a side portion of the frame 2 via a brazing material such as Ag-Cu brazing. .
[0030]
The flat plate portion and the vertical wall portion constituting the input / output terminal 3 are made of ceramics such as Al 2 O 3 sintered body and aluminum nitride (AlN) sintered body. It is formed by laminating sheets and firing them.
[0031]
The metallized wiring layer provided on the upper surface of the flat plate portion of the input / output terminal 3 is formed by firing a conductive paste such as W, Mo, and Mn. Then, a lead terminal made of a metal such as an Fe-Ni-Co alloy may be electrically connected to the metallized wiring layer outside the frame 2 via a brazing material such as an Ag-Cu brazing material.
[0032]
After the semiconductor element 4 is mounted and fixed on the mounting portion 1a of the package having the above configuration, the electrodes of the semiconductor element 4 and the portion of the metallized wiring layer of the input / output terminal 3 inside the frame 2 are electrically connected with a bonding wire or the like. And a lid 5 made of a metal such as an Fe-Ni-Co alloy is attached to the upper surface of the frame 2 by a seam welding method or the like, and the semiconductor element 4 is hermetically sealed to thereby provide a semiconductor device as a product. It becomes.
[0033]
【Example】
Embodiments of the package for housing a semiconductor element of the present invention will be described below.
[0034]
(Example 1)
A sample of the package of the present invention shown in FIG. 1 was produced as follows. Two kinds of rectangular parallelepiped bases 1 each made of oxygen-free Cu and having a length of 11 mm × a width of 10 mm and a thickness of 0.5 mm and 1 mm are prepared. And grooves 2b of various sizes (see Table 1) were formed.
[0035]
Then, a frame 2 made of an Fe-Ni-Co alloy and having a length of 10 mm, a width of 10 mm, a height of 3 mm and a thickness of 1 mm is prepared, and a long side is formed below one side of the frame 2 and the other side opposite thereto. A mounting portion 2a consisting of a notch of 7 mm in height and 2 mm in height was provided.
[0036]
Further, the length 7 mm × height 1mm × 3mm wide of Al 2 O 3 quality sintered body made of the flat plate portion and the length 7 mm × height 1mm × width 1mm having a metallized wiring layer made of W on the upper surface Al 2 O An input / output terminal 3 made of a three- wall sintered body and an upright wall is fitted into the frame 2 so that the flat plate portion protrudes by 1 mm. (Melting point: 780 ° C.), and these were uniformly cooled to room temperature (25 ° C.) to produce a package (samples P1 to P4).
[0037]
In these samples P1 to P4, the maximum principal stress generated in the input / output terminal 3 when uniformly cooled to room temperature was obtained by simulation analysis using the finite element method. Table 1 shows the evaluation results.
[0038]
[Table 1]
Figure 2004235264
[0039]
From Table 1, the maximum principal stress value generated in the input / output terminal 3 in the samples P2 and P4 of the present invention is about 1/3 to 1 in comparison with the comparative example (samples P1 and P3) in which the groove 1b is not formed. / 2, indicating that the package of the present invention is effective in suppressing cracks in the input / output terminals 3.
[0040]
(Example 2)
Next, 10 packages were manufactured for each sample in the same manner as in Example 1 except that the width of the groove 2b was set to various values (see Table 2) (samples P21 to P26).
[0041]
With respect to all of these samples, the semiconductor element 4 was fixed to the base 1 and the semiconductor element 4 was continuously operated for 100 hours, and the one in which the semiconductor element 4 malfunctioned during the operation was regarded as a defective product. Table 2 shows the number of defective products.
[0042]
[Table 2]
Figure 2004235264
[0043]
In the samples P24, P25, and P26 where Y ≧ 3X, the temperature of the semiconductor element 4 increases, and the width Y of the groove 2b is larger than the width X of the portion of the input / output terminal 3 located inside the frame 2. It was found that the samples P2, P21, P22, and P23, in which X <Y <3X, had no malfunction, while the samples that had malfunctioned were excellent.
[0044]
It should be noted that the present invention is not limited to the above-described embodiments and examples, and various changes may be made without departing from the scope of the present invention.
[0045]
【The invention's effect】
A semiconductor element housing package according to the present invention includes a square flat metal base having a mounting portion on which a semiconductor element is mounted on an upper main surface, and a metal base mounted on an outer peripheral portion of the upper main surface of the base. A metal frame body attached to surround the portion and formed with a mounting portion for an input / output terminal formed of a notch below the side portion, and the inside and outside of the frame body fitted to the mounting portion. A ceramic input / output terminal having an electrically conductive metallized wiring layer, and the base is located inside the frame on the upper surface thereof, immediately below the input / output terminals, and inside the frame. Since the groove having an area larger than the lower surface of the input / output terminal is formed, the joining area between the input / output terminal and the base can be reduced, and the coefficient of thermal expansion when the input / output terminal is brazed to the mounting portion. Can be effectively reduced. In addition, the groove can prevent heat generated from the semiconductor element from being transmitted to the junction between the base and the input / output terminal directly below the frame at the shortest distance, and a large thermal stress is applied to the junction between the base and the input / output terminal. Can be effectively suppressed. As a result, the input / output terminals made of ceramics are less likely to be damaged such as cracks, and the inside of the package for accommodating a semiconductor element is highly reliably maintained in an airtight manner.
[0046]
The semiconductor device according to the present invention includes the semiconductor element housing package according to the present invention, a semiconductor element mounted and fixed on the mounting portion and electrically connected to the input / output terminals, and attached to the upper surface of the frame. By providing the lid, the airtight reliability using the semiconductor element housing package of the present invention is improved.
[Brief description of the drawings]
FIG. 1 is a plan view showing an example of an embodiment of a package for housing a semiconductor element of the present invention.
FIG. 2 is a cross-sectional view of the semiconductor device housing package of FIG. 1;
FIG. 3 is a plan view of a conventional semiconductor device housing package.
FIG. 4 is a cross-sectional view of the semiconductor device housing package of FIG. 3;
[Explanation of symbols]
1: base 1a: mounting portion 1b: groove 2: frame 2a: mounting portion 3: input / output terminal 4: semiconductor element

Claims (2)

上側主面に半導体素子が載置される載置部が形成された四角平板状の金属製の基体と、該基体の前記上側主面の外周部に前記載置部を囲繞するように取着され、側部の下側に切欠きから成る入出力端子の取付部が形成された金属製の枠体と、前記取付部に嵌着された、前記枠体の内外を電気的に導通するメタライズ配線層を有するセラミックス製の入出力端子とを具備しており、前記基体は、その上面の前記枠体の内側で前記入出力端子の直下の部位に、前記枠体の内側に位置する前記入出力端子の下面よりも大きな面積の溝が形成されていることを特徴とする半導体素子収納用パッケージ。A metal substrate having a rectangular flat plate shape on which a mounting portion on which a semiconductor element is mounted is formed on the upper main surface, and an outer peripheral portion of the upper main surface of the base so as to surround the mounting portion; A metal frame formed with a notch mounting portion for an input / output terminal formed under the side portion, and a metallization fitted into the mounting portion and electrically connected to the inside and outside of the frame. A ceramic input / output terminal having a wiring layer, wherein the base is located inside the frame on the upper surface thereof and directly below the input / output terminal, and the input / output terminal is located inside the frame. A semiconductor element storage package, wherein a groove having an area larger than a lower surface of an output terminal is formed. 請求項1記載の半導体素子収納用パッケージと、前記載置部に載置固定されるとともに前記入出力端子に電気的に接続された半導体素子と、前記枠体の上面に取着された蓋体とを具備していることを特徴とする半導体装置。2. The package for storing a semiconductor element according to claim 1, a semiconductor element mounted and fixed to the mounting portion and electrically connected to the input / output terminal, and a lid attached to an upper surface of the frame. A semiconductor device comprising:
JP2003019487A 2003-01-28 2003-01-28 Package for housing semiconductor element and semiconductor device Withdrawn JP2004235264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003019487A JP2004235264A (en) 2003-01-28 2003-01-28 Package for housing semiconductor element and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019487A JP2004235264A (en) 2003-01-28 2003-01-28 Package for housing semiconductor element and semiconductor device

Publications (1)

Publication Number Publication Date
JP2004235264A true JP2004235264A (en) 2004-08-19

Family

ID=32949331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019487A Withdrawn JP2004235264A (en) 2003-01-28 2003-01-28 Package for housing semiconductor element and semiconductor device

Country Status (1)

Country Link
JP (1) JP2004235264A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156345A (en) * 2011-01-27 2012-08-16 Kyocera Corp Semiconductor element storage package and semiconductor device including the same
JP2012175011A (en) * 2011-02-24 2012-09-10 Kyocera Corp Package for housing semiconductor element, and semiconductor device having the same
JP2013157492A (en) * 2012-01-31 2013-08-15 Kyocera Corp Package for housing element and packaging structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156345A (en) * 2011-01-27 2012-08-16 Kyocera Corp Semiconductor element storage package and semiconductor device including the same
JP2012175011A (en) * 2011-02-24 2012-09-10 Kyocera Corp Package for housing semiconductor element, and semiconductor device having the same
JP2013157492A (en) * 2012-01-31 2013-08-15 Kyocera Corp Package for housing element and packaging structure

Similar Documents

Publication Publication Date Title
JP2007059875A (en) Heat dissipation member, and package for electronic part housing using this and electronic apparatus
JP4926033B2 (en) Circuit board, package using the same, and electronic device
JP3336982B2 (en) Semiconductor device and method of manufacturing the same
JP2004235264A (en) Package for housing semiconductor element and semiconductor device
JP4608409B2 (en) High heat dissipation type electronic component storage package
JP4969389B2 (en) Heat dissipation member, electronic component storage package and electronic device using the same
JP4931851B2 (en) Package and electronic equipment
JP2007012718A (en) Electronic component housing package and electronic device
KR102197642B1 (en) Semiconductor device package with improved heat characteristic and method for forming the same
JP2004356391A (en) Package for encasing semiconductor element and semiconductor device
JP4514598B2 (en) Electronic component storage package and electronic device
JP4057883B2 (en) Semiconductor element storage package and semiconductor device
JP2004266188A (en) Package for semiconductor device, its manufacturing method and semiconductor device using it
JP2004356341A (en) Package for housing semiconductor element, and semiconductor device
JP6162520B2 (en) Package for housing semiconductor element and mounting structure including the same
JP5982303B2 (en) Semiconductor device package, manufacturing method thereof, and semiconductor device
JP2003197803A (en) Semiconductor package
JP6698492B2 (en) Semiconductor package and semiconductor device
JP2005285872A (en) Package for accommodating semiconductor element and semiconductor device
JP2005159251A (en) Electronic part housing package, and electronic equipment
JP2004221327A (en) Semiconductor element housing package and semiconductor device
JP4000093B2 (en) Input / output terminal, manufacturing method of input / output terminal, package for storing semiconductor element using input / output terminal, and semiconductor device
JP2002057235A (en) Package for housing semiconductor element
JP2004235262A (en) Package for housing semiconductor element and semiconductor device
US20180374781A1 (en) Lead package and method for minimizing deflection in microelectronic packaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061120