JP2004233338A - Defect detection method of disc substrate, apparatus for the same, and method for manufacturing substrate for optical disc - Google Patents

Defect detection method of disc substrate, apparatus for the same, and method for manufacturing substrate for optical disc Download PDF

Info

Publication number
JP2004233338A
JP2004233338A JP2003408693A JP2003408693A JP2004233338A JP 2004233338 A JP2004233338 A JP 2004233338A JP 2003408693 A JP2003408693 A JP 2003408693A JP 2003408693 A JP2003408693 A JP 2003408693A JP 2004233338 A JP2004233338 A JP 2004233338A
Authority
JP
Japan
Prior art keywords
shaped substrate
light
disc
disk
abnormal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003408693A
Other languages
Japanese (ja)
Inventor
Toshihiko Okamoto
俊彦 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003408693A priority Critical patent/JP2004233338A/en
Publication of JP2004233338A publication Critical patent/JP2004233338A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a defect detection method for discriminating and detecting defects of the surface and the cross section of a disc substrate as a disc recording medium, comprising a translucent material by using an identical optical system, and to provide an apparatus for the method and a method for manufacturing an optical disc. <P>SOLUTION: While the defect detection apparatus 10 rotates the disc substrate 12, an irradiated light enters internally and obliquely from its surface 12A to a normal of the surface 12A in one rotational direction by using an illumination apparatus 18. The reflected light, reflected by a back face 12B of the disc substrate 12 sequentially enters into a line camera 20. The distance between an abnormal part (real image) due to the defect on the optical path of the entering light and an abnormal part (shadow) on the optical path of the reflection light is detected. It discriminates whether the defect is the surface defect or the internal defect, in response to the distance. The disc substrate, having only the surface defect, is removed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

この発明は、CD(コンパクト・ディスク)、DVD(ディジタル・バーサタイル・ディスク)等の円盤状光記録媒体(光ディスク)となる円盤状基板の欠陥を検出する方法、その装置及び光ディスク用基板の製造方法に関する。   The present invention relates to a method for detecting a defect in a disk-shaped substrate serving as a disk-shaped optical recording medium (optical disk) such as a CD (compact disk) and a DVD (digital versatile disk), an apparatus therefor, and a method for manufacturing an optical disk substrate. About.

データや映像を記録するための記録媒体として、CDやDVDなどに代表される光ディスクが広く用いられているが、近年、さらに大容量のデータや長時間の映像を記録・再生可能な光記録媒体の開発が求められており、光ディスクの記録密度の向上が図られている。   Optical disks such as CDs and DVDs have been widely used as recording media for recording data and images. In recent years, optical recording media capable of recording / reproducing even larger amounts of data and long-time images have been used. And the recording density of optical discs is being improved.

光ディスクの記録密度を高くするために、光ディスクに照射される記録・再生用のレーザ光のビームスポット径を小さくすることが必要であり、さらにレーザ光のビームスポット径は、レーザ光の波長とレンズの開口数との比に比例するため、波長の短いレーザ光と、開口数の大きいレンズを使用して、光ディスクにデータを記録・再生することが必要となる。   In order to increase the recording density of the optical disc, it is necessary to reduce the beam spot diameter of the recording / reproducing laser beam irradiated on the optical disc. The beam spot diameter of the laser beam depends on the wavelength of the laser beam and the lens. Therefore, it is necessary to use a laser beam having a short wavelength and a lens having a large numerical aperture to record and reproduce data on an optical disk.

しかしながら、開口数の大きいレンズを用いると、レーザ光の焦点距離が短くなるため、CDやDVDのような1.2mm程度の厚みを持つ基板では、基板を介してレーザ光を記録層に照射することができない。このため、記録層上に、0.1mm程度の薄い光透過層を形成し、この光透過層を介して、レーザ光を記録層に照射することが提案されている。   However, when a lens having a large numerical aperture is used, the focal length of the laser beam becomes short. Therefore, in the case of a substrate such as a CD or DVD having a thickness of about 1.2 mm, the recording layer is irradiated with the laser beam through the substrate. I can't. For this reason, it has been proposed to form a thin light transmitting layer of about 0.1 mm on the recording layer and to irradiate the recording layer with laser light through the light transmitting layer.

このようにCDやDVDなどは、記録・再生用のレーザ光が基板を介して照射されるため、基板の表面と内部にある両方の異物や基板材料の凝集物等による欠陥が記録・再生時に悪影響を与える。このため、光ディスクの生産時の基板の検査時には、欠陥が基板の表面もしくは内部のどちらに存在するかにかかわらず、欠陥がある基板を取り除くことを行ってきた。   As described above, since a recording / reproducing laser beam is applied to a CD or DVD through the substrate, defects due to both foreign substances on the surface and inside of the substrate and agglomerates of the substrate material may occur during recording / reproduction. Has a negative effect. For this reason, when inspecting a substrate during the production of an optical disk, a defective substrate is removed regardless of whether the defect exists on the surface or inside the substrate.

光ディスクの製造過程における円盤状基板の表面の欠陥検査装置及び検査方法としては、円盤状基板の被検査面に光線を照射し、その光線の反射光又は透過光を前記円盤状基板の中心より外周に向けてライン状に多数の画素を並べた受光手段により受光し、前記円盤状基板を回転させながら前記受光手段から情報を取り込み、前記情報に基づいて正常部と欠陥部とを判別することにより前記円盤状体の欠陥を検査する検査方法及び装置がある(例えば特許文献1参照)。   As a defect inspection apparatus and inspection method for the surface of a disc-shaped substrate in a process of manufacturing an optical disc, a surface to be inspected of the disc-shaped substrate is irradiated with a light beam, and reflected light or transmitted light of the light beam is applied to the outer periphery from the center of the disc-shaped substrate. By receiving light by light receiving means in which a large number of pixels are arranged in a line toward the light, taking in information from the light receiving means while rotating the disc-shaped substrate, and determining a normal part and a defective part based on the information. There is an inspection method and apparatus for inspecting the disk-shaped body for defects (for example, see Patent Document 1).

ここでは、前記受光手段はラインカメラであり、円盤状基板を回転させながらラインカメラによって1周分スキャンし、そのビデオ出力信号を画像処理装置で画像処理し、その処理情報に基づいてCPUにより欠陥の解析を行なうようにしている。   Here, the light receiving means is a line camera, which scans one round by the line camera while rotating the disc-shaped substrate, processes the video output signal by an image processing device, and detects a defect by the CPU based on the processing information. Is analyzed.

例えば、円盤状記録媒体における基板の内部欠陥は、表面欠陥を反射光により検出するのとは別に、透過光により検出するようにしている。   For example, an internal defect of a substrate in a disk-shaped recording medium is detected by transmitted light, in addition to detecting a surface defect by reflected light.

特開2001−241931号公報JP 2001-241931 A

しかしながら、光透過層を介して記録・再生用のレーザ光を照射する光ディスクに関しては、記録・再生用のレーザ光は基板には入射しないために、基板の内部の欠陥は、記録・再生時に悪影響を与えないことになる。ただし、基板の記録層を設ける側の表面に存在する欠陥は、その上に設ける記録層に悪影響を与える。このため、この光ディスクの生産時における、基板の検査工程においては、基板の記録層を設ける側の表面のみに欠陥を持つ基板を取り除くだけで事足りるようになる。   However, with respect to an optical disc that irradiates recording / reproduction laser light through the light transmission layer, since the recording / reproduction laser light does not enter the substrate, defects inside the substrate adversely affect the recording / reproduction. Will not be given. However, defects existing on the surface of the substrate on which the recording layer is provided adversely affect the recording layer provided thereon. For this reason, in the inspection process of the substrate during the production of the optical disk, it is sufficient to remove only the substrate having a defect only on the surface of the substrate on which the recording layer is provided.

しかしながら、従来の検査方法では、簡単に、欠陥を基板の表面のものか内部のものか判別する方法がなかったので、内部のみに欠陥を有する基板も取り除いてしまい、製造の歩留りを低下させる原因となっていた。   However, in the conventional inspection method, there was no method for easily determining whether a defect was on the surface of the substrate or inside the substrate. Therefore, a substrate having a defect only on the inside was also removed, which reduced the production yield. It was.

この発明は、上記問題点に鑑みてなされたものであって、円盤状基板の表面と内部の欠陥を弁別して検出して、製造の歩留りを向上させることができる円盤状基板の欠陥検出方法、その装置及び光ディスクの製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and detects and detects defects on the surface of a disk-shaped substrate and internal defects, a method for detecting a defect on a disk-shaped substrate capable of improving the production yield, An object of the present invention is to provide an apparatus and a method for manufacturing an optical disk.

本発明者は、鋭意研究の結果、光透過性材料からなる円盤状基板を回転させながらその表面から斜めに光を入射させ、裏面での反射光を受光したとき、欠陥が入射光の光路上にあるときと反射光の光路上にあるときの2回検出され、且つこの2回の検出タイミングのズレが表面欠陥と内部欠陥では異なることを見出した。更に、この2回の検出の、円盤状基板回転方向の距離が一定値のときは表面欠陥であり、一定値以下の場合は内部欠陥であることを見出し、これにより表面欠陥のみのある円盤状基板を取り除き、歩留りを向上できることが分った。   The inventor of the present invention has conducted intensive studies and found that when a disc-shaped substrate made of a light-transmitting material is rotated, light is incident obliquely from the front surface of the disc-shaped substrate, and when light reflected on the back surface is received, a defect occurs on the optical path of the incident light. And when it is on the optical path of the reflected light, and it is found that the difference between the two detection timings is different between the surface defect and the internal defect. Further, it is found that when the distance in the disk-shaped substrate rotation direction in these two detections is a fixed value, the defect is a surface defect, and when the distance is less than the fixed value, the defect is an internal defect. It was found that the substrate could be removed and the yield could be improved.

即ち、次の本発明により上記目的は解決される。   That is, the above object is solved by the following present invention.

(1)光透過性材料からなる円盤状基板を回転させながらその表面に、該表面における垂線に対して回転方向の一方に傾斜して照射光を入射する過程と、前記表面から円盤状基板内に入射した照射光の、裏面での反射光を、前記垂線に対して前記照射光と反対側に傾斜した方向から、順次時間をずらして受光し、受光した反射光量が設定値よりも小さいとき又は大きいときに異常部として判定する過程と、前記異常部が時間がずれて2つあるとき、これら2つの異常部が相似形であるか否かを判定し、相似形であるときのこれら2つの異常部の、円盤状基板の回転方向の距離を、画像処理により測定する過程と、前記距離が設定値であるか否かを判定する過程と、前記距離が設定値の場合に表面欠陥ありと判定する過程と、を有してなる円盤状基板の欠陥検出方法。   (1) A process in which irradiation light is incident on a surface of a disk-shaped substrate made of a light-transmitting material while rotating the disk-shaped substrate in one direction of rotation with respect to a perpendicular to the surface, and When the reflected light on the back surface of the irradiated light incident on the back surface is received with a time delay sequentially from a direction inclined to the opposite side to the irradiated light with respect to the perpendicular, and the received reflected light amount is smaller than a set value. Or, when it is large, it is determined as an abnormal part. When there are two abnormal parts with a time difference, it is determined whether or not these two abnormal parts are similar. Two abnormal parts, the distance in the rotational direction of the disk-shaped substrate, a step of measuring by image processing, a step of determining whether the distance is a set value, and a surface defect if the distance is a set value Discriminating a disc Defect detection method of a substrate.

(2)光透過性材料からなる円盤状基板を回転させながらその表面に、該表面における垂線に対して回転方向の一方に傾斜して照射光を入射する過程と、前記表面から円盤状基板内に入射した照射光の、裏面での反射光を、前記垂線に対して前記照射光と反対側に傾斜した方向から、順次時間をずらして受光し、受光した反射光量が設定値よりも小さいとき又は大きいときに異常部として判定する過程と、前記異常部が時間がずれて2つあるとき、これら2つの異常部が相似形であるか否かを判定し、相似形であるときのこれら2つの異常部の、円盤状基板の回転方向の距離を、画像処理により測定して、欠陥の円盤状基板内の厚さ方向の位置を測定する過程と、を有してなる円盤状基板の欠陥検出方法。   (2) A process in which irradiation light is incident on a surface of a disc-shaped substrate made of a light-transmitting material while rotating the disc-shaped substrate in one direction of rotation with respect to a perpendicular to the surface, and When the reflected light on the back surface of the irradiated light incident on the back surface is received with a time delay sequentially from a direction inclined to the opposite side to the irradiated light with respect to the perpendicular, and the received reflected light amount is smaller than a set value. Or, when it is large, it is determined as an abnormal part. When there are two abnormal parts with a time difference, it is determined whether or not these two abnormal parts are similar. Measuring the distance in the rotational direction of the disc-shaped substrate between the two abnormal portions by image processing, and measuring the position of the defect in the thickness direction within the disc-shaped substrate. Detection method.

(3)前記異常部として判定する過程は、受光した反射光量が設定値よりも小さいとき又は大きいときに生じる異常点を検出する過程と、この異常点を円盤状基板の表面上位置に対応したマップに表示し、表示された異常点の集合が異常部としての形状を有するか否かを判定する過程と、を含んでなることを特徴とする(1)又は(2)の円盤状基板の欠陥検出方法。   (3) The step of determining as an abnormal part is a step of detecting an abnormal point that occurs when the amount of reflected light received is smaller or larger than a set value, and the step of detecting the abnormal point corresponding to a position on the surface of the disk-shaped substrate. (1) displaying the map on a map and determining whether the displayed set of abnormal points has a shape as an abnormal portion. Defect detection method.

(4)前記円盤状基板の中心から外周まで、円盤状基板の半径方向に多数の画素を並べたラインカメラにより前記反射光を受光し、このラインカメラにより取り込まれた情報を画像処理して前記2つの異常部間の距離を測定することを特徴とする(1)、(2)又は(3)の円盤状基板の欠陥検出方法。   (4) From the center to the outer periphery of the disc-shaped substrate, the reflected light is received by a line camera in which a number of pixels are arranged in the radial direction of the disc-shaped substrate, and the information captured by the line camera is image-processed. The method for detecting a defect of a disk-shaped substrate according to (1), (2) or (3), wherein a distance between two abnormal portions is measured.

(5)前記2つの異常部間の距離の判定基準となる設定値L(mm)は、前記光透過性材料の屈折率がn、厚さがt(mm)、前記照射光の円盤状基板表面への入射角θ2、n=Sinθ2/Sinθ1であるとき、L=2tTanθ1としたことを特徴とする(1)乃至(4)のいずれかの円盤状基板の欠陥検出方法。 (5) The set value L (mm) serving as a criterion for determining the distance between the two abnormal portions is such that the refractive index of the light transmitting material is n, the thickness is t (mm), and the disk-shaped substrate of the irradiation light when the incident angle θ 2, n = Sinθ 2 / Sinθ 1 to the surface, L = 2tTanθ 1 and the possible, characterized in (1) to (4) any defect detection method of the disk-shaped substrate.

(6)前記照射光の波長を600〜700nmとしたことを特徴とする(1)乃至(5)のいずれかの円盤状基板の欠陥検出方法。   (6) The method for detecting defects of a disc-shaped substrate according to any one of (1) to (5), wherein the wavelength of the irradiation light is 600 to 700 nm.

(7)前記照射光の、前記光透過性材料層表面の法線に対する角度である入射角を15°〜85°、好ましくは30°〜45°としたことを特徴とする(1)乃至(6)のいずれかの円盤状基板の欠陥検出方法。   (7) An incident angle of the irradiation light, which is an angle with respect to a normal to the surface of the light transmitting material layer, is set to 15 ° to 85 °, preferably 30 ° to 45 °. 6) The method for detecting a defect of a disc-shaped substrate according to any one of 6).

(8)光透過性材料により形成されている円盤状基板を載置し、且つ、これを回転させる回転支持装置と、前記円盤状基板の表面に、該表面における垂線に対して回転方向の一方に傾斜して照射光を入射する照射装置と、前記円盤状基板を回転させながら円盤状基板の中心から外周までを半径方向に同時又は順次に測定し、前記照射光が前記円盤状基板の表面から内部に入射して、その裏面において生じた反射光を時間をずらして順次受光する光検出装置と、この光検出装置により受光した反射光量が設定値よりも小さい又は大きいときに異常部として判定すると共に、前記異常部が、時間がずれて少なくとも2つあるとき、これらの異常部が相似形であるか否かを判定し、相似形の場合、2つの異常部間の円盤状基板回転方向の距離を測定する画像処理装置と、前記測定した距離が設定値の場合に表面欠陥ありと判定する判定装置と、を有してなる円盤状基板の欠陥検出装置。   (8) A rotation support device for mounting and rotating a disk-shaped substrate formed of a light-transmitting material, and one surface of the disk-shaped substrate in a direction of rotation with respect to a perpendicular to the surface. Irradiation device that irradiates the irradiation light obliquely, and simultaneously or sequentially measures the center of the disc-shaped substrate to the outer periphery in the radial direction while rotating the disc-shaped substrate, and the irradiation light is irradiated on the surface of the disc-shaped substrate. And a light detecting device that sequentially receives the reflected light generated on the back surface thereof with a time lag, and determines that the reflected light received by the light detecting device is abnormal when the amount of reflected light is smaller or larger than a set value. In addition, when there are at least two abnormal portions with a time lag, it is determined whether or not these abnormal portions have similar shapes. If the abnormal portions have similar shapes, the disk-shaped substrate rotation direction between the two abnormal portions is determined. Measure distance That the image processing apparatus and the measured distance defect detection device of a disk-shaped substrate made have, a determining unit that there is surface defects in the case of setting values.

(9)前記画像処理装置は、前記光検出装置により受光した反射光量が設定値よりも小さい又は大きいときに異常点として検出し、且つ、この異常点を円盤状基板の表面上位置に対応したマップに表示し、表示された異常点の集合が異常部としての形状を有するか否かを判定するようにされていることを特徴とする(8)の円盤状基板の欠陥検出装置。   (9) The image processing apparatus detects an abnormal point when the amount of reflected light received by the photodetector is smaller or larger than a set value, and the abnormal point corresponds to a position on the surface of the disk-shaped substrate. (8) The disc-shaped substrate defect detection device according to (8), wherein the defect detection device is displayed on a map and determines whether or not the displayed set of abnormal points has a shape as an abnormal portion.

(10)前記光検出装置は、前記円盤状基板の中心から外周まで、円盤状基板の半径方向に多数の画素を並べてなるラインカメラであることを特徴とする(8)又は(9)の円盤状基板の欠陥検出装置。   (10) The disk according to (8) or (9), wherein the photodetector is a line camera in which a number of pixels are arranged in a radial direction of the disk-shaped substrate from a center to an outer periphery of the disk-shaped substrate. Defect detection device for substrate.

(11)前記判定装置は、前記2つの異常部間の距離の判定基準となる設定値L(mm)が、前記光透過性材料の屈折率をn、厚さをt(mm)、前記照射光の円盤状基板表面への入射角をθ2、n=Sinθ2/Sinθ1としたときに、L=2tTanθ1となるように設定されていることを特徴とする(8)、(9)又は(10)の円盤状基板の欠陥検出装置。 (11) In the determination device, the set value L (mm) serving as a criterion for determining the distance between the two abnormal portions is such that the refractive index of the light transmitting material is n, the thickness is t (mm), and the irradiation is when the incident angle to the disk-shaped substrate surface of the light was θ 2, n = Sinθ 2 / Sinθ 1, characterized in that it is set to be L = 2tTanθ 1 (8), (9) Or the defect detection device for a disc-shaped substrate according to (10).

(12)前記照射装置から前記円盤状基板に至る照射光の光路上に、特定波長を中心とする所定幅の波長領域の光のみを透過するバンドパスフィルタを設けたことを特徴とする(8)乃至(11)のいずれかの円盤状基板の欠陥検出装置。   (12) On the optical path of the irradiation light from the irradiation device to the disc-shaped substrate, a band-pass filter that transmits only light in a wavelength region of a predetermined width centered on a specific wavelength is provided. The defect detection apparatus for a disc-shaped substrate according to any one of (1) to (11).

(13)前記バンドパスフィルタを透過した光を、左旋又は右旋円偏光、偏光面が互いに直交する2つの直線偏光の一方のいずれかに偏光させる偏光板を設けると共に、前記円盤状基板から前記光検出装置に至る反射光路中に、反射光が、前記偏光板を通った偏光と位相がπだけシフトされた偏光のみを透過させる受光側偏光板を設けたことを特徴とする(12)の円盤状基板の欠陥検出装置。   (13) A polarizing plate for polarizing the light transmitted through the bandpass filter to one of left-handed or right-handed circularly polarized light and two linearly polarized lights whose polarization planes are orthogonal to each other is provided. (12) A light receiving side polarizing plate is provided in the reflected light path leading to the photodetector, in which the reflected light transmits only the polarized light having a phase shifted by π from the polarized light passing through the polarizing plate. Defect detection device for disk-shaped substrates.

(14)光透過性材料から円盤状基板を連続的に形成する過程と、前記円盤状基板を回転させながらその表面に、該表面における垂線に対して回転方向の一方に傾斜して照射光を入射する過程と、前記表面から円盤状基板内に入射した照射光の、裏面での反射光を、前記垂線に対して前記照射光と反対側に傾斜した方向から、順次時間をずらして受光し、受光した反射光量が設定値よりも小さいとき又は大きいときに異常部として判定する過程と、前記異常部が時間がずれて2つあるとき、これら2つの異常部が相似形であるか否かを判定し、相似形であるときのこれら2つの異常部の、円盤状基板の回転方向の距離を、画像処理により測定する過程と、前記距離が設定値であるか否かを判定する過程と、前記距離が設定値の場合に表面欠陥ありと判定する過程と、前記表面欠陥ありと判定された以外の円盤状基板に、少なくとも記録層及び光透過層をこの順で形成する過程と、を有してなる光ディスクの製造方法。   (14) A process of continuously forming a disc-shaped substrate from a light-transmitting material, and irradiating the disc-shaped substrate with the irradiation light while rotating the disc-shaped substrate in one of the rotation directions with respect to a perpendicular to the surface. The process of incidence, and the irradiation light incident on the disc-shaped substrate from the front surface, the reflected light on the back surface, from the direction inclined to the opposite side to the irradiation light with respect to the perpendicular, received the light sequentially with a time shift. A step of judging an abnormal portion when the amount of reflected light received is smaller or larger than a set value; and, when two abnormal portions are out of time, whether or not these two abnormal portions have similar shapes. Determining the distance between these two abnormal portions when they have similar shapes in the rotational direction of the disc-shaped substrate by image processing, and determining whether or not the distance is a set value. , Surface defects when the distance is the set value And litho determining step, wherein the disk-shaped substrate other than where it is determined that there is a surface defect, at least a recording layer and a method of producing an optical disk consisting comprises a process, the forming the light transmission layer in this order.

(15)光透過性材料から円盤状基板を連続的に形成する過程と、前記円盤状基板を回転させながらその表面に、該表面における垂線に対して回転方向の一方に傾斜して照射光を入射する過程と、前記表面から円盤状基板内に入射した照射光の、裏面での反射光を、前記垂線に対して前記照射光と反対側に傾斜した方向から、順次時間をずらして受光し、受光した反射光量が設定値よりも小さいとき又は大きいときに異常部として判定する過程と、前記異常部が時間がずれて2つあるとき、これら2つの異常部が相似形であるか否かを判定し、相似形であるときのこれら2つの異常部の、円盤状基板の回転方向の距離を、画像処理により測定して、欠陥の円盤状基板内の厚さ方向の位置を測定する過程と、前記表面欠陥ありと判定された以外の円盤状基板に、少なくとも記録層及び光透過層をこの順で形成する過程と、を有してなる光ディスクの製造方法。   (15) A process of continuously forming a disc-shaped substrate from a light-transmitting material, and irradiating the disc-shaped substrate with the irradiation light tilted in one of the rotation directions with respect to a perpendicular to the surface while rotating the disc-shaped substrate. The process of incidence, and the irradiation light incident on the disc-shaped substrate from the front surface, the reflected light on the back surface, from the direction inclined to the opposite side to the irradiation light with respect to the perpendicular, received the light sequentially with a time shift. A step of judging an abnormal portion when the amount of reflected light received is smaller or larger than a set value; and, when two abnormal portions are out of time, whether or not these two abnormal portions have similar shapes. Determining the position of the defect in the thickness direction in the disk-shaped substrate by measuring the distance between these two abnormal portions in the rotational direction of the disk-shaped substrate when they are similar to each other by image processing. Except that it was determined that there was a surface defect The disk-shaped substrate, at least a recording layer and a method of producing an optical disk consisting comprises a process, the forming the light transmission layer in this order.

(16)前記異常部として判定する過程は、受光した反射光量が設定値よりも小さいとき又は大きいときに生じる異常点を検出する過程と、この異常点を円盤状基板の表面上位置に対応したマップに表示し、表示された異常点の集合が異常部としての形状を有するか否かを判定する過程と、を含んでなることを特徴とする(14)又は(15)の光ディスクの製造方法。   (16) The step of determining the abnormal portion is a process of detecting an abnormal point that occurs when the amount of reflected light received is smaller or larger than a set value, and the process of detecting the abnormal point with a position on the surface of the disk-shaped substrate. (14) or (15) the method of manufacturing an optical disc according to (14) or (15), further comprising the step of: displaying on a map and determining whether or not the displayed set of abnormal points has a shape as an abnormal portion. .

(17)前記円盤状基板の中心から外周まで、円盤状基板の半径方向に多数の画素を並べたラインカメラにより前記反射光を受光し、このラインカメラにより取り込まれた情報を画像処理して前記2つの異常部間の距離を測定することを特徴とする(14)乃至(16)のいずれかの光ディスクの製造方法。   (17) The line camera in which a large number of pixels are arranged in the radial direction of the disk-shaped substrate from the center to the outer periphery of the disk-shaped substrate receives the reflected light, and the information captured by the line camera is image-processed. The method for manufacturing an optical disc according to any one of (14) to (16), wherein a distance between two abnormal portions is measured.

(18)前記2つの異常部間の距離の判定基準となる設定値L(mm)は、前記光透過性材料の屈折率がn、厚さがt(mm)、前記照射光の円盤状基板表面への入射角θ2、n=Sinθ2/Sinθ1であるとき、L=2tTanθ1としたことを特徴とする(14)乃至(17)のいずれかの光ディスクの製造方法。 (18) The set value L (mm) serving as a criterion for determining the distance between the two abnormal portions is such that the refractive index of the light-transmitting material is n, the thickness is t (mm), and the disk-shaped substrate of the irradiation light when the incident angle θ 2, n = Sinθ 2 / Sinθ 1 to the surface, L = 2tTanθ 1 and was characterized by the (14) to one of optical disc manufacturing method (17).

本発明は上記のように構成したので、円盤状基板の表面の欠陥と内部の欠陥とを、同一の光学系により確実に判別して検出することができ、又、光ディスクの製造歩留りを向上させることができるという優れた効果を有する。   Since the present invention is configured as described above, defects on the surface of the disc-shaped substrate and defects on the inside thereof can be reliably determined and detected by the same optical system, and the production yield of the optical disc can be improved. It has an excellent effect that it can be performed.

図1に示されるように、本発明の実施の最良の形態に係る円盤状基板の欠陥検出装置10は、光ディスク製造装置50(図8参照)の一部を構成し、基板製造装置60で製造され、光透過性材料から形成されている円盤状基板(次工程で各種の膜が形成されて光ディスクとなる)12を、膜形成側を露出して載置し、且つ、これを回転させる回転支持装置16と、前記膜形成側に対して、図1において、上方から斜めに照射光を入射させる照射装置18と、前記円盤状基板12を回転させながら該円盤状基板12の中心から外周までを半径方向に同時に測定し、前記照射装置18からの照射光の、前記円盤状基板12の表面及び裏面(詳細後述)における反射光を受光するラインカメラ20と、このラインカメラ20により受光した反射光量が、円盤状基板12の表面や内部にある欠陥により設定値よりも小さいときに生じる暗点又は大きいときに生じる明点を異常点として検出し、この異常点を基板表面に並べたときに、異常点によって形成される集合を異常部とする。従って、この異常部の形状が欠陥の大きさや形状を示すことになる。   As shown in FIG. 1, a disk-shaped substrate defect detection apparatus 10 according to the preferred embodiment of the present invention constitutes a part of an optical disk manufacturing apparatus 50 (see FIG. 8) and is manufactured by a substrate manufacturing apparatus 60. Then, a disk-shaped substrate 12 made of a light-transmitting material (an optical disk formed by forming various films in the next step) is placed with its film-forming side exposed and rotated. In FIG. 1, a supporting device 16, an irradiating device 18 for irradiating the irradiating light obliquely from above with respect to the film-forming side, and a center to an outer periphery of the disc-shaped substrate 12 while rotating the disc-shaped substrate 12. Are simultaneously measured in the radial direction, and a line camera 20 for receiving reflected light of the irradiation light from the irradiation device 18 on the front surface and the back surface (described in detail later) of the disc-shaped substrate 12, and a reflection light received by the line camera 20. Light intensity When a dark point generated when the value is smaller than the set value or a bright point generated when the value is larger than the set value due to a defect on the surface or inside of the disk-shaped substrate 12 is detected as an abnormal point, and when the abnormal point is arranged on the substrate surface, an abnormal A set formed by points is regarded as an abnormal part. Therefore, the shape of the abnormal portion indicates the size and shape of the defect.

この異常部を検出すると共に、異常部が時間をずらして2回検出されたとき、これら2つの異常部の形状が相似形であるか否かを判定し、相似形の場合、2つの異常部の円盤状基板回転方向の距離を測定する画像処理装置22と、前記測定した距離が設定値の場合に表面欠陥ありと判定する判定装置であるCPU24と、を有して構成されている。   When the abnormal portion is detected and the abnormal portion is detected twice with a time shift, it is determined whether or not the shapes of the two abnormal portions are similar. If the abnormal portions are similar, the two abnormal portions are determined. An image processing device 22 for measuring the distance in the rotational direction of the disk-shaped substrate, and a CPU 24 which is a determination device for determining that there is a surface defect when the measured distance is a set value.

図1の符号26は回転支持装置16の一部を構成するモータ、28はこのモータ26の回転速度を制御するためのモータ制御装置、30は前記CPU24における判定結果を表示するためのディスプレイ、32は同判定結果を出力するプリンタ、34はCPU24の判定結果に応じて検査した円盤状基板を次工程に搬送又は欠陥品として排出する搬送装置、36はCPU24からの判定結果信号を搬送装置34に送るシーケンサをそれぞれ示す。前記回転支持装置16は、後述の検査台40上に設けられている。   In FIG. 1, reference numeral 26 denotes a motor constituting a part of the rotation support device 16, reference numeral 28 denotes a motor control device for controlling the rotation speed of the motor 26, reference numeral 30 denotes a display for displaying the judgment result in the CPU 24, reference numeral 32 Is a printer that outputs the same determination result, 34 is a transport device that transports the disc-shaped substrate inspected according to the determination result of the CPU 24 to the next process or discharges it as a defective product, and 36 is a determination result signal from the CPU 24 to the transport device 34. The sequencer to be sent is shown. The rotation support device 16 is provided on an inspection table 40 described later.

前記円盤状基板12は、図2にその一部の断面が拡大して模式的に示されるように、ポリカーボネイト(PC)基板であり、該PC基板12の膜形成側の表面12Aに、順に、反射膜14A、耐熱保護膜14B、記録膜14C、界面層14D、耐熱保護膜14E、光透過層14Fが形成されて、更に、最も外側のハードコート層14Gが形成されて光ディスク14となる。   The disc-shaped substrate 12 is a polycarbonate (PC) substrate as shown in FIG. 2 with a partial cross-sectional view schematically enlarged. The reflective film 14A, the heat-resistant protective film 14B, the recording film 14C, the interface layer 14D, the heat-resistant protective film 14E, and the light-transmitting layer 14F are formed, and further, the outermost hard coat layer 14G is formed to form the optical disc 14.

前記欠陥検出装置10によって円盤状基板12を検査した後の工程(成膜ライン70:図8参照)で、前記反射膜14A〜ハードコート層14Gが形成される。   In a step (film formation line 70: see FIG. 8) after the disk-shaped substrate 12 is inspected by the defect detection device 10, the reflection film 14A to the hard coat layer 14G are formed.

前記照射装置18は、図3に示されるように、円盤状基板12の内周から外周に半径方向の直線状に横断する帯状の照射領域19を照射するようにされている。この照射装置18は、図4に示されるように、ハロゲンランプ等からなる光源18Aと、この光源18Aから前記円盤状基板12に至る照射光の光路上に順に配置されたバンドパスフィルタ18B、SC(シャープカット)フィルタ18C、直線偏光板18D、λ/4位相差板18Eを含んで構成され、前記円盤状基板12の表面に右旋又は左旋円偏光を照射光として入射するようにされている。   As shown in FIG. 3, the irradiating device 18 irradiates a band-shaped irradiation region 19 that traverses from the inner circumference to the outer circumference of the disc-shaped substrate 12 in a straight line in the radial direction. As shown in FIG. 4, the irradiation device 18 includes a light source 18A such as a halogen lamp, and band-pass filters 18B and SC arranged in this order on the optical path of irradiation light from the light source 18A to the disc-shaped substrate 12. (Sharp cut) A filter 18C, a linear polarizing plate 18D, and a λ / 4 phase difference plate 18E are included. The right-handed or left-handed circularly polarized light is incident on the surface of the disk-shaped substrate 12 as irradiation light. .

ここで、前記バンドパスフィルタ18Bは波長650nmをピークとして一定帯域幅の波長光を透過するようにされ、又SCフィルタ18Cは610nm未満の波長光をカットするようにされている。   Here, the band-pass filter 18B is designed to transmit light of a certain bandwidth with a peak at a wavelength of 650 nm, and the SC filter 18C is designed to cut light having a wavelength of less than 610 nm.

前記ラインカメラ20は、前記円盤状基板12の中心から外周に向けてライン状に多数の画素(例えば4096ピクセル)を並べてなり、各画素毎に受光した反射光の光量に応じて、ビデオ出力信号を画像処理装置22に出力するようにされている。   The line camera 20 has a large number of pixels (for example, 4096 pixels) arranged in a line from the center of the disc-shaped substrate 12 to the outer periphery thereof, and a video output signal is provided in accordance with the amount of reflected light received for each pixel. Is output to the image processing device 22.

前記ラインカメラ20と前記円盤状基板12との間の反射光の光路上には、円偏光板20Aが配置されている。この円偏光板20Aは、前記照射装置18から照射された左旋又は右旋円偏光が円盤状基板12の裏面において反射され、位相がπだけ転換して右旋又は左旋円偏光となった反射光のみが透過できるようにされている。   On the optical path of the reflected light between the line camera 20 and the disc-shaped substrate 12, a circularly polarizing plate 20A is arranged. The circularly polarizing plate 20A reflects the left-handed or right-handed circularly polarized light irradiated from the irradiation device 18 on the back surface of the disc-shaped substrate 12, and changes the phase by π to the right-handed or left-handed circularly polarized light. Only the transmission is allowed.

前記照射装置18及びラインカメラ20の配置は、図5に示されるように、照射装置18による照射光Iが、円盤状基板12の表面12Aから内部に入射し、且つ裏面12Bで反射された反射光Rが、ラインカメラ20に入射するようにされている。   As shown in FIG. 5, the arrangement of the irradiation device 18 and the line camera 20 is such that the irradiation light I from the irradiation device 18 enters the inside from the front surface 12A of the disc-shaped substrate 12 and is reflected by the back surface 12B. The light R is incident on the line camera 20.

ここで、前記照射光Iは、表面12Aの垂線に対して、円盤状基板12の回転方向すなわち接線方向の一方に傾斜して、且つ、円盤状基板12の表面12Aの垂線に対する角度、即ち入射角θ2が15°〜85°となるようにされている。この角度の範囲であれば、照射光が全反射されたりすることなく、円盤状基板12の表面12Aから断面内に入射し、且つ、裏面12Bで反射される。反射光は、前記表面12Aの垂線に対して、前記照射光とは反対に傾斜した位置でラインカメラ20に受光される。 Here, the irradiation light I is inclined in one of the rotation direction, that is, the tangential direction of the disc-shaped substrate 12 with respect to the normal to the surface 12A, and the angle with respect to the normal to the surface 12A of the disc-shaped substrate 12, that is, the incident light. The angle θ 2 is set to 15 ° to 85 °. Within this angle range, the irradiation light enters the cross section from the front surface 12A of the disc-shaped substrate 12 without being totally reflected, and is reflected on the back surface 12B. The reflected light is received by the line camera 20 at a position inclined with respect to a perpendicular to the surface 12A, opposite to the irradiation light.

特に、測定される実像とシャドウ(後述参照)との距離が大きい欠陥でも重ならず測定できるように、θ2を大きくする必要があり、又、θ2を大きくしすぎると、実像とシャドウの距離が大きくなるため、これら相似形と判断するためのデータ処理量が大きくなるので、θ2は30°〜45°が好ましい。 In particular, real and shadow which is measured so as to measure not to overlap the defect distance is large between (see below), it is necessary to increase the theta 2, also, when too large theta 2, real and shadow Since the distance becomes large and the amount of data processing for determining these similar shapes becomes large, θ 2 is preferably 30 ° to 45 °.

前記画像処理装置22は、例えば図6に示されるように、ラインカメラ20の各ピクセル番号を円盤状基板12の中心側から外周側に横軸にとり、且つ縦軸に受光量(反射光量)をとったときの、反射光量の低い設定値(lowスレッシュレベル)と高い設定値(highスレッシュレベル)を基準として、lowスレッシュレベルよりも小さいとき、これを暗点として検出する。図7は、ラインカメラの1〜4096ピクセル番号の画素が受光量を検出することで、得られた判定の結果を横に並べて表示し、このラインカメラが順次時間をずらし(スキャンして)受光量を検出することで得られた判定の結果を縦に並べてマップとして表示してある。1つのピクセルの1スキャン分の判定結果は、図7において1マス(1ドット)で表示されている。4096×24000ドットで円盤状基板の全表面上位置を表わす。図6のように検出された暗点の集合体を、例えば図7に示されるように、径方向3ドット、スキャン方向4ドットの異常部として記録し、且つ該異常部と他の異常部との相似関係及び両者間の、円盤状基板円周方向の距離を算出するようにされている。なお、欠陥の光透過率が円盤状基板12の材料よりも大きいときなどで、反射光量が高い設定値(highスレッシュレベル)よりも大きいときは明点として検出され、その集合体も異常部となる。   For example, as shown in FIG. 6, the image processing device 22 sets each pixel number of the line camera 20 on the horizontal axis from the center side of the disc-shaped substrate 12 to the outer peripheral side, and the light reception amount (reflected light amount) on the vertical axis. Based on a low set value (low threshold level) and a high set value (high threshold level) of the reflected light amount, when the reflected light amount is smaller than the low threshold level, this is detected as a dark point. FIG. 7 shows the result of the judgment obtained by detecting the amount of light received by the pixels of the 1-4096 pixel numbers of the line camera, and the line camera sequentially shifts the time (scans) to receive light. The determination results obtained by detecting the amounts are displayed vertically as a map. The determination result for one scan of one pixel is displayed in one square (one dot) in FIG. The position on the entire surface of the disc-shaped substrate is represented by 4096 × 24000 dots. An aggregate of dark spots detected as shown in FIG. 6 is recorded as an abnormal portion of 3 dots in the radial direction and 4 dots in the scan direction, for example, as shown in FIG. And the distance between them in the circumferential direction of the disc-shaped substrate is calculated. When the light transmittance of the defect is larger than the material of the disk-shaped substrate 12, for example, when the amount of reflected light is larger than a high set value (high threshold level), it is detected as a bright point, and the aggregate thereof is also regarded as an abnormal part. Become.

後述のように、図7における先行する(上側)異常部(暗点の集合体又は明点の集合体;以下同じ)D1は実像、後行する(下側)異常部D2はシャドウと認識される。 As will be described later, the preceding (upper) abnormal portion (a collection of dark spots or a collection of bright spots; the same applies hereinafter) D 1 in FIG. 7 is a real image, and the following (lower) abnormal portion D 2 is a shadow. Be recognized.

前記CPU24は、前記2つの異常部D1とD2間の距離Lを、予め設定されている設定基準値と比較して、これとほぼ一致すれば表面欠陥、小さければ内部欠陥と判定して判定結果をシーケンサ36を介して搬送装置34に送り、搬送装置34は入力した結果情報に基づいて、検査した円盤状基板12を後工程に送ったり、又はNGとしてラインから排出したりするようにされている。 The CPU 24 compares the distance L between the two abnormal portions D 1 and D 2 with a preset set reference value. The determination result is sent to the transfer device 34 via the sequencer 36, and based on the input result information, the transfer device 34 sends the inspected disk-shaped substrate 12 to a subsequent process or discharges the inspected disc-shaped substrate 12 from the line as NG. Have been.

ここで、前記2つの異常部間の距離の判定基準となる設定値L(mm)は、前記円盤状基板12の屈折率がn、厚さがt(mm)、前記照射光の、円盤状基板の表面12Aへの入射角がθ2、n=Sinθ2/Sinθ1であるとき、L=2tTanθ1としてある。 Here, the set value L (mm) serving as a criterion for determining the distance between the two abnormal portions is such that the refractive index of the disk-shaped substrate 12 is n, the thickness is t (mm), and when the incident angle to the surface 12A of the substrate is θ 2, n = Sinθ 2 / Sinθ 1, there as L = 2tTanθ 1.

前記搬送装置34は、図8に示されるように、基板製造装置60において製造された円盤状基板12を、前工程搬送ラインの端末38から検査台40に移載する第1の移載装置42と、検査を終了した円盤状基板12を検査台40から後工程搬送ライン44又は排出ライン46に選択的に振り分ける第2の移載装置48とから構成されている。前記後工程搬送ライン44は、検査に合格した円盤状基板12を、反射膜14A、耐熱保護膜14B、記録膜14C、界面層14D、耐熱保護膜14E、光透過層14F、及びハードコート層14Gを形成する成膜ライン70に搬送するようにされている。   As shown in FIG. 8, the transfer device 34 includes a first transfer device 42 that transfers the disc-shaped substrate 12 manufactured by the substrate manufacturing device 60 from the terminal 38 of the pre-process transfer line to the inspection table 40. And a second transfer device 48 for selectively distributing the disc-shaped substrate 12 after the inspection from the inspection table 40 to the post-process transfer line 44 or the discharge line 46. The post-process transfer line 44 converts the disc-shaped substrate 12 that has passed the inspection into a reflective film 14A, a heat-resistant protective film 14B, a recording film 14C, an interface layer 14D, a heat-resistant protective film 14E, a light transmission layer 14F, and a hard coat layer 14G. Is transported to a film forming line 70 for forming a film.

次に、図9を参照して、基板製造装置60から搬送された円盤状基板12を、前記欠陥検出装置10により、表面の欠陥又は内部欠陥を検出し、且つ、光ディスク14として完成させる過程について説明する。   Next, referring to FIG. 9, a process of detecting a surface defect or an internal defect of the disc-shaped substrate 12 conveyed from the substrate manufacturing apparatus 60 by the defect detection device 10 and completing the optical disc 14 is described. explain.

基板製造装置60により連続的に円盤状基板12を製造し、第1の移載装置42によって、前記製造された円盤状基板12を、その表面12Aを上向きにして、搬送端末38から検査台40上の回転支持装置16上に移載する。   The disk-shaped substrate 12 is continuously manufactured by the substrate manufacturing apparatus 60, and the manufactured disk-shaped substrate 12 is placed on the inspection table 40 from the transport terminal 38 by the first transfer device 42 with the surface 12 </ b> A facing upward. It is transferred onto the upper rotation support device 16.

次に、モータ制御装置28を介してモータ26を所定回転速度で回転させつつ、照射装置18から、被検査対象である円盤状基板12の上側にある表面12Aに対して照射光を投射する。その反射光は、前記ラインカメラ20の各画素に入力される。このとき、ラインカメラ20は、1回の撮影(1スキャン)で光量を測定し、連続してスキャンしていく。この際、円盤状基板12は回転し、光の入射及び反射する位置が順次ずれることにより、順次時間をずらして反射光が受光される。   Next, irradiation light is projected from the irradiation device 18 onto the upper surface 12A of the disk-shaped substrate 12 to be inspected while rotating the motor 26 at a predetermined rotation speed via the motor control device 28. The reflected light is input to each pixel of the line camera 20. At this time, the line camera 20 measures the light amount in one photographing (one scan) and scans continuously. At this time, the disc-shaped substrate 12 rotates, and the positions where the light enters and reflects are sequentially shifted, so that the reflected light is received at sequentially shifted times.

このとき、照射光である入射光Iは、図5に示されるように、円盤状基板12の表面12Aから屈折して裏面12Bに至り、ここで反射されて表面12Aから反射光Rとして出射する。   At this time, the incident light I, which is the irradiation light, is refracted from the front surface 12A of the disc-shaped substrate 12, reaches the back surface 12B, is reflected here, and is emitted from the front surface 12A as reflected light R, as shown in FIG. .

この入射光I又は反射光Rの光路上に欠陥があると、その部分での反射光量が低下(又は増大)するので、正常光とのコントラストの差が一定以上あれば、ラインカメラ20における各画素の受光量が、図6に示されるようにlowスレッシュレベルを下回る(又はhighスレッシュレベルを上回る)ことになる。   If there is a defect on the optical path of the incident light I or the reflected light R, the amount of reflected light at that portion decreases (or increases). The amount of light received by the pixel falls below the low threshold level (or exceeds the high threshold level) as shown in FIG.

従って、これが、図10のステップ101における欠陥検出となる。ステップ101において欠陥検出があった場合は、次のステップ102において、例えば図7に示されるように異常部D1の大きさが円盤状基板半径方向に3ドット、スキャン方向に4ドットというようにして測定される。 Therefore, this is the defect detection in step 101 of FIG. If there is a defect detected at step 101, in a next step 102, for example, the size of the abnormal portion D 1 as shown in FIG. 7 as three dots in the shape of a disc substrate radially, of four dots in the scanning direction Measured.

円盤状基板12の表面12Aに欠陥Fがあったとき、この欠陥Fが図10(A)に示されるように入射光Iの光路を横切った後に、更に円盤状基板12が回転することによってわずかの時間後に、図10(B)に示されるように、欠陥Fが反射光Rの光路を横切る。   When there is a defect F on the surface 12A of the disc-shaped substrate 12, the defect F crosses the optical path of the incident light I as shown in FIG. After the time, the defect F crosses the optical path of the reflected light R as shown in FIG.

従って、この欠陥Fは、図7に示されるように、円盤状基板12の半径方向には同一位置で、且つスキャン方向にずれて、異常部D1(実像)及び異常部D2(シャドウ)として画像処理装置22により検出される。 Therefore, as shown in FIG. 7, the defect F is located at the same position in the radial direction of the disk-shaped substrate 12 and is shifted in the scanning direction, so that the abnormal portion D 1 (real image) and the abnormal portion D 2 (shadow) Is detected by the image processing device 22.

欠陥Gが円盤状基板12の断面内にある場合、図11(A)及び(B)に示されるように、入射光Iの、円盤状基板12断面内での光路及び反射光Rの円盤状基板12断面内での光路を順次横切る。この場合も、実像及びシャドウがずれて検出される。   When the defect G is present in the cross section of the disc-shaped substrate 12, as shown in FIGS. 11A and 11B, the optical path of the incident light I and the disc-shaped reflection light R in the cross-section of the disc-shaped substrate 12. The optical path sequentially crosses the cross section of the substrate 12. Also in this case, the real image and the shadow are detected as being shifted.

次に、ステップ103において、検出された2つの異常部D1、D2が相似形であるか否か、即ち実像とシャドウとの関係にあるか否かを認識すると共に、両者間の距離L(図7参照)を測定する。 Next, in step 103, it is determined whether or not the two detected abnormal portions D 1 and D 2 are similar, that is, whether or not there is a relationship between the real image and the shadow, and the distance L between the two is determined. (See FIG. 7).

相似形であると認識された場合は次のステップ104に進み、CPU24において前記2つの異常部D1、D2間の距離が設定値Lとほぼ等しいか、あるいは設定値以下であるか否かを判別する。 If the similar shape is recognized, the process proceeds to the next step 104, and the CPU 24 determines whether or not the distance between the two abnormal portions D 1 and D 2 is substantially equal to the set value L or smaller than the set value. Is determined.

ここで、図12に示されるように、欠陥Gが円盤状基板12の断面内にあるとき、入射光Iの光路上での検出位置と反射光の光路上での検出位置での異常部間の距離lは、前記設定値L(mm)よりも当然小さくなる。   Here, as shown in FIG. 12, when the defect G is within the cross section of the disc-shaped substrate 12, the abnormal position between the detection position on the optical path of the incident light I and the detection position on the optical path of the reflected light is detected. Is naturally smaller than the set value L (mm).

従って、検出された2つの異常部が相似形であるとき、両者間の距離がLにほぼ等しいとき、該異常部は表面欠陥を示すものであり、Lよりも小さい場合は内部欠陥を示すものであると判別される。   Accordingly, when two detected abnormal portions are similar in shape, when the distance between the two is substantially equal to L, the abnormal portion indicates a surface defect, and when smaller than L, indicates an internal defect. Is determined.

判別の結果、2つの異常部D1、D2間の距離がほぼ設定値Lと等しい場合は表面欠陥と判断され(ステップ105)、ステップ106及びステップ107に進む。 As a result of the determination, if the distance between the two abnormal portions D 1 and D 2 is substantially equal to the set value L, it is determined that the surface defect is present (Step 105), and the process proceeds to Steps 106 and 107.

ステップ106では、CPU24において、表面欠陥(暗点又は明点の集合体からなる異常部)の大きさを、予め入力されている設定値と比較して判別する。   In step 106, the CPU 24 determines the size of a surface defect (an abnormal portion formed of an aggregate of dark spots or bright spots) by comparing the size with a preset input value.

大きさが設定値以下の場合は小欠陥であり、ステップ107においてOKとなって、第2の移載装置48により、検査台40上の円盤状基板12は後工程搬送ライン44に移載される。   If the size is equal to or smaller than the set value, it is a small defect, the result is OK in step 107, and the disk-shaped substrate 12 on the inspection table 40 is transferred to the post-process transfer line 44 by the second transfer device 48. You.

又、大きさが設定値以上であれば、これはステップ109においてNGとされ、第2の移載装置48は検査台40上の円盤状基板12を排出ライン46に移載する。   If the size is equal to or larger than the set value, this is determined as NG in step 109, and the second transfer device 48 transfers the disc-shaped substrate 12 on the inspection table 40 to the discharge line 46.

前記ステップ107では、表面欠陥が、個々が小さくても塊になっている場合に大きな1つの欠陥とする、即ち集合判別を行なう。   In step 107, when the surface defects are small but clumped, they are regarded as one large defect, that is, a set determination is performed.

この集合判別は、例えば図7における一定範囲の面積内におけるドット(個々の異常点)の数の割合によってこれが設定値を超えるか否かを判別する。   In this set determination, it is determined whether or not this exceeds a set value, for example, by a ratio of the number of dots (individual abnormal points) within a certain range of the area in FIG.

設定値以下であればステップ110においてOKとされ、円盤状基板12は成膜ライン70に送られ、記録膜14C、光透過層14F等が成膜される(ステップ120参照)。又、設定値以上であれば大きな欠陥であり、ステップ111においてNGとされ、円盤状基板12は排出ライン46に移載される。   If the value is equal to or less than the set value, the result is OK in step 110, the disc-shaped substrate 12 is sent to the film forming line 70, and the recording film 14C, the light transmitting layer 14F and the like are formed (see step 120). If the value is equal to or larger than the set value, the defect is a large defect. In step 111, the result is NG, and the disc-shaped substrate 12 is transferred to the discharge line 46.

前述のステップ103において検出された欠陥が相似形でない場合、及び相似形であっても両者間の距離が設定値以下である場合は、ステップ112において内部欠陥と判断され、次のステップ113及びステップ114に進む。   If the defect detected in the above-mentioned step 103 is not a similar shape, and if the distance between the two is less than or equal to the set value, the defect is determined to be an internal defect in step 112, and the next step 113 and step Proceed to 114.

ステップ113においては、内部欠陥の大きさが設定値よりも大きいか否かを判別され、設定値以下であればOKであり、ステップ115において検査台40上の円盤状基板12は後工程搬送ライン44に移載され、ステップ120で、成膜ライン60において、反射膜14A、耐熱保護膜14B、記録膜14C、界面層14D、耐熱保護膜14E、光透過層14F及びハードコート層14Gが形成され、光ディスク14として完成する。   In step 113, it is determined whether or not the size of the internal defect is larger than a set value. If the size is smaller than the set value, it is OK. In step 115, the disc-shaped substrate 12 on the inspection table 40 is 44, the reflection film 14A, the heat-resistant protective film 14B, the recording film 14C, the interface layer 14D, the heat-resistant protective film 14E, the light transmitting layer 14F, and the hard coat layer 14G are formed in the film forming line 60 in Step 120. The optical disk 14 is completed.

又、設定値以上であれば、ステップ116に進み警告が発せられるが、検査台40上の円盤状基板12は後工程搬送ライン44に送られる。但し、この場合ステップ117において、小さな内部欠陥が大量に発生し、その集合により、大きな内部欠陥が生じていたことを生産工程にフィードバックさせる。   If the value is equal to or larger than the set value, the process proceeds to step 116 to issue a warning, but the disc-shaped substrate 12 on the inspection table 40 is sent to the post-process transfer line 44. However, in this case, in step 117, a large number of small internal defects are generated, and the fact that a large internal defect has been generated is fed back to the production process.

ステップ114においては、前述のステップ107におけると同様に、集合判別がなされ、その結果、小さな異常部の集合が設定値以下であればステップ118に進みOKとなって、円盤状基板12は検査台40から後工程搬送ライン44に移載され、前述と同様に、ステップ121で成膜ライン70を経て完成品となる。   In step 114, as in step 107, the set is determined. As a result, if the set of small abnormal parts is equal to or smaller than the set value, the process proceeds to step 118 and the determination is OK. From step 40, it is transferred to the post-process transfer line 44, and becomes a completed product via the film forming line 70 in step 121 as described above.

又、設定値以上の場合は、前述のステップ116に進み、警告及びステップ117の生産工程へのフィードバックがなされる。   If the value is equal to or greater than the set value, the process proceeds to step 116, where a warning and feedback to the production process in step 117 are issued.

ここで、前記照射装置18における、λ/4位相差板18Eからの出射光(照射光)の波長は、バンドパスフィルタ18B及びSCフィルタ18Cを透過させることによって600〜700nmの波長光とされているが、これは、PCからなる円盤状基板12の反射率の分光特性から、反射率が最も低い領域の波長としたものである。このようにすれば、円盤状基板12内の透過率が最大となり、欠陥があった場合の異常部とのコントラストが強調される。波長選択は光透過性材料の種類によりラインカメラ20により受光可能な波長域で、且つ、可視光、近紫外線又は近赤外線(350〜1100nm)の中の任意の波長が可能であるが、特にコントラストが強調されるため600〜700nmが好ましい。   Here, the wavelength of the emitted light (irradiation light) from the λ / 4 phase difference plate 18E in the irradiation device 18 is changed to 600-700 nm wavelength light by transmitting through the bandpass filter 18B and the SC filter 18C. However, this is based on the spectral characteristics of the reflectance of the disc-shaped substrate 12 made of PC, and the wavelength is set in the region where the reflectance is the lowest. By doing so, the transmittance in the disk-shaped substrate 12 is maximized, and the contrast with an abnormal part when a defect is present is emphasized. The wavelength can be selected in a wavelength range that can be received by the line camera 20 depending on the type of the light transmitting material, and any wavelength among visible light, near ultraviolet light, or near infrared light (350 to 1100 nm) can be selected. Is emphasized, so that 600 to 700 nm is preferable.

又、前述のように、照射装置18は直線偏光板18D及びλ/4位相差板18Eを用いて、円盤状基板12への照射光が右旋又は左旋円偏光とされ、且つ、ラインカメラ20の入射光軸上にも円偏光板20Aが設けられていて、照射装置18からの円偏光が反射し、旋回方向が逆方向になった円偏光のみがラインカメラ20に入射するようにしている。   As described above, the irradiation device 18 uses the linear polarizer 18D and the λ / 4 phase difference plate 18E to irradiate the disc-shaped substrate 12 with right-handed or left-handed circularly-polarized light. The circularly polarizing plate 20A is also provided on the incident optical axis of, so that the circularly polarized light from the irradiation device 18 is reflected, and only the circularly polarized light whose turning direction is reversed is incident on the line camera 20. .

これは、周囲のノイズ光がラインカメラ20に入射することを防止して、異常部の無い部分と異常部とのコントラストを強調するためである。   This is to prevent the surrounding noise light from being incident on the line camera 20 and to enhance the contrast between the portion having no abnormal portion and the abnormal portion.

従って、ラインカメラ20において受光された反射光中の異常部とそうでない部分とのコントラストが十分であれば、照射光の波長を特定の領域に限定したり、円偏光としたりする必要はない。   Therefore, if the contrast between the abnormal part and the other part in the reflected light received by the line camera 20 is sufficient, it is not necessary to limit the wavelength of the irradiating light to a specific region or to use circularly polarized light.

更に、上記実施の形態の例において、ラインカメラ20は、複数の画素、例えばピクセル番号1から4096までを円盤状基板12の内周側から外周に向かって半径方向に直線状に並べて構成されているが、円盤状基板12の回転方向には、各ピクセルが単位時間にスキャンする距離は、半径方向内側、即ちピクセルNoが小さいほど短かく、半径方向外側、即ちピクセルNoが大きいほど多くなり、検出ドット数に違いが生じる。これは、例えば表1に示されるように、各ピクセルの単位時間にスキャンする距離に重み付けをして、全てのピクセルの大きさを実質的に同一にすると良い。   Further, in the example of the above-described embodiment, the line camera 20 is configured by arranging a plurality of pixels, for example, pixel numbers 1 to 4096, linearly in the radial direction from the inner peripheral side to the outer peripheral side of the disc-shaped substrate 12. However, in the rotation direction of the disc-shaped substrate 12, the distance that each pixel scans in a unit time is shorter in the radial direction inside, that is, smaller as the pixel No. is smaller, and larger in the radial direction outside, that is, larger as the pixel No. is larger. A difference occurs in the number of detected dots. For example, as shown in Table 1, it is preferable that the scanning distance of each pixel per unit time is weighted so that the size of all pixels is substantially the same.

Figure 2004233338
Figure 2004233338

更に又、本発明は、ラインカメラ以外の光検出器を用いる場合にも適用される。例えば、ラインカメラにおける1〜数個に相当する受光器を円盤状基板を回転させつつ、半径方向に走査させてもよい。   Furthermore, the present invention is applied to a case where a photodetector other than a line camera is used. For example, one or several light receivers in a line camera may be scanned in the radial direction while rotating the disk-shaped substrate.

又、円盤状基板12はPCからなり全体が光透過性材料から形成されているように、本発明は入射光が円盤状基板の裏面で反射し、その反射光が検出できるよう、光透過性の円盤状基板に適用される。   Also, as the disk-shaped substrate 12 is made of PC and the whole is formed of a light-transmitting material, the present invention reflects the light-transmitting light so that the incident light is reflected on the back surface of the disk-shaped substrate and the reflected light can be detected. Applied to a disc-shaped substrate.

又、図3における円盤状基板の回転方向とは逆の回転方向でも測定は可能であり、この場合、欠陥は、まず反射光Rにより検出され(実像)、続いて照射光Iにより検出(シャドウ)される。   In addition, the measurement can be performed in a rotation direction opposite to the rotation direction of the disc-shaped substrate in FIG. 3. In this case, the defect is first detected by the reflected light R (real image), and then detected by the irradiation light I (shadow). ) Is done.

なお、前記検査に合格した円盤状基板12は、成膜ライン70において、反射膜14A、耐熱保護膜14B、記録膜14C、界面層14D、耐熱保護膜14E、光透過層14F及びハードコート層14Gが形成されて光ディスク14となるが、本発明はこれに限定されず、少なくとも記録膜及び光透過層が形成される光ディスクの製造方法に適用されるものである。   The disc-shaped substrate 12 that has passed the above inspection is subjected to the reflection film 14A, the heat-resistant protective film 14B, the recording film 14C, the interface layer 14D, the heat-resistant protective film 14E, the light transmitting layer 14F, and the hard coat layer 14G in the film forming line 70. Is formed on the optical disk 14, but the present invention is not limited to this, and is applied to a method of manufacturing an optical disk on which at least a recording film and a light transmitting layer are formed.

円盤状基板12を厚さt=1.1mmのポリカーボネイト(屈折率n=1.58)として、入射角θ2=45°として、波長650nmの照射光(円偏光)を円盤状基板12の表面12Aに入射させ、反射光を4096ピクセルのラインカメラで受光した。 The disc-shaped substrate 12 is made of polycarbonate (refractive index n = 1.58) having a thickness of t = 1.1 mm, the incident angle θ 2 = 45 °, and irradiation light (circularly polarized light) having a wavelength of 650 nm is applied to the surface of the disc-shaped substrate 12. 12A, and the reflected light was received by a 4096 pixel line camera.

この場合、n=Sinθ2/Sinθ1=1.58であるので、θ1=26.5°となり、L=2tTanθ1=1.1mmとなり、L=1.1mmの場合は表面欠陥、0≦L<1.1mmの場合は内部欠陥となる。 In this case, since n = Sin θ 2 / Sin θ 1 = 1.58, θ 1 = 26.5 °, L = 2t Tan θ 1 = 1.1 mm, and when L = 1.1 mm, a surface defect, 0 ≦ When L <1.1 mm, internal defects occur.

極表面に存在する内部欠陥は、その表面の凹凸となっている可能性があるため除去することが望ましく、又、測定誤差も考慮して、距離がL±αの場合も除去することが望ましい。αは例えば5%にできる。測定結果が>L+αの場合は、その実像とシャドウは同一の欠陥ではないと判定される。   It is desirable to remove the internal defect existing on the extreme surface because there is a possibility that the surface is uneven, and it is also desirable to remove the internal defect even when the distance is L ± α in consideration of measurement error. . α can be set to, for example, 5%. If the measurement result is> L + α, it is determined that the real image and the shadow are not the same defect.

実際の判定では、前述の誤差等を考慮し、1.05≦L≦1.15を表面欠陥とし、0≦L<1.05を内部欠陥とする表面欠陥の例として、油性インクで円盤状基板の表面に大きさが0.6mm程度の欠陥を形成し、又他の円盤状基板では、内部欠陥の例として円盤状基板12の裏面12B側に油性インクでマーキングして欠陥を形成したもの、及び、光透過性材料層内に欠陥のあるものを選択して、図1に示されるような構成で欠陥を測定したところ、表2のように、表面欠陥と内部欠陥及び円盤状基板裏面の欠陥とは、実像とシャドウとの間の距離Lが明確に異なり、表面欠陥と内部欠陥の判別をすることができた。   In the actual determination, in consideration of the above-described error and the like, as an example of a surface defect where 1.05 ≦ L ≦ 1.15 is a surface defect and 0 ≦ L <1.05 is an internal defect, a disk-shaped oil-based ink is used. A defect having a size of about 0.6 mm is formed on the surface of the substrate, and another disk-shaped substrate is formed by marking the surface of the rear surface 12B of the disk-shaped substrate 12 with oil-based ink as an example of an internal defect. , And a defect having a defect in the light-transmitting material layer was selected, and the defect was measured by the configuration as shown in FIG. 1. As shown in Table 2, the surface defect and the internal defect and the back surface of the disc-shaped substrate were measured. The defect L clearly differs in the distance L between the real image and the shadow, and the surface defect and the internal defect can be distinguished.

Figure 2004233338
Figure 2004233338

表2において、
欠陥半径位置R:検出した欠陥の半径方向位置を表示
欠陥径方向:検出した欠陥の半径方向の検出ドット数を表示
欠陥周方向:検出した欠陥の周方向の検出ドット数を表示
実像/シャドウ間スキャンS:実像とシャドウ間のスキャン数を表示
実像/シャドウ間距離L:欠陥の半径位置と実像とシャドウ間のスキャン数
より計算された距離Lを表示
L(mm)=[R×2×π/24000(ディスク一周のスキャン数)]×S
欠陥種:L(mm)により判別された欠陥種
欠陥ディスクNo.1−3は1.05≦L≦1.15であることより「表面」欠陥と判定(αを0.05とした。1.15<は同一欠陥ではなし)
欠陥ディスクNo.4−6はL(mm)=0(シャドウなし)は、円盤状基板の裏面の欠陥であることより「内部」欠陥と判定
欠陥ディスクNo.7−9はL(mm)<1.1であることより「内部」欠陥と判定、
としている。
In Table 2,
Defect radius position R: Displays the radial position of the detected defect. Defect radial direction: Displays the number of detected dots in the radial direction of the detected defect. Defect circumferential direction: Displays the number of detected dots in the circumferential direction of the detected defect. Scan S: The number of scans between the real image and the shadow is displayed. Real image / shadow distance L: The radial position of the defect and the number of scans between the real image and the shadow
L (mm) = [R × 2 × π / 24000 (the number of scans per disk rotation)] × S
Defect type: defect type determined by L (mm) Defect disk No. 1-3 is determined as a “surface” defect because 1.05 ≦ L ≦ 1.15 (α is set to 0.05; 1.15 <is not the same defect).
Defective disk No. 4-6, L (mm) = 0 (no shadow) is a defect on the back surface of the disc-shaped substrate, and is determined as an “internal” defect. 7-9 is judged as “internal” defect because L (mm) <1.1,
And

本発明の実施の最良の形態に係る欠陥検出装置を示すブロック図FIG. 1 is a block diagram showing a defect detection device according to an embodiment of the present invention. 本発明の欠陥検出装置及び方法による被検体である円盤状基板に反射膜、記録膜等を形成した状態の一部を拡大して模式的に示す断面図FIG. 2 is a cross-sectional view schematically showing an enlarged part of a state in which a reflective film, a recording film, and the like are formed on a disc-shaped substrate as an object by the defect detection device and method according to the present invention. 図1の欠陥検出装置における照射装置、ラインカメラ及び円盤状基板との関係を示す斜視図FIG. 2 is a perspective view showing a relationship between an irradiation device, a line camera, and a disk-shaped substrate in the defect detection device of FIG. 同照射装置及びラインカメラの照射光及び反射光の光学系を示す略示断面図FIG. 2 is a schematic cross-sectional view showing an optical system of irradiation light and reflected light of the irradiation device and the line camera. 円盤状基板に光を入射した場合の入射光及び反射光の状態を拡大して示す光路図Optical path diagram showing the state of incident light and reflected light when light enters the disk-shaped substrate in an enlarged manner. 前記欠陥検出装置のラインカメラにおける各ピクセルでの反射光量の状態を示す線図FIG. 4 is a diagram showing the state of the amount of reflected light at each pixel in a line camera of the defect detection device. 同欠陥検出装置の画像処理装置における検出された欠陥をマップ表示した線図Diagram showing defects detected in the image processing device of the defect detection device on a map 同欠陥検出装置に被検体である円盤状基板を搬入、搬出する搬送装置を含む光ディスクの製造方法を示す一部ブロック図を含む略示平面図FIG. 2 is a schematic plan view including a partial block diagram showing a method of manufacturing an optical disc including a transport device for loading and unloading a disc-shaped substrate as an object to and from the defect detection device; 同欠陥検出装置により円盤状基板の欠陥検出を行なう過程を示すフローチャートThe flowchart which shows the process which performs the defect detection of a disk-shaped board | substrate by the said defect detection apparatus. 同欠陥検出装置によって光透過性材料からなる円盤状基板の表面の欠陥を検出する過程を示す光路図An optical path diagram showing a process of detecting a defect on the surface of a disk-shaped substrate made of a light-transmitting material by the defect detection device. 同欠陥検出装置によって光透過性材料からなる円盤状基板の断面内の欠陥を検出する過程を示す光路図An optical path diagram showing a process of detecting a defect in a cross section of a disk-shaped substrate made of a light-transmitting material by the defect detection device. 光透過性材料からなる円盤状基板の断面内に欠陥がある場合の該欠陥入射光路上及び反射光路上での位置との関係を示す光路図Optical path diagram showing the relationship between the position on the defect incident optical path and the position on the reflected optical path when there is a defect in the cross section of the disc-shaped substrate made of a light transmitting material

符号の説明Explanation of reference numerals

10…欠陥検出装置
12…円盤状基板
12A…表面
12B…裏面
14…光ディスク
14C…記録膜
14F…光透過層
16…回転支持装置
18…照射装置
18A…光源
18B…バンドパスフィルタ
18C…SCフィルタ
18D…直線偏光板
18E…λ/4位相差偏光板
20…ラインカメラ
20A…円偏光板
22…画像処理装置
24…CPU
34…搬送装置
40…検査台
42…第1の移載装置
48…第2の移載装置
50…光ディスク製造装置
60…基板製造装置
70…成膜ライン
I…照射光
R…反射光
DESCRIPTION OF SYMBOLS 10 ... Defect detection device 12 ... Disc-shaped substrate 12A ... Front surface 12B ... Back surface 14 ... Optical disk 14C ... Recording film 14F ... Light transmission layer 16 ... Rotation support device 18 ... Irradiation device 18A ... Light source 18B ... Bandpass filter 18C ... SC filter 18D ... Linear polarizing plate 18E ... λ / 4 phase difference polarizing plate 20 ... Line camera 20A ... Circular polarizing plate 22 ... Image processing device 24 ... CPU
34 ... Conveying device 40 ... Inspection table 42 ... First transfer device 48 ... Second transfer device 50 ... Optical disk manufacturing device 60 ... Substrate manufacturing device 70 ... Film forming line I ... Irradiation light R ... Reflection light

Claims (18)

光透過性材料からなる円盤状基板を回転させながらその表面に、該表面における垂線に対して回転方向の一方に傾斜して照射光を入射する過程と、前記表面から円盤状基板内に入射した照射光の、裏面での反射光を、前記垂線に対して前記照射光と反対側に傾斜した方向から、順次時間をずらして受光し、受光した反射光量が設定値よりも小さいとき又は大きいときに異常部として判定する過程と、前記異常部が時間がずれて2つあるとき、これら2つの異常部が相似形であるか否かを判定し、相似形であるときのこれら2つの異常部の、円盤状基板の回転方向の距離を、画像処理により測定する過程と、前記距離が設定値であるか否かを判定する過程と、前記距離が設定値の場合に表面欠陥ありと判定する過程と、を有してなる円盤状基板の欠陥検出方法。   While rotating a disc-shaped substrate made of a light-transmitting material, the process of irradiating irradiation light on the surface of the disc-shaped substrate obliquely in one of the rotation directions with respect to a perpendicular to the surface, and entering the disc-shaped substrate from the surface When the reflected light on the back side of the irradiation light is received with a time lag sequentially from a direction inclined to the side opposite to the irradiation light with respect to the perpendicular, and the received reflected light amount is smaller or larger than a set value. And determining whether or not the two abnormal portions have similar shapes when the two abnormal portions have a similar shape, and determining whether the two abnormal portions have a similar shape. Measuring the distance in the rotational direction of the disc-shaped substrate by image processing, determining whether the distance is a set value, and determining that there is a surface defect when the distance is the set value. And a disc-shaped substrate comprising Defect detection method. 光透過性材料からなる円盤状基板を回転させながらその表面に、該表面における垂線に対して回転方向の一方に傾斜して照射光を入射する過程と、前記表面から円盤状基板内に入射した照射光の、裏面での反射光を、前記垂線に対して前記照射光と反対側に傾斜した方向から、順次時間をずらして受光し、受光した反射光量が設定値よりも小さいとき又は大きいときに異常部として判定する過程と、前記異常部が時間がずれて2つあるとき、これら2つの異常部が相似形であるか否かを判定し、相似形であるときのこれら2つの異常部の、円盤状基板の回転方向の距離を、画像処理により測定して、欠陥の円盤状基板内の厚さ方向の位置を測定する過程と、を有してなる円盤状基板の欠陥検出方法。   While rotating a disc-shaped substrate made of a light-transmitting material, the process of irradiating irradiation light on the surface of the disc-shaped substrate obliquely in one of the rotation directions with respect to a perpendicular to the surface, and entering the disc-shaped substrate from the surface When the reflected light on the back side of the irradiation light is received with a time lag sequentially from a direction inclined to the side opposite to the irradiation light with respect to the perpendicular, and the received reflected light amount is smaller or larger than a set value. And determining whether or not the two abnormal portions have similar shapes when the two abnormal portions have a similar shape, and determining whether the two abnormal portions have a similar shape. Measuring the distance in the rotational direction of the disc-shaped substrate by image processing to measure the position of the defect in the disc-shaped substrate in the thickness direction. 請求項1又は2において、
前記異常部として判定する過程は、受光した反射光量が設定値よりも小さいとき又は大きいときに生じる異常点を検出する過程と、この異常点を円盤状基板の表面上位置に対応したマップに表示し、表示された異常点の集合が異常部としての形状を有するか否かを判定する過程と、を含んでなることを特徴とする円盤状基板の欠陥検出方法。
In claim 1 or 2,
The process of determining the abnormal portion is a process of detecting an abnormal point that occurs when the amount of reflected light received is smaller or larger than a set value, and displaying the abnormal point on a map corresponding to a position on the surface of the disk-shaped substrate. Determining whether or not the displayed set of abnormal points has a shape as an abnormal part.
請求項1、2又は3において、
前記円盤状基板の中心から外周まで、円盤状基板の半径方向に多数の画素を並べたラインカメラにより前記反射光を受光し、このラインカメラにより取り込まれた情報を画像処理して前記2つの異常部間の距離を測定することを特徴とする円盤状基板の欠陥検出方法。
In claim 1, 2 or 3,
The reflected light is received by a line camera in which a number of pixels are arranged in the radial direction of the disc-shaped substrate from the center to the outer periphery of the disc-shaped substrate, and the information captured by the line camera is image-processed to produce the two abnormalities. A method for detecting a defect in a disk-shaped substrate, comprising measuring a distance between parts.
請求項1乃至4のいずれかにおいて、
前記2つの異常部間の距離の判定基準となる設定値L(mm)は、前記光透過性材料の屈折率がn、厚さがt(mm)、前記照射光の円盤状基板表面への入射角θ2、n=Sinθ2/Sinθ1であるとき、L=2tTanθ1としたことを特徴とする円盤状基板の欠陥検出方法。
In any one of claims 1 to 4,
The set value L (mm) serving as a criterion for determining the distance between the two abnormal portions is such that the refractive index of the light transmitting material is n, the thickness is t (mm), and the irradiation light is applied to the surface of the disc-shaped substrate. when the incident angle θ 2, n = Sinθ 2 / Sinθ 1, a defect detection method of a disk-shaped substrate, characterized in that the L = 2tTanθ 1.
請求項1乃至5のいずれかにおいて、
前記照射光の波長を600〜700nmとしたことを特徴とする円盤状基板の欠陥検出方法。
In any one of claims 1 to 5,
A defect detection method for a disc-shaped substrate, wherein the wavelength of the irradiation light is 600 to 700 nm.
請求項1乃至6のいずれかにおいて、
前記照射光の、前記光透過性材料層表面の法線に対する角度である入射角を15°〜85°、好ましくは30°〜45°としたことを特徴とする円盤状基板の欠陥検出方法。
In any one of claims 1 to 6,
A defect detection method for a disc-shaped substrate, wherein an incident angle of the irradiation light with respect to a normal to a surface of the light transmitting material layer is set to 15 ° to 85 °, preferably 30 ° to 45 °.
光透過性材料により形成されている円盤状基板を載置し、且つ、これを回転させる回転支持装置と、前記円盤状基板の表面に、該表面における垂線に対して回転方向の一方に傾斜して照射光を入射する照射装置と、前記円盤状基板を回転させながら円盤状基板の中心から外周までを半径方向に同時又は順次に測定し、前記照射光が前記円盤状基板の表面から内部に入射して、その裏面において生じた反射光を時間をずらして順次受光する光検出装置と、この光検出装置により受光した反射光量が設定値よりも小さい又は大きいときに異常部として判定すると共に、前記異常部が、時間がずれて少なくとも2つあるとき、これらの異常部が相似形であるか否かを判定し、相似形の場合、2つの異常部間の円盤状基板回転方向の距離を測定する画像処理装置と、前記測定した距離が設定値の場合に表面欠陥ありと判定する判定装置と、を有してなる円盤状基板の欠陥検出装置。   A disk-shaped substrate formed of a light-transmitting material is placed thereon, and a rotation support device for rotating the disk-shaped substrate, and the surface of the disk-shaped substrate is inclined in one of rotation directions with respect to a perpendicular to the surface. Irradiation device for irradiating irradiation light, and simultaneously or sequentially measuring in the radial direction from the center to the outer periphery of the disk-shaped substrate while rotating the disk-shaped substrate, the irradiation light is from the surface of the disk-shaped substrate to the inside Incident, and a light detection device that sequentially receives the reflected light generated on its back surface with a time delay, and when the reflected light amount received by the light detection device is smaller or larger than a set value, it is determined as an abnormal portion, When there is at least two abnormal portions with a time lag, it is determined whether or not these abnormal portions have a similar shape. In the case of a similar shape, the distance between the two abnormal portions in the disk-shaped substrate rotation direction is determined. Image to measure Processing unit and located surface defects and determining device and a disk-shaped substrate defect detection apparatus comprising a when the distances the measured value. 請求項8において、
前記画像処理装置は、前記光検出装置により受光した反射光量が設定値よりも小さい又は大きいときに異常点として検出し、且つ、この異常点を円盤状基板の表面上位置に対応したマップに表示し、表示された異常点の集合が異常部としての形状を有するか否かを判定するようにされていることを特徴とする円盤状基板の欠陥検出装置。
In claim 8,
The image processing apparatus detects an abnormal point when the amount of reflected light received by the photodetector is smaller or larger than a set value, and displays the abnormal point on a map corresponding to a position on the surface of the disk-shaped substrate. A defect detection apparatus for a disc-shaped substrate, wherein it is determined whether or not a set of displayed abnormal points has a shape as an abnormal portion.
請求項8又は9において、
前記光検出装置は、前記円盤状基板の中心から外周まで、円盤状基板の半径方向に多数の画素を並べてなるラインカメラであることを特徴とする円盤状基板の欠陥検出装置。
In claim 8 or 9,
The said light detection apparatus is a line camera which arranges many pixels in the radial direction of a disk-shaped substrate from the center of the said disk-shaped substrate to an outer periphery, The defect detection apparatus of a disk-shaped substrate characterized by the above-mentioned.
請求項8、9又は10において、
前記判定装置は、前記2つの異常部間の距離の判定基準となる設定値L(mm)が、前記光透過性材料の屈折率をn、厚さをt(mm)、前記照射光の円盤状基板表面への入射角をθ2、n=Sinθ2/Sinθ1としたときに、L=2tTanθ1となるように設定されていることを特徴とする円盤状基板の欠陥検出装置。
In claim 8, 9 or 10,
In the determination apparatus, the set value L (mm) serving as a criterion for determining the distance between the two abnormal portions is such that the refractive index of the light transmitting material is n, the thickness is t (mm), and the disk of the irradiation light is the incident angle to Jo substrate surface is taken as θ 2, n = Sinθ 2 / Sinθ 1, the defect detection apparatus of a disk-shaped substrate, characterized in that it is set so that L = 2tTanθ 1.
請求項8乃至11のいずれかにおいて、
前記照射装置から前記円盤状基板に至る照射光の光路上に、特定波長を中心とする所定幅の波長領域の光のみを透過するバンドパスフィルタを設けたことを特徴とする円盤状基板の欠陥検出装置。
In any one of claims 8 to 11,
A defect of the disc-shaped substrate, wherein a band-pass filter that transmits only light in a wavelength region of a predetermined width centered on a specific wavelength is provided on an optical path of irradiation light from the irradiation device to the disc-shaped substrate. Detection device.
請求項12において、
前記バンドパスフィルタを透過した光を、左旋又は右旋円偏光、偏光面が互いに直交する2つの直線偏光の一方のいずれかに偏光させる偏光板を設けると共に、前記円盤状基板から前記光検出装置に至る反射光路中に、反射光が、前記偏光板を通った偏光と位相がπだけシフトされた偏光のみを透過させる受光側偏光板を設けたことを特徴とする円盤状基板の欠陥検出装置。
In claim 12,
A polarizing plate for polarizing the light transmitted through the band-pass filter to one of left-handed or right-handed circularly polarized light and two linearly polarized lights whose polarization planes are orthogonal to each other is provided, and the light detection device is provided from the disc-shaped substrate. Wherein a light-receiving-side polarizing plate that transmits only the polarized light whose phase is shifted by π with respect to the polarized light passing through the polarizing plate is provided in the reflected light path to the disk-shaped substrate. .
光透過性材料から円盤状基板を連続的に形成する過程と、前記円盤状基板を回転させながらその表面に、該表面における垂線に対して回転方向の一方に傾斜して照射光を入射する過程と、前記表面から円盤状基板内に入射した照射光の、裏面での反射光を、前記垂線に対して前記照射光と反対側に傾斜した方向から、順次時間をずらして受光し、受光した反射光量が設定値よりも小さいとき又は大きいときに異常部として判定する過程と、前記異常部が時間がずれて2つあるとき、これら2つの異常部が相似形であるか否かを判定し、相似形であるときのこれら2つの異常部の、円盤状基板の回転方向の距離を、画像処理により測定する過程と、前記距離が設定値であるか否かを判定する過程と、前記距離が設定値の場合に表面欠陥ありと判定する過程と、前記表面欠陥ありと判定された以外の円盤状基板に、少なくとも記録層及び光透過層をこの順で形成する過程と、
を有してなる光ディスクの製造方法。
A process of continuously forming a disc-shaped substrate from a light-transmitting material, and a process of rotating the disc-shaped substrate and injecting irradiation light to a surface thereof while being inclined in one of rotation directions with respect to a perpendicular to the surface. And, the irradiation light incident on the disc-shaped substrate from the front surface, the reflected light on the back surface, from the direction inclined to the opposite side to the irradiation light with respect to the perpendicular, received the light sequentially and staggered, received When the amount of reflected light is smaller or larger than a set value, the process is determined as an abnormal portion, and when there are two abnormal portions with a time lag, it is determined whether or not these two abnormal portions have similar shapes. Measuring the distance in the rotational direction of the disc-shaped substrate between these two abnormal portions when they are similar to each other by image processing; determining whether the distance is a set value; Is set value, it is judged that there is a surface defect. The method comprising, a disc-shaped substrate other than where it is determined that there is the surface defects, the process of forming at least a recording layer and a light transmission layer in this order,
A method for manufacturing an optical disk, comprising:
光透過性材料から円盤状基板を連続的に形成する過程と、前記円盤状基板を回転させながらその表面に、該表面における垂線に対して回転方向の一方に傾斜して照射光を入射する過程と、前記表面から円盤状基板内に入射した照射光の、裏面での反射光を、前記垂線に対して前記照射光と反対側に傾斜した方向から、順次時間をずらして受光し、受光した反射光量が設定値よりも小さいとき又は大きいときに異常部として判定する過程と、前記異常部が時間がずれて2つあるとき、これら2つの異常部が相似形であるか否かを判定し、相似形であるときのこれら2つの異常部の、円盤状基板の回転方向の距離を、画像処理により測定して、欠陥の円盤状基板内の厚さ方向の位置を測定する過程と、前記表面欠陥ありと判定された以外の円盤状基板に、少なくとも記録層及び光透過層をこの順で形成する過程と、
を有してなる光ディスクの製造方法。
A process of continuously forming a disc-shaped substrate from a light-transmitting material, and a process of rotating the disc-shaped substrate and injecting irradiation light to a surface thereof while being inclined in one of rotation directions with respect to a perpendicular to the surface. And, the irradiation light incident on the disc-shaped substrate from the front surface, the reflected light on the back surface, from the direction inclined to the opposite side to the irradiation light with respect to the perpendicular, received the light sequentially and staggered, received When the amount of reflected light is smaller or larger than a set value, the process is determined as an abnormal portion, and when there are two abnormal portions with a time lag, it is determined whether or not these two abnormal portions have similar shapes. Measuring the distance between these two abnormal portions when they have similar shapes in the direction of rotation of the disk-shaped substrate by image processing to measure the position of the defect in the disk-shaped substrate in the thickness direction; Disc shape other than surface defects A plate, a step of forming at least a recording layer and a light transmission layer in this order,
A method for manufacturing an optical disk, comprising:
請求項14又は15において、
前記異常部として判定する過程は、受光した反射光量が設定値よりも小さいとき又は大きいときに生じる異常点を検出する過程と、この異常点を円盤状基板の表面上位置に対応したマップに表示し、表示された異常点の集合が異常部としての形状を有するか否かを判定する過程と、を含んでなることを特徴とする光ディスクの製造方法。
In claim 14 or 15,
The process of determining the abnormal portion is a process of detecting an abnormal point that occurs when the amount of reflected light received is smaller or larger than a set value, and displaying the abnormal point on a map corresponding to a position on the surface of the disk-shaped substrate. Determining whether or not the displayed set of abnormal points has a shape as an abnormal portion.
請求項14乃至16のいずれかにおいて、
前記円盤状基板の中心から外周まで、円盤状基板の半径方向に多数の画素を並べたラインカメラにより前記反射光を受光し、このラインカメラにより取り込まれた情報を画像処理して前記2つの異常部間の距離を測定することを特徴とする光ディスクの製造方法。
In any one of claims 14 to 16,
The reflected light is received by a line camera in which a large number of pixels are arranged in the radial direction of the disc-shaped substrate from the center to the outer periphery of the disc-shaped substrate, and information captured by the line camera is image-processed to perform the two abnormalities. A method for manufacturing an optical disc, comprising measuring a distance between the sections.
請求項14乃至17のいずれかにおいて、
前記2つの異常部間の距離の判定基準となる設定値L(mm)は、前記光透過性材料の屈折率がn、厚さがt(mm)、前記照射光の円盤状基板表面への入射角θ2、n=Sinθ2/Sinθ1であるとき、L=2tTanθ1としたことを特徴とする光ディスクの製造方法。
In any one of claims 14 to 17,
The set value L (mm) serving as a criterion for determining the distance between the two abnormal portions is such that the refractive index of the light transmitting material is n, the thickness is t (mm), and the irradiation light is applied to the surface of the disc-shaped substrate. when the incident angle θ 2, n = Sinθ 2 / Sinθ 1, optical disc manufacturing method is characterized in that the L = 2tTanθ 1.
JP2003408693A 2003-01-08 2003-12-08 Defect detection method of disc substrate, apparatus for the same, and method for manufacturing substrate for optical disc Pending JP2004233338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003408693A JP2004233338A (en) 2003-01-08 2003-12-08 Defect detection method of disc substrate, apparatus for the same, and method for manufacturing substrate for optical disc

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003002020 2003-01-08
JP2003408693A JP2004233338A (en) 2003-01-08 2003-12-08 Defect detection method of disc substrate, apparatus for the same, and method for manufacturing substrate for optical disc

Publications (1)

Publication Number Publication Date
JP2004233338A true JP2004233338A (en) 2004-08-19

Family

ID=32964608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003408693A Pending JP2004233338A (en) 2003-01-08 2003-12-08 Defect detection method of disc substrate, apparatus for the same, and method for manufacturing substrate for optical disc

Country Status (1)

Country Link
JP (1) JP2004233338A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057125A1 (en) * 2004-11-24 2006-06-01 Asahi Glass Company, Limited Method and device for inspecting defect of transparent plate body
JP2006250816A (en) * 2005-03-11 2006-09-21 Sumitomo Bakelite Co Ltd Device and method for measuring water vapor permeability
CN100435227C (en) * 2004-09-02 2008-11-19 精碟科技股份有限公司 Base board defect detecting device
JP2009162570A (en) * 2007-12-28 2009-07-23 Hoya Corp Manufacturing method of glass substrate for magnetic disc, glass substrate for magnetic disc, and magnetic disc
US7586595B2 (en) 2003-11-17 2009-09-08 Tdk Corporation Method of scanning and scanning apparatus
WO2012077542A1 (en) * 2010-12-09 2012-06-14 旭硝子株式会社 Glass substrate
WO2012077683A1 (en) * 2010-12-09 2012-06-14 旭硝子株式会社 Method and system for measuring defect in glass ribbon
US8205891B2 (en) 2008-09-15 2012-06-26 Stein Seal Company Intershaft seal assembly
CN112394069A (en) * 2020-12-04 2021-02-23 深圳市华星光电半导体显示技术有限公司 Display panel abnormality detection method and device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7586595B2 (en) 2003-11-17 2009-09-08 Tdk Corporation Method of scanning and scanning apparatus
CN100435227C (en) * 2004-09-02 2008-11-19 精碟科技股份有限公司 Base board defect detecting device
JP4793266B2 (en) * 2004-11-24 2011-10-12 旭硝子株式会社 Defect inspection method and apparatus for transparent plate
WO2006057125A1 (en) * 2004-11-24 2006-06-01 Asahi Glass Company, Limited Method and device for inspecting defect of transparent plate body
KR100897223B1 (en) * 2004-11-24 2009-05-14 아사히 가라스 가부시키가이샤 Method and device for inspecting defect of transparent plate body
US7420671B2 (en) 2004-11-24 2008-09-02 Asahi Glass Company, Limited Defect inspection method and apparatus for transparent plate-like members
EP2166344A1 (en) 2004-11-24 2010-03-24 Asahi Glass Company, Limited Defect inspection method and apparatus for transparent plate materials
US7796248B2 (en) 2004-11-24 2010-09-14 Asahi Glass Company, Limited Defect inspection method and apparatus for transparent plate-like members
JP2006250816A (en) * 2005-03-11 2006-09-21 Sumitomo Bakelite Co Ltd Device and method for measuring water vapor permeability
JP4561415B2 (en) * 2005-03-11 2010-10-13 住友ベークライト株式会社 Water vapor permeability measuring apparatus and water vapor permeability measuring method
JP2009162570A (en) * 2007-12-28 2009-07-23 Hoya Corp Manufacturing method of glass substrate for magnetic disc, glass substrate for magnetic disc, and magnetic disc
US8205891B2 (en) 2008-09-15 2012-06-26 Stein Seal Company Intershaft seal assembly
WO2012077542A1 (en) * 2010-12-09 2012-06-14 旭硝子株式会社 Glass substrate
WO2012077683A1 (en) * 2010-12-09 2012-06-14 旭硝子株式会社 Method and system for measuring defect in glass ribbon
CN112394069A (en) * 2020-12-04 2021-02-23 深圳市华星光电半导体显示技术有限公司 Display panel abnormality detection method and device

Similar Documents

Publication Publication Date Title
JP2001050903A (en) Glass substrate-inspecting machine
JP2004233338A (en) Defect detection method of disc substrate, apparatus for the same, and method for manufacturing substrate for optical disc
JP4391082B2 (en) Surface inspection method and apparatus
US6078385A (en) Method of inspecting magnetic disc and apparatus therefor and process for producing the magnetic disc
US20070236696A1 (en) Visual Inspection Apparatus
US20100246356A1 (en) Disk surface defect inspection method and apparatus
JP3141974B2 (en) Peripheral defect detecting apparatus and peripheral defect detecting method for glass disk
JP3366682B2 (en) Hard disk defect detection method
US7586595B2 (en) Method of scanning and scanning apparatus
TW200416728A (en) Defect detection method of disc substrate, apparatus for the same, and method for manufacturing substrate for optical disc
JPH08306082A (en) Defect detecting device of optical disk
EP0865605B1 (en) Device and process for inspecting a surface of a glass master
JP2653026B2 (en) Optical information recording disk inspection method and inspection apparatus
JP3108428B2 (en) Defect detection device for transparent circular work
JPH11515108A (en) Double-sided optical disk surface inspection device
JPH10253543A (en) Instrument and method for visual examination of substrate
JPH07225198A (en) Line inspection method of glass substrate
JP3976724B2 (en) Multilayer optical recording medium inspection method and multilayer optical recording medium inspection apparatus
JP4312638B2 (en) Peripheral surface defect detection optical system of translucent disk, peripheral surface defect detection device, and peripheral surface defect detection method
JPH1139651A (en) Hard disk surface inspecting device
JP3487760B2 (en) How to inspect a disk
JP4052203B2 (en) Sheet sticking deviation detection device and sheet sticking deviation detection method
JP3109709B2 (en) Inspection method for protective coat film on optical disc and inspection apparatus using the same
JPH07320306A (en) Method and apparatus for inspecting protective coat of optical disc
JPH10143801A (en) Optical test method of magnetic disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061026

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Effective date: 20090818

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20091215

Free format text: JAPANESE INTERMEDIATE CODE: A02