JP2004233288A - Support structure of inertia sensor element - Google Patents

Support structure of inertia sensor element Download PDF

Info

Publication number
JP2004233288A
JP2004233288A JP2003024732A JP2003024732A JP2004233288A JP 2004233288 A JP2004233288 A JP 2004233288A JP 2003024732 A JP2003024732 A JP 2003024732A JP 2003024732 A JP2003024732 A JP 2003024732A JP 2004233288 A JP2004233288 A JP 2004233288A
Authority
JP
Japan
Prior art keywords
sensor element
inertial sensor
support structure
support
inertia sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003024732A
Other languages
Japanese (ja)
Inventor
Ryota Kawai
良太 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2003024732A priority Critical patent/JP2004233288A/en
Publication of JP2004233288A publication Critical patent/JP2004233288A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a support structure of an inertia sensor element characterized by being supported by a support stand extending in the Y-axis direction of the inertia sensor element at the center part of a base part main face end of the inertia sensor element, concerning the support structure of the inertia sensor element using a tuning fork oscillator having at least two leg parts projecting from the base part in parallel with the Y-axis. <P>SOLUTION: This support structure of the inertia sensor element using the tuning fork oscillator having at least two leg parts projecting from the base part in parallel with the Y-axis is characterized by being supported by the support stand extending in parallel with the Y-axis direction of the inertia sensor element at the center part of the base part main face end of the inertia sensor element, and has simultaneously a characteristic wherein the support stand comprises an insulator including a dielectric. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は音叉型振動子を用いた慣性センサー素子の支持構造に関する。
【0002】
【従来の技術】
従来のウェットエッチング法により加工された音叉型振動子を用いた慣性センサー素子の支持の方法は、特許文献1 (公開特許公報 昭49−10691)の第1図−aに図示されているように、図8の概略の斜視図の様にセラミックなどから成る板状の支持台の上に慣性センサー素子を片持ちの状態で、慣性センサー素子の片面の主面を先の板状の支持台上に接着剤を介して固定する方法をとっていた。
【0003】
しかしながら、素子の形状を小型化するに伴って、先述の方法では慣性センサー素子における基部の大きさでは主振動を減衰させるにいたらず、片面の主面の残留振動を有する範囲の広い範囲にわたって先の板状の支持台上に接着剤を介して固定している為に、音叉型振動子である慣性センサー素子全体の振動が抑制されたり、素子の振動が外部に伝わる振動漏れ(他軸方向への振動の発生)が発生するため素子の主振動が外部擾乱により変動するといった問題があった。
【0004】
また、慣性センサー素子において大きな面積を占める基部の主面を接着剤で板状の支持台の上に固定するといった方法では、水晶から成る慣性センサー素子の基部と支持台の材質の違いにより温度変動で発生する歪みの影響が直接に慣性センサー素子の脚部の振動に影響をおよぼすといった問題があった。
【0005】
また、特許文献2(特開平11−325911)に記載のある、慣性センサー素子の静止状態における慣性センサー素子の基部の温度変化による歪みが、ここでも脚部の振動部に伝播して脚部の振動方向のずれ、すなわち振動の漏れ(他軸方向への振動の発生)を発生し、その結果慣性センサー素子から検出される回転角速度に誤差を生じてしまうといった問題があった。
【特許文献1】
特開昭 8−10691 号公報
【特許文献2】
特開平11−325911号公報
【0006】
なお、出願人は前記した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を、本件出願時までに発見するに至らなかった。
【0007】
慣性センサー素子におけるふたつの脚部の間隔は一例をあげれば図6の概略の斜視図に示す様に約0.5mmと非常に狭いものであり、その為に前述の板状の支持台上に接着剤を用いて図1での概略の背面図のように、慣性センサー素子の回転軸が正確に慣性センサー素子のY軸と平行と成るように素子を固定させるといった作業は極めて微細な作業であり、同時に非常に多くの工数を費やすという問題があった。
【発明が解決しようとする課題】
【0008】
本発明は以上のような技術的背景のもとでなされたものであり、従がってその目的は、Y軸に平行に基部から突出した少なくとも2つの脚部を持つ音叉型振動子を用いた慣性センサー素子の支持構造において、該慣性センサー素子の基部主面端部の中央部で、該慣性センサー素子のY軸方向に平行に延びる支持台で支持されていることを特徴とする慣性センサー素子の支持構造を提供することである。
【0009】
また、同時に先述の支持台が誘電体を含む絶縁体から成ることを特徴とする慣性センサー素子の支持構造を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の目的を達成するために本発明は、Y軸に平行に基部から突出した少なくとも2つの脚部を持つ音叉型振動子を用いた慣性センサー素子の支持構造において、該慣性センサー素子の基部主面端部の中央部で、該慣性センサー素子のY軸方向に平行に延びる支持台で支持されていることを特徴とする。
【0011】
また、同時に先述の支持台が誘電体を含む絶縁体から成ることを特徴とする。
【0012】
【発明の実施の形態】
以下に図面を参照しながら、本発明の実施の一形態について説明する。
なお、各図においての同一の符号は同じ対象を示すものとする。
【0013】
図1は本発明の慣性センサー素子3の支持構造の一実施例を慣性センサー素子3の基部1側からY軸方向にみた概略の図である。慣性センサー素子3の素子主面6の基部1の端部4の中央部5に位置決めされた支持台7上に慣性センサー素子3が支持台7とのあいだに接着剤8を介して片持ちの状態にて載置される。本発明の支持台7によれば慣性センサー素子3の自由振動時のX振動、及びZ振動の無振動点(ノーダルポイント)を支持しており、かつその固定面積が狭いために外部に伝わる振動漏れ(他軸方向への振動の発生)を小さくすることが出来る。
【0014】
図2は図1の概略の斜視図である。図3は本発明の慣性センサー素子3の支持構造の別の実施例を慣性センサー素子3の基部1側からY軸方向にみた概略の図である。慣性センサー素子3のふたつの素子主面6の基部1の端部4の中央部5に位置決めされた略コの字の形態で、支持台7に慣性センサー素子3が支持台7に接着剤8を介して嵌め込まれた状態で載置される。図4は本発明の慣性センサー素子3の支持構造の一実施例の図である図3の概略の斜視図である。
【0015】
図5は本発明の慣性センサー素子3の支持構造の一実施例の図である図3の構造体を、凹部をもった容器10に収容した場合の概略の側面図である。図6は本発明の慣性センサー素子3の支持構造の一実施例の支持台7を、凹部をもった容器10に収容した場合の概略の斜視図である。凹部をもった容器10の材質には多層のセラミックなどが好ましく、この凹部をもった容器10は支持台7をのぞく部分では慣性センサー素子3とは接触しないことが好ましい。
【0016】
図7は従来の板状の慣性センサー素子の支持台に慣性センサー素子3が片持ちで接着剤8を介して保持される模様を示すZ軸(慣性センサー素子の厚み)方向からみた概略の側面図であり、図8はその斜視図である。図7の従来の支持構造と本発明の図1、及び図2の支持台7とを比較すると、従来の支持構造に比べて振動漏れの影響を従来の約十分の一にすることができた。
【0017】
なお、実施例では2脚の音叉振動子を用いた例を示したが、2脚に限らず3脚の場合であっても同様の効果を奏する。
【0018】
【発明の効果】
本発明により、水晶から成る慣性センサー素子への温度変動による外部からの影響を著しく小さくすることができる。
【0019】
また、本発明により慣性センサー素子の振動漏れ(他軸方向への振動の発生)を著しく小さくすることが出来る。
【図面の簡単な説明】
【図1】本発明の慣性センサー素子の支持構造の一実施例を慣性センサー素子の基部側からY軸方向にみた概略の図である。
【図2】本発明の慣性センサー素子の支持構造の一実施例の図である図1の概略の斜視図である。
【図3】本発明の慣性センサー素子の支持構造の一実施例を慣性センサー素子の基部側からY軸方向にみた概略の図である。
【図4】本発明の慣性センサー素子
の支持構造の一実施例の図である図3の概略の斜視図である。
【図5】本発明の慣性センサー素子の支持構造の一実施例の図である図3の構造体を、凹部をもった容器に収容した場合の概略側面図である。
【図6】本発明の慣性センサー素子の支持構造の一実施例の構造体を、凹部をもった容器に収容した場合の概略の斜視図である。
【図7】従来の板状の慣性センサー素子の支持台に慣性センサー素子が片持ちで接着剤を介して保持される模様を示すZ軸(慣性センサー素子の厚み)方向からみた概略の側面図である。
【図8】従来の板状の慣性センサー素子の支持台に慣性センサー素子が片持ちで接着剤を介して保持される模様を示した概略の斜視図である。
【符号の説明】
1 基部
2 脚部
3 慣性センサー素子
4 端部
5 中央部
6 素子主面
7 支持台
8 接着剤
9 板状の支持台
10 凹部を持った容器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a support structure for an inertial sensor element using a tuning fork vibrator.
[0002]
[Prior art]
A method of supporting an inertial sensor element using a tuning fork vibrator processed by a conventional wet etching method is shown in FIG. 1-a of Patent Document 1 (Japanese Patent Publication No. 49-10691). In a state where the inertial sensor element is cantilevered on a plate-like support made of ceramics or the like as shown in the schematic perspective view of FIG. 8, one main surface of the inertial sensor element is placed on the plate-like support above. To fix it via an adhesive.
[0003]
However, in accordance with the miniaturization of the shape of the element, the above-described method does not attenuate the main vibration with the size of the base of the inertial sensor element. Is fixed on the plate-like support base with an adhesive, so that the vibration of the entire inertial sensor element, which is a tuning fork vibrator, is suppressed, and the vibration of the element is transmitted to the outside. This causes a problem that the main vibration of the element fluctuates due to external disturbance.
[0004]
In addition, in the method of fixing the main surface of the base occupying a large area of the inertial sensor element on a plate-like support with adhesive, temperature fluctuations occur due to the difference in the material of the base of the inertial sensor element made of quartz and the material of the support. However, there is a problem that the influence of the distortion generated directly on the legs of the inertial sensor element directly affects the vibration.
[0005]
Also, the distortion due to the temperature change of the base of the inertial sensor element in the stationary state of the inertial sensor element described in Patent Document 2 (Japanese Patent Laid-Open No. 11-325911) is propagated to the vibrating part of the leg part again, and There has been a problem that deviation in the vibration direction, that is, leakage of vibration (generation of vibration in the direction of another axis) occurs, and as a result, an error occurs in the rotational angular velocity detected from the inertial sensor element.
[Patent Document 1]
JP-A-8-10691 [Patent Document 2]
JP-A-11-325911
The applicant has not found any prior art documents related to the present invention other than the prior art documents specified by the above-mentioned prior art document information by the time of filing the present application.
[0007]
The distance between the two legs in the inertial sensor element is very narrow, for example, about 0.5 mm as shown in the schematic perspective view of FIG. 6, and therefore, on the above-mentioned plate-shaped support base. As shown in the schematic rear view of FIG. 1 using an adhesive, the operation of fixing the element so that the rotation axis of the inertial sensor element is exactly parallel to the Y axis of the inertial sensor element is an extremely fine operation. There was a problem that very much man-hour was spent at the same time.
[Problems to be solved by the invention]
[0008]
SUMMARY OF THE INVENTION The present invention has been made in view of the above technical background, and an object thereof is to use a tuning fork type vibrator having at least two legs projecting from a base parallel to the Y axis. In the inertial sensor element supporting structure, the inertial sensor element is supported at a center of an end of a base main surface of the inertial sensor element by a support base extending parallel to the Y-axis direction of the inertial sensor element. The purpose is to provide a support structure for the device.
[0009]
Another object of the present invention is to provide a support structure for an inertial sensor element, wherein the support is made of an insulator including a dielectric.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a support structure for an inertial sensor element using a tuning fork type vibrator having at least two legs projecting from a base parallel to the Y axis. The inertial sensor element is supported by a support extending in the Y-axis direction at the center of the surface end.
[0011]
At the same time, the above-mentioned support is made of an insulator including a dielectric.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
Note that the same reference numerals in each drawing indicate the same objects.
[0013]
FIG. 1 is a schematic view of an embodiment of a support structure for an inertial sensor element 3 according to the present invention as viewed from the base 1 side of the inertial sensor element 3 in the Y-axis direction. The inertial sensor element 3 is interposed between the support 7 and the support 7 via an adhesive 8 on a support 7 positioned on the center 5 of the end 4 of the base 1 of the element main surface 6 of the inertial sensor 3. It is placed in the state. According to the support 7 of the present invention, the non-vibration points (nodal points) of the X vibration and the Z vibration during the free vibration of the inertial sensor element 3 are supported, and transmitted to the outside because the fixed area is small. Vibration leakage (vibration in the direction of another axis) can be reduced.
[0014]
FIG. 2 is a schematic perspective view of FIG. FIG. 3 is a schematic view of another embodiment of the support structure of the inertial sensor element 3 according to the present invention viewed from the base 1 side of the inertial sensor element 3 in the Y-axis direction. The inertial sensor element 3 is attached to the support 7 in the form of a substantially U-shape positioned at the center 5 of the end 4 of the base 1 of the two element main surfaces 6 of the inertial sensor element 3 and the adhesive 8 is attached to the support 7. It is placed in a state where it is fitted through. FIG. 4 is a schematic perspective view of FIG. 3 showing one embodiment of a support structure of the inertial sensor element 3 of the present invention.
[0015]
FIG. 5 is a schematic side view of an embodiment of the support structure of the inertial sensor element 3 according to the present invention, in which the structure of FIG. 3 is accommodated in a container 10 having a concave portion. FIG. 6 is a schematic perspective view of a case where the support 7 of the embodiment of the support structure of the inertial sensor element 3 of the present invention is accommodated in a container 10 having a concave portion. The material of the container 10 having the concave portion is preferably a multilayer ceramic or the like. It is preferable that the container 10 having the concave portion does not come into contact with the inertial sensor element 3 except for the portion of the support 7.
[0016]
FIG. 7 is a schematic side view showing a pattern in which the inertial sensor element 3 is cantilevered and held via the adhesive 8 on the support plate of the conventional plate-shaped inertial sensor element viewed from the Z-axis (thickness of the inertial sensor element). FIG. 8 is a perspective view thereof. When the conventional support structure of FIG. 7 is compared with the support base 7 of FIGS. 1 and 2 of the present invention, the effect of vibration leakage can be reduced to about one tenth of that of the conventional support structure. .
[0017]
In the embodiment, an example is shown in which a two-legged tuning fork vibrator is used. However, a similar effect can be obtained in the case of not only two legs but also three legs.
[0018]
【The invention's effect】
According to the present invention, external influences due to temperature fluctuations on the inertial sensor element made of quartz can be significantly reduced.
[0019]
Further, according to the present invention, vibration leakage (generation of vibration in the direction of another axis) of the inertial sensor element can be significantly reduced.
[Brief description of the drawings]
FIG. 1 is a schematic view of an embodiment of a support structure of an inertial sensor element according to the present invention as viewed from a base side of the inertial sensor element in a Y-axis direction.
FIG. 2 is a schematic perspective view of FIG. 1, which is a view of an embodiment of a support structure for an inertial sensor element of the present invention.
FIG. 3 is a schematic view of an embodiment of the support structure of the inertial sensor element according to the present invention when viewed from the base side of the inertial sensor element in the Y-axis direction.
FIG. 4 is a schematic perspective view of FIG. 3, which is a diagram of an embodiment of a support structure for an inertial sensor element of the present invention.
5 is a schematic side view of the embodiment of the support structure of the inertial sensor element of the present invention, in which the structure of FIG. 3 is accommodated in a container having a concave portion.
FIG. 6 is a schematic perspective view showing a case where the structure of one embodiment of the support structure of the inertial sensor element of the present invention is accommodated in a container having a concave portion.
FIG. 7 is a schematic side view showing a pattern in which the inertial sensor element is cantilevered on a support base of the conventional plate-shaped inertial sensor element via an adhesive, viewed from a Z-axis (thickness of the inertial sensor element). It is.
FIG. 8 is a schematic perspective view showing a pattern in which the inertial sensor element is cantilevered and held via an adhesive on a support base of the conventional plate-shaped inertial sensor element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Base part 2 Leg part 3 Inertial sensor element 4 End part 5 Central part 6 Element main surface 7 Support base 8 Adhesive 9 Plate-shaped support base 10 Container with concave part

Claims (2)

Y軸に平行に基部から突出した少なくとも2つの脚部を持つ音叉型振動子を用いた慣性センサー素子の支持構造において、
該慣性センサー素子の基部主面端部の中央部で、該慣性センサー素子のY軸方向に延びる支持台で支持されていることを特徴とする慣性センサー素子の支持構造。
In a support structure of an inertial sensor element using a tuning fork type vibrator having at least two legs protruding from a base parallel to the Y axis,
A support structure for an inertial sensor element, characterized in that the inertial sensor element is supported by a support extending in the Y-axis direction of the inertial sensor element at the center of the base main surface end.
請求項1に記載の該慣性センサー素子の該支持台が誘電体を含む絶縁体から成ることを特徴とする慣性センサー素子の支持構造。2. A support structure for an inertial sensor element according to claim 1, wherein the support of the inertial sensor element is made of an insulator including a dielectric.
JP2003024732A 2003-01-31 2003-01-31 Support structure of inertia sensor element Pending JP2004233288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003024732A JP2004233288A (en) 2003-01-31 2003-01-31 Support structure of inertia sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003024732A JP2004233288A (en) 2003-01-31 2003-01-31 Support structure of inertia sensor element

Publications (1)

Publication Number Publication Date
JP2004233288A true JP2004233288A (en) 2004-08-19

Family

ID=32953191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003024732A Pending JP2004233288A (en) 2003-01-31 2003-01-31 Support structure of inertia sensor element

Country Status (1)

Country Link
JP (1) JP2004233288A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8225663B2 (en) 2008-09-02 2012-07-24 Murata Manufacturing Co., Ltd. Tuning fork-type vibrator, tuning fork-type vibrator manufacturing method, and angular velocity sensor
JP2014150324A (en) * 2013-01-31 2014-08-21 Kyocera Crystal Device Corp Crystal oscillator and manufacturing method therefor
CN104467731A (en) * 2013-09-25 2015-03-25 精工电子水晶科技股份有限公司 Piezoelectric vibrating device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8225663B2 (en) 2008-09-02 2012-07-24 Murata Manufacturing Co., Ltd. Tuning fork-type vibrator, tuning fork-type vibrator manufacturing method, and angular velocity sensor
JP2014150324A (en) * 2013-01-31 2014-08-21 Kyocera Crystal Device Corp Crystal oscillator and manufacturing method therefor
CN104467731A (en) * 2013-09-25 2015-03-25 精工电子水晶科技股份有限公司 Piezoelectric vibrating device
JP2015065588A (en) * 2013-09-25 2015-04-09 エスアイアイ・クリスタルテクノロジー株式会社 Piezoelectric vibrator
CN104467731B (en) * 2013-09-25 2018-05-29 精工电子水晶科技股份有限公司 Piezoelectric vibrator

Similar Documents

Publication Publication Date Title
JP5807344B2 (en) Angular velocity sensor and electronic device
JP2006201118A (en) Piezoelectric vibrating gyroscope element and gyro sensor
JP2004233088A (en) Electrostatic movable mechanism, resonant device, and angular velocity sensor
JP2004233288A (en) Support structure of inertia sensor element
JP3307130B2 (en) Angular velocity sensor
JP2007163248A (en) Piezoelectric vibration gyro
JP2006258505A (en) Tuning fork vibrator for vibrating gyroscope
JPH11271064A (en) Angular velocity sensor
JP2001082964A (en) Resonant element
JP2004150988A (en) Support structure of piezoelectric vibration type inertia sensor element
JP3767212B2 (en) Vibration gyro support structure and support method
JP2005345404A (en) Vibrator for piezoelectric vibration gyroscope, and its manufacturing method
JP3303379B2 (en) Angular velocity sensor
JPH07239339A (en) Angular velocity sensor
JP2005274360A (en) Vibration gyro
JPH10115527A (en) Resonator
JP2006186462A (en) Quartz crystal resonator
JP2008145325A (en) Vibration gyro
JP2006275630A (en) Structure for mounting tuning-fork vibrator of vibrating gyroscope
JP2004301575A (en) Angular velocity sensor
JP2006112800A (en) Vibrator loading structure of vibrating gyro
JPH0674773A (en) Oscillator for oscillation gyro
JPH0584813U (en) Vibrating gyro
JP2004184120A (en) Frequency regulation method for piezoelectric oscillating type inertia sensor element, and piezoelectric oscillating type inertia sensor element
JP2013002895A (en) Inertia force sensor