JP2004184120A - Frequency regulation method for piezoelectric oscillating type inertia sensor element, and piezoelectric oscillating type inertia sensor element - Google Patents

Frequency regulation method for piezoelectric oscillating type inertia sensor element, and piezoelectric oscillating type inertia sensor element Download PDF

Info

Publication number
JP2004184120A
JP2004184120A JP2002348391A JP2002348391A JP2004184120A JP 2004184120 A JP2004184120 A JP 2004184120A JP 2002348391 A JP2002348391 A JP 2002348391A JP 2002348391 A JP2002348391 A JP 2002348391A JP 2004184120 A JP2004184120 A JP 2004184120A
Authority
JP
Japan
Prior art keywords
sensor element
inertial sensor
frequency
inertia sensor
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002348391A
Other languages
Japanese (ja)
Inventor
Motoyasu Hanji
元康 判治
Shuichi Kono
修一 河野
Tomoshige Ishizuka
友茂 石塚
Katsuhide Ibusuki
克英 指宿
Ryota Kawai
良太 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2002348391A priority Critical patent/JP2004184120A/en
Publication of JP2004184120A publication Critical patent/JP2004184120A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a frequency regulation method for a piezoelectric oscillation type inertia sensor element, and a piezoelectric oscillation type inertia sensor element. <P>SOLUTION: In this piezoelectric oscillation type inertia sensor element using a tuning fork type oscillator having at least two leg parts protruded in parallel to a Y-axis from a base part, a width W of the leg part along a quartz X-axis direction of the piezoelectric oscillation type inertia sensor element is thinner than that T of the leg part along a quartz Z-axis direction thereof. In this frequency regulation method for the piezoelectric oscillation type inertia sensor element having at least the two leg parts protruded in parallel to the Y-axis from the base part, other part other than an electrode is etched to regulate a frequency while measuring the frequency by a frequency measuring instrument provided with the electrode and connected to the electrode. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は音叉型振動子を用いた圧電振動式慣性センサー素子の周波数調整方法、及びその圧電振動式慣性センサー素子に関するものである。
【0002】
【従来の技術】
従来における水晶のウェットエッチングの異方性を利用したウェットエッチング法により加工された音叉型振動子を用いた圧電振動式慣性センサー素子は、特許文献1 (公開特許公報 昭49−10691号)の第1図−aに図示されているように、セラミックなどから成る板状の支持台上に圧電振動式慣性センサー素子を片持ちの状態で圧電振動式慣性センサー素子の片面の主面を先の板状の支持台上に接着剤を介して固定されているような圧電振動式慣性センサー素子の形状をしていた。
【0003】
一般に、音叉型振動子を用いた圧電振動式慣性センサー素子においては、その励振周波数fと検出周波数fと、その双方の周波数の差Δfとには以下のような関係がある。
Δf=f − f
【0004】
このΔfは音叉型振動子を用いた圧電振動式慣性センサー素子の感度に著しく影響する値であり、このΔfは大まかに100Hz〜200Hz程度の非常に小さな値である。
【0005】
従来においては、音叉型振動子を用いた圧電振動式慣性センサー素子のX軸方向の厚み、及びZ軸方向の厚みを実際に計測して次の二つの式から励振周波数fと検出周波数fを算出して、その双方の周波数の差Δfを設定していた。
=kf× ω/l 、及び f=kf× ω/l
ここで kf、及び kf: 周波数定数(振動体の音速)、f: 励振周波数、ω: X軸方向の厚み、 f: 検出周波数、ω: Z軸方向の厚み、l: 圧電振動式慣性センサー素子の振動部の長さ
ここで、kfとkfは極めて近い値(kf≒ kf)となっている。
【0006】
しかしながら、圧電振動式慣性センサー素子におけるふたつの脚部の間隔は、一例をあげれば図3の概略の斜視図に示す様に約0.5mmと非常に狭いものであり、音叉型振動子を用いた圧電振動式慣性センサー素子のX軸方向の厚み、及びZ軸方向の厚みを実際に計測する際に例えば1μmの測定誤差があった場合、数十Hz程度の励振周波数と検出周波数のずれが発生して、その結果、前述の音叉型振動子を用いた圧電振動式慣性センサー素子の感度に著しく影響する値である双方の周波数の差であるΔfの値が大きく振れてしまうといった問題があった。
【0007】
また、励振周波数と検出周波数を極めて近似させる(f≒ f)ことは、双方間の共振Q値を向上して感度を改善させることが出来るが、f=fとなると双方の振動モードが縮退して、その結果感度を得ることが不可能となる。音叉型振動子を用いた圧電振動式慣性センサー素子の感度を出来るだけ高く保ったまま、かつ縮退が発生することがないように前述のΔfを正確に制御するには、圧電振動式慣性センサー素子のX軸方向の厚みω、及びZ軸方向の厚みωを精度良く調整する必要がある。
【特許文献1】
特開昭49−10691 号公報
【特許文献2】
特開平11−325911号公報
【0008】
なお、出願人は前記した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を、本件出願時までに発見するに至らなかった。
【発明が解決しようとする課題】
【0009】
本発明は、以上のような技術的背景のもとでなされたものであり、従がってその目的は、圧電振動式慣性センサー素子の周波数調整方法、及び圧電振動式慣性センサー素子を提供することである。
【0010】
【課題を解決するための手段】
上記の目的を達成するために本発明は、Y軸に平行に基部から突出した少なくとも2つの脚部を持つ音叉型振動子を用いた圧電振動式慣性センサー素子において、該圧電振動式慣性センサー素子の水晶のX軸に沿った方向の脚部の幅が該脚部の水晶のZ軸に沿った方向の厚みより小さいことを特徴とする。
【0011】
また、Y軸に平行に基部から突出した少なくとも2つの脚部を持つ音叉型振動子を用いた圧電振動式慣性センサー素子の周波数調整方法において、電極が設けられ電極に接続された周波数測定器により周波数を測定しながら電極以外をエッチングして周波数調整することを特徴とする。
【0012】
【発明の実施の形態】
以下に図面を参照しながら、本発明の実施の一形態について説明する。
なお、各図においての同一の符号は同じ対象を示すものとする。ただし、以下の説明はあくまでも本発明の例示にすぎず、以下の記載によって発明の技術的範囲が限定されるものではない。
【0013】
図1は本発明の、脚部2に電極8が蒸着により形成された圧電振動式慣性センサー素子3の概略の斜視図である。 従来においては図5にあるように、圧電振動式慣性センサー素子3を形成したあとに電極8を圧電振動式慣性センサー素子3の脚部2に蒸着していた為に、圧電振動式慣性センサー素子3の脚部2における電極部の素子の厚みT1は該電極部周辺の素子の厚みT2と等しかった。図3の概略の斜視図に示す様に、圧電振動式慣性センサー素子は非常に小さなものであり、音叉型振動子を用いた圧電振動式慣性センサー素子のX軸方向の厚み、及びZ軸方向の厚みを実際に計測する際に例えば1μmの測定誤差があった場合、数十Hz程度の励振周波数と検出周波数のずれが発生して、その結果、前述の音叉型振動子を用いた圧電振動式慣性センサー素子の感度に著しく影響する値である双方の周波数の差であるΔfの値が大きく振れてしまうといった問題があった。本実施例では、図1に示すように、予め圧電振動式慣性センサー素子3の脚部2にエッチャントで侵されることのない例えば金(Au)などの金属を電極8に蒸着し、この電極8に周波数測定器を接続した状態で、ウェットエッチングなどを施して圧電振動式慣性センサー素子3の寸法を加工する。従って、周波数を周波数測定器で測定しながら加工するために、圧電振動式慣性センサー素子の感度が最も高くなるような周波数差が得られる加工をすることができる。
【0014】
図2は本発明をX軸方向からみた、脚部2に電極8が蒸着された圧電振動式慣性センサー素子3の概略の側面図である。電極8が蒸着された部分のエッチングは進行しないために、本発明の周波数調整方法を用いた圧電振動式慣性センサー素子3では素子の脚部2における電極部の素子の厚みT1が電極部周辺の素子の厚みT2よりも大きくなる。なお、図1、及び図2では圧電振動式慣性センサー素子のすべての電極が図示されては居らず、電極の1部を図示した概略の図となっている。
【0015】
図3は本発明の、脚部に電極の蒸着されていない状態の圧電振動式慣性センサー素子の概略の斜視図である。図4はその上面からみた図である。本発明では、圧電振動式慣性センサー素子3の水晶のX軸に沿った方向の脚部2の幅Wが先の脚部2の水晶のZ軸に沿った方向の厚みTよりも小さい。本発明の圧電振動式慣性センサー素子3では、ウェットエッチングなどを用いて周波数の調整を行う際、Z軸に沿った厚み方向のエッチングの進行度合い(エッチングレート)が結晶の異方性により、他の軸方向に比べて大きいために効率良くウェットエッチングなどの加工による調整が出来る。
【0016】
また、ドライエッチングやイオンビームエッチングにおいても、同様な方法で先述の選択的なエッチングが可能である。
【0017】
なお、実施例のなかの図では2脚の音叉振動子を用いた例を示したが、2脚に限らず3脚や4脚の場合や、脚が平行ではない場合であっても同様の効果を奏し、これらの場合も本発明の技術的範囲に含まれることは言うまでもない。
【0018】
【発明の効果】
本発明により、感度の良好な精度の良い圧電振動式慣性センサー素子を得ることができる。
【0019】
また、本発明により効率良くウェットエッチングなどによる圧電振動式慣性センサー素子の加工が出来、かつ圧電振動式慣性センサー素子の製造歩留まりを著しく高めることができる。
【図面の簡単な説明】
【図1】本発明の、脚部に電極が蒸着された圧電振動式慣性センサー素子の概略の斜視図である。
【図2】本発明をX軸方向からみた、脚部に電極が蒸着された圧電振動式慣性センサー素子の概略の側面図である。
【図3】本発明の、脚部に電極の蒸着されていない状態の圧電振動式慣性センサー素子の概略の斜視図である。
【図4】本発明の脚部に電極の蒸着されていない状態の圧電振動式慣性センサー素子の脚部の概略の上面図である。
【図5】従来の、脚部に電極の蒸着された圧電振動式慣性センサー素子を、X軸方向からみた概略の側面図である。
【符号の説明】
1 基部
2 脚部
3 圧電振動式慣性センサー素子
4 脚部の幅 W
5 脚部の厚み T
6 電極部の素子の厚み T1
7 電極部周辺の素子の厚み T2
8 電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of adjusting the frequency of a piezoelectric vibration type inertial sensor element using a tuning fork type vibrator, and to the piezoelectric vibration type inertial sensor element.
[0002]
[Prior art]
A conventional piezoelectric vibrating inertial sensor element using a tuning-fork type vibrator processed by a wet etching method utilizing anisotropy of wet etching of quartz is disclosed in Japanese Patent Application Laid-Open No. 49-10691. As shown in FIG. 1A, a piezoelectric vibratory inertial sensor element is cantilevered on a plate-like support made of ceramic or the like, and one main surface of the piezoelectric vibratory inertial sensor element is placed on the preceding plate. The shape of the piezoelectric vibration type inertial sensor element is such that it is fixed on a support having a shape through an adhesive.
[0003]
Generally, in the piezoelectric vibrating inertial sensor element using a tuning-fork oscillator, and the excitation frequency f 1 and the detection frequency f 2, the following is in the difference Δf of the frequency of the both relationships.
Δf = f 2 - f 1
[0004]
This Δf is a value that significantly affects the sensitivity of the piezoelectric vibration type inertial sensor element using the tuning fork type vibrator, and this Δf is a very small value of approximately 100 Hz to 200 Hz.
[0005]
In the conventional tuning fork type X-axis direction of the thickness of the piezoelectric vibrating inertial sensor device using a vibrator, and the Z-axis direction of the actually measured by the thickness following the excitation from the two formulas frequency f 1 and the detection frequency f 2, and a difference Δf between the two frequencies is set.
f 1 = kf 1 × ω 1 / l 2 And f 2 = kf 2 × ω 2 / l 2
Here, kf 1 and kf 2 : frequency constant (sound speed of vibrator), f 1 : excitation frequency, ω 1 : thickness in the X-axis direction, f 2 : detection frequency, ω 2 : thickness in the Z-axis direction, l: Here, kf 1 and kf 2 are extremely close values (kf 1 kkf 2 ).
[0006]
However, the interval between the two legs in the piezoelectric vibration type inertial sensor element is very narrow, for example, about 0.5 mm as shown in a schematic perspective view of FIG. When there is a measurement error of, for example, 1 μm when actually measuring the thickness of the piezoelectric vibration type inertial sensor element in the X-axis direction and the thickness in the Z-axis direction, a deviation between the excitation frequency and the detection frequency of about several tens Hz is generated. As a result, there is a problem that the value of Δf, which is the difference between the two frequencies, which is a value that significantly affects the sensitivity of the piezoelectric vibrating inertial sensor element using the tuning fork vibrator described above, greatly fluctuates. Was.
[0007]
In addition, making the excitation frequency and the detection frequency very close (f 1 ff 2 ) can improve the sensitivity by improving the resonance Q value between them, but when f 1 = f 2 , both vibrations become higher. The mode degenerates, making it impossible to obtain sensitivity. To maintain the sensitivity of a piezoelectric vibrating inertial sensor element using a tuning fork vibrator as high as possible and to accurately control the above-mentioned Δf so that degeneration does not occur, a piezoelectric vibrating inertial sensor element is required. It is necessary to accurately adjust the thickness ω 1 in the X-axis direction and the thickness ω 2 in the Z-axis direction.
[Patent Document 1]
JP-A-49-10691 [Patent Document 2]
JP-A-11-325911
The applicant has not found any prior art documents related to the present invention other than the prior art documents specified by the above-mentioned prior art document information by the time of filing the present application.
[Problems to be solved by the invention]
[0009]
The present invention has been made in view of the technical background as described above, and accordingly, has as its object to provide a method of adjusting the frequency of a piezoelectric vibration type inertial sensor element and a piezoelectric vibration type inertial sensor element. That is.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention relates to a piezoelectric vibration type inertial sensor element using a tuning fork type vibrator having at least two legs projecting from a base parallel to a Y axis. The width of the leg of the crystal in the direction along the X axis is smaller than the thickness of the leg in the direction of the crystal along the Z axis.
[0011]
Further, in the frequency adjusting method of the piezoelectric vibration type inertial sensor element using the tuning fork type vibrator having at least two legs protruding from the base in parallel with the Y axis, an electrode is provided and a frequency measuring device connected to the electrode is provided. The frequency is adjusted by etching the portions other than the electrodes while measuring the frequency.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
Note that the same reference numerals in each drawing indicate the same objects. However, the following description is merely an exemplification of the present invention, and the technical scope of the present invention is not limited by the following description.
[0013]
FIG. 1 is a schematic perspective view of a piezoelectric vibration type inertial sensor element 3 according to the present invention in which an electrode 8 is formed on a leg 2 by vapor deposition. Conventionally, as shown in FIG. 5, the electrode 8 is deposited on the leg 2 of the piezoelectric vibration type inertial sensor element 3 after the piezoelectric vibration type inertial sensor element 3 is formed. The thickness T1 of the element in the electrode part of the leg part 2 of No. 3 was equal to the thickness T2 of the element around the electrode part. As shown in the schematic perspective view of FIG. 3, the piezoelectric vibration type inertial sensor element is very small, and the thickness of the piezoelectric vibration type inertial sensor element using the tuning fork type vibrator in the X-axis direction and the Z-axis direction When there is a measurement error of, for example, 1 μm in the actual measurement of the thickness of the piezoelectric vibrator, a deviation between the excitation frequency and the detection frequency of about several tens Hz occurs, and as a result, the piezoelectric vibration using the tuning fork vibrator described above occurs. There is a problem in that the value of Δf, which is the difference between the two frequencies, which significantly affects the sensitivity of the inertial sensor element, greatly fluctuates. In this embodiment, as shown in FIG. 1, a metal such as gold (Au) which is not affected by an etchant in the legs 2 of the piezoelectric vibration type inertial sensor element 3 is vapor-deposited on the electrode 8 in advance. The dimensions of the piezoelectric vibration type inertial sensor element 3 are processed by performing wet etching or the like while the frequency measuring device is connected to. Therefore, since the processing is performed while measuring the frequency with the frequency measuring device, it is possible to perform the processing for obtaining the frequency difference that maximizes the sensitivity of the piezoelectric vibration type inertial sensor element.
[0014]
FIG. 2 is a schematic side view of the piezoelectric vibrating inertial sensor element 3 in which the electrode 8 is deposited on the leg 2 when the present invention is viewed from the X-axis direction. Since the etching of the portion on which the electrode 8 is deposited does not progress, in the piezoelectric vibration type inertial sensor element 3 using the frequency adjustment method of the present invention, the thickness T1 of the electrode portion in the leg portion 2 of the element is the thickness T1 around the electrode portion. It becomes larger than the thickness T2 of the element. Note that not all electrodes of the piezoelectric vibration type inertial sensor element are illustrated in FIGS. 1 and 2, and are schematic diagrams illustrating a part of the electrodes.
[0015]
FIG. 3 is a schematic perspective view of a piezoelectric vibration type inertial sensor element according to the present invention in a state where electrodes are not deposited on the legs. FIG. 4 is a view as seen from above. In the present invention, the width W of the leg 2 of the piezoelectric vibration type inertial sensor element 3 in the direction along the X axis of the crystal is smaller than the thickness T of the leg 2 in the direction along the Z axis of the crystal. In the piezoelectric vibration type inertial sensor element 3 of the present invention, when the frequency is adjusted using wet etching or the like, the degree of progress of the etching (etching rate) in the thickness direction along the Z axis depends on the anisotropy of the crystal. Since it is larger than the axial direction, adjustment by processing such as wet etching can be performed efficiently.
[0016]
In dry etching or ion beam etching, the above-described selective etching can be performed in a similar manner.
[0017]
In the drawings in the embodiment, an example using a two-legged tuning fork vibrator is shown. However, the present invention is not limited to the two-legged one and may be a three-legged or four-legged one. Advantageously, it is needless to say that these cases are also included in the technical scope of the present invention.
[0018]
【The invention's effect】
According to the present invention, it is possible to obtain a piezoelectric vibration type inertial sensor element having good sensitivity and high accuracy.
[0019]
Further, according to the present invention, the piezoelectric vibration type inertial sensor element can be efficiently processed by wet etching or the like, and the production yield of the piezoelectric vibration type inertial sensor element can be significantly increased.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a piezoelectric vibration type inertial sensor element according to the present invention in which electrodes are deposited on legs.
FIG. 2 is a schematic side view of a piezoelectric vibration type inertial sensor element in which an electrode is deposited on a leg, when the present invention is viewed from the X-axis direction.
FIG. 3 is a schematic perspective view of a piezoelectric vibrating inertial sensor element according to the present invention in which electrodes are not deposited on legs.
FIG. 4 is a schematic top view of the leg of the piezoelectric vibratory inertial sensor element with no electrode deposited on the leg according to the present invention.
FIG. 5 is a schematic side view of a conventional piezoelectric vibrating inertial sensor element having electrodes deposited on legs, as viewed from the X-axis direction.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Base 2 Leg 3 Piezoelectric vibration type inertial sensor element 4 Leg width W
5 Leg thickness T
6 Thickness of element of electrode part T1
7 Thickness of element around electrode part T2
8 electrodes

Claims (2)

Y軸に平行に基部から突出した少なくとも2つの脚部を持つ水晶の音叉型振動子を用いた圧電振動式慣性センサー素子において、
該圧電振動式慣性センサー素子の水晶のX軸に沿った方向の脚部の幅が該脚部の水晶のZ軸に沿った方向の厚みより小さいことを特徴とする圧電振動式慣性センサー素子。
A piezoelectric vibrating inertial sensor element using a quartz tuning fork vibrator having at least two legs protruding from a base parallel to the Y axis,
A piezoelectric vibratory inertial sensor element, wherein the width of the leg of the piezoelectric vibratory inertial sensor element in the direction along the X axis of the crystal is smaller than the thickness of the leg in the direction of the crystal along the Z axis.
Y軸に平行に基部から突出した少なくとも2つの脚部を持つ水晶の音叉型振動子を用いた圧電振動式慣性センサー素子の周波数調整方法において、
電極が設けられ電極に接続された周波数測定器により周波数を測定しながら電極以外をエッチングして周波数調整することを特徴とする圧電振動式慣性センサー素子の周波数調整方法。
In a frequency adjustment method of a piezoelectric vibrating inertial sensor element using a quartz tuning fork vibrator having at least two legs protruding from a base parallel to a Y axis,
A frequency adjustment method for a piezoelectric vibration type inertial sensor element, characterized in that a frequency is adjusted by etching a portion other than the electrode while measuring a frequency with a frequency measuring device connected to the electrode.
JP2002348391A 2002-11-29 2002-11-29 Frequency regulation method for piezoelectric oscillating type inertia sensor element, and piezoelectric oscillating type inertia sensor element Pending JP2004184120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002348391A JP2004184120A (en) 2002-11-29 2002-11-29 Frequency regulation method for piezoelectric oscillating type inertia sensor element, and piezoelectric oscillating type inertia sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348391A JP2004184120A (en) 2002-11-29 2002-11-29 Frequency regulation method for piezoelectric oscillating type inertia sensor element, and piezoelectric oscillating type inertia sensor element

Publications (1)

Publication Number Publication Date
JP2004184120A true JP2004184120A (en) 2004-07-02

Family

ID=32751320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348391A Pending JP2004184120A (en) 2002-11-29 2002-11-29 Frequency regulation method for piezoelectric oscillating type inertia sensor element, and piezoelectric oscillating type inertia sensor element

Country Status (1)

Country Link
JP (1) JP2004184120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150678A (en) * 2007-12-19 2009-07-09 Citizen Holdings Co Ltd Method of manufacturing gyro sensor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150678A (en) * 2007-12-19 2009-07-09 Citizen Holdings Co Ltd Method of manufacturing gyro sensor element

Similar Documents

Publication Publication Date Title
KR20070049250A (en) Vibrating gyroscope and method of manufacturing vibrating gyroscope
JP2001255152A (en) Piezoelectric vibrating gyroscope and its frequency adjusting method
JP2005037235A (en) Physical quantity measuring method and device
JP5054490B2 (en) Vibrator and method for manufacturing the vibrator
JP5765087B2 (en) Bending vibration piece, method for manufacturing the same, and electronic device
JP2008224627A (en) Angular velocity sensor, method of manufacturing the same, and electronic apparatus
JP4305625B2 (en) Oscillator and signal generator for physical quantity measurement
JP2007071706A (en) Tuning fork type oscillation gyro
JP4356881B2 (en) Vibrating gyroscope
JPH11248465A (en) Oscillator and oscillation type gyroscope and method for measuring rotational angular velocity
JP2004184120A (en) Frequency regulation method for piezoelectric oscillating type inertia sensor element, and piezoelectric oscillating type inertia sensor element
JP4415365B2 (en) Measuring method of detecting detuning of vibrator and adjusting method thereof
JP2007306471A (en) Quartz-crystal oscillator, its manufacturing method, and physical quantity sensor
JP2001208545A (en) Piezoelectric vibration gyroscope
JP2012227961A (en) Oscillator
JP3355998B2 (en) Vibrating gyro
JP2005345404A (en) Vibrator for piezoelectric vibration gyroscope, and its manufacturing method
JP2009232376A (en) Method of manufacturing piezoelectric oscillator
JP2000074676A (en) Angular speed sensor
JP2004077351A (en) Angular velocity sensor
JP3958455B2 (en) Vibrator, vibratory gyroscope and linear accelerometer
JP7050387B2 (en) Manufacturing method of tuning fork type piezoelectric vibrator
JPH10153432A (en) Oscillation type gyroscope
JP3225756B2 (en) Oscillator and yaw rate sensor using it
JP2009239731A (en) Piezoelectric oscillation device, tuning-fork piezoelectric vibration piece, and method for manufacturing tuning-fork piezoelectric vibration piece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105