JP2004231442A - Boron nitride nanotube and its manufacturing method - Google Patents

Boron nitride nanotube and its manufacturing method Download PDF

Info

Publication number
JP2004231442A
JP2004231442A JP2003019569A JP2003019569A JP2004231442A JP 2004231442 A JP2004231442 A JP 2004231442A JP 2003019569 A JP2003019569 A JP 2003019569A JP 2003019569 A JP2003019569 A JP 2003019569A JP 2004231442 A JP2004231442 A JP 2004231442A
Authority
JP
Japan
Prior art keywords
boron nitride
nitride nanotube
ductility
nanotube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003019569A
Other languages
Japanese (ja)
Other versions
JP3861150B2 (en
Inventor
Yoshio Bando
義雄 板東
Shuu Fanfan
ファンファン・シュー
Golberg Dmitri
デミトリー・ゴルバーグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003019569A priority Critical patent/JP3861150B2/en
Publication of JP2004231442A publication Critical patent/JP2004231442A/en
Application granted granted Critical
Publication of JP3861150B2 publication Critical patent/JP3861150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel boron nitride nanotube exhibiting flexibility and ductility. <P>SOLUTION: A carbon nanotube is reacted with boron nitride arranged on a titanium substrate having cobalt particles deposited thereon, at 1,500-2,500 K in a nitrogen atmosphere. The resultant product is heated at 1,700-2,500 K. Thus is obtained the boron nitride nanotube which has jointless penetration holes and a helical structure comprising connected conical shapes and exhibits flexibility and ductility. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この出願の発明は、窒化ホウ素ナノチューブとその製造方法に関するものである。さらに詳しくは、この出願の発明は、柔軟性及び延性を示す新規な窒化ホウ素ナノチューブとその製造方法に関するものである。
【0002】
【従来の技術】
カーボン、窒化ホウ素のナノチューブやナノ繊維は、くらげ状、脊柱状、杉の葉状、節のあるスギナや竹状等の多種の形態を有することが知られている。中でも竹状や円錐状の窒化ホウ素ナノチューブは、チューブの通路が節で閉ざされ、チューブ全体が貫通する構造ではなかった(たとえば、非特許文献1参照)。
【0003】
【非特許文献1】
Renzhi Ma外,J. Am. Chem. Soc.,2002年,第124巻,第26号,p.7672
【0004】
【発明が解決しようとする課題】
そのようにチューブ全体が貫通しない節のある窒化ホウ素ナノチューブは、硬い物性を示す。この硬い物性は、窒化ホウ素ナノチューブの一つの特性であり、これを踏まえて実用的な応用を検討することができるが、広範囲の応用を考えると、他の物性も望まれる。
【0005】
この出願の発明は、このような事情に鑑みてなされたものであり、柔軟性及び延性を示す新規な窒化ホウ素ナノチューブとその製造方法を提供することを解決すべき課題としている。
【0006】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、円錐形状が連なったらせん構造を有するとともに、節のない貫通孔を備え、柔軟性及び延性を示すことを特徴とする窒化ホウ素ナノチューブ(請求項1)を提供する。
【0007】
また、この出願の発明は、カーボンナノチューブと、コバルト粒子を堆積させたチタン基板上に配置させた酸化ホウ素とを窒素雰囲気中で1500K〜2500Kの温度範囲で反応させ、次いで1700K〜2500Kの温度範囲で後加熱を行い、請求項1記載の窒化ホウ素ナノチューブを製造することを特徴とする窒化ホウ素ナノチューブの製造方法(請求項2)を提供する。
【0008】
以下、実施例を示しつつ、この出願の発明の窒化ホウ素ナノチューブとその製造方法についてさらに詳しく説明する。
【0009】
【発明の実施の形態】
この出願の発明の窒化ホウ素ナノチューブは、円錐形状が連なったらせん構造を有するとともに、節のない貫通孔を備えている。一本のチューブ中に節が存在しないため、この出願の発明の窒化ホウ素ナノチューブは、これまでの無機材料は示さなかった柔軟性及び延性を示す。また、貫通孔を備えているため、チューブ内への各種の物質の充填が妨げられず、チューブ内全体に物質を充填することができる。
【0010】
このようなこの出願の発明の窒化ホウ素ナノチューブは、カーボンナノチューブと、コバルト粒子を堆積させたチタン基板上に配置させた酸化ホウ素とを窒素雰囲気中で1500K〜2500Kの温度範囲で反応させ、次いで1700K〜2500Kの温度範囲で後加熱を行うことにより得られる。
【0011】
カーボンナノチューブと酸化ホウ素の重量比は1:5〜1:15の範囲が好ましい。1:5よりも酸化ホウ素が少ないとカーボンナノチューブのロスが多くなり、1:15よりも酸化ホウ素の量が多くなると酸化ホウ素のロスが多くなるからである。
【0012】
反応温度については、1500Kより低いと、反応速度が遅くなり、十分に反応が進行しなくなる。2500Kを超えると、カーボンナノチューブの蒸発逸散が速く、チューブ状窒化ホウ素の収率が悪くなる。反応時間としては30分〜2時間の範囲が好ましく例示される。その理由は、30分未満では反応が十分に進行しにくく、2時間を超えても反応に特に目立った変化は見られないからである。
【0013】
後加熱は、反応生成物からカーボンを除去するための工程であり、温度が1700K未満ではカーボンが残留することとなり、2500Kを超えてもカーボンの除去効果はさほど向上しない。後加熱の時間は、1時間〜5時間の範囲が好ましく例示される。1時間未満ではカーボンの除去が不十分になりやすく、5時間でほぼ除去効果は飽和するからである。
【0014】
【実施例】
出発物質として使用する鋳型となる多層カーボンナノチューブをまず合成した。ステンレススチール製の研磨したウエハーを基板として使用し、搬送ガスとして窒素ガス(純度99.999%)を、炭素ナノチューブを生成させるためのガスとして水素ガス(純度99.999%)及びメタンガス(純度99.9%)を用い、水素ガスの流量を80sccm、メタンガスの流量を20sccmとしてプラズマCVD法により、基板温度773Kで反応させて基板上に多層カーボンナノチューブを堆積させた。
【0015】
次いで、コバルト粒子をスパッターにより堆積させたチタン製基板上に配置させた酸化ホウ素粉末と、得られた多層カーボンナノチューブとを高周波誘導加熱炉中において窒素雰囲気下に1973Kで30分間反応させた。このときのカーボンナノチューブと酸化ホウ素の重量比は1:8とした。
【0016】
反応終了後、窒素雰囲気中2073Kで後加熱した。
【0017】
生成物を走査型電子顕微鏡を用いて観察した結果、図1aに示したように、直径が平均で100nm、長さが100μm以上のらせん状の繊維状物質が高収率で得られている。図1aの右側に示した走査型電子顕微鏡像と図1bに示した透過型電子顕微鏡像から、生成物は節のない貫通孔を備えたチューブ状の形態を有し、チューブ壁の厚さが20nmであることが確認される。また、図1bより、チューブ壁はチューブの軸に対して斜めに傾いて形成されていることが確認され、図1bの左側に示した回折パターンから、チューブは円錐状に配向していることが確認される。さらに、X線回折パターンと図2に示した電子エネルギー損失スペクトル分析の結果から、格子定数がa=0.2502nm、c=0.3333nmであり、ホウ素原子と窒素原子とからなる組成であることが確認される。
【0018】
図3aは透過型電子顕微鏡像であり、図3bは図3a中の枠で囲った部分の拡大像である。図3b図中に矢印で示した部分に電子線を照射すると、図3cに示したように、大きく屈曲することが観察された。図3dはその断面形状を示した拡大像であるが、チューブは180°折れ曲がっている。図3eは電子線の照射位置をずらした時の像である。屈曲はさらに大きくなっているが、破断はしていない。
【0019】
図3fは電子線の強度を下げたときの透過型電子顕微鏡像であり、図中の枠で囲った部分の拡大像が図3gである。これら図3f、図3gから確認されるように、屈曲が小さくなり、図3a、図3bに示した像と同程度の屈曲に回復した。
【0020】
なお、図3b、図3g中の挿入図は、それぞれ、電子線の照射前後の回折パターンを示しているが、電子線を照射する前には円錐の先端角は52°であり、照射後には35°となった。このことは、電子線の照射によりチューブが伸ばされたことを物語っている。
【0021】
以上から明らかであるように、この出願の発明の窒化ホウ素ナノチューブは、柔軟性及び延性を示す。無機材料は脆いことが短所となっていたが、柔軟性及び延性を示すこの出願の発明の窒化ホウ素ナノチューブは、その意味においてきわめて画期的なものといえる。
【0022】
もちろん、この出願の発明は、以上の実施形態及び実施例によって限定されるものではない。細部については様々な態様が可能であることはいうまでもない。
【0023】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、柔軟性及び延性を示す新規な窒化ホウ素ナノチューブが提供される。この出願の発明の窒化ホウ素ナノチューブは、マイクロエレクトロニクス部品、水素吸蔵材料、オプトエレクトロニクス部品、複合材料の強化材、各種物質を内含するチューブ材料等として広範囲の応用が期待される。
【図面の簡単な説明】
【図1】a、bは、それぞれ、実施例で得られた生成物の走査型電子顕微鏡像とその拡大像、透過型電子顕微鏡像と回折パターンである。
【図2】実施例で得られた生成物の電子エネルギー損失スペクトル分析図である。
【図3】a、b、c、d、e、f、gは、それぞれ、透過型電子顕微鏡像であり、図中の挿入図は回折パターンである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The invention of this application relates to a boron nitride nanotube and a method for producing the same. More specifically, the invention of this application relates to a novel boron nitride nanotube exhibiting flexibility and ductility, and a method for producing the same.
[0002]
[Prior art]
Carbon and boron nitride nanotubes and nanofibers are known to have various forms such as jellyfish, spine, cedar leaf, knotty horsetail and bamboo. Above all, the bamboo-like or conical boron nitride nanotube has a structure in which the passage of the tube is closed at a node and the whole tube penetrates (for example, see Non-Patent Document 1).
[0003]
[Non-patent document 1]
Renzhi Ma et al. Am. Chem. Soc. , 2002, Vol. 124, No. 26, p. 7672
[0004]
[Problems to be solved by the invention]
Such a knotted boron nitride nanotube that does not penetrate the entire tube exhibits hard physical properties. This hard physical property is one of the properties of boron nitride nanotubes, and practical applications can be considered based on this property. However, considering a wide range of applications, other physical properties are also desired.
[0005]
The invention of this application has been made in view of such circumstances, and an object of the invention is to provide a novel boron nitride nanotube exhibiting flexibility and ductility and a method for producing the same.
[0006]
[Means for Solving the Problems]
The invention of this application solves the above-mentioned problem, and has a helical structure in which conical shapes are connected, a through hole without nodes, and exhibits flexibility and ductility. Item 1) is provided.
[0007]
In addition, the invention of this application is to react carbon nanotubes and boron oxide disposed on a titanium substrate on which cobalt particles are deposited in a nitrogen atmosphere at a temperature in the range of 1500 K to 2500 K, and then in a temperature range of 1700 K to 2500 K. The present invention provides a method for producing boron nitride nanotubes (claim 2), which comprises performing post-heating to produce the boron nitride nanotubes according to claim 1.
[0008]
Hereinafter, the boron nitride nanotubes of the present invention and the method for producing the same will be described in more detail with reference to examples.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The boron nitride nanotube of the invention of this application has a spiral structure in which conical shapes are connected and has a through-hole without nodes. Due to the absence of nodes in a single tube, the boron nitride nanotubes of the invention of this application exhibit flexibility and ductility not previously exhibited by inorganic materials. Further, since the through holes are provided, the filling of the tube with various substances is not hindered, and the entire tube can be filled with the substance.
[0010]
Such a boron nitride nanotube of the invention of this application is obtained by reacting a carbon nanotube with boron oxide disposed on a titanium substrate on which cobalt particles are deposited in a nitrogen atmosphere at a temperature range of 1500 K to 2500 K, It is obtained by performing post-heating in a temperature range of 〜2500 K.
[0011]
The weight ratio of carbon nanotubes to boron oxide is preferably in the range of 1: 5 to 1:15. This is because if the amount of boron oxide is less than 1: 5, the loss of carbon nanotubes increases, and if the amount of boron oxide is more than 1:15, the loss of boron oxide increases.
[0012]
If the reaction temperature is lower than 1500 K, the reaction rate becomes slow and the reaction does not proceed sufficiently. If the temperature exceeds 2500 K, the carbon nanotubes evaporate and escape quickly, and the yield of tubular boron nitride deteriorates. The reaction time is preferably in the range of 30 minutes to 2 hours. The reason is that if the reaction time is less than 30 minutes, it is difficult for the reaction to proceed sufficiently, and if it exceeds 2 hours, no particularly noticeable change is observed in the reaction.
[0013]
The post-heating is a step for removing carbon from the reaction product. If the temperature is lower than 1700K, the carbon remains, and even if the temperature exceeds 2500K, the effect of removing carbon is not significantly improved. The post-heating time is preferably in the range of 1 hour to 5 hours. If the time is less than 1 hour, the removal of carbon tends to be insufficient, and the removal effect is almost saturated in 5 hours.
[0014]
【Example】
First, multi-walled carbon nanotubes serving as templates used as starting materials were synthesized. A polished wafer made of stainless steel was used as a substrate, nitrogen gas (purity 99.999%) as a carrier gas, hydrogen gas (purity 99.999%) and methane gas (purity 99) as gases for generating carbon nanotubes. With the flow rate of hydrogen gas being 80 sccm and the flow rate of methane gas being 20 sccm, the reaction was carried out at a substrate temperature of 773 K by plasma CVD to deposit multi-walled carbon nanotubes on the substrate.
[0015]
Next, a boron oxide powder, which was disposed on a titanium substrate on which cobalt particles were deposited by sputtering, was reacted with the obtained multi-walled carbon nanotubes in a high-frequency induction heating furnace under a nitrogen atmosphere at 1973K for 30 minutes. At this time, the weight ratio between the carbon nanotubes and boron oxide was 1: 8.
[0016]
After completion of the reaction, post-heating was performed at 2073 K in a nitrogen atmosphere.
[0017]
As a result of observing the product using a scanning electron microscope, as shown in FIG. 1a, a helical fibrous substance having an average diameter of 100 nm and a length of 100 μm or more was obtained in high yield. From the scanning electron microscope image shown on the right side of FIG. 1a and the transmission electron microscope image shown in FIG. 1b, the product has a tubular shape with no-node through holes, and the thickness of the tube wall is reduced. It is confirmed to be 20 nm. Further, from FIG. 1b, it was confirmed that the tube wall was formed obliquely inclined with respect to the axis of the tube, and from the diffraction pattern shown on the left side of FIG. 1b, the tube was oriented in a conical shape. It is confirmed. Further, from the X-ray diffraction pattern and the result of the electron energy loss spectrum analysis shown in FIG. 2, the lattice constants are a = 0.2502 nm and c = 0.3333 nm, and the composition is composed of boron atoms and nitrogen atoms. Is confirmed.
[0018]
FIG. 3A is a transmission electron microscope image, and FIG. 3B is an enlarged image of a portion surrounded by a frame in FIG. 3A. When the portion indicated by the arrow in FIG. 3B was irradiated with an electron beam, it was observed that the portion was largely bent as shown in FIG. 3C. FIG. 3d is an enlarged image showing the cross-sectional shape, but the tube is bent 180 °. FIG. 3E is an image when the irradiation position of the electron beam is shifted. The bend is even greater, but not broken.
[0019]
FIG. 3F is a transmission electron microscope image when the intensity of the electron beam is reduced, and FIG. 3G is an enlarged image of a portion surrounded by a frame in the drawing. As can be seen from FIGS. 3f and 3g, the bending was reduced, and the bending was restored to the same degree as the images shown in FIGS. 3a and 3b.
[0020]
3B and 3G show the diffraction patterns before and after the irradiation of the electron beam, respectively. Before the irradiation of the electron beam, the tip angle of the cone is 52 °, and after the irradiation, 35 °. This indicates that the tube was elongated by the irradiation of the electron beam.
[0021]
As is clear from the above, the boron nitride nanotube of the invention of this application exhibits flexibility and ductility. The disadvantage of inorganic materials is that they are brittle, but the boron nitride nanotubes of the present invention exhibiting flexibility and ductility can be said to be extremely innovative in that sense.
[0022]
Of course, the invention of this application is not limited by the above embodiments and examples. It goes without saying that various aspects are possible for the details.
[0023]
【The invention's effect】
As described in detail above, the invention of this application provides a novel boron nitride nanotube exhibiting flexibility and ductility. The boron nitride nanotube of the invention of this application is expected to be applied to a wide range of applications as microelectronic components, hydrogen storage materials, optoelectronic components, reinforcing materials for composite materials, tube materials containing various substances, and the like.
[Brief description of the drawings]
FIGS. 1a and 1b are a scanning electron microscope image and a magnified image thereof, a transmission electron microscope image and a diffraction pattern of a product obtained in an example, respectively.
FIG. 2 is an electron energy loss spectrum analysis diagram of a product obtained in an example.
FIGS. 3A, 3B, 3C, 3D, 3F, and 3G are images of a transmission electron microscope, and the inset in the figure is a diffraction pattern.

Claims (2)

円錐形状が連なったらせん構造を有するとともに、節のない貫通孔を備え、柔軟性及び延性を示すことを特徴とする窒化ホウ素ナノチューブ。A boron nitride nanotube which has a spiral structure in which conical shapes are connected, has a knotless through-hole, and exhibits flexibility and ductility. カーボンナノチューブと、コバルト粒子を堆積させたチタン基板上に配置させた酸化ホウ素とを窒素雰囲気中で1500K〜2500Kの温度範囲で反応させ、次いで1700K〜2500Kの温度範囲で後加熱を行い、請求項1記載の窒化ホウ素ナノチューブを製造することを特徴とする窒化ホウ素ナノチューブの製造方法。The carbon nanotubes and boron oxide disposed on a titanium substrate on which cobalt particles are deposited are reacted in a nitrogen atmosphere at a temperature in the range of 1500 K to 2500 K, and then post-heated in a temperature range of 1700 K to 2500 K. 2. A method for producing a boron nitride nanotube, comprising producing the boron nitride nanotube according to 1.
JP2003019569A 2003-01-28 2003-01-28 Boron nitride nanotube and method for producing the same Expired - Lifetime JP3861150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003019569A JP3861150B2 (en) 2003-01-28 2003-01-28 Boron nitride nanotube and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019569A JP3861150B2 (en) 2003-01-28 2003-01-28 Boron nitride nanotube and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004231442A true JP2004231442A (en) 2004-08-19
JP3861150B2 JP3861150B2 (en) 2006-12-20

Family

ID=32949402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019569A Expired - Lifetime JP3861150B2 (en) 2003-01-28 2003-01-28 Boron nitride nanotube and method for producing the same

Country Status (1)

Country Link
JP (1) JP3861150B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347079C (en) * 2005-04-20 2007-11-07 中国科学院金属研究所 Production of boron nitride nanometer tube with water as growth improver
CN100590069C (en) * 2008-03-28 2010-02-17 山东大学 Method for preparing boron nitride coating carbon nano-tube/nano-wire and boron nitride nano-tube
US8178006B2 (en) 2008-03-14 2012-05-15 Denso Corporation Fiber aggregate and fabricating method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347079C (en) * 2005-04-20 2007-11-07 中国科学院金属研究所 Production of boron nitride nanometer tube with water as growth improver
US8178006B2 (en) 2008-03-14 2012-05-15 Denso Corporation Fiber aggregate and fabricating method of the same
CN100590069C (en) * 2008-03-28 2010-02-17 山东大学 Method for preparing boron nitride coating carbon nano-tube/nano-wire and boron nitride nano-tube

Also Published As

Publication number Publication date
JP3861150B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
Inoue et al. One-step grown aligned bulk carbon nanotubes by chloride mediated chemical vapor deposition
US20100227058A1 (en) Method for fabricating carbon nanotube array
Qian et al. Synthesis and characterisation of carbon nanotubes grown on silica fibres by injection CVD
Xu et al. Effects of atomic hydrogen and active carbon species in 1mm vertically aligned single-walled carbon nanotube growth
JP5358045B2 (en) Method for producing carbon nanotube
JP5170609B2 (en) Method for producing silicon carbide nanowire
Wang et al. Room-temperature photoluminescence from nitrogenated carbon nanotips grown by plasma-enhanced hot filament chemical vapor deposition
JP4817103B2 (en) Method for producing boron nitride nanotubes
Hiramatsu et al. High-rate growth of films of dense, aligned double-walled carbon nanotubes using microwave plasma-enhanced chemical vapor deposition
JP2007182374A (en) Method for manufacturing single-walled carbon nanotube
JP3861150B2 (en) Boron nitride nanotube and method for producing the same
Su et al. Selective growth of boron nitride nanotubes by the plasma-assisted and iron-catalytic CVD methods
Peng et al. Blue-light emission from amorphous SiOx nanoropes
Ahmad et al. Synthesis of vertically aligned flower-like morphologies of BNNTs with the help of nucleation sites in Co–Ni alloy
JP2006298684A (en) Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element
Ma et al. Novel BN tassel-like and tree-like nanostructures
Adhikari et al. Ion-implantation-prepared catalyst nanoparticles for growth of carbon nanotubes
JP2005279624A (en) Catalyst, method and apparatus for producing carbon nanotube
JP2005139044A (en) Single crystal silicon nanotube and its manufacturing method
Roy et al. Low temperature growth of carbon nanotubes with aligned multiwalls by microwave plasma-CVD
JP2007223896A (en) Zinc sulfide/silicon core/shell nanowire and method for producing the same
JP6623512B2 (en) Carbon nanostructure aggregate and method for producing the same
JP2015510034A (en) Improved adhesion or adhesion of carbon nanotubes to the material surface via the carbon layer
JP2004190183A (en) Boron nitride nanofiber having long period structure and method for producing the same
Nejad et al. Direct growth of carbon nanotubes on Ar ion bombarded AISI 304 stainless steel substrates

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Ref document number: 3861150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term