JP2004229393A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2004229393A
JP2004229393A JP2003013488A JP2003013488A JP2004229393A JP 2004229393 A JP2004229393 A JP 2004229393A JP 2003013488 A JP2003013488 A JP 2003013488A JP 2003013488 A JP2003013488 A JP 2003013488A JP 2004229393 A JP2004229393 A JP 2004229393A
Authority
JP
Japan
Prior art keywords
conductor
electrode conductor
positive electrode
negative electrode
metal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003013488A
Other languages
English (en)
Inventor
Takashi Torii
孝史 鳥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003013488A priority Critical patent/JP2004229393A/ja
Publication of JP2004229393A publication Critical patent/JP2004229393A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】スイッチング素子に電力を供給する配線のインダクタンスを低減し、かつ、小型化が可能な半導体装置を提供する。
【解決手段】正極導体11、負極導体12および出力導体13A,13B,13Cが絶縁樹脂70上に配置される。MOSトランジスタQ3,Q5,Q7は、正極導体11上に配置され、MOSトランジスタQ4,Q6,Q8は、それぞれ、出力導体13A,13B,13C上に配置される。配線1,3,5は、それぞれ、MOSトランジスタQ3,Q5,Q7を出力導体13A,13B,13Cに接続する。配線2,4,6は、それぞれ、MOSトランジスタQ4,Q6,Q8を負極導体12に接続する。ループ導体80は、絶縁樹脂70の下側に正極導体11および負極導体12に平行に配置される。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
この発明は、スイッチング素子に電力を供給する配線のインダクタンスを低減可能な半導体装置に関するものである。
【0002】
【従来の技術】
最近、環境に配慮した自動車としてハイブリッド自動車(Hybrid Vehicle)および電気自動車(Electric Vehicle)が大きな注目を集めている。そして、ハイブリッド自動車は、一部、実用化されている。
【0003】
このハイブリッド自動車は、従来のエンジンに加え、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。つまり、エンジンを駆動することにより動力源を得るとともに、直流電源からの直流電圧をインバータによって交流電圧に変換し、その変換した交流電圧によりモータを回転することによって動力源を得るものである。また、電気自動車は、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。
【0004】
このようなハイブリッド自動車または電気自動車は、たとえば、図9に示すようなモータ駆動装置300を搭載している。図9を参照して、モータ駆動装置300は、直流電源310と、コンデンサ320と、インバータ330とを備える。
【0005】
直流電源310は、直流電圧を出力する。コンデンサ320は、直流電源310から供給された直流電圧を平滑化し、その平滑化した直流電圧をインバータ330へ供給する。
【0006】
インバータ330は、コンデンサ320を介して供給された直流電圧を交流電圧に変換し、その変換した交流電圧を交流モータM1のU相、V相およびW相へ供給して交流モータM1を駆動する。
【0007】
このように、モータ駆動装置300は、直流電源310からの直流電圧をインバータ330によって交流電圧に変換して交流モータM1を駆動する。そして、インバータ330は、交流モータM1のU相、V相およびW相に対応してU相アーム、V相アームおよびW相アームを含み、U相アーム、V相アームおよびW相アームは、電源ライン311とアースライン312との間に並列に接続される。また、U相アーム、V相アームおよびW相アームの各々は、電源ライン311とアースライン312との間に直列に接続された2つのMOSトランジスタから成る。
【0008】
そして、インバータ330は、U相アーム、V相アームおよびW相アームに含まれる6個のMOSトランジスタをオン/オフすることにより直流電圧を交流電圧に変換する。
【0009】
そうすると、MOSトランジスタがオンからオフに、またはオフからオンに切換わるとき、電源ライン311およびアースライン312を流れる直流電流が変化する。電源ライン311およびアースライン312は、インダクタンスを有するためMOSトランジスタのスイッチングの際にはインダクタンスに比例したスパイク電圧が発生する。そして、その発生したスパイク電圧がMOSトランジスタのスイッチング損失を低下させるという問題がある。
【0010】
このような問題を解決するために、特開2002−112530号公報には、スイッチング素子に電力を供給する配線に平行に導体を設け、配線に電流が流れることによって導体に誘起された誘導電流によって配線のインダクタンスを低減する技術が開示されている。
【0011】
【特許文献1】
特開2002−112530号公報
【0012】
【特許文献2】
特開平10−74886号公報
【0013】
【特許文献3】
特開2002−141452号公報
【0014】
【発明が解決しようとする課題】
しかし、特開2002−112530号公報に開示された技術では、配線と導体との間に絶縁紙が必要である。また、特開2002−112530号公報に開示された技術では、配線と導体とをスイッチング素子の端子および電源の端子にビスで固定するが、絶縁紙によって配線と導体との間が絶縁されるように各部品を位置ズレなく組立てるためには位置決め構造が必要であり、装置が大型化してしまうという問題がある。
【0015】
そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、スイッチング素子に電力を供給する配線のインダクタンスを低減し、かつ、小型化が可能な半導体装置を提供することである。
【0016】
【課題を解決するための手段および発明の効果】
この発明によれば、半導体装置は、金属基板と、絶縁物と、正極導体と、負極導体と、スイッチング素子群と、ループ導体とを備える。絶縁物は、金属基板の一方の表面を覆うように形成される。正極導体および負極導体は、絶縁物上に形成される。スイッチング素子群は、絶縁物上に形成され、正極導体および負極導体に接続される。ループ導体は、絶縁物によって正極導体および負極導体と絶縁され、正極導体および負極導体に略平行に配置される。そして、スイッチング素子群は、正極導体と負極導体との間に並列に接続される。複数のアームの各々は、正極導体と負極導体との間に直列に接続された第1および第2のスイッチング素子から成る。
【0017】
好ましくは、半導体装置は、出力導体をさらに備える。出力導体は、絶縁物上に形成され、第1および第2のスイッチング素子に接続される。
【0018】
好ましくは、ループ導体は、金属基板と絶縁物との間に形成される。
好ましくは、ループ導体は、銅メッキにより形成される。
【0019】
好ましくは、ループ導体は、金属基板の一方の表面に形成される。
好ましくは、ループ導体は、正極導体および負極導体に対応して一方の表面を凸状に加工することにより形成される。
【0020】
好ましくは、金属基板は、冷却路を含む。
この発明による半導体装置においては、直流電流が正極導体および負極導体に流れると、誘導電流がループ導体に誘起される。そして、ループ導体に誘起された誘導電流によって発生された磁界は、正極導体および負極導体に流れる直流電流によって発生される磁界を弱める。また、正極導体および負極導体とループ導体とを絶縁する絶縁物は、金属基板を覆うように形成される。
【0021】
したがって、この発明によれば、小型化が可能な構造において正極導体および負極導体のインダクタンスを減少できる。
【0022】
【発明の実施の形態】
本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
【0023】
図1を参照して、この発明の実施の形態による半導体装置を備えるモータ駆動装置100は、直流電源10と、正極導体11と、負極導体12と、コンデンサ20と、電圧センサー21と、インバータ装置30と、制御装置50とを備える。
【0024】
交流モータM1は、ハイブリッド自動車または電気自動車の駆動輪を駆動するためのトルクを発生するための駆動モータである。あるいは、このモータはエンジンにて駆動される発電機の機能を持つように、そして、エンジンに対して電動機として動作し、たとえば、エンジン始動を行ない得るようなものとしてハイブリッド自動車に組み込まれるようにしてもよい。
【0025】
コンデンサ20は、正極導体11と負極導体12との間に接続される。
インバータ装置30は、インバータ31と、ドライブ回路32と、電流センサー40とを含む。
【0026】
インバータ31は、U相アーム15と、V相アーム16と、W相アーム17とから成る。U相アーム15、V相アーム16、およびW相アーム17は、正極導体11と負極導体12との間に並列に設けられる。
【0027】
U相アーム15は、直列接続されたMOSトランジスタQ3,Q4から成り、V相アーム16は、直列接続されたMOSトランジスタQ5,Q6から成り、W相アーム17は、直列接続されたMOSトランジスタQ7,Q8から成る。また、各MOSトランジスタQ3〜Q8のソース−ドレイン間には、ソース側からドレイン側へ電流を流すダイオードD3〜D8がそれぞれ接続されている。
【0028】
各相アームの中間点は、交流モータM1の各相コイルの各相端に接続されている。すなわち、交流モータM1は、3相の永久磁石モータであり、U,V,W相の3つのコイルの一端が中点に共通接続されて構成され、U相コイルの他端がMOSトランジスタQ3,Q4の中間点15Aに、V相コイルの他端がMOSトランジスタQ5,Q6の中間点16Aに、W相コイルの他端がMOSトランジスタQ7,Q8の中間点17Aにそれぞれ接続されている。
【0029】
直流電源10は、ニッケル水素またはリチウムイオン等の二次電池から成る。コンデンサ20は、直流電源10から供給された直流電圧を平滑化し、その平滑化した直流電圧をインバータ31へ供給する。電圧センサー21は、コンデンサ20の両端の電圧、すなわち、インバータ31への入力電圧Vmを検出し、その検出した入力電圧Vmを制御装置50へ出力する。
【0030】
インバータ31は、コンデンサ20から直流電圧が供給されるとドライブ回路32からの駆動信号DRVIに基づいて直流電圧を交流電圧に変換して交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値TRによって指定されたトルクを発生するように駆動される。また、インバータ31は、モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車の回生制動時、交流モータM1が発電した交流電圧をドライブ回路32からの駆動信号DRVCに基づいて直流電圧に変換し、その変換した直流電圧をコンデンサ20を介して直流電源10に供給する。なお、ここで言う回生制動とは、ハイブリッド自動車または電気自動車を運転するドライバーによるフットブレーキ操作があった場合の回生発電を伴う制動や、フットブレーキを操作しないものの、走行中にアクセルペダルをオフすることで回生発電をさせながら車両を減速(または加速の中止)させることを含む。
【0031】
ドライブ回路32は、電流センサー40からのモータ電流MCRTを受け、その受けたモータ電流MCRTを制御装置50へ出力する。また、ドライブ回路32は、制御装置50からの信号PWMIに応じて駆動信号DRVIを生成し、その生成した駆動信号DRVIをMOSトランジスタQ3〜Q8へ出力する。さらに、ドライブ回路32は、制御装置50からの信号PWMCに応じて駆動信号DRVCを生成し、その生成した駆動信号DRVCをMOSトランジスタQ3〜Q8へ出力する。
【0032】
電流センサー40は、交流モータM1に流れるモータ電流MCRTを検出し、その検出したモータ電流MCRTをドライブ回路32へ出力する。
【0033】
制御装置50は、外部に設けられたECU(Electrical Control Unit)から入力されたトルク指令値TR、電圧センサー21からの入力電圧Vm、およびドライブ回路32からのモータ電流MCRTに基づいて、後述する方法によりインバータ31を駆動するための信号PWMIを生成し、その生成した信号PWMIをドライブ回路32へ出力する。
【0034】
信号PWMIは、交流モータM1がトルク指令値TRによって指定されたトルクを出力するようにインバータ31を駆動するための信号である。
【0035】
また、制御装置50は、ハイブリッド自動車または電気自動車が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、交流モータM1で発電された交流電圧を直流電圧に変換するための信号PWMCを生成してドライブ回路32へ出力する。この場合、インバータ31のMOSトランジスタQ3〜Q8は、ドライブ回路32が信号PWMCに応じて生成した駆動信号DRVCによってスイッチング制御される。これにより、インバータ31は、交流モータM1で発電された交流電圧を直流電圧に変換して直流電源10へ供給する。
【0036】
図2は、制御装置50の機能のうち、信号PWMIを生成する機能を示す機能ブロック図である。図2を参照して、制御装置50は、モータ制御用相電圧演算部41と、インバータ用PWM信号変換部42とを含む。
【0037】
モータ制御用相電圧演算部41は、インバータ31への入力電圧Vmを電圧センサー21から受け、交流モータM1の各相に流れるモータ電流MCRTをドライブ回路32から受け、トルク指令値TR(車両におけるアクセルペダルの踏み込み度合い、ハイブリッド車両においてはエンジンの動作状態をも考慮しながらモータに与えるべきトルク指令を演算して得られている)を外部ECUから受ける。そして、モータ制御用相電圧演算部41は、これらの入力される信号に基づいて、交流モータM1の各相のコイルに印加する電圧を演算し、その演算した結果をインバータ用PWM信号変換部42へ供給する。
【0038】
インバータ用PWM信号変換部42は、モータ制御用相電圧演算部41から受けた演算結果に基づいて、実際にインバータ31の各MOSトランジスタQ3〜Q8をオン/オフするための信号PWMIを生成し、その生成した信号PWMIをドライブ回路32へ出力する。そして、ドライブ回路32は、信号PWMIに応じて駆動信号DRVIを生成してインバータ31の各MOSトランジスタQ3〜Q8へ出力する。
【0039】
これにより、各MOSトランジスタQ3〜Q8は、スイッチング制御され、交流モータM1が指令されたトルクを出力するように交流モータM1の各相に流す電流を制御する。このようにして、モータ駆動電流が制御され、トルク指令値TRに応じたモータトルクが出力される。
【0040】
図3は、この発明による半導体装置を含むインバータ31の平面図を示す。図3を参照して、インバータ31は、MOSトランジスタQ3〜Q8、ダイオードD3〜D8、正極導体11および負極導体12に追加して、出力導体13A,13B,13C、絶縁樹脂70、ループ導体80および金属基板(図示せず)を含む。なお、図3においては、ダイオードD3〜D8は省略されている。
【0041】
絶縁樹脂70は、金属基板の一方の表面を覆うように形成される。正極導体11、負極導体12および出力導体13A,13B,13Cは、絶縁樹脂70上に形成される。そして、出力導体13A,13B,13Cは、正極導体11と負極導体12との間に配置される。
【0042】
MOSトランジスタQ3,Q5,Q7は、正極導体11上に配置される。そして、MOSトランジスタQ3,Q5,Q7は、ドレインが正極導体11に接続される。また、MOSトランジスタQ4,Q6,Q8は、それぞれ、出力導体13A,13B,13C上に配置される。そして、MOSトランジスタQ4,Q6,Q8は、ドレインがそれぞれ出力導体13A,13B,13Cに接続される。
【0043】
配線1は、MOSトランジスタQ3のソースを出力導体13Aに接続する。配線2は、MOSトランジスタQ4のソースを負極導体12に接続する。これにより、MOSトランジスタQ3,Q4は、正極導体11と負極導体12との間に直列に接続される。
【0044】
配線3は、MOSトランジスタQ5のソースを出力導体13Bに接続する。配線4は、MOSトランジスタQ6のソースを負極導体12に接続する。これにより、MOSトランジスタQ5,Q6は、正極導体11と負極導体12との間に直列に接続される。
【0045】
配線5は、MOSトランジスタQ7のソースを出力導体13Cに接続する。配線6は、MOSトランジスタQ8のソースを負極導体12に接続する。これにより、MOSトランジスタQ7,Q8は、正極導体11と負極導体12との間に直列に接続される。
【0046】
そして、出力導体13A,13B,13Cは、それぞれ、図1に示す中間点15A,16A,17Aに相当し、それぞれ、交流モータM1のU相コイル、V相コイルおよびW相コイルに電圧を印加する。
【0047】
ループ導体80は、絶縁樹脂70の下側、すなわち、絶縁樹脂70と金属基板(図示せず)との間に配置される。そして、ループ導体80は、全体的には四角形の環状導体であり、辺80Aは、正極導体11と平行に配置され、辺80Bは、負極導体12と平行に配置される。このように、ループ導体80は、正極導体11および負極導体12に平行に配置される。
【0048】
図4は、図3に示すA−A線における断面図を示す。図4を参照して、金属基板60の一方の表面60Aにループ導体80が形成される。そして、金属基板60の表面60Aおよびループ導体80を覆うように絶縁樹脂70が形成される。正極導体11、負極導体12および出力導体13Bは、絶縁樹脂70上に配置される。MOSトランジスタQ5は、ドレインが正極導体11に接続されるように正極導体11上に配置される。また、MOSトランジスタQ6は、ドレインが出力導体13Bに接続されるように出力導体13B上に配置される。そして、ループ導体80の辺80Aは、絶縁樹脂70を介して正極導体11の下側に配置される。また、ループ導体80の辺80Bは、絶縁樹脂70を介して負極導体12の下側に配置される。
【0049】
正極導体11は、矢印26の方向に曲げられた端子11Tを有し、出力導体13Bは、矢印26の方向に曲げられた端子13BTを有し、負極導体12は、矢印26の方向に曲げられた端子12Tを有する。
【0050】
金属基板60は、アルミニウム(Al)から成る。そして、金属基板60は、冷却路61を有する。つまり、金属基板60は、冷却機構を兼ね備える。また、ループ導体80は、銅から成る。そして、ループ導体80は、銅メッキにより、金属基板60の表面60Aにループ状に形成される。
【0051】
正極導体11とループ導体80(80A)との距離および負極導体12とループ導体80(80B)との距離は、絶縁樹脂70の厚さに等しいため、ループ導体80は、正極導体11および負極導体12に近接して配置される。そして、絶縁樹脂70の厚さは、正極導体11および負極導体12とループ導体80との間で絶縁破壊が生じない厚さに設定される。
【0052】
MOSトランジスタQ3,Q4の配置部分およびMOSトランジスタQ7,Q8の配置部分は、図4に示す断面構造と同じ断面構造を有する。
【0053】
再び、図3を参照して、端子11T,12T間に電力が供給され、直流電流が、矢印22で示す方向に正極導体11を流れ、矢印23で示す方向に負極導体12を流れると、正極導体11を流れる直流電流によって発生される磁界は、絶縁樹脂70を介してループ導体80の辺80Aに及び、負極導体12を流れる直流電流によって発生される磁界は、絶縁樹脂70を介してループ導体80の辺80Bに及ぶ。その結果、正極導体11の下側に配置されたループ導体80の辺80Aには、矢印24によって示す方向に誘導電流が流れ、負極導体12の下側に配置されたループ導体80の辺80Bには、矢印25によって示す方向に誘導電流が流れる。そして、誘導電流は、ループ導体80を反時計回りに流れる。
【0054】
そうすると、辺80A,80Bに流れる誘導電流は、正極導体11および負極導体12に流れる直流電流によって発生される磁界と反対方向の磁界を発生し、正極導体11および負極導体12に流れる直流電流によって発生される磁界を減少させる。その結果、正極導体11および負極導体12のインダクタンスが減少する。
【0055】
このように、この発明においては、正極導体11および負極導体12に平行にループ導体80を配置することにより、正極導体11および負極導体12のインダクタンスを低減する。そして、正極導体11とループ導体80(80A)との距離および負極導体12とループ導体80(80B)との距離は、絶縁樹脂70の厚さに等しいので、ループ導体80は正極導体11および負極導体12に近接して配置され、ループ導体80は、誘起された誘導電流によって正極導体11および負極導体12のインダクタンスを確実に低減できる。
【0056】
この発明においては、金属基板60およびループ導体80に代えて図5に示す金属基板600を用いてもよい。図5を参照して、金属基板600は、一方の表面600Aに溝601,602を形成することにより、正極導体11の下側に凸状領域603を形成し、負極導体12の下側に凸状領域604を形成する。また、金属基板600は、アルミニウムから成り、冷却路61を有する。すなわち、金属基板600は、冷却機構を兼ね備える。そして、絶縁樹脂70は、金属基板600の表面600Aを覆うように形成され、絶縁樹脂70の厚さは、正極導体11および負極導体12と金属基板600の凸状領域603,604との間で絶縁破壊が生じない厚さに設定される。
【0057】
図5に示す断面構造において、正極導体11および負極導体12に直流電流が流れると、金属基板600の凸状領域603,604に誘導電流が流れる。その結果、上述した機構によって正極導体11および負極導体12のインダクタンスが低減される。
【0058】
図6は、絶縁樹脂70側から見た金属基板600の平面図を示す。図6を参照して、金属基板600は、溝601,602を有する。溝601は、内周側に形成され、溝602は、溝601の外周側に形成される。その結果、凸状領域605が形成される。凸状領域605は、全体的には四角形から成り、ループ状である。正極導体11は、凸状領域605の一部である凸状領域603の上側に凸状領域603の長手方向に沿って配置され、負極導体12は、凸状領域605の一部である凸状領域604の長手方向に沿って配置される。
【0059】
このように、金属基板600の表面600Aにループ状の凸状領域605を形成することによっても、金属基板60上にループ導体80を形成した場合と同様に凸状領域605に誘導電流を誘起でき、その誘起された誘導電流によって正極導体11および負極導体12のインダクタンスを低減できる。
【0060】
また、この発明においては、金属基板60およびループ導体80に代えて図7に示す金属基板700を用いてもよい。図7を参照して、金属基板700は、一方の表面700Aに凸状領域701,702を有する。凸状領域701は、正極導体11の下側に配置され、凸状領域702は、負極導体12の下側に配置される。また、金属基板700は、アルミニウムから成り、冷却路61を有する。すなわち、金属基板700は、冷却機構を兼ね備える。そして、絶縁樹脂70は、金属基板700の表面700Aを覆うように形成され、絶縁樹脂70の厚さは、正極導体11および負極導体12と金属基板700の凸状領域701,702との間で絶縁破壊が生じない厚さに設定される。
【0061】
図7に示す断面構造において、正極導体11および負極導体12に直流電流が流れると、金属基板700の凸状領域701,702に誘導電流が流れる。その結果、上述した機構によって正極導体11および負極導体12のインダクタンスが低減される。
【0062】
図8は、絶縁樹脂70側から見た金属基板700の平面図を示す。図8を参照して、金属基板700は、凸状領域703を有する。凸状領域703は、全体的には四角形から成り、ループ状である。正極導体11は、凸状領域703の一部である凸状領域701の上側に凸状領域701の長手方向に沿って配置され、負極導体12は、凸状領域703の一部である凸状領域702の長手方向に沿って配置される。
【0063】
このように、金属基板700の表面700Aにループ状の凸状領域703を形成することによっても、金属基板60上にループ導体80を形成した場合と同様に凸状領域703に誘導電流を誘起でき、その誘起された誘導電流によって正極導体11および負極導体12のインダクタンスを低減できる。
【0064】
再び、図1を参照して、モータ駆動装置100における全体動作について説明する。全体の動作が開始されると、直流電源10は、直流電圧を出力し、コンデンサ20は、直流電源10からの直流電圧を平滑化してインバータ装置30へ供給する。また、電圧センサー21は、コンデンサ20の両端の電圧、すなわち、インバータ装置30への入力電圧Vmを検出して制御装置50へ出力する。
【0065】
電流センサー40は、モータ電流MCRTを検出してドライブ回路32へ出力し、ドライブ回路32は、モータ電流MCRTを制御装置50へ出力する。制御装置50は、外部ECUからトルク指令値TRを受け、電圧センサー21から入力電圧Vmを受け、ドライブ回路32からモータ電流MCRTを受ける。そして、制御装置50は、トルク指令値TR、入力電圧Vmおよびモータ電流MCRTに基づいて、上述した方法により信号PWMIを生成してドライブ回路32へ出力する。
【0066】
ドライブ回路32は、制御装置50からの信号PWMIに応じて駆動信号DRVIを生成してMOSトランジスタQ3〜Q8へ出力する。そして、MOSトランジスタQ3〜Q8は、駆動信号DRVIによってオン/オフされ、インバータ31は、コンデンサ20から供給された直流電圧を交流電圧に変換して交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値TRによって指定されたトルクを出力する。
【0067】
また、モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車の回生制動時、制御装置50は、外部ECUから信号RGEを受け、その受けた信号RGEに応じて、信号PWMCを生成してドライブ回路32へ出力する。
【0068】
ドライブ回路32は、信号PWMCに応じて駆動信号DRVCを生成してMOSトランジスタQ3〜Q8へ出力する。
【0069】
そうすると、MOSトランジスタQ3〜Q8は、駆動信号DRVCによってオン/オフされ、インバータ31は、モータM1が発電した交流電圧を直流電圧に変換して直流電源10に供給する。
【0070】
そして、インバータ31が交流モータM1を駆動する場合、または交流モータM1が発電した電力を回生する場合、MOSトランジスタQ3〜Q8はオン/オフされ、正極導体11および負極導体12に流れる直流電流は急峻に変化するが、上述したループ導体80(または凸状領域605,703)によって正極導体11および負極導体12のインダクタンスは低減される。その結果、スパイク電圧の発生が抑制され、MOSトランジスタQ3〜Q8のスイッチング損失を低減できる。
【0071】
この発明においては、U相アーム15、V相アーム16、W相アーム17、正極導体11、負極導体12、出力導体13A,13B,13C、金属基板60、絶縁樹脂70およびループ導体80は、「半導体装置」を構成する。
【0072】
また、U相アーム15、V相アーム16、W相アーム17、正極導体11、負極導体12、出力導体13A,13B,13C、絶縁樹脂70および金属基板600は、「半導体装置」を構成する。
【0073】
さらに、U相アーム15、V相アーム16、W相アーム17、正極導体11、負極導体12、出力導体13A,13B,13C、絶縁樹脂70および金属基板700は、「半導体装置」を構成する。
【0074】
そして、U相アーム15、V相アーム16およびW相アーム17の各々は、正極導体11と負極導体12との間に直列に接続されたそれぞれ2つのMOSトランジスタQ3,Q4;Q5,Q6;Q7,Q8から成る。
【0075】
この発明による半導体装置は、正極導体11および負極導体12と絶縁されたループ導体80(または凸状領域605,703)を形成し、正極導体11および負極導体12のインダクタンスを低減することを特徴とするが、正極導体11および負極導体12とループ導体80(または凸状領域605,703)との絶縁は、金属基板60およびループ導体80(または金属基板600,700の表面600A,700A)を覆うように絶縁樹脂70を形成することにより行なうので、正極導体11および負極導体12とループ導体80(または凸状領域605,703)との絶縁に関し、位置決めを行なうための特定の構造は必要ではない。したがって、この発明による半導体装置は、小型化に適した構造から成る。
【0076】
なお、上記においては、インバータ31のU相アーム15、V相アーム16およびW相アーム17の全体に対して1つのループ導体80(または凸状領域605,703)を形成すると説明したが、この発明は、これに限らず、U相アーム15、V相アーム16およびW相アーム17の各々に対して別個のループ導体(または凸状領域)を形成するようにしてもよい。
【0077】
また、上記においては、ループ導体80(または凸状領域605,703)は、U相アーム15、V相アーム16およびW相アーム17、すなわち、3つのアームに対して形成されると説明したが、この発明は、これに限らず、少なくとも2つのアームに対して形成されていればよい。2つのアームが正極導体11と負極導体12との間に並列に接続されている場合、正極導体11および負極導体12は、各アームに含まれる2つのMOSトランジスタが配置される方向と垂直な方向に配置され、インダクタンスとして作用する直線部分を有するからである。
【0078】
さらに、上記においては、ループ導体80(凸状領域605,703)は、インバータ31に対して形成されると説明したが、この発明は、これに限らず、電圧変換を行なうコンバータに対して形成されてもよい。コンバータは、直列接続された2つのMOSトランジスタを構成要素として含み、MOSトランジスタがオン/オフされることにより動作するからである。
【0079】
さらに、インバータ31は、MOSトランジスタにより構成されると説明したが、この発明においては、これに限らず、インバータ31は、NPNトランジスタおよびIGBT(Insulated Gate Bipolar Transistor)等の半導体スイッチング素子により構成されていてもよい。
【0080】
さらに、ループ導体80(または凸状領域605,703)は、正極導体11および負極導体12に平行に配置されると説明したが、この発明においては、ループ導体80(または凸状領域605,703)は、正極導体11および負極導体12に対して略平行に配置されていればよい。そして、「略平行」とは、正極導体11および負極導体12に流れる直流電流によって誘起される誘導電流が正極導体11および負極導体12のインダクタンスを低減可能に、ループ導体80(または凸状領域605,703)が正極導体11および負極導体12に対して配置されていることを言う。
【0081】
この発明の実施の形態によれば、半導体装置は、正極導体および負極導体のインダクタンスを低減するループ導体と、正極導体および負極導体とを絶縁する絶縁樹脂とを備え、絶縁樹脂は、金属基板の表面を覆うように形成されるので、小型化可能な構造において、正極導体および負極導体のインダクタンスを低減できる。
【0082】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【図面の簡単な説明】
【図1】この発明の実施の形態におけるモータ駆動装置の概略ブロック図である。
【図2】図1に示す制御装置の一部の機能を示す機能ブロック図である。
【図3】この発明による半導体装置を含むインバータの平面図である。
【図4】図3のA−A線における断面図である。
【図5】他の金属基板を用いた場合の図3のA−A線における断面図である。
【図6】図5に示す金属基板の平面図である。
【図7】さらに他の金属基板を用いた場合の図3のA−A線における断面図である。
【図8】図7に示す金属基板の平面図である。
【図9】従来のモータ駆動装置の概略ブロック図である。
【符号の説明】
1〜6 配線、10,310 直流電源、11 正極導体、11T,12T,13BT 端子、12 負極導体、13A,13B,13C 出力導体、15 U相アーム、16 V相アーム、17 W相アーム、15A,16A,17A 中間点、20,320 コンデンサ、21 電圧センサー、22〜26 矢印、30 インバータ装置、31,330 インバータ、32 ドライブ回路、40電流センサー、41 モータ制御用相電圧演算部、42 インバータ用PWM信号変換部、50 制御装置、60,600,700 金属基板、60A,600A,700A 表面、61 冷却路、70 絶縁樹脂、80 ループ導体、80A,80B 辺、100,300 モータ駆動装置、601,602 溝、603〜605,701〜703 凸状領域、Q3〜Q8 MOSトランジスタ、D3〜D8 ダイオード、M1 交流モータ。

Claims (7)

  1. 金属基板と、
    前記金属基板の一方の表面を覆うように形成された絶縁物と、
    前記絶縁物上に形成された正極導体と、
    前記絶縁物上に形成された負極導体と、
    前記絶縁物上に形成され、前記正極導体および前記負極導体に接続されたスイッチング素子群と、
    前記絶縁物によって前記正極導体および前記負極導体と絶縁され、前記正極導体および前記負極導体に略平行に配置されたループ導体とを備え、
    前記スイッチング素子群は、前記正極導体と前記負極導体との間に並列に接続された複数のアームを含み、
    前記複数のアームの各々は、前記正極導体と前記負極導体との間に直列に接続された第1および第2のスイッチング素子から成る、半導体装置。
  2. 前記絶縁物上に形成され、前記第1および第2のスイッチング素子に接続された出力導体をさらに備える、請求項1に記載の半導体装置。
  3. 前記ループ導体は、前記金属基板と前記絶縁物との間に形成される、請求項1または請求項2に記載の半導体装置。
  4. 前記ループ導体は、銅メッキにより形成される、請求項1から請求項3のいずれか1項に記載の半導体装置。
  5. 前記ループ導体は、前記一方の表面に形成される、請求項1または請求項2に記載の半導体装置。
  6. 前記ループ導体は、前記正極導体および前記負極導体に対応して前記一方の表面を凸状に加工することにより形成される、請求項5に記載の半導体装置。
  7. 前記金属基板は、冷却路を含む、請求項1から請求項6のいずれか1項に記載の半導体装置。
JP2003013488A 2003-01-22 2003-01-22 半導体装置 Pending JP2004229393A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003013488A JP2004229393A (ja) 2003-01-22 2003-01-22 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003013488A JP2004229393A (ja) 2003-01-22 2003-01-22 半導体装置

Publications (1)

Publication Number Publication Date
JP2004229393A true JP2004229393A (ja) 2004-08-12

Family

ID=32901801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003013488A Pending JP2004229393A (ja) 2003-01-22 2003-01-22 半導体装置

Country Status (1)

Country Link
JP (1) JP2004229393A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016019319A (ja) * 2014-07-07 2016-02-01 株式会社東芝 半導体装置
JP2016144365A (ja) * 2015-02-04 2016-08-08 新電元工業株式会社 半導体装置
US10652997B2 (en) 2018-02-23 2020-05-12 Panasonic Intellectual Property Management Co., Ltd. Switching power supply device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074886A (ja) * 1996-08-30 1998-03-17 Hitachi Ltd 半導体モジュール
JPH10309073A (ja) * 1997-03-07 1998-11-17 Hitachi Ltd 電力変換器およびその製造方法
JP2002058259A (ja) * 2000-08-11 2002-02-22 Kyocera Corp インバータ制御モジュール
JP2002078356A (ja) * 2000-08-24 2002-03-15 Toshiba Corp インバータ装置
JP2002112530A (ja) * 1995-09-08 2002-04-12 Hitachi Ltd 電力変換装置
JP2002112559A (ja) * 2000-09-28 2002-04-12 Kyocera Corp インバータ制御モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002112530A (ja) * 1995-09-08 2002-04-12 Hitachi Ltd 電力変換装置
JPH1074886A (ja) * 1996-08-30 1998-03-17 Hitachi Ltd 半導体モジュール
JPH10309073A (ja) * 1997-03-07 1998-11-17 Hitachi Ltd 電力変換器およびその製造方法
JP2002058259A (ja) * 2000-08-11 2002-02-22 Kyocera Corp インバータ制御モジュール
JP2002078356A (ja) * 2000-08-24 2002-03-15 Toshiba Corp インバータ装置
JP2002112559A (ja) * 2000-09-28 2002-04-12 Kyocera Corp インバータ制御モジュール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016019319A (ja) * 2014-07-07 2016-02-01 株式会社東芝 半導体装置
JP2016144365A (ja) * 2015-02-04 2016-08-08 新電元工業株式会社 半導体装置
US10652997B2 (en) 2018-02-23 2020-05-12 Panasonic Intellectual Property Management Co., Ltd. Switching power supply device

Similar Documents

Publication Publication Date Title
JP4359250B2 (ja) インターフェース回路及び電力変換装置並びに車載用電機システム
US6843335B2 (en) Power conversion apparatus and mobile object incorporating thereof
US7057361B2 (en) Inverter control device and electric vehicle thereof
JP2008228502A (ja) 電力変換装置
JP6218906B1 (ja) 電力変換装置
JP4489001B2 (ja) パワーモジュール,電力変換装置及び車載用電機システム
JP6677346B2 (ja) インバータユニット
US20060284487A1 (en) Active DC bus filter for fuel cell applications
US20140246944A1 (en) Rotating electrical machine and electric automotive vehicle
JP6471656B2 (ja) インバータ制御基板
JP2009273071A (ja) 半導体装置の駆動装置及びその駆動方法
US7570008B2 (en) Power module, power converter, and electric machine system for mounting in vehicle
WO2011122279A1 (ja) モータ駆動回路モジュール
US11114949B2 (en) Inverter control board that is configured so that a detection circuit is appropriately arranged
JP2017200315A (ja) 半導体装置
JP4128645B2 (ja) 回転電機内蔵用インバータ
JP6243320B2 (ja) パワー半導体モジュール
JP3975162B2 (ja) インバータ装置およびそれを用いた電動機一体インバータ装置
JP2005175439A (ja) 半導体装置およびそれを備えた自動車
JP2004229393A (ja) 半導体装置
JP6272064B2 (ja) 電力変換装置
JP5017529B2 (ja) 磁石式同期モータ用電力変換装置
JP5919424B1 (ja) コンデンサモジュール
JP2008148529A (ja) 電圧変換装置
JP5798951B2 (ja) インバータ装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041008

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819