JP2004228497A - 露光装置及び電子デバイスの製造方法 - Google Patents

露光装置及び電子デバイスの製造方法 Download PDF

Info

Publication number
JP2004228497A
JP2004228497A JP2003017489A JP2003017489A JP2004228497A JP 2004228497 A JP2004228497 A JP 2004228497A JP 2003017489 A JP2003017489 A JP 2003017489A JP 2003017489 A JP2003017489 A JP 2003017489A JP 2004228497 A JP2004228497 A JP 2004228497A
Authority
JP
Japan
Prior art keywords
fluid
inert gas
exposure apparatus
wafer
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003017489A
Other languages
English (en)
Inventor
Hiroyuki Nagasaka
博之 長坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003017489A priority Critical patent/JP2004228497A/ja
Publication of JP2004228497A publication Critical patent/JP2004228497A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70933Purge, e.g. exchanging fluid or gas to remove pollutants

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】レジストから発生するアウトガスの投影レンズへの付着を防止し、真空紫外光による露光を適切に行う露光装置を提供する
【解決手段】局所ガス給排出部180においては、不活性ガス供給管196を通して供給される不活性ガスが不活性ガス供給口183より吹き出し、投影レンズ151とウエハ230の間の特定空間181に供給される。吹き出された不活性ガスは、露光光ILの光軸方向にずらされて順次配置されている3つの排気口185−1〜185−3に作用する真空吸引力により吸気されて、排気口185−1〜185−3より露光装置100の外部に排気される。これにより、不活性ガス供給口183から排気口部184方向へのウエハ230表面に平行な不活性ガスの流れが形成され、ウエハ230表面より発生したアウトガスは、投影レンズ151に到達する前に不活性ガスにより流され排気口185−1〜185−3より排気される。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、例えば半導体素子、液晶表示素子、プラズマディスプレイ素子、薄膜磁気ヘッド等の電子デバイスを製造する際のリソグラフィ工程に適用して好適な露光装置、及び、リソグラフィ工程を経て製造されるそれらの電子デバイスの製造方法に関する。
【0002】
【従来の技術】
半導体素子、液晶表示素子、プラズマディスプレイ素子、薄膜磁気ヘッド等の電子デバイス(以後、単に電子デバイスと言う)を製造するためのリソグラフィ工程においては、従来より、マスク(レチクル)に形成されたパターンの像を、光源からの照明光により、感光剤が塗布されたウエハ等の感応基板(感光基板)に転写する露光装置が使用されている。この露光装置においては、転写するパターンの微細化に伴い、発生する光ビームの短波長化が進んでいる。かつては、高圧水銀灯からの波長436nmのg線を光源にした露光装置が主に使用されていたが、現在は、波長365nmのi線を光源に用いた露光装置や、波長248nmのKrFエキシマレーザーを光源に用いた露光装置が主に使用されている。そして今後は、波長193nmのArFエキシマレーザーを光源に用いた露光装置が用いられるようになると言われており、さらにその後は、波長157nmのFレーザーを用いた露光装置が使用されることが予想されている。
【0003】
ところで、波長157nmのFレーザー光は、波長248nmのKrFエキシマレーザー光や波長193nmのArFエキシマレーザー光とは異なる真空紫外光である。従って、この光ビームは、空気中の酸素、水、あるいは有機物等の物質(吸光物質)によって吸収され、空気中をほとんど透過できない。そのためFレーザー光を露光光として用いる場合には、光路上の全空間を真空にするか、その空間に窒素や希ガス等の波長157nmの光を吸収しない透過性ガス(不活性ガス)を充満させる必要がある。具体的には、例えばレーザー光の全光路長が1000mmとすると、光路内の吸光物質の濃度は1ppm以下にする必要がある。
【0004】
上述の真空紫外光を露光光として用いた場合に、投影光学系とウエハとの間の空間の残存酸素及び水蒸気濃度も、1ppm以下にする必要がある。これを実現する方法として、ウエハを保持するステージ装置全体を大きな密閉型の遮蔽容器(ウエハステージチャンバ)で覆い、その内部全体を不活性ガスで充満させる方法も考えられる。
【0005】
しかしステージ装置は、ウエハの複数の領域にパターンを順次転写するためにウエハステージを常に二次元的に移動させる必要がある上に、ウエハを頻繁に交換する必要がある。従って、ステージ装置を容器に収容しようとすると、容器が大型化し構成が複雑化する上に、ウエハ交換のたびに容器内に不活性ガスを充満させるか、あるいは外気の遮断のためのロードロック室を設ける等の方策をとる必要が生じる。
そこで、従来は、投影光学系の最終光学部材と、ウエハとの間の空間に露光光を透過する不活性ガスを吹き付けることにより、露光光が通過する空間から局所的に吸光物質を排除する方法が提案されている(例えば、特許文献1参照)。
【0006】
【特許文献1】
特開平6−260385号公報
【0007】
【発明が解決しようとする課題】
しかしながら従来のそのような方法では、吹き付けたガスがウエハの周囲に漏れ易く、漏れた不活性ガスが周辺の機器に影響を及ぼす恐れがあるという不利益がある。例えば、露光装置では、ウエハを載せるステージの位置、姿勢を制御するために、通常、レーザー光を用いた干渉計が用いられている。不活性ガスがレーザー干渉計のレーザー光の光路に流入すると、屈折率の差によりレーザー光の光路長が変化し、レーザー干渉計の計測精度が低下し、最終的にはウエハの位置制御の精度が低下するという不利益が生じる。
【0008】
また、ウエハ表面に塗布された感光剤(フォトレジスト)は、露光光を吸収する吸光物質を含んだアウトガスを発生する。このアウトガスも、これが投影レンズに付着するとその表面に不純物が堆積し、その部分の露光光透過率が低下する。アウトガスが付着した部分の露光光透過率が低下すると、ウエハに到達する露光光が減少し、スループットが低下したり露光ムラが生じ回路パターンを正確に転写できなくなる等、露光機として致命的な欠陥が生じる。
前述したような不活性ガスを吹き付ける方法は、副次的効果として、レジストから発生するアウトガスを投影レンズに到達し難くするという効果が期待できるものの、その効果は十分ではなく、投影レンズに付着するアウトガスを十分に低減させることはできない。
また、投影レンズに付着するアウトガスを低減するために、吹き付ける不活性ガスの量を増加させることも考えられるが、そのためには膨大な不活性ガスを流す必要があり、ウエハ周囲に漏れる不活性ガスの増加に加えて、ガス噴出のための振動の発生、及び、不活性ガスの消費量の増大によるランニングコストの増大という新たな不利益も生じ適切ではない。
【0009】
本発明はこのような不利益に鑑みてなされたものであって、その目的は、周辺の機器に影響を及ぼすことなく、また、不活性ガスの流量を増やすことなく、光学系と感応基板(ウエハ)との間の空間から吸光物質を排除し、また、レジストから発生するアウトガスの投影レンズ等の光学部材への付着を防止し、これにより波長の短い光ビームによる露光を適切に行うことのできる露光装置を提供することにある。
また、本発明の他の目的は、投影光学系と感応基板(ウエハ)との間の空間から吸光物質を排除し、また、レジストから発生するアウトガスの投影レンズへの付着を防止し、これにより短波長のエネルギービームによる露光を適切に行い、もって高精細なパターンの転写を適切に行い所望の回路を適切に形成することのできる電子デバイスの製造方法を提供することにある。
【0010】
【課題を解決するための手段】
前記目的を達成するために、本発明の第1の観点によれば、本発明に関わる露光装置(100)は、光ビーム(IL)で、パターンが形成されたマスク(220)を照明し、該パターンの像を投影光学系(150)を介して基板(230)に転写する露光装置(100)において、前記投影光学系(150)と前記基板(230)との間で、かつ前記光ビーム(IL)の光路を含む特定の空間(181)に設けられる局所流体吸排出部(180)を有し、前記局所流体給排出部は、前記特定の空間に前記光ビームを透過する透過性流体を供給する流体供給口(183)と、前記光ビーム(IL)の光路に対向して複数配置され、前記特定の空間(181)から前記透過性流体を含む流体を排出する流体排出口(185−1〜185−3)とを備えることを特徴とする(図1参照)。
【0011】
このような構成の露光装置(100)においては、光ビーム(IL)の光路を含む投影光学系(150)と基板(230)との間の特定の空間(181)に対しては、局所流体給排出部(180)の流体供給口(183)より、光ビーム(IL)を透過する透過性流体が供給される。また、供給された透過性流体は、局所流体給排出部(180)の流体排出口(185−1〜185−3)より順次排出される。その結果、特定の空間(181)は透過性流体を充満された状態となり、投影光学系(150)から出射された光ビーム(IL)は、透過性流体中を通過することとなり、空気等の吸光物質により吸収されることなく基板(230)に到達する。その結果、マスク(220)に形成されたパターンが基板(230)に転写される。
【0012】
好適には、前記流体供給口(183)と前記流体排出口(185−1〜185−3)とは、前記光ビーム(IL)の光路を挟んで当該光ビーム(IL)と垂直な方向にそれぞれ設けられる(図2参照)。
また好適には、前記流体供給口(183)と前記流体排出口(185−1〜185−3)とは、互いに対向する(図2参照)。
好適な一具体例としては、前記複数の流体排出口(185−1〜185−3)は、前記流体供給口(183)に対向する1つの排出口を少なくとも1つ以上のフィンにより分割して形成される(図2参照)。
【0013】
このような構成においては、流体供給口(183)から流体排出口(185−1〜185−3)に向かう透過性流体の流れ、すなわち、光ビーム(IL)の光軸に垂直な方向の透過性流体の流れが形成され、前記特定の空間(181)において、透過性流体がスムーズに給排出される。また、仮に基板(230)でアウトガスが発生したとしても、透過性流体の流れに従って強制的かつ直ちに排出口(185−1〜185−3)より排出され、特定空間(181)内での拡散は抑制される。
【0014】
また好適には、前記局所流体給排出部(180)は、前記基板(230)に対して所定の間隙(182)を介して被接触状態で配置され、前記局所流体給排出部(180)は、さらに、前記所定の間隙(182)を介して、前記特定の空間(181)から前記透過性流体を含む流体を吸引する吸引口(186)を有する(図2参照)。
好適には、前記吸引口(186)は、前記特定の空間(181)を取り囲み、かつ前記基板(230)と対向するように設けられた溝状の排出孔(186)を有する(図2参照)。
【0015】
このような構成においては、流体供給口(183)から供給された透過性流体を含む特定の空間(181)内の流体の一部は、局所流体給排出部(180)と基板(230)との間の間隙(182)に流れ出し、溝状の排出孔(186)より吸引され排出される。従って、間隙(182)においては、特定の空間(181)内部から外部方向に流体の流れが発生することとなり、外部の空気の特定の空間(181)への侵入が防止される。
【0016】
好適な一例としては、前記複数の流体排出口(185−1〜185−3)及び前記吸引口(186)から排出される前記流体の総量が、前記流体供給口(183)から供給される前記透過性流体の量よりも少なくなるように、前記流体の排出を制御する制御部(203及び204)を有する(図1及び図2参照)。
このような構成においては、吸引口(186)は、特定の空間(181)から流出する流体の量以上の流体を吸引することとなる。従って、吸引口(186)は、特定の空間(181)から流出する流体に加えて、反対方向からの流体、すなわちこの間隙(182)を介して基板(230)周辺から特定の空間(181)方向に流れこむ例えば空気等の外気をも吸引し、これを排出する。その結果、露光装置(100)内の基板(230)周辺から特定の空間(181)方向の気流が発生することとなり、特定の空間(181)に供給された透過性流体が、吸引口(186)を超えて基板(230)周辺に流出することが防止される。
【0017】
また好適な一例としては、前記複数の流体排出口(185−1〜185−3)及び前記吸引口(186)から排出される前記流体の総量が、前記流体供給口(183)から供給される前記透過性流体の量よりも多くなるように、前記流体の供給量を制御する制御部(203及び204)を有する(図1及び図2参照)。
このような構成においては、流体供給口(183)から供給された透過性流体は、流体排出口(185−1〜185−3)及び吸引口(186)のみならず、局所流体給排出部(180)と基板(230)との間隙(182)等を含む隙間より外部に排出されることとなる。従って、あらゆる隙間等において、少なくとも特定の空間(181)の外側から特定の空間(181)の内側への空気等の外気が侵入するのを防ぐことができる。
【0018】
また好適な一例としては、前記制御部(204)は、前記複数の流体排出口(185−1〜185−3)から排出される前記流体の量がそれぞれ同じになるように、前記流体の排出量を制御する(図1及び図2参照)。
また好適な一例としては、前記制御部(204)は、前記複数の流体排出口(185−1〜185−3)から排出される前記流体の量がそれぞれ異なるように、前記流体の排出量を制御する(図1及び図2参照)。
好適には、前記制御部(204)は、前記複数の流体排出口(185−1〜185−3)のうち、前記基板(230)側に配置される流体排出口(185−3)から排出される前記流体の量が他の流体排出口から排出される前記流体の量に比べて多くなるように制御する(図1及び図2参照)。
【0019】
好適な一例としては、前記流体は、前記光ビームを透過する気体又は液体である。
【0020】
また、本発明の第2の観点によれば、本発明に関わる電子デバイスの製造方法は、リソグラフィ工程を含む電子デバイスの製造方法であって、前記リソグラフィ工程は、前記いずれかの露光装置を用いてマスクに形成されたパターンを基板に転写するものである。
【0021】
なお、本欄においては、各構成に対して、添付図面に示されている対応する構成の符号を記載したが、これはあくまでも理解を容易にするためのものであって、何ら本発明に係る手段が添付図面を参照して後述する実施の形態の態様に限定されることを示すものではない。
【0022】
【発明の実施の形態】
本発明の一実施の形態について、図1〜図4を参照して説明する。
本実施の形態においては、露光用ビームとしてFレーザー光を用いるステップ・アンド・スキャン型投影露光装置を例示して本発明を説明する。
【0023】
まず、本実施の形態の露光装置の全体構成及び動作について、図1を参照して説明する。
図1は、その露光装置100の構成を示す図である。
露光装置100は、光源110、照明光学系120、レチクル操作部140、投影光学系(PL)150、ウエハ操作部160、アライメント系170、局所ガス供給部(パージ部)180、環境制御系200及び図示せぬ制御部を有する。
なお以下の説明においては、投影光学系150の光軸と直交し紙面と垂直な方向をX方向、投影光学系150の光軸と直交し紙面と平行な方向をY方向、また、X、Y方向と直交して投影光学系150の光軸と平行な方向をZ方向とする。
【0024】
光源110は、真空紫外域である波長157nmのパルスレーザー光を発生するFレーザーである。光源110より出射された光ビームは、照明光学系120に入射される。
【0025】
照明光学系120は、光源110より射出された光ビームの整形及び照度の均一化等の処理を行い、生成した露光光を転写すべきパターンが形成されたレチクル(R)220に照射する。
照明光学系120は、可動ミラーを有し光源110より射出された光ビームの位置合わせを行うビームマッチングユニット(BMU)121、光ビームの減光率を調整する可変減光器としての光アッテネータ122、光ビームを整形するビーム整形光学系123、露光光の光量分布を調整するオプティカル・インテグレータとしてのフライアイレンズ124、解像度及び焦点深度を制御する開口絞り125、露光光量検出のために光ビームを分岐するビームスプリッタ126、ミラー127及び131、リレーレンズ128及び130、照明領域を規定するレチクルブラインド(視野絞り)129、コンデンサレンズ系132及びこれらを収容する照明系チャンバ133を有する。
【0026】
このような照明光学系120においては、光源110より射出された光ビームは、ビームマッチングユニット121において光軸が照明光学系120の光軸と一致するように調整され、光アッテネータ122に入射される。光アッテネータ122の減光率は、図示せぬ制御部からの制御信号に基づいて段階的又は連続的に調整されるようになっており、これにより露光光量の調整がなされる。なお、露光光量の調整は、光源110における光ビームの出力エネルギーの制御と合わせて行われる。
光アッテネータ122を通過した光ビームは、ビーム整形光学系123において断面形状が整形され、フライアイレンズ124において光量分布が均一化され、開口絞り125を介してビームスプリッタ126に入射される。
ビームスプリッタ126は、透過率が高く反射率が低いビームスプリッタ126であって、これにより反射された光は、図示せぬインテグレータセンサに入射され光量が計測される。そして、計測された光量、及び、予め記憶されているビームスプリッタ126の透過率あるいは反射率に基づいて、図示せぬ制御部において露光光ILの光量が検出され、これに基づいてその光量の制御が行われる。
【0027】
ビームスプリッタ126を通過した露光光ILは、ミラー127によりほぼ水平方向に反射され、リレーレンズ128を介してレチクルブラインド129に達する。
レチクルブラインド129は、レチクル220のパターン面と光学的にほぼ共役な面に配置された、レチクル220のパターン面の照明領域外(露光範囲外)を覆うことによりレチクル220の照明領域を規定する遮光板である。レチクルブラインド129は、固定ブラインド及び可動ブラインドを有し、露光光ILが照射されるレチクル220の照明領域を、投影光学系150の円形視野内で露光光ILの光軸を中心としてX方向に延びる矩形形状に規定する。またレチクルブラインド129は、走査露光中、レチクル220が移動される走査方向(本実施形態ではY方向)の照明領域の幅を所定の幅に制御する。
レチクルブラインド129を通過した露光光ILは、リレーレンズ130、ミラー131及びコンデンサレンズ系132を介してレチクル操作部140に入射され、レチクル220のパターン面上の所定の領域を照明する。
【0028】
照明光学系120のこれらビームマッチングユニット121〜コンデンサレンズ系132の各構成部は、Fレーザー光である露光光ILに対してエネルギー吸収の少ない不活性ガス(透過性ガス)を充満させた照明系チャンバ133に収容されている。
照明系チャンバ133は、バルブ209を介して排気用真空ポンプ204に、また、バルブ205を介して不活性ガス供給装置203に接続されている。従って、バルブ205及びバルブ209をそれぞれ開くことによって、照明系チャンバ133内の空気が排気され、かつ照明系チャンバ133内に不活性ガスが供給され、照明系チャンバ133内の空気が不活性ガスに置換される。
【0029】
レチクル操作部140は、投影光学系150と照明光学系120との間に設けられ、レチクル(マスク)220を保持し、照明光学系120より出射され投影光学系150に入射される露光光ILにレチクル220上のパターンの所望の領域が適切に照射されるように、その位置、姿勢を制御する。
レチクル操作部140は、レチクルステージ141、図示せぬレーザー干渉計システム及びレチクル室142を有する。
レチクルステージ141は、所定のストロークでY方向に移動可能に、また、XY平面内で回転方向及び並進方向に微動可能に、レチクル220を保持する。
レチクルステージ141は、図示しない少なくとも6つの測長軸を有するレーザー干渉計システムによって、X、Y方向の位置、X軸、Y軸及びZ軸回りの3つの回転量(ピッチング量、ローリング量、ヨーイング量)、及び、Z方向の位置(投影光学系150との間隔)が計測されている。レチクルステージ141は、これらの計測結果より図示せぬ制御部において生成される制御信号に基づいて、レチクル220を所望の位置、姿勢に調整し、また、走査露光時に、ウエハ230の移動に同期して、露光光ILの照明領域に対してレチクル220を走査方向(Y方向)に所定の速度で移動する。
【0030】
レチクルステージ141は、露光光ILに対してエネルギー吸収の少ない不活性ガスを充満させたレチクル室142に収容されている。
レチクル室142は、バルブ210を介して排気用真空ポンプ204に、また、バルブ206を介して不活性ガス供給装置203に接続されている。従って、バルブ206及びバルブ210をそれぞれ開くことによって、レチクル室142内の空気が排気され、かつレチクル室142内に不活性ガスが供給され、レチクル室142内の空気が不活性ガスに置換される。不活性ガスは、大気圧より1〜10%程度高い圧力となるようにレチクル室142内に供給される。
【0031】
投影光学系(PL)150は、レチクル220のパターンの縮小像を、露光光ILの照明領域と共役な露光領域(ウエハ230での露光光ILの照射領域)に形成する両側テレセントリックな縮小系である。すなわち、レチクル220のパターンの像は、投影光学系150により所定の縮小倍率α(αは例えば1/4、1/5等)で縮小され、ウエハ操作部160のウエハステージ上に載置されている予め表面にフォトレジストが塗布されたウエハ230上に投影される。
なお、本実施の形態において露光光ILはFレーザー光であるため、透過率のよい光学硝材は、螢石(CaFの結晶)、フッ素や水素をドープした石英ガラス、及び、フッ化マグネシウム(MgF)等に限られる。従って、投影光学系150を屈折光学部材のみで構成して所望の色収差特性等の結像特性を得るのは難しく、投影光学系150は、屈折光学部材と反射鏡を組み合わせた反射屈折系により構成する。
【0032】
投影光学系150においては、レチクル220側の光学部材(光学素子)から、ウエハ230側の先端の光学部材151(例えば、平行平板状の光学部材)までの全ての光学部材は、換言すれば投影光学系150内の露光光ILの全光路は、Fレーザー光である露光光ILに対してエネルギー吸収の少ない不活性ガスを充満させた鏡筒152内に収容されている。
鏡筒152は、バルブ211を介して排気用真空ポンプ204に、また、バルブ207を介して不活性ガス供給装置203に接続されている。従って、バルブ207及びバルブ211をそれぞれ開くことによって、鏡筒152内の空気が排気され、かつ鏡筒152内に不活性ガスが供給され、鏡筒152内の空気が不活性ガスに置換される。不活性ガスは、大気圧より1〜10%程度高い圧力となるように、鏡筒152内に供給する。
【0033】
ウエハ操作部160は、露光対象のウエハ(感応基板)230を保持し、その位置を制御して、これを投影光学系150から出射される露光光ILによるレチクル220のパターンの像の照射対象として供する。また、走査露光時には、レチクル操作部140におけるレチクル220の移動と同期して、ウエハ230の位置を順次移動させる。
ウエハ操作部160は、ウエハ230を保持するウエハステージ161、ウエハステージの位置及び姿勢を検出するレーザー干渉計システム162、ウエハステージを駆動するステージ駆動系163及びウエハローダ部164を有する。
【0034】
ウエハステージ161は、ベース盤上に支持されステージ駆動系によりベース盤上をXY2次元に自在に移動可能なステージ本体、3個のZ方向アクチュエータによってステージ本体上に支持されZ方向の位置及びXY平面における傾きを調整するZLステージ、及び、ZLステージ上に支持されウエハ230を表面に形成された吸着孔からの真空吸引力の作用により吸着し保持するウエハホルダを有し、ウエハローダ部164によって搬送され載置されたウエハ230を、ウエハホルダ上に所望の姿勢で保持し、露光に供する。
レーザー干渉計システム162は、少なくとも5つの測長軸を有し、ZLステージに形成される反射面にレーザービームを照射して、ウエハステージのX、Y方向の位置情報、及び、X軸、Y軸及びZ軸回りの3つの回転量、すなわち、ピッチング量、ローリング量及びヨーイング量を計測する。
ステージ駆動系163は、ベース盤上に支持されたウエハステージをX,Y2次元方向に自在に移動させる。
ウエハローダ部164は、露光装置100に投入されたウエハカセットより露光処理対象のウエハ230を取り出し、ウエハステージ161のウエハホルダ上に載置する。また、露光処理の終了したウエハ230をウエハステージより回収して、新たなウエハカセットの所定の位置に収容する。
【0035】
アライメント系170は、ウエハ操作部160に保持されたウエハ230の位置を検出し所望の位置に露光を行うために、ウエハ230のアライメントマーク及びウエハ操作部160のウエハステージに設けられる基準マーク等を検出し、検出結果を図示せぬ制御部に出力する。
アライメント系170は、例えばハロゲンランプから発生される広帯域の光でマークを照射し、当該マークを撮像素子(CCD)で検出して得られる画像信号を制御部に出力する。制御部においては、この画像信号を波形処理して、その位置情報を検出する。
【0036】
局所ガス給排気部(局所流体給排出部)180は、投影光学系150の先端の光学部材151と、ウエハ操作部160に保持されたウエハ230との間の空間181(以後、この空間を特定空間と言う。)に不活性ガスを所定の方向から流すことにより、特定空間181内の吸光物質を排除する。また、これにより、ウエハ230のレジストから発生するアウトガスが先端の光学部材151に付着するのを抑制する。
局所ガス給排出部180の詳細な構成については、図2〜図4を参照して後に詳細に説明する。
【0037】
環境制御系200は、露光装置100本体の設置環境及び露光装置100内の露光光ILの経路等を所望の状態に整えるための構成部である。
環境制御系200は、チャンバ201、フィルタ202、不活性ガス供給装置203、及び排気用真空ポンプ204を有する。
チャンバ201は、露光装置100全体を収容する環境制御チャンバ(エンバイロンメンタル・チャンバ)である。チャンバ201内には空調装置が設けられており、露光装置100に対して温度や湿度が調整されたエアーが送風され、露光装置100の設置環境が所望の状態に維持されている。
フィルタ202は、露光装置100が設置されているチャンバ201内を清浄化するために、化学吸着及び物理吸着によりケミカルコンタミ等の不純物を除去する不純物除去フィルタ及びパーティクル除去フィルタである。前述したように、露光装置100はチャンバ201内に設けられており、フィルタ202は、チャンバ201内の空調装置の風上部に設置されている。その結果、チャンバ201内においては、露光装置100に対して清浄なエアーが供給されることとなり、露光装置100の周囲から露光装置100へのケミカルコンタミ等の不純物の侵入を防止することができる。
【0038】
不活性ガス供給装置203は、照明光学系120の照明系チャンバ133、レチクル操作部140のレチクル室142、投影光学系150の鏡筒152及び後に詳細に説明する局所ガス給排出部180に、Fレーザー光である露光光ILに対してエネルギー吸収の少ない不活性ガスを供給する。
具体的には、不活性ガス供給装置203は、露光装置100の全体が収納されているチャンバ201の外部に設置され、不活性ガスが高純度の状態で圧縮又は液化され貯蔵されたボンベである。そして、図示せぬ制御部の制御によりバルブ205〜208が各々開閉されることにより、前述した各構成部へ不活性ガスを供給する。特に、局所ガス給排出部180に対しては、露光処理中常に、バルブ208を介して、後述する排気用真空ポンプ204の動作による排気に抗して不活性ガスを供給し続け、局所ガス給排出部180の特定空間181に不活性ガスを充満させる。
【0039】
なお、本実施の形態の露光装置100においては、波長157nmの真空紫外光を露光光ILとして使用している。この露光光ILの吸光物質としては、酸素(O)、水(水蒸気:HO)、一酸化炭素(CO)、炭酸ガス(二酸化炭素:CO)、有機物及びハロゲン化物等があり、一方、エネルギー吸収がほとんどなく、これを透過する気体としては、窒素ガス(N)、及び、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、キセノン(Xe)、ラドン(Rn)、水素(H)よりなる希ガスがある。また、投影光学系とウエハとの間に液体を供給する場合は、水やフッ素系不活性オイルがある。
従って、不活性ガス供給装置203で供給する不活性ガス(透過性ガス)としては、窒素ガス又はこれらの希ガスが好適である。本実施の形態においては、不活性ガス供給装置203は窒素ガスを供給するものとする。
【0040】
なお、窒素ガスは、波長が150nm程度までは透過性ガスとして使用することができるが、150nm以下の光に対しては吸光物質として作用する。一方、ヘリウムガスは、波長が100nm程度まで透過性ガスとして使用することができる。また、ヘリウムガスは熱伝導率が窒素ガスの約6倍であり、気圧変化に対する屈折率の変動量が窒素ガスの約1/8である。
従って、より透過率を高くし光学系の特性を安定させたい場合や、露光光ILの波長が150nm以下のような場合には、コストは高くなるものの、不活性ガス(透過性ガス)としてヘリウムガスを使用することが望ましい。
【0041】
排気用真空ポンプ204は、不活性ガス供給装置203より不活性ガスが供給される各部、すなわち、前述した照明光学系120の照明系チャンバ133、レチクル操作部140のレチクル室142、投影光学系150の鏡筒152及び局所ガス給排出部180の排気を行う真空ポンプである。
排気用真空ポンプ204は、照明光学系120の照明系チャンバ133、レチクル操作部140のレチクル室142及び投影光学系150の鏡筒152については、前述したように、不活性ガス供給装置203より不活性ガスが供給される前に各容器内の空気を吸引排気する。
また、局所ガス給排出部180については、排気用真空ポンプ204は、露光処理中常にバルブ212−1〜212−3及び213−1〜213−4を介して真空吸引力を作用させ続け、不活性ガス供給装置203より供給される不活性ガスを含む特定空間181内の気体を排気する。これにより不活性ガスが特定空間181内をある程度の速度で流れることとなり、ウエハ230より発生するアウトガスを特定空間181より排気することができる。
【0042】
図示せぬ制御部は、露光装置100において全体として所望の露光処理が行われるように、露光装置100の各構成部を制御する。
具体的には、ウエハローダ部による露光装置100に投入されたウエハのウエハステージへのローディング及び露光の終了したウエハのアンローディング、アライメント系170により検出された信号に基づくアライメントマークの位置検出のための信号処理、検出したウエハステージ及びウエハの位置に基づくステージ駆動系の制御、及び、走査露光時のレチクル220及びウエハ230の移動、及び、位置及び姿勢の制御等を行う。
また、制御部は、照明光学系120のインテグレータセンサで検出したビームスプリッタ126での反射光の光量、及び、予め記憶しているビームスプリッタ126の透過率あるいは反射率に基づいて、投影光学系150に対する光の入射光量及びウエハ230上での光量を検出する。この検出結果に基づいて、光源110の発光の開始及び停止、発振周波数、及び、パルスエネルギーで定まる出力を制御し、また、光アッテネータ122における減光率を調整し、最終的にウエハ230に対する露光光ILの光量を制御する。
【0043】
次に、本発明に関わる局所ガス給排出部180について、図2〜図4を参照して詳細に説明する。
前述したように、局所ガス給排出部180は、投影光学系150とウエハ230との間、すなわち、投影光学系150を構成する複数の光学部材のうち、最もウエハ23側に配置される先端の光学部材151と、ウエハ230との間の露光光ILが通過する光路から吸光物質を排除し、また、ウエハ230の露光部分から発生したアウトガスが先端の光学部材151に付着するのを防ぐために、先端の光学部材151とウエハ230との間の特定空間181に不活性ガスを流す機構である。
図2(A)〜図2(C)は、局所ガス給排出部180の構造を示す図であり、図2(A)は先端の光学部材151側(上側)から見た平面図であり、図2(B)は、露光光ILの光軸AXを含むy−z平面(図2(A)のA−Aから見た面)における断面図であり、図2(C)は露光光ILの光軸AXを含むx−z平面(図2(A)のB−Bから見た面)における断面図である。
【0044】
図2(A)〜図2(C)に示すように、局所ガス給排出部180は、特定空間181に対して不活性ガスを供給する不活性ガス供給口183と、この供給された不活性ガスを含む気体を排気する複数の排気口185−1〜185−3とを有する排気口184とを備える。さらに、局所ガス排出部180は、露光光ILの光軸に対して、不活性ガス供給口183及び排気口184の外側で、かつウエハに対向する底面部191に、該底面部191とウエハ230との間の隙間の空間182の気体を吸い込む周囲排気溝(吸引口)186が設けられる。
不活性ガス供給口183と排気口部184とは、露光光ILの光路を挟んで、露光装置100のスキャン方向と同じY方向に対向して設けられる。
【0045】
不活性ガス供給口183は、底面部191、上面部192及び側面部194−1及び194−2により規定される。
底面部191は、ウエハ230に十分近い所定の位置にウエハ230と平行に配置され、端部が排気口部184の向き(Y方向)に露光光ILの光路に近接した位置までせり出すように配置される。上面部192は、端部が投影光学系150の先端面の近傍であって、先端の光学部材151にかからない位置に配置される。また、側面部194−1及び194−2は、投影光学系150の先端面の周縁部とほぼ同じ位置において、底面部191と上面部192との間を閉塞し不活性ガス供給口183のX方向の幅を規定するように配置される。
このような不活性ガス供給口183は、奥側、すなわち、露光光ILの光路に面する開口部とは反対側においてX方向及びZ方向に絞れて、最終的に不活性ガス供給管196と連結している。不活性ガス供給管196は、図1に示したように、バルブ208を介して不活性ガス供給装置203に接続されている。
これにより、不活性ガス供給装置203よりバルブ208及び不活性ガス供給管196を介して供給された不活性ガスは、不活性ガス供給口183より吹き出し、露光光ILの光路を横切って排気口部184方向に流される。
【0046】
排気口部184は、図示のごとく、第1から第3の3つの排気口185−1〜185−3を有する。これら第1から第3の3つの排気口185−1〜185 は、底面部191、第1〜第3のフィン部193−1〜193−3及び側面部194−1及び194−2により規定される。
底面部191は、ウエハ230に十分近い所定の位置においてウエハ230と平行に配置され、端部が不活性ガス供給口183の向きに露光光ILの光路に近接した位置までせり出すように配置される。
フィン部193−1〜193−3は、底面部191の上側(投影光学系150側)に底面部191と平行に所定の間隔をもって順次配置され、各々、その配置位置において端部が不活性ガス供給口183の向き(Y方向)に露光光ILの光路に近接した位置までせり出すように配置される。すなわち、これら第1〜第3のフィン部193−1〜193−3及び底面部191は、図2(B)に示すように、先端の光学部材151からウエハ230の露光領域231に収束する露光光ILの光路に沿って、投影光学系150からウエハ230方向に順に階段状にせり出した構成で配置される。なお、フィン部193−1〜193−3は、投影光学系150側よりウエハ230の方向に順に第1のフィン部193−1、第2のフィン部193−2及び第3のフィン部193−3とする。
【0047】
側面部194−1及び194−2は、投影光学系150の先端面の周縁部とほぼ同じ位置で底面部191及びフィン部193−1〜193−3との間を閉塞し、排気口部184、すなわち排気口185−1〜185−3のX方向の幅を規定するように配置される。
これら、底面部191、フィン部193−1〜193−3、及び、側面部194−1及び194−2により、排気口185−1〜185−3が形成される。なお、排気口185−1〜185−3は、投影光学系150側よりウエハ230方向に順に第1の排気口185−1、第2の排気口185−2及び第3の排気口185−3とする。
【0048】
このような排気口部184においては、排気口185−1〜185−3の奥側、すなわち露光光ILの光路に面する開口部とは反対側において、排気口185−1〜185−3の各々がX方向に絞れ、またZ方向の長さが調整され、最終的に排気管197−1〜197−3と各々連結している。排気管197−1〜197−3は、図1に示したように、バルブ212−1〜212−3を介して排気用真空ポンプ204に接続されている。
これにより、露光光ILの光路を含む特定空間181に存在する不活性ガスを含む気体は、バルブ208よりバルブ212−1〜212−3及び排気管197−1〜197−3を介して排気口185−1〜185−3に各々作用される吸引力により吸気され、露光装置100が設置されているチャンバ201外に排気される。
【0049】
なお、排気口185−1〜185−3からは、不活性ガス供給口183より供給される不活性ガスの量より少ない所定の量の気体を排気する。
また、排気口185−1〜185−3の各々から排気する気体の量は、図示せぬ制御部の制御に基づいてバルブ212−1〜212−3が各々独立して制御されることにより、各々独立して調整される。本実施の形態においては、排気口185−1、排気口185−2、排気口185−3の順に排気量が多くなるように、各排気口185−1〜185−3からの排気量を制御する。
【0050】
不活性ガス供給口183及び排気口部184の各側面部は、2枚の板状部材194−1及び194−2が不活性ガス供給口183と排気口部184との間に延伸されて配置されたものである。すなわち、不活性ガス供給口183と排気口部184は同一の板状部材を共通に用いて構成されている。そしてこの側面部194−1及び194−2は、不活性ガス供給口183及び排気口部184のX方向の幅を規定するとともに、不活性ガス供給口183と排気口部184の間の特定空間181のX方向の範囲を規定し、不活性ガス供給口183から供給された不活性ガスを含む特定空間181内の気体の流れる範囲、拡散範囲をX方向に制限している。
なお、このような構成となっているため、不活性ガス供給口183と排気口部184の排気口185−1〜185−3のX方向の幅は同一である。
【0051】
不活性ガス供給口183の上面部192、排気口部184の上面を形成する第1のフィン部193−1、及び、側面部194−1及び194−2の上端面は、露光光ILの光軸AX方向において同じ高さに揃えられており、局所ガス給排出部180の上面を形成している。そしてこの局所ガス給排出部180の上面は、図2(B)及び図2(C)に示すように、投影光学系150の先端面と僅かな間隙を隔てて、その先端面に非常に接近した位置に配置されている。
この投影光学系150の先端面と局所ガス給排出部180の上面との間隙を塞ぐために、局所ガス給排出部180の上面(すなわち不活性ガス供給口183の上面部192、排気口部184の上面を形成する第1のフィン部193−1、及び、側面部194−1及び194−2の上端面)と、投影光学系150の先端面の周縁部との間には、フィルム状封止部195が設けられている。フィルム状封止部195は、気密性の高いフィルム状の部材である。
これにより、投影光学系150の先端面と局所ガス給排出部180の上面との間隙から、特定空間181内の不活性ガスを含む気体が、特定空間181外部、すなわち露光装置100内のウエハ操作部160周辺に漏れ出るのを防ぐことができる。
【0052】
また、不活性ガス供給口183の底面部と排気口部184の底面部とは、局所ガス給排出部180の底面を規定する一連の底面部191である。換言すれば、不活性ガス供給口183及び排気口部184の底面部は、1つの板状部材である底面部191の露光光ILの光路部分に、露光光ILを通過させる開口部を形成することにより形成されているものである。局所ガス給排出部180は、該局所ガス給排出部180の底面部191が、ウエハに対して所定の間隔を介して被接触状態となるように、前記フィルム状封止部195によって、投影光学系の先端面に取りつけられている。
【0053】
また、局所ガス給排出部180は、ウエハ230と所定の距離離れて対向する局所ガス給排出部180の底面部191の、特定空間181の外側に、特定空間181を取り囲むように、周囲排気溝186が設けられている。
周囲排気溝186は、図2(A)に示すように、4箇所で排気管198−1〜198−4に連結され、各排気管198−1〜198−4は、対応するバルブ213−1〜213−4を介して排気用真空ポンプ204に接続されている。
これにより、局所ガス給排出部180とウエハ230との間の間隙に存在する気体が、排気用真空ポンプ204よりバルブ213−1〜213−4及び排気管198−1〜198−4を介して周囲排気溝186に作用される吸引力により吸気され、チャンバ201の外部に排気される。
【0054】
この時、周囲排気溝186からは、不活性ガス供給口183からの不可性ガスの供給量と排気口185−1〜185−3からの気体の総排気量との差よりも多い量の気体を排気する。このようにすると、前述したように、不活性ガス供給口183からの不活性ガスの供給量の方が排気口185−1〜185−3からの気体の排気量よりも多いものの、周囲排気溝186からの気体の排気量をも含めると、排気口185−1〜185−3及び周囲排気溝186からの気体の排気量は、不活性ガス供給口183からの不活性ガスの供給量よりも多くなる。その結果、周囲排気溝186は特定空間181を囲んで配置されているので、周囲排気溝186は、図3に示すように、特定空間181方向からの不活性ガスを含む気体に加えて、局所ガス給排出部180の外部方向からの空気をも合わせて吸い込む。すなわち、特定空間181からも外部からも周囲排気溝186に向かう気体の流れが発生する。その結果、外部の空気が特定空間181に入るのが防止されるとともに、特定空間181の気体が外部の空間に漏れ出すのも防止される。
【0055】
このような構成の局所ガス給排出部180においては、露光処理時、不活性ガス供給装置203からバルブ208及び不活性ガス供給管196を通して供給される不活性ガスが、不活性ガス供給口183より所定の速度で吹き出され、先端の光学部材151とウエハ230の露光領域231の間の露光光ILの光路を含む特定空間181に供給される。
特定空間181に供給された不活性ガスは、露光光ILの光路に対向して複数配置されている3つの排気口185−1〜185−3により吸引されて、排気管197−1〜197−3、バルブ212−1〜212−3及び排気用真空ポンプ204を介して、チャンバ201外に排気される。3つの排気口は、特定空間181を露光光ILの光軸方向に沿って複数配置されている。
これにより、特定空間181の吸着物質を含む空気等は実質的に露光装置100外へ排気されることとなり、特定空間181内は不活性ガスが充満した状態となる。
【0056】
また、特定空間181においては、図3に示すように、不活性ガス供給口183から排気口部184方向への、すなわち先端の光学部材151及びウエハ230の表面に平行で露光光ILの光路に垂直な方向への不活性ガスの流れが形成される。また、その排気口184は、露光光ILの光軸方向にフィン部193−1〜193−3により分割され、また、その板状のフィン部193−1〜193−3は露光光ILの光路近くにまでせり出している。
これにより、ウエハ230の露光領域231でレジストより発生したアウトガスは、露光光ILの光軸方向、すなわち先端の光学部材151の方向に拡散しながらも、不活性ガスの流れにより強制的に排気口185−1〜185−3方向に流され、せり出したフィン部193−1〜193−3により捕捉されて排気口185−1〜185−3より排気される。
【0057】
また、不活性ガス供給口183から供給される不活性ガスの量は排気口185−1〜185−3より排気される気体の量よりも多く、また、局所ガス給排出部180の上面と投影光学系150の間はフィルム状封止部195により封止されているので、特定空間181に供給された余分な不活性ガスは、局所ガス給排出部180とウエハ230との間の隙間の空間182に流れこみ、特定空間181より外部方向に流れる。
一方、この隙間の空間182に対しては、特定空間181を取り囲むように全域に渡って設けられている周囲排気溝186より気体の排気が行われている。従って、特定空間181より外部方向に流れた不活性ガスを含む気体は、周囲排気溝186により吸気され、最終的にチャンバ201外に排気される。
【0058】
また、周囲排気溝186において排気される気体の量は、特定空間181から隙間の空間182(局所ガス給排出部180とウエハ230との間の空間)に流れ出す気体の量よりも多いので、周囲排気溝186においては、特定空間181から流出する気体とともに、特定空間181外のウエハ操作部160周辺の空気をも吸気し排気する。そのため、周囲排気溝186の外側の隙間の空間182においては、外部から周囲排気溝186方向への空気の流れが形成される。
その結果、周囲排気溝186に対して特定空間181と外部の両方から気流が発生することとなり、特定空間181内の気体のウエハ操作部160周辺への漏洩防止、及び、特定空間181外の空気の特定空間181内への侵入の防止の両方が達成される。
【0059】
最後に、このような構成、動作の局所ガス給排出部180における、ウエハ230の露光領域231から発生するアウトガスの流れについて、数値シミュレーションにより求めた濃度分布を参照して説明する。
図4は、数値シミュレーションにより求めた、局所ガス給排出部180におけるウエハ230の露光領域231から発生するアウトガスの濃度分布を示す図である。
図4に示す曲線は、ウエハ230のレジストが露光されることにより発生するアウトガスの濃度分布を示す等濃度線であり、各等濃度線で区切られる領域241〜245は、各々、アウトガスの濃度が略同一の範囲を示す。
なお、隣接する等濃度領域の間ではアウトガスの濃度が10倍異なり、第1の濃度の領域241から第5の濃度の領域245に向かって順にアウトガスのノードは薄くなっている。
【0060】
このアウトガスの濃度分布は、特定空間181に供給する不活性ガスの量、排気口185−1〜185−3から排気する気体の量、不可性ガスの流路、及び、特定空間181の形状等により変化する。
図4は、不活性ガス供給口183からの不活性ガス供給量を毎分10リットル、排気口185−1〜185−3からの排気量を毎分2.5リットルとした時の、アウトガスの濃度分布のシミュレーション結果を示すものである。
【0061】
図4に示すように、局所ガス給排出部180においては、第1の濃度〜第3の濃度の領域241〜243のアウトガスは、周囲排気溝186及び第3の排気口185−3より吸気され排気されている。
また、第4の濃度の領域244のアウトガスは、第2の排気口185−2において吸気され、同様に、第5の濃度の領域245のアウトガスは、第1の排気口185−1において吸気され、いずれもそのまま排気されており、特定空間181内においてそれ以上は拡散していない。
このように、局所ガス給排出部180においては、ウエハ230の露光領域231で発生したアウトガスは、各々せり出したフィン部193−1〜193−3により、比較的ウエハ230に近い領域で順次捕捉され吸気されており、実質的に投影光学系150の先端の光学部材151にまで達していない。
【0062】
このように、本実施の形態の露光装置100においては、ウエハ230に照射される露光光ILの光路である特定空間181に、不活性ガス供給口183より供給される不活性ガスを充満させ、特定空間181より吸光物質を含む空気等の気体を排気している。
従って、露光光ILのエネルギーが吸光物質により吸収されて露光光ILの光量が低下することを抑制し、露光時のウエハ表面における露光光ILの照度低下を抑えており、露光処理のスループットを向上させることができる。
【0063】
また、露光装置100においては、特定空間181及びその周囲の局所ガス給排出部180とウエハ230との間の空間182とを囲むように周囲排気溝186が配置され、周囲排気溝186では、特定空間181からの不活性ガスと、特定空間181外のウエハ操作部160周辺からの空気をともに吸気し、排気している。従って、特定空間181の内側からも特定空間181の外側からも周囲排気溝186方向への気流が発生し、特定空間181外の空気が特定空間181及び空間182に入ること、及び、特定空間181及び空間182の不活性ガスがウエハ操作部160周辺に漏れ出すことの両方が防止されている。その結果、特定空間181のみの局所的な不活性ガスのパージを適切に行うことができる。
【0064】
また、特に露光装置100においては、特定空間181に対して複数の排気口185−1〜185−3を設け、その口先を露光光ILの光路のごく近傍までせり出して設けているので、ウエハ230の露光領域231から発生するアウトガスを積極的に吸い込み、排気することができる。特に、アウトガスの濃度の濃いウエハ230に近い領域の気体を積極的に吸い込み排気することができる。
その結果、アウトガスが特定空間181内に拡散するのを防ぐことができ、アウトガスが投影光学系150にまで達して先端の光学部材151に付着するのを防ぐことができる。これにより、先端の光学部材151が汚れて透過率が低下することを抑制し、露光時のウエハ表面における露光光ILの照度低下を抑え、ひいては露光処理のスループットを向上させることができる。
また、照度ムラを抑制することができるため、露光処理を高精度に適切に行うことができ、不良な電子デバイスが発生するのを防ぎ、歩留まりを向上させることができる。
【0065】
また、本実施の形態の露光装置100においては、このような効果を得るにあたって局所ガス給排出部180の特定空間181に供給する不活性ガスの量を増やす必要がない。従って、不活性ガスの消費量の増大を抑え、ランニングコストの増大を防ぐことができる。
また、効率よい不活性ガスの供給や、効率よい電子デバイスの製造を行うことができるので、露光装置の寿命を延ばすこともできる。
【0066】
なお、本実施の形態は、本発明の理解を容易にするために記載されたものであって本発明を何ら限定するものではない。本実施の形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含み、また、任意好適な種々の改変が可能である。
【0067】
例えば、本実施の形態においては、複数の排気口は、実質的に1つの排気口を板状部材であるフィンにより区切ることにより構成していた。しかしながら、各々が独立した管状、筒状の排気口を用いて構成してもよい。本発明の趣旨は、複数の排気口が露光光ILの光軸方向にずらされて配置されている点であり、その範囲内であれば、排気口の形状、構成、配置等は任意に変更してよい。
また、本実施の形態においては、不活性ガス供給口に対向する排気口を3つ有する局所ガス給排出部を例示したが、これに限定されるものではない。2以上の排気口が露光光ILの光軸方向にずらされて配置されていればよく、その数は任意でよい。
【0068】
また、本実施の形態においては、複数の排気口185−1〜185−3の各々において排気する気体の量が異なるように設定したが、全ての排気口から同じ量で気体を排気するようにしてもよい。
【0069】
また、局所ガス給排出部のより具体的な構造、構成は、図2に示したような構造、構成に限られるものではなく、任意に変更してよい。
例えば、本実施の形態において不活性ガス供給口183及び排気口185−1〜185−3のX方向の幅を規定する側面部は、不活性ガス供給口183と排気口部184で共通の部材である側面部194−1及び194−2を用いて形成し、さらにこの側面部は、特定空間181のX方向の範囲を規定する構成となっていた。しかし、不活性ガス供給口及び排気口を規定する部材、及び、特定空間の範囲を規定する部材が共通である必要はなく、これらは各々別個の形状で別個に設置される別個の部材であってよい。
また、不活性ガス供給口183及び排気口部184は共通の部材である底面部191上に形成されていたが、各々が独自の底面部材を持っていてもよく、何らこのような構造に限定されるものではない。
【0070】
また、本実施の形態においては、照明光学系120は、ビームマッチングユニット121〜コンデンサレンズ系132の構成部全てを1のチャンバ133に収容して構成していた。しかし、例えば、ビームマッチングユニット121〜ビームスプリッタ126を第1の照明光学系として1つのチャンバに収容し、投影光学系等の露光装置本体が載置されるコラムとは別の架台に設け、ミラー127〜コンデンサレンズ系132を第2の照明光学系として1つのチャンバに収容し、露光装置本体と同一のコラムに設けるというように、照明光学系を適宜分割してチャンバに収容し、露光装置として実装するようにしてもよい。
【0071】
また、本実施の形態においては、Fレーザーを光源として使用する露光装置を例示して本発明を説明したが、高圧水銀灯、KrFエキシマレーザー、ArFエキシマレーザーを光源として用いた露光装置に対しても適用可能である。
また、本実施の形態においては、不活性ガスを特定空間181に供給する場合を例示して本発明を説明したが、先端の光学部材とウエハとの間に液体を挟むいわゆる液浸法による露光を行う場合には、例えば水やフッ素系不活性オイル等の所定の液体を同様の方法に供給し、また排出することになる。本発明はそのような場合にも適用可能であり、この場合も本発明の範囲内であることは明らかである。
【0072】
【発明の効果】
以上説明したように、本発明によれば、周辺の機器に影響を及ぼすことなく、また、不活性ガスの流量を増やすことなく、投影光学系と感応基板(ウエハ)との間の空間から吸光物質を適切に排除し、またレジストから発生するアウトガスの先端の光学部材への付着を防止し、これにより短波長の光ビームによる露光を適切に行うことのできる露光装置を提供することができる。
また、投影光学系と感応基板(ウエハ)との間の空間から吸光物質を適切に排除し、またレジストから発生するアウトガスの先端の光学部材への付着を防止し、これにより短波長の光ビームによる露光を適切に行い、もって高精細なパターンの転写を適切に行い所望の回路を適切に形成することのできる電子デバイスの製造方法を提供することができる。
【図面の簡単な説明】
【図1】図1は、本発明の一実施の形態の露光装置の構成を示す図である。
【図2】図2は、図1に示した露光装置の局所ガス給排出部の構成を示す図である。
【図3】図3は、図2に示した局所ガス給排出部におけるガスの流れを示す図である。
【図4】図4は、数値シミュレーションにより求めた、図2に示した局所ガス給排出部におけるウエハから発生するアウトガスの濃度分布を示す図である。
【符号の説明】
100…露光装置
110…光源
120…照明光学系
121…ビームマッチングユニット
122…光アッテネータ
123…ビーム整形光学系
124…フライアイレンズ
125…開口絞り
126…ビームスプリッタ
127,131…ミラー
128,130…リレーレンズ
129…レチクルブラインド
132…コンデンサレンズ系
133…照明系チャンバ
140…レチクル操作部
141…レチクルステージ
142…レチクル室
150…投影光学系
151…先端の光学部材
152…鏡筒
160…ウエハ操作部
161…ウエハステージ
162…レーザー干渉計システム
163…ステージ駆動系
164…ウエハローダ部
170…アライメント系
180…局所ガス給排出部
181…特定空間
182…隙間空間
183…不活性ガス供給口
184…排気口部
185−1〜185−3…排気口
186…周囲排気溝
191…底面部
192…上面部
193−1〜193−3…フィン部
194−1,194−2…側面部
195…フィルム状封止部
196…不活性ガス供給管
197−1〜197−3,198−1〜198−4…排気管
200…環境制御系
201…チャンバ
202…フィルタ
203…不活性ガス供給装置
204…排気用真空ポンプ
205〜211、212−1〜212−3,213−1〜213−4…バルブ
220…レチクル
230…ウエハ
231…露光領域
241〜245…等濃度領域

Claims (13)

  1. 光ビームで、パターンが形成されたマスクを照明し、該パターンの像を投影光学系を介して基板に転写する露光装置において、
    前記投影光学系と前記基板との間で、かつ前記光ビームの光路を含む特定の空間に設けられる局所流体吸排出部を有し、
    前記局所流体給排出部は、前記特定の空間に前記光ビームを透過する透過性流体を供給する流体供給口と、前記光ビームの光路に対向して複数配置され、前記特定の空間から前記透過性流体を含む流体を排出する流体排出口とを備えることを特徴とする露光装置。
  2. 前記流体供給口と前記流体排出口とは、前記光ビームの光路を挟んで当該光ビームと垂直な方向にそれぞれ設けられることを特徴とする請求項1に記載の露光装置。
  3. 前記流体供給口と前記流体排出口とは、互いに対向することを特徴とする請求項2に記載の露光装置。
  4. 前記複数の流体排出口は、前記流体供給口に対向する1つの排出口を少なくとも1つ以上のフィンにより分割して形成されることを特徴とする請求項3に記載の露光装置。
  5. 前記局所流体給排出部は、前記基板に対して所定の間隙を介して被接触状態で配置され、
    前記局所流体給排出部は、さらに、前記所定の間隙を介して、前記特定の空間から前記透過性流体を含む流体を吸引する吸引口を有することを特徴とする請求項1〜4のいずれかに記載の露光装置。
  6. 前記吸引口は、前記特定の空間を取り囲み、かつ前記基板と対向するように設けられた溝状の排出孔を有することを特徴とする請求項5に記載の露光装置。
  7. 前記複数の流体排出口及び前記吸引口から排出される前記流体の総量が、前記流体供給口から供給される前記透過性流体の量よりも少なくなるように、前記流体の排出を制御する制御部を有することを特徴とする請求項1〜6のいずれかに記載の露光装置。
  8. 前記複数の流体排出口及び前記吸引口から排出される前記流体の総量が、前記流体供給口から供給される前記透過性流体の量よりも多くなるように、前記流体の供給量を制御する制御部を有することを特徴とする請求項1〜6のいずれかに記載の露光装置。
  9. 前記制御部は、前記複数の流体排出口から排出される前記流体の量がそれぞれ同じになるように、前記流体の排出量を制御することを特徴とする請求項7又は8に記載の露光装置。
  10. 前記制御部は、前記複数の流体排出口から排出される前記流体の量がそれぞれ異なるように、前記流体の排出量を制御することを特徴とする請求項7又は8に記載の露光装置。
  11. 前記制御部は、前記複数の流体排出口のうち、前記基板側に配置される流体排出口から排出される前記流体の量が他の流体排出口から排出される前記流体の量に比べて多くなるように制御することを特徴とする請求項10に記載の露光装置。
  12. 前記流体は、前記光ビームを透過する気体又は液体であることを特徴とする請求項1〜11のいずれかに記載の露光装置。
  13. リソグラフィ工程を含む電子デバイスの製造方法において、
    前記リソグラフィ工程は、請求項1〜12のいずれかに記載の露光装置を用いて、マスクに形成されたパターンを基板に転写することを特徴とする電子デバイスの製造方法。
JP2003017489A 2003-01-27 2003-01-27 露光装置及び電子デバイスの製造方法 Pending JP2004228497A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003017489A JP2004228497A (ja) 2003-01-27 2003-01-27 露光装置及び電子デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003017489A JP2004228497A (ja) 2003-01-27 2003-01-27 露光装置及び電子デバイスの製造方法

Publications (1)

Publication Number Publication Date
JP2004228497A true JP2004228497A (ja) 2004-08-12

Family

ID=32904629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003017489A Pending JP2004228497A (ja) 2003-01-27 2003-01-27 露光装置及び電子デバイスの製造方法

Country Status (1)

Country Link
JP (1) JP2004228497A (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005024921A1 (ja) * 2003-09-03 2005-03-17 Nikon Corporation 露光装置及びデバイス製造方法
WO2005104195A1 (ja) * 2004-04-19 2005-11-03 Nikon Corporation 露光装置及びデバイス製造方法
JP2006140499A (ja) * 2004-11-12 2006-06-01 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2006173247A (ja) * 2004-12-14 2006-06-29 Nikon Corp 汚染物質除去装置及び露光装置並びにデバイスの製造方法
JP2007013152A (ja) * 2005-06-28 2007-01-18 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
JP2009094532A (ja) * 2004-09-20 2009-04-30 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
US7760323B2 (en) 2005-03-04 2010-07-20 Canon Kabushiki Kaisha Exposure apparatus and method of manufacturing device
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
JP2017120340A (ja) * 2015-12-28 2017-07-06 キヤノン株式会社 露光装置、および物品の製造方法
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
WO2018051689A1 (ja) * 2016-09-16 2018-03-22 キヤノン株式会社 露光装置および物品製造方法
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
WO2005024921A1 (ja) * 2003-09-03 2005-03-17 Nikon Corporation 露光装置及びデバイス製造方法
JP4517367B2 (ja) * 2003-09-03 2010-08-04 株式会社ニコン 露光装置及びデバイス製造方法
JPWO2005024921A1 (ja) * 2003-09-03 2006-11-16 株式会社ニコン 露光装置及びデバイス製造方法
US8253921B2 (en) 2003-09-03 2012-08-28 Nikon Corporation Exposure apparatus and device fabricating method
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9599907B2 (en) 2004-04-19 2017-03-21 Nikon Corporation Exposure apparatus and device manufacturing method
US8488099B2 (en) 2004-04-19 2013-07-16 Nikon Corporation Exposure apparatus and device manufacturing method
KR101330370B1 (ko) 2004-04-19 2013-11-15 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
JP2014078761A (ja) * 2004-04-19 2014-05-01 Nikon Corp 露光装置及びデバイス製造方法
WO2005104195A1 (ja) * 2004-04-19 2005-11-03 Nikon Corporation 露光装置及びデバイス製造方法
JP4677986B2 (ja) * 2004-04-19 2011-04-27 株式会社ニコン ノズル部材、露光方法、露光装置及びデバイス製造方法
JP2012044223A (ja) * 2004-04-19 2012-03-01 Nikon Corp 露光装置及びデバイス製造方法
JPWO2005104195A1 (ja) * 2004-04-19 2008-03-13 株式会社ニコン 露光装置及びデバイス製造方法
JP2009094532A (ja) * 2004-09-20 2009-04-30 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
JP2009246375A (ja) * 2004-11-12 2009-10-22 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP4679339B2 (ja) * 2004-11-12 2011-04-27 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置およびデバイス製造方法
JP2006140499A (ja) * 2004-11-12 2006-06-01 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2006173247A (ja) * 2004-12-14 2006-06-29 Nikon Corp 汚染物質除去装置及び露光装置並びにデバイスの製造方法
US7760323B2 (en) 2005-03-04 2010-07-20 Canon Kabushiki Kaisha Exposure apparatus and method of manufacturing device
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495981B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10488759B2 (en) 2005-05-03 2019-11-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2007013152A (ja) * 2005-06-28 2007-01-18 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
JP4545119B2 (ja) * 2005-06-28 2010-09-15 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及びデバイス製造方法
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US10197926B2 (en) 2015-12-28 2019-02-05 Canon Kabushiki Kaisha Exposure apparatus and method of manufacturing article
JP2017120340A (ja) * 2015-12-28 2017-07-06 キヤノン株式会社 露光装置、および物品の製造方法
WO2018051689A1 (ja) * 2016-09-16 2018-03-22 キヤノン株式会社 露光装置および物品製造方法
US10401745B2 (en) 2016-09-16 2019-09-03 Canon Kabushiki Kaisha Exposure apparatus and article manufacturing method
JP2018045167A (ja) * 2016-09-16 2018-03-22 キヤノン株式会社 露光装置、及び物品製造方法

Similar Documents

Publication Publication Date Title
KR100805142B1 (ko) 노광방법 및 노광장치
JP2004228497A (ja) 露光装置及び電子デバイスの製造方法
US6614504B2 (en) Exposure apparatus, exposure method, and device manufacturing method
KR101013347B1 (ko) 노광방법, 노광장치, 및 디바이스 제조방법
TW473816B (en) Exposure device, exposure method, and highly integrated device manufacturing method
JP2005101537A (ja) 露光装置及びそれを用いたデバイスの製造方法
TW200302956A (en) Inert gas purge method and apparatus, exposure apparatus, reticle stocker, reticle inspection apparatus, reticle transfer box, and device manufacturing method
WO2000048237A1 (fr) Procede et appareil d'exposition
JP2005064210A (ja) 露光方法、該露光方法を利用した電子デバイスの製造方法及び露光装置
JP2005129898A (ja) 露光装置およびデバイス製造方法
JP2005005395A (ja) ガス給排気方法及び装置、鏡筒、露光装置及び方法
JPWO2003034475A1 (ja) ガス置換方法及び装置、マスク保護装置、マスク、露光方法及び装置
JP2002164267A (ja) 露光装置及びデバイスの製造方法
JP2005136263A (ja) 露光装置とそのガス供給方法
JP2003257826A (ja) 光学装置及び露光装置
JPH09134865A (ja) 投影露光装置
JP2003257822A (ja) 光学装置及び露光装置
JP2000200745A (ja) 投影露光装置
JP2001102290A (ja) 露光方法及び装置
JP2003257821A (ja) 光学装置及び露光装置
JP2004241478A (ja) 露光方法及びその装置、並びにデバイス製造方法
JP2001345264A (ja) 露光装置及び露光方法並びにデバイスの製造方法
TW571345B (en) Exposure device and manufacturing method for the same
JP2004095654A (ja) 露光装置及びデバイス製造方法
JP2005079294A (ja) 露光装置、露光システム、及びデバイス製造方法