JP2004226549A - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
JP2004226549A
JP2004226549A JP2003012474A JP2003012474A JP2004226549A JP 2004226549 A JP2004226549 A JP 2004226549A JP 2003012474 A JP2003012474 A JP 2003012474A JP 2003012474 A JP2003012474 A JP 2003012474A JP 2004226549 A JP2004226549 A JP 2004226549A
Authority
JP
Japan
Prior art keywords
electrode
signal line
liquid crystal
diffusion member
heat diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003012474A
Other languages
Japanese (ja)
Inventor
Masahiko Suzuki
雅彦 鈴木
Keiichiro Ashizawa
啓一郎 芦沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Hitachi Displays Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Displays Ltd filed Critical Hitachi Displays Ltd
Priority to JP2003012474A priority Critical patent/JP2004226549A/en
Priority to US10/733,267 priority patent/US7209194B2/en
Priority to CN2004100390189A priority patent/CN100406968C/en
Publication of JP2004226549A publication Critical patent/JP2004226549A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a manufacturing yield by adopting a structure in which short circuit between transparent electrodes is repaired without adversely affecting a thin film transistor or any other component layer. <P>SOLUTION: A metal heat dissipation member is disposed on the lower layer of the transparent electrode so as to be superposed thereon via an insulation film. A protruding part is attached to the heat dissipation member on a part more distant from the thin film transistor and the heat dissipation member is superposed on the transparent electrode at the protruding part. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示装置に係り、特に絶縁基板上の画素領域内に細線状あるいはストライプ状の透明電極からなる画素形成用電極対を並設したアクティブ・マトリクス型の液晶表示装置に関する。
【0002】
【従来の技術】
高画質を実現するフラットパネル型の液晶表示装置として、所謂横電界方式の液晶表示装置が知られている。この方式の液晶表示装置は、ガラス等の絶縁基板(第1の絶縁基板)上に薄膜トランジスタ等のアクティブ素子(以下、薄膜トランジスタと称する)を有する画素回路をマトリクス状に配置し、この画素回路の上に絶縁層を介して当該薄膜トランジスタで駆動される細線状あるいはストライプ状(以下、細線状と称する)の透明な第1の透明電極(画素電極)と、この第1の透明電極に隣接する細線状の透明な第2の透明電極(共通電極)とを同一の絶縁基板上に形成し、画素領域における第1および第2の透明電極の間に当該絶縁基板の面の略平行な電界を形成して液晶の配向を制御して画像を表示する。上記各透明電極はITO等の透明導電膜からなる。なお、第1の絶縁基板は図示しないガラスを好適とする第2の絶縁基板に貼り合わされ、両絶縁基板の間に液晶が封止される。
【0003】
【特許文献1】
特許第3170446号公報
【0004】
【発明が解決しようとする課題】
このような透明電極の対で画素を点灯する画素構造を有する液晶表示装置では、隣接する第1と第2の透明電極間(画素電極と共通電極)で当該各透明電極を形成する際の電極残渣による短絡が生じた場合、当該画素は点欠陥となり、表示機能が喪失してしまう。このような短絡を除去して修復するため、当該短絡部にレーザを照射して第1と第2の透明電極を切断し分離することが考えられる。透明電極の短絡をレーザの照射で修復する場合、透明電極は照射したレーザの吸収効率が低いため迅速な切断に至らないことが多い。レーザの強度を強くして切断しようとすると、レーザ照射部の周辺も高温となり、本来切断したい領域のみでなく、その周辺部も含めて下層の絶縁膜が蒸発してしまい、所望の修復を行うことができない。
【0005】
図11は透明電極間の短絡状態を説明する模式図であり、図11(a)は平面図、図11(b)は同(a)のD−D’線に沿った断面図を示す。また、図12は透明電極間の短絡部分の修復作業を説明する模式図であり、図12(a)は平面図、図12(b)は同(a)のE−E’線に沿った断面図を示す。図11に示したように、隣接する第1の透明電極である画素電極PXとこの画素電極PXに隣接する第2の透明電極である共通電極CTとが電極残渣等による短絡部XPDで短絡していた場合、図12に示したように絶縁基板SUB側から短絡部XPDを分離する強さでレーザLを照射すると、短絡部XPDは絶縁膜PASと共に蒸発し、かつ画素電極PXや共通電極CTまで除去されてしまい、これら画素電極PXと共通電極CTをもつ画素は画素機能を喪失し、点欠陥となる。
【0006】
また、例えば「特許文献1」に開示されたような電極構造、すなわち、アクティブ素子である薄膜トランジスタ部分にまで金属膜上に絶縁膜を介して透明電極が形成された液晶表示装置が知られている。このような画素構造を持つ液晶表示装置に上記と同様のレーザ照射により修復作業を行ったところ、金属膜がレーザに対して不透明であることから、その上層にあるITO等の透明電極はレーザ照射で分離できるが、レーザ照射による熱が金属膜を伝わって薄膜トランジスタに至り、薄膜トランジスタを構成する半導体膜が変質し、その特性が他の薄膜トランジスタと異なったものとなり、やはり点欠陥となることが分かった。このようなことが修復作業における解決すべき課題の一つとなっていた。
【0007】
本発明は上記のような従来技術における課題に鑑みてなされたもので、その目的は、画素点灯のための電極として細線状の透明電極の対を同一の絶縁基板に隣接して並設した液晶表示装置における透明電極間の短絡を薄膜トランジスタ等のアクティブ素子への影響を伴うことなく、また他の構成層の蒸発や液晶への侵入を伴うことなく修復して製品製造の歩留りを向上させることにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明の液晶表示装置は、絶縁基板上に、マトリクス状に配置された複数の薄膜トランジスタ、多数の走査信号線、走査信号線と交差する多数のデータ信号線、画素領域に形成された共通信号線、走査信号線とデータ信号線で囲まれる画素領域に並設されて薄膜トランジスタの出力電極に接続した画素電極となる第1の透明電極、共通信号線に接続して第1の透明電極に隣接して形成された対向電極となる第2の透明電極、第1の透明電極および第2の透明電極の下層に絶縁膜を介して重畳されて第1の透明電極と同電位が印加される金属膜とを具備する。
【0009】
そして、上記金属膜に、走査信号線の延在方向に沿って延びる幅広部と、当該幅広部の幅より狭い幅でデータ信号線の延在方向に突出した突出部を形成し、この突出部を第1の透明電極および第2の透明電極とそれぞれ重畳する部分を持たせると共に、重畳部の幅を第1の透明電極および第2の透明電極の幅より幅広とした。
【0010】
金属膜に有する突出部は、その突出面積が金属膜より小面積であるため熱容量が小さい。第1の透明電極および第2の透明電極の短絡を修復する場合に、この突出部に対し絶縁基板側から低エネルギーのレーザを照射して短絡部を金属膜ごとに蒸発させて切断分離する。また、この突出部を薄膜トランジスタから遠い側に形成することでレーザ照射で突出部に発生する熱が上記幅広部で拡散され、薄膜トランジスタに伝達される熱が大幅に低減されて、当該薄膜トランジスタの特性が熱によって劣化するのを回避できる。
【0011】
また、本発明は、第1および第2の透明電極に重畳させて、当該透明電極の幅より幅広の孤立した金属膜を設ける。第1の透明電極および第2の透明電極の短絡を修復する場合に、この金属膜部分で透明電極を上記と同様のレーザ照射で切断分離するように構成できる。この場合も同様に、レーザ照射で金属膜に発生する熱が上記幅広の孤立した金属膜で拡散され、薄膜トランジスタに伝達される熱を大幅に低減して熱による当該薄膜トランジスタの特性劣化を回避できる。
【0012】
また、本発明は、前記第1の透明電極と重畳すると共に当該第1の透明電極の幅より幅広の突出部を共通信号線設け、第1の透明電極および第2の透明電極の短絡を修復する場合に、この金属膜部分で透明電極を上記と同様のレーザ照射で切断分離するように構成できる。この場合も同様に、レーザ照射で金属膜に発生する熱が上記幅広の孤立した金属膜で拡散され、薄膜トランジスタに伝達される熱を大幅に低減して熱による当該薄膜トランジスタの特性劣化を回避できる。
【0013】
本発明のさらなる例を説明すると、次のようになる。
(1)液晶を介して対向配置された一対の基板のうちの一方の基板に、
薄膜トランジスタと、走査信号線と、該走査信号線と交差して配置されたデータ信号線と、前記薄膜トランジスタの出力電極に接続された画素電極と、前記画素電極との間に電界を形成するための共通電極とを有する液晶表示装置において、
隣接する走査信号線と隣接するデータ信号線により囲まれた画素領域内に、前記薄膜トランジスタと離間して設置された金属の熱拡散部材を有し、
該熱拡散部材は前記薄膜トランジスタと該熱拡散部材の間の距離より遠い部分に突出部を有し、
該突出部と前記画素電極および前記共通電極の少なくともいずれかが重畳部を有し、かつ該重畳部では、該突出部と重畳する前記画素電極および前記共通電極のいずれかが透明電極であることを特徴とする。
【0014】
(2)(1)において、前記突出部の幅が、前記突出部と重畳する部分での前記画素電極あるいは前記共通電極の幅以上であることを特徴とする。
【0015】
(3)(2)において、前記画素電極が透明電極であり、前記突出部で前記熱拡散部材と該画素電極が重畳することを特徴とする。
【0016】
(4)(3)において、前記熱拡散部材が前記薄膜トランジスタの出力電極と同層であり、該熱拡散部材上のスルーホールで該熱拡散部材と前記画素電極が接続されていることを特徴とする。
【0017】
(5)(4)において、共通信号線を有し、該共通信号線に前記熱拡散部材が重畳し、前記熱拡散部材の突出部は該共通信号線から突出していることを特徴とする。
【0018】
(6)(3)において、前記熱拡散部材が共通信号線を兼ねることを特徴とする。
【0019】
(7)(2)において、前記共通電極が透明電極であり、前記突出部で前記熱拡散部材と該共通電極が重畳することを特徴とする。
【0020】
(8)(7)において、共通信号線を有し、該共通信号線が前記熱拡散部材を兼ねることを特徴とする。
【0021】
(9)液晶を介して対向配置された一対の基板のうちの一方の基板に、
薄膜トランジスタと、走査信号線と、該走査信号線と交差して配置されたデータ信号線と、前記薄膜トランジスタの出力電極に接続された画素電極と、前記画素電極との間に電界を形成するための共通電極とを有する液晶表示装置において、
隣接する走査信号線と隣接するデータ信号線により囲まれた画素領域内に、前記薄膜トランジスタと離間して設置された金属の熱拡散部材を有し、
該熱拡散部材は孤立して配置され、かつ前記画素電極および前記共通電極の少なくともいずれかと重畳部を有することを特徴とする。
【0022】
(10)(9)において、前記重畳する前記画素電極および前記共通電極の少なくともいずれかが透明電極であることを特徴とする。
【0023】
(11)(1)ないし(10)のいずれかにおいて、前記熱拡散部材が形成された層と、該熱拡散部材に重畳する電極が形成された層の間に無機絶縁膜と有機絶縁膜を有し、該有機絶縁膜は前記熱拡散部材と前記電極の重畳部の少なくとも一部に除去部を有することを特徴とする。
【0024】
なお、本発明の他の特徴は、後述する実施の形態の記述から明らかになるが、本発明はこれらの構成に限定されるものではなく、本発明の技術思想を逸脱することなく種々の変更が可能であることは言うまでもない。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態について、実施例の図面を参照して詳細に説明する。図1は本発明による液晶表示装置の第1実施例を説明する一画素付近の構成図であり、図1(a)は平面図、図1(b)は同(a)のA−A’に沿った断面図を示す。図1において、ガラスを好適とする絶縁基板SUB1上にマトリクス状に複数の薄膜トランジスタTFTが配置されている。絶縁基板SUB1上の第1方向(以下x方向)に延在して前記x方向に交差する第2方向(以下y方向)に前記薄膜トランジスタに選択信号を印加する多数の走査信号線GLが形成されている。また、y方向に延在してx方向に形成され、薄膜トランジスタTFTにデータ信号を供給する多数のデータ信号線DLが形成されている。さらに、走査信号線GLとデータ信号線DLで囲まれる画素領域にx方向に延在した共通信号線CLが形成されている。
【0026】
走査信号線GLとデータ信号線DLで囲まれる画素領域に、薄膜トランジスタTFTの出力電極(ここでは、ソース電極)に接続した第1の透明電極(以下、画素電極)PX、および共通信号線CLに接続して画素電極PXの対向電極となる第2の透明電極(以下、共通電極)CTが並設されている。共通電極CTに接続する共通信号線CLは画素領域に設けられている。
【0027】
前記画素電極PXの下層には、絶縁膜PAS1,PAS2を介して重畳して当該画素電極PXと同電位が印加される金属膜PXMを有している。この金属膜PXMは共通信号線CLの上層に配置され、前記走査信号線GLの延在方向に沿って延びる幅広部PXMWと、当該幅広部PXMWの幅より狭い幅でデータ信号線DLの延在方向に突出した突出部PXMPを有している。突出部PXMPは画素電極PXに重畳すると共に当該重畳部での幅が画素電極PXより幅広となっている。複数の(ここでは2つ)の画素電極PXは絶縁膜PAS1,PAS2を貫通するスルーホールを通して金属膜PXMで相互に接続されている。
【0028】
なお、画素電極PX(共通電極CT)の幅が10μmである場合、突出部PXMPの突出長さは20μm以下、その幅は20μm以下であることが望ましい。この理由はPXMPが開口率の低下を引き起こすからである。
【0029】
図1において、薄膜トランジスタTFTは、データ信号線DLから延びるドレイン電極SD1と出力電極であるソース電極SD2および半導体膜(例えば、a−Si)から構成され、ソース電極SD2は画素電極PXに接続されている。なお、薄膜トランジスタTFTのゲート電極は走査信号線GLであり、データ信号線DLや金属膜PXMはゲート絶縁層GIを介して、その上層に形成されている。また、画素電極PXはスルーホールTH1,TH2で金属膜PXMに接続されている。この絶縁基板SUB1は通常薄膜トランジスタ基板と称し、この絶縁基板SUB1に対して図示しない第2の基板であるカラーフィルタ基板(SUB2)が配置され、両基板の間に液晶層が封入される。
【0030】
図2〜図4は本発明の第1実施例における短絡の修復手順の説明図である。ここでは、図2に示すように薄膜トランジスタのソース電極SD2に接続して直接画素領域に延びる画素電極PXと、この画素電極PXに隣接する共通電極CTとが当該画素電極と共通電極を形成する際の電極残渣により短絡部XDPで短絡しているものとする。この短絡を修復するため、金属膜PXMの突出部PXMPの図3に「×」で示したレーザ照射位置LRPにレーザを照射する。レーザ照射位置LRPは金属膜PXMに関して薄膜トランジスタTFTから遠い側である。このレーザのエネルギーは下層の絶縁膜の蒸発を起こさない強さであり、金属膜PXMに絶縁膜PAS1,PAS2(図1参照)を介して重畳されている画素電極PXを当該金属膜PXMと共に蒸発させて切断して画素電極PXを共通電極CTから分離する。切断分離後の状態を図4に示す。
【0031】
上記の修復作業により、画素の一部(分離された画素電極PXの部分と短絡部XDPをぶら下げた共通電極CTとで構成される部分)は表示に寄与しないものとなるが、画素全体としては点灯・消灯が可能となり、画素全体が点灯も消灯もしない点欠陥から本来の画素としての点灯・消灯機能をもつ画素として回復がなされる。
【0032】
また、図4の他の部分、例えばスルーホールTH2で金属膜PXMに接続されている画素電極PXと図の中央にある共通電極CTとが短絡部XDPAで短絡している場合はレーザ照射位置LRPAで分離し、スルーホールTH2で金属膜PXMに接続されている画素電極PXと図の右端にある共通電極CTとが短絡部XDPBで短絡している場合はレーザ照射位置LRPBで分離することにより、上記と同様に修復がなされる。
【0033】
図5は本発明による液晶表示装置の第2実施例を説明する一画素付近の構成図である。本実施例の液晶表示装置は、画素の中央部にある共通電極CTは左右両側端の共通電極とは独立した構成を有し、共通信号線CLに形成した突出部において、スルーホールTH3で接続されている。この構造の液晶表示装置でも、前記図3と同様の位置に短絡がある場合の修復は同様に行うことができる。そして、図5に示した位置に短絡部XDPCや短絡部XDPDがある場合はレーザ照射位置LRPCで中央の共通電極CTを分離し、またレーザ照射位置LRPCで右側の画素電極PXを分離することで修復が可能である。さらに、図示した以外の位置で短絡が生じている場合にも、金属膜PXMの突出部あるいは共通信号線CLに形成した突出部の位置でレーザ照射を行うことで、弱いエネルギーのレーザを用いて修復を行うことができる。また、図1〜図4の修復手順と図5の修復手順を組み合わせることで1または2以上の短絡を修復することができる。
【0034】
図6は共通電極と共通信号線との接続形態の他の構成例を説明する模式平面図である。この構成は、絶縁基板SUB1上に形成した共通電極CTとを表示領域ARの外側における絶縁基板SUB1と他方の絶縁基板(カラーフィルタ基板)SUB2との貼り合わせ領域内に位置する接続部JTLで接続する構成としている。そのため、スルーホールの加工工程を要せず、製造プロセスを簡略化できる。
【0035】
図7は透明電極と金属膜の突出部の重畳部で短絡修復を行う場合の他の構成例を説明する要部模式図であり、図7(a)は平面図、図7(b)は図7(a)のB−B’線に沿った断面図を示す。この構成例では、画素電極PXと金属膜PXMの間に無機絶縁膜PAS1と有機絶縁膜PAS2の積層膜を有する。そして、有機絶縁膜PAS2は突出部WPの画素電極PXとの重畳部の少なくとも一部に除去部HOLを設ける。図中、参照符号SUB1は第1の絶縁基板、GIはゲート絶縁膜である。
【0036】
有機絶縁膜PAS2は無機絶縁膜PAS1よりも熱による体積膨張率が大きい。そのため、短絡部をレーザ照射で蒸発させる修復の際に有機絶縁膜PAS2が膨張、飛散して、その一部が液晶中に侵入し、液晶の特性を劣化させる。これを防止するため、突出部WPの画素電極PXとの重畳部の有機絶縁膜PAS2の一部に除去部HOLを設けることで、短絡部をレーザ照射で蒸発させる修復の際の有機絶縁膜PAS2の膨張、飛散をこの除去部HOLの存在により低減する。その結果、液晶中への有機絶縁膜PAS2の侵入を回避できる。除去部HOLの形状、個数は図示したものに限らない。また、透明電極が共通電極CTである場合も同様である。電極の幅より除去部の幅を大きくすることで、効果はより向上する。
【0037】
図8は本発明による液晶表示装置の第3実施例を説明する一画素付近の構成図であり、図8(a)は平面図、図8(b)は同(a)のC−C’に沿った断面図を示す。図中、参照符号IMは孤立した金属膜であり、前記実施例と同一参照符号が同一機能部分に対応する。本実施例では、第1の透明電極である画素電極PXの下層に絶縁膜(PAS1,PAS2)を介して他の電極類と電気的に接続しない孤立した金属膜IMを重畳させて設けた。共通電極である第2の透明電極CTについても同様である。
【0038】
この孤立した金属膜IMは上層の画素電極PX(または、共通電極CT)の幅より幅広に形成する。孤立した金属膜IMは、短絡部分XDPの修復時に第1の絶縁基板SUB1側から照射されるレーザの熱を効率よく画素電極PX(または、共通電極CT)に集中させるため、短時間で画素電極PX(または、共通電極CT)を切断することができる。したがって、修復時の熱の絶縁膜やその他の部分への影響を低減することができる。
【0039】
図9は本発明による液晶表示装置の第4実施例を説明する一画素付近の構成図である。本実施例は、共通信号線CLに画素電極PXと重畳して当該画素電極PXに延在方向に突出するする突出部CLPを画素電極PXの幅より幅広に形成したものである。短絡部XDPを修復する場合は、「×」で示したレーザ照射位置をレーザ照射で切断する。なお、薄膜トランジスタのソース電極SD2はスルーホールTH1で画素電極PXに接続されている。この構成では、共通信号線CLを走査信号線GLに寄せて図示しないブラックマトリクスで覆われる部分に形成してあるが、前記実施例のように画素領域内に共通信号線CLを設け、この共通信号線CLに突出部CLPを形成することもできる。本実施例によっても、短絡欠陥が修復でき、点欠陥のない液晶表示装置を得ることができる。
【0040】
図10は本発明による液晶表示装置の第5実施例を説明する一画素付近の構成図である。本実施例は図1で説明した実施例と図8で説明した実施例を組み合わせたもので、図1に示したものと同様の突出部PXMPを形成した金属膜PXMと図8に示したものと同様の孤立した金属膜IMとを設けたものである。他の構成および効果は図1および図8で説明したものと同様である。
【0041】
【発明の効果】
以上説明したように、本発明によれば、画素電極や共通電極を構成する透明電極の短絡をレーザの照射で修復する場合、当該短絡部分を迅速に切断することができ、本来切断したい領域のみを下層の絶縁膜の蒸発を抑えて修復し、歩留りを向上することができる。
【図面の簡単な説明】
【図1】本発明による液晶表示装置の実施例を説明する一画素付近の構成図である。
【図2】本発明の実施例における短絡の修復手順の説明図である。
【図3】本発明の実施例における短絡の修復手順の説明図である。
【図4】本発明の実施例における短絡の修復手順の説明図である。
【図5】本発明による液晶表示装置の他の実施例を説明する一画素付近の構成図である。
【図6】共通電極と共通信号線との接続形態の他の構成例を説明する模式平面図である。
【図7】透明電極と金属膜の突出部の重畳部で短絡修復を行う場合の他の構成例を説明する要部模式図である。
【図8】本発明による液晶表示装置の他の実施例を説明する一画素付近の構成図である。
【図9】本発明による液晶表示装置の他の実施例を説明する一画素付近の構成図である。
【図10】本発明による液晶表示装置の他の実施例を説明する一画素付近の構成図である。
【図11】透明電極間の短絡状態を説明する模式図である。
【図12】透明電極間の短絡部分の修復作業を説明する模式図である。
【符号の説明】
SUB1・・・・絶縁基板(第1の絶縁基板)、SUB2・・・・絶縁基板(第2の絶縁基板、GL・・・・走査信号線、DL・・・・データ信号線、PX・・・・画素電極、CT・・・・共通電極、CL・・・・共通信号線、PAS1,PAS2・・・・絶縁膜、PXM・・・・金属膜、PXMW・・・・幅広部、PXMP・・・・突出部、XDPA・・・・短絡部、LRPA・・・・レーザ照射位置。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid crystal display device, and more particularly, to an active matrix type liquid crystal display device in which pixel forming electrode pairs formed of thin or striped transparent electrodes are juxtaposed in a pixel region on an insulating substrate.
[0002]
[Prior art]
As a flat panel type liquid crystal display device realizing high image quality, a so-called horizontal electric field type liquid crystal display device is known. In this type of liquid crystal display device, pixel circuits having active elements such as thin film transistors (hereinafter, referred to as thin film transistors) are arranged in a matrix on an insulating substrate (first insulating substrate) such as glass. A transparent first transparent electrode (pixel electrode) driven by the thin film transistor via an insulating layer, and a thin linear electrode adjacent to the first transparent electrode. And a transparent second transparent electrode (common electrode) are formed on the same insulating substrate, and an electric field substantially parallel to the surface of the insulating substrate is formed between the first and second transparent electrodes in the pixel region. To control the orientation of the liquid crystal to display an image. Each of the transparent electrodes is made of a transparent conductive film such as ITO. Note that the first insulating substrate is bonded to a second insulating substrate that is preferably made of glass (not shown), and liquid crystal is sealed between the two insulating substrates.
[0003]
[Patent Document 1]
Japanese Patent No. 3170446 [0004]
[Problems to be solved by the invention]
In a liquid crystal display device having a pixel structure in which a pixel is turned on by such a pair of transparent electrodes, an electrode for forming each of the transparent electrodes between the adjacent first and second transparent electrodes (pixel electrode and common electrode) is used. If a short circuit occurs due to the residue, the pixel becomes a point defect and the display function is lost. In order to remove and repair such a short circuit, it is conceivable to irradiate the short circuit with a laser to cut and separate the first and second transparent electrodes. When a short circuit in a transparent electrode is repaired by laser irradiation, rapid cutting is often not achieved because the transparent electrode has a low absorption efficiency of the irradiated laser. When trying to cut by increasing the intensity of the laser, the temperature around the laser-irradiated part also becomes high, and not only the region originally intended to be cut, but also the underlying insulating film including the peripheral portion evaporates, and the desired repair is performed. I can't.
[0005]
11A and 11B are schematic diagrams illustrating a short-circuit state between the transparent electrodes. FIG. 11A is a plan view, and FIG. 11B is a cross-sectional view along the line DD ′ in FIG. FIG. 12 is a schematic diagram for explaining a repair operation of a short-circuit portion between transparent electrodes. FIG. 12A is a plan view, and FIG. 12B is along a line EE ′ in FIG. FIG. As shown in FIG. 11, the pixel electrode PX, which is the first transparent electrode adjacent to the pixel electrode, and the common electrode CT, which is the second transparent electrode adjacent to the pixel electrode PX, are short-circuited at the short-circuit portion XPD due to electrode residue or the like. In this case, when the laser L is irradiated with an intensity that separates the short-circuit portion XPD from the insulating substrate SUB side as shown in FIG. 12, the short-circuit portion XPD evaporates together with the insulating film PAS, and the pixel electrode PX and the common electrode CT The pixel having the pixel electrode PX and the common electrode CT loses the pixel function and becomes a point defect.
[0006]
Further, for example, a liquid crystal display device in which a transparent electrode is formed on a metal film via an insulating film up to a thin film transistor portion as an active element, that is, an electrode structure as disclosed in Patent Document 1, for example, is known. . When a repair operation was performed on a liquid crystal display device having such a pixel structure by laser irradiation in the same manner as described above, the metal film was opaque to the laser. However, it was found that the heat from the laser irradiation was transmitted through the metal film to the thin film transistor, the semiconductor film forming the thin film transistor was altered, and the characteristics were different from those of the other thin film transistors, resulting in a point defect. . This has been one of the issues to be solved in the restoration work.
[0007]
The present invention has been made in view of the above-described problems in the related art, and has as its object to provide a liquid crystal in which a pair of thin transparent electrodes are juxtaposed adjacent to the same insulating substrate as electrodes for lighting pixels. To improve the yield of product production by repairing short circuits between transparent electrodes in display devices without affecting active elements such as thin film transistors, and without evaporating other constituent layers or invading liquid crystals. is there.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a liquid crystal display device according to the present invention includes a plurality of thin film transistors, a large number of scanning signal lines, a large number of data signal lines intersecting with the scanning signal lines, a pixel region on an insulating substrate. A first transparent electrode which is arranged in parallel in a pixel region surrounded by a common signal line, a scanning signal line and a data signal line and which is a pixel electrode connected to an output electrode of a thin film transistor; The second transparent electrode which is formed adjacent to the first transparent electrode and which is to be the opposite electrode, is overlapped with the first transparent electrode and the lower layer of the second transparent electrode via an insulating film, and is the same as the first transparent electrode. A metal film to which a potential is applied.
[0009]
Then, a wide portion extending along the extending direction of the scanning signal line and a projecting portion projecting in the extending direction of the data signal line with a width smaller than the width of the wide portion are formed on the metal film. Are provided with portions overlapping with the first transparent electrode and the second transparent electrode, respectively, and the width of the overlapping portion is wider than the widths of the first transparent electrode and the second transparent electrode.
[0010]
The projecting portion of the metal film has a smaller heat capacity because the projecting area is smaller than that of the metal film. When repairing a short circuit between the first transparent electrode and the second transparent electrode, the protruding portion is irradiated with a low-energy laser from the insulating substrate side to evaporate the short-circuit portion for each metal film and cut and separate it. Further, by forming the protruding portion on the side far from the thin film transistor, heat generated in the protruding portion by laser irradiation is diffused in the wide portion, and the heat transmitted to the thin film transistor is greatly reduced, so that the characteristics of the thin film transistor are improved. Deterioration due to heat can be avoided.
[0011]
Further, according to the present invention, an isolated metal film wider than the width of the transparent electrode is provided so as to overlap with the first and second transparent electrodes. When the short circuit between the first transparent electrode and the second transparent electrode is repaired, the transparent electrode can be cut and separated at the metal film portion by the same laser irradiation as described above. In this case, similarly, the heat generated in the metal film by the laser irradiation is diffused in the wide isolated metal film, and the heat transmitted to the thin film transistor is significantly reduced, so that the deterioration of the characteristics of the thin film transistor due to the heat can be avoided.
[0012]
Also, the present invention provides a common signal line having a projection overlapping with the first transparent electrode and wider than the width of the first transparent electrode to repair a short circuit between the first transparent electrode and the second transparent electrode. In this case, the transparent electrode can be cut and separated at the metal film portion by the same laser irradiation as described above. In this case, similarly, the heat generated in the metal film by the laser irradiation is diffused in the wide isolated metal film, and the heat transmitted to the thin film transistor is significantly reduced, so that the deterioration of the characteristics of the thin film transistor due to the heat can be avoided.
[0013]
A further example of the invention will now be described.
(1) One of a pair of substrates opposed to each other via a liquid crystal,
A thin film transistor, a scan signal line, a data signal line disposed to intersect the scan signal line, a pixel electrode connected to an output electrode of the thin film transistor, and an electric field formed between the pixel electrode and the pixel electrode. In a liquid crystal display device having a common electrode,
In a pixel region surrounded by an adjacent scanning signal line and an adjacent data signal line, a metal heat diffusion member provided apart from the thin film transistor,
The heat diffusion member has a protrusion at a portion farther than the distance between the thin film transistor and the heat diffusion member,
The protruding portion, at least one of the pixel electrode and the common electrode has an overlapping portion, and in the overlapping portion, one of the pixel electrode and the common electrode overlapping the protruding portion is a transparent electrode. It is characterized by.
[0014]
(2) In the constitution (1), the width of the protruding portion is equal to or larger than the width of the pixel electrode or the common electrode at a portion overlapping with the protruding portion.
[0015]
(3) In the constitution (2), the pixel electrode is a transparent electrode, and the heat diffusion member and the pixel electrode overlap with each other at the projecting portion.
[0016]
(4) In the constitution (3), the heat diffusion member is in the same layer as the output electrode of the thin film transistor, and the heat diffusion member and the pixel electrode are connected by a through hole on the heat diffusion member. I do.
[0017]
(5) In the constitution (4), a common signal line is provided, and the heat diffusion member is superimposed on the common signal line, and a protrusion of the heat diffusion member protrudes from the common signal line.
[0018]
(6) In the constitution (3), the heat diffusion member also serves as a common signal line.
[0019]
(7) In the constitution (2), the common electrode is a transparent electrode, and the heat diffusion member and the common electrode overlap with each other at the projecting portion.
[0020]
(8) In the constitution (7), a common signal line is provided, and the common signal line also serves as the heat diffusion member.
[0021]
(9) One of the pair of substrates opposed to each other with the liquid crystal interposed therebetween,
A thin film transistor, a scan signal line, a data signal line disposed to intersect the scan signal line, a pixel electrode connected to an output electrode of the thin film transistor, and an electric field formed between the pixel electrode and the pixel electrode. In a liquid crystal display device having a common electrode,
In a pixel region surrounded by an adjacent scanning signal line and an adjacent data signal line, a metal heat diffusion member provided apart from the thin film transistor,
The heat diffusion member is disposed in isolation and has a portion overlapping at least one of the pixel electrode and the common electrode.
[0022]
(10) In the constitution (9), at least one of the overlapping pixel electrode and the common electrode is a transparent electrode.
[0023]
(11) In any one of the constitutions (1) to (10), an inorganic insulating film and an organic insulating film may be formed between the layer on which the heat diffusion member is formed and the layer on which the electrode overlapping the heat diffusion member is formed. Wherein the organic insulating film has a removed portion in at least a part of an overlapping portion of the heat diffusion member and the electrode.
[0024]
The other features of the present invention will become apparent from the description of the embodiments below. However, the present invention is not limited to these configurations, and various changes may be made without departing from the technical idea of the present invention. Needless to say, this is possible.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIGS. 1A and 1B are block diagrams showing the vicinity of one pixel for explaining a first embodiment of a liquid crystal display device according to the present invention. FIG. 1A is a plan view, and FIG. FIG. In FIG. 1, a plurality of thin film transistors TFT are arranged in a matrix on an insulating substrate SUB1 made of glass. A large number of scanning signal lines GL are formed which extend in a first direction (hereinafter referred to as x direction) on the insulating substrate SUB1 and apply a selection signal to the thin film transistor in a second direction (hereinafter referred to as y direction) crossing the x direction. ing. Also, a number of data signal lines DL are formed extending in the y direction and formed in the x direction and supplying data signals to the thin film transistors TFT. Further, a common signal line CL extending in the x direction is formed in a pixel region surrounded by the scanning signal lines GL and the data signal lines DL.
[0026]
In a pixel region surrounded by the scanning signal line GL and the data signal line DL, a first transparent electrode (hereinafter, pixel electrode) PX connected to an output electrode (here, a source electrode) of the thin film transistor TFT and a common signal line CL are provided. A second transparent electrode (hereinafter, a common electrode) CT which is connected to be a counter electrode of the pixel electrode PX is provided in parallel. The common signal line CL connected to the common electrode CT is provided in the pixel area.
[0027]
Under the pixel electrode PX, there is a metal film PXM that is superimposed via the insulating films PAS1 and PAS2 and applied with the same potential as the pixel electrode PX. The metal film PXM is disposed above the common signal line CL, and has a wide portion PXMW extending along the direction in which the scanning signal line GL extends, and an extension of the data signal line DL having a width smaller than the width of the wide portion PXMW. The protrusion PXMP protrudes in the direction. The projecting portion PXMP overlaps the pixel electrode PX, and the width at the overlapping portion is wider than the pixel electrode PX. The plurality (two in this case) of pixel electrodes PX are mutually connected by a metal film PXM through through holes penetrating the insulating films PAS1 and PAS2.
[0028]
When the width of the pixel electrode PX (common electrode CT) is 10 μm, it is preferable that the protrusion length of the protrusion PXMP is 20 μm or less, and the width is 20 μm or less. This is because PXMP causes a decrease in aperture ratio.
[0029]
In FIG. 1, the thin film transistor TFT includes a drain electrode SD1 extending from a data signal line DL, a source electrode SD2 as an output electrode, and a semiconductor film (for example, a-Si). The source electrode SD2 is connected to a pixel electrode PX. I have. Note that the gate electrode of the thin film transistor TFT is a scanning signal line GL, and the data signal line DL and the metal film PXM are formed over the gate insulating layer GI. The pixel electrode PX is connected to the metal film PXM through the through holes TH1 and TH2. The insulating substrate SUB1 is usually called a thin film transistor substrate, and a color filter substrate (SUB2), which is a second substrate (not shown), is arranged on the insulating substrate SUB1, and a liquid crystal layer is sealed between the two substrates.
[0030]
FIG. 2 to FIG. 4 are explanatory diagrams of the repair procedure of the short circuit in the first embodiment of the present invention. Here, as shown in FIG. 2, the pixel electrode PX connected to the source electrode SD2 of the thin film transistor and extending directly to the pixel region and the common electrode CT adjacent to the pixel electrode PX form the pixel electrode and the common electrode. It is assumed that the electrode residue causes a short circuit at the short circuit portion XDP. In order to repair this short circuit, the laser is irradiated to the laser irradiation position LRP of the protrusion PXMP of the metal film PXM indicated by “x” in FIG. The laser irradiation position LRP is farther from the thin film transistor TFT with respect to the metal film PXM. The energy of this laser is such that the lower insulating film does not evaporate, and the pixel electrode PX superimposed on the metal film PXM via the insulating films PAS1 and PAS2 (see FIG. 1) is evaporated together with the metal film PXM. Then, the pixel electrode PX is separated from the common electrode CT. FIG. 4 shows the state after cutting and separation.
[0031]
Due to the above-mentioned repair work, a part of the pixel (a part composed of the separated pixel electrode PX and the common electrode CT with the short-circuit part XDP hung) does not contribute to the display, but the pixel as a whole becomes Lighting / extinguishing becomes possible, and a pixel having a lighting / extinguishing function as an original pixel is recovered from a point defect in which the entire pixel is neither turned on nor turned off.
[0032]
Further, when the pixel electrode PX connected to the metal film PXM through the through hole TH2 and the common electrode CT at the center of the drawing are short-circuited at the short-circuit portion XDPA, the laser irradiation position LRPA is used. When the pixel electrode PX connected to the metal film PXM at the through hole TH2 and the common electrode CT at the right end of the drawing are short-circuited at the short-circuit portion XDPB, the pixel electrode PX is separated at the laser irradiation position LRPB. Restoration is performed as described above.
[0033]
FIG. 5 is a configuration diagram around one pixel for explaining a second embodiment of the liquid crystal display device according to the present invention. In the liquid crystal display device of the present embodiment, the common electrode CT at the center of the pixel has a configuration independent of the common electrodes on both left and right ends, and is connected by a through hole TH3 at a protruding portion formed on the common signal line CL. Have been. Even in the liquid crystal display device having this structure, the repair when a short circuit is present at the same position as in FIG. 3 can be similarly performed. When there is a short-circuited part XDPC or a short-circuited part XDPD at the position shown in FIG. 5, the central common electrode CT is separated at the laser irradiation position LRPC, and the right pixel electrode PX is separated at the laser irradiation position LRPC. Restoration is possible. Further, even when a short circuit occurs at a position other than that shown in the figure, the laser irradiation is performed at the position of the protrusion of the metal film PXM or the protrusion formed on the common signal line CL, thereby using a laser having a weak energy. Repairs can be made. Also, by combining the repair procedure of FIGS. 1 to 4 and the repair procedure of FIG. 5, one or more short circuits can be repaired.
[0034]
FIG. 6 is a schematic plan view illustrating another configuration example of the connection form between the common electrode and the common signal line. In this configuration, the common electrode CT formed on the insulating substrate SUB1 is connected to the connecting portion JTL located in the bonding region between the insulating substrate SUB1 and the other insulating substrate (color filter substrate) SUB2 outside the display region AR. Configuration. Therefore, the manufacturing process can be simplified without the need for a through hole processing step.
[0035]
7A and 7B are main part schematic diagrams illustrating another configuration example when a short circuit is repaired at the overlapping portion of the transparent electrode and the protruding portion of the metal film. FIG. 7A is a plan view, and FIG. FIG. 8 shows a cross-sectional view along the line BB ′ of FIG. In this configuration example, a stacked film of an inorganic insulating film PAS1 and an organic insulating film PAS2 is provided between the pixel electrode PX and the metal film PXM. In the organic insulating film PAS2, a removed portion HOL is provided in at least a part of a portion where the protrusion WP overlaps the pixel electrode PX. In the figure, reference numeral SUB1 is a first insulating substrate, and GI is a gate insulating film.
[0036]
The organic insulating film PAS2 has a larger volume expansion coefficient due to heat than the inorganic insulating film PAS1. Therefore, the organic insulating film PAS2 expands and scatters when repairing the short-circuit portion by laser irradiation, and a part of the organic insulating film PAS2 penetrates into the liquid crystal, thereby deteriorating the characteristics of the liquid crystal. In order to prevent this, a removal portion HOL is provided in a part of the organic insulating film PAS2 at a portion where the projecting portion WP overlaps the pixel electrode PX, so that the organic insulating film PAS2 at the time of repair in which the short-circuit portion is evaporated by laser irradiation. Is reduced by the presence of the removal portion HOL. As a result, invasion of the organic insulating film PAS2 into the liquid crystal can be avoided. The shape and number of the removal portions HOL are not limited to those illustrated. The same applies to the case where the transparent electrode is the common electrode CT. The effect is further improved by making the width of the removed portion larger than the width of the electrode.
[0037]
FIGS. 8A and 8B are views showing the configuration around one pixel for explaining a third embodiment of the liquid crystal display device according to the present invention. FIG. 8A is a plan view, and FIG. FIG. In the figure, reference numeral IM is an isolated metal film, and the same reference numerals as those in the above-described embodiment correspond to the same functional portions. In this embodiment, an isolated metal film IM that is not electrically connected to other electrodes via an insulating film (PAS1 or PAS2) is provided under the pixel electrode PX as the first transparent electrode. The same applies to the second transparent electrode CT which is a common electrode.
[0038]
This isolated metal film IM is formed wider than the width of the pixel electrode PX (or the common electrode CT) in the upper layer. The isolated metal film IM efficiently concentrates the heat of the laser irradiated from the first insulating substrate SUB1 on the pixel electrode PX (or the common electrode CT) when the short-circuit portion XDP is repaired. The PX (or the common electrode CT) can be cut. Therefore, it is possible to reduce the influence of the heat at the time of repair on the insulating film and other portions.
[0039]
FIG. 9 is a configuration diagram around one pixel for explaining a fourth embodiment of the liquid crystal display device according to the present invention. In the present embodiment, a protrusion CLP that overlaps the pixel electrode PX on the common signal line CL and protrudes in the direction in which the pixel electrode PX extends is formed wider than the width of the pixel electrode PX. When repairing the short-circuit portion XDP, the laser irradiation position indicated by “x” is cut by laser irradiation. Note that the source electrode SD2 of the thin film transistor is connected to the pixel electrode PX through the through hole TH1. In this configuration, the common signal line CL is formed in a portion covered with a black matrix (not shown) by moving the common signal line CL to the scanning signal line GL. However, as in the above-described embodiment, the common signal line CL is provided in the pixel region. The projecting portion CLP can be formed on the communication line CL. According to this embodiment as well, a short-circuit defect can be repaired and a liquid crystal display device free of point defects can be obtained.
[0040]
FIG. 10 is a configuration diagram around one pixel for explaining a fifth embodiment of the liquid crystal display device according to the present invention. This embodiment is a combination of the embodiment described with reference to FIG. 1 and the embodiment described with reference to FIG. 8, and a metal film PXM having a protrusion PXMP similar to that illustrated in FIG. And an isolated metal film IM similar to the above. Other configurations and effects are the same as those described with reference to FIGS.
[0041]
【The invention's effect】
As described above, according to the present invention, when a short circuit of a transparent electrode constituting a pixel electrode or a common electrode is repaired by laser irradiation, the short circuit portion can be rapidly cut, and only a region to be cut is originally intended. Can be repaired while suppressing evaporation of the underlying insulating film, and the yield can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram around one pixel for explaining an embodiment of a liquid crystal display device according to the present invention.
FIG. 2 is an explanatory diagram of a procedure for repairing a short circuit in an embodiment of the present invention.
FIG. 3 is an explanatory diagram of a procedure for repairing a short circuit in an embodiment of the present invention.
FIG. 4 is an explanatory diagram of a procedure for repairing a short circuit in the embodiment of the present invention.
FIG. 5 is a configuration diagram around one pixel for explaining another embodiment of the liquid crystal display device according to the present invention.
FIG. 6 is a schematic plan view illustrating another configuration example of a connection mode between a common electrode and a common signal line.
FIG. 7 is a main part schematic diagram for explaining another configuration example in the case where a short circuit is repaired at an overlapping portion of a transparent electrode and a protruding portion of a metal film.
FIG. 8 is a configuration diagram around one pixel for explaining another embodiment of the liquid crystal display device according to the present invention.
FIG. 9 is a configuration diagram around one pixel for explaining another embodiment of the liquid crystal display device according to the present invention.
FIG. 10 is a configuration diagram around one pixel for explaining another embodiment of the liquid crystal display device according to the present invention.
FIG. 11 is a schematic diagram illustrating a short-circuit state between transparent electrodes.
FIG. 12 is a schematic diagram illustrating a repair operation of a short-circuit portion between transparent electrodes.
[Explanation of symbols]
SUB1... Insulating substrate (first insulating substrate), SUB2... Insulating substrate (second insulating substrate, GL... Scanning signal line, DL... Data signal line, PX. ..Pixel electrode, CT common electrode, CL common signal line, PAS1, PAS2 insulating film, PXM metal film, PXMW wide part, PXMP ... Projection, XDPA ... Short circuit, LRPA ... Laser irradiation position.

Claims (11)

液晶を介して対向配置された一対の基板のうちの一方の基板に、
薄膜トランジスタと、走査信号線と、該走査信号線と交差して配置されたデータ信号線と、前記薄膜トランジスタの出力電極に接続された画素電極と、前記画素電極との間に電界を形成するための共通電極とを有する液晶表示装置において、
隣接する走査信号線と隣接するデータ信号線により囲まれた画素領域内に、前記薄膜トランジスタと離間して設置された金属の熱拡散部材を有し、
該熱拡散部材は前記薄膜トランジスタと該熱拡散部材の間の距離より遠い部分に突出部を有し、
該突出部と前記画素電極および前記共通電極の少なくともいずれかが重畳部を有し、かつ該重畳部では、該突出部と重畳する前記画素電極および前記共通電極のいずれかが透明電極であることを特徴とする液晶表示装置。
On one of a pair of substrates disposed opposite each other via a liquid crystal,
A thin film transistor, a scan signal line, a data signal line disposed to intersect the scan signal line, a pixel electrode connected to an output electrode of the thin film transistor, and an electric field formed between the pixel electrode and the pixel electrode. In a liquid crystal display device having a common electrode,
In a pixel region surrounded by an adjacent scanning signal line and an adjacent data signal line, a metal heat diffusion member provided apart from the thin film transistor,
The heat diffusion member has a protrusion at a portion farther than the distance between the thin film transistor and the heat diffusion member,
The protruding portion, at least one of the pixel electrode and the common electrode has an overlapping portion, and in the overlapping portion, one of the pixel electrode and the common electrode overlapping the protruding portion is a transparent electrode. A liquid crystal display device characterized by the above-mentioned.
前記突出部の幅が、前記突出部と重畳する部分での前記画素電極あるいは前記共通電極の幅以上であることを特徴とする請求項1記載の液晶表示装置。2. The liquid crystal display device according to claim 1, wherein the width of the protrusion is equal to or greater than the width of the pixel electrode or the common electrode at a portion overlapping the protrusion. 前記画素電極が透明電極であり、前記突出部で前記熱拡散部材と該画素電極が重畳することを特徴とする請求項2記載の液晶表示装置。3. The liquid crystal display device according to claim 2, wherein the pixel electrode is a transparent electrode, and the heat diffusion member and the pixel electrode overlap at the protrusion. 前記熱拡散部材が前記薄膜トランジスタの出力電極と同層であり、該熱拡散部材上のスルーホールで該熱拡散部材と前記画素電極が接続されていることを特徴とする請求項3記載の液晶表示装置。4. The liquid crystal display according to claim 3, wherein said heat diffusion member is in the same layer as an output electrode of said thin film transistor, and said heat diffusion member and said pixel electrode are connected by a through hole on said heat diffusion member. apparatus. 共通信号線を有し、該共通信号線に前記熱拡散部材が重畳し、前記熱拡散部材の突出部は該共通信号線から突出していることを特徴とする請求項4記載の液晶表示装置。The liquid crystal display device according to claim 4, further comprising a common signal line, wherein the heat diffusion member is superimposed on the common signal line, and a protrusion of the heat diffusion member protrudes from the common signal line. 前記熱拡散部材が共通信号線を兼ねることを特徴とする請求項3記載の液晶表示装置。4. The liquid crystal display device according to claim 3, wherein the heat diffusion member also serves as a common signal line. 前記共通電極が透明電極であり、前記突出部で前記熱拡散部材と該共通電極が重畳することを特徴とする請求項2記載の液晶表示装置。3. The liquid crystal display device according to claim 2, wherein the common electrode is a transparent electrode, and the heat diffusion member and the common electrode overlap at the protrusion. 共通信号線を有し、該共通信号線が前記熱拡散部材を兼ねることを特徴とする請求項7記載の液晶表示装置。The liquid crystal display device according to claim 7, further comprising a common signal line, wherein the common signal line also functions as the heat diffusion member. 液晶を介して対向配置された一対の基板のうちの一方の基板に、
薄膜トランジスタと、走査信号線と、該走査信号線と交差して配置されたデータ信号線と、前記薄膜トランジスタの出力電極に接続された画素電極と、前記画素電極との間に電界を形成するための共通電極とを有する液晶表示装置において、
隣接する走査信号線と隣接するデータ信号線により囲まれた画素領域内に、前記薄膜トランジスタと離間して設置された金属の熱拡散部材を有し、
該熱拡散部材は孤立して配置され、かつ前記画素電極および前記共通電極の少なくともいずれかと重畳部を有することを特徴とする液晶表示装置。
On one of a pair of substrates disposed opposite each other via a liquid crystal,
A thin film transistor, a scan signal line, a data signal line disposed to intersect the scan signal line, a pixel electrode connected to an output electrode of the thin film transistor, and an electric field formed between the pixel electrode and the pixel electrode. In a liquid crystal display device having a common electrode,
In a pixel region surrounded by an adjacent scanning signal line and an adjacent data signal line, a metal heat diffusion member provided apart from the thin film transistor,
The liquid crystal display device, wherein the heat diffusion member is disposed in an isolated manner and has an overlapping portion with at least one of the pixel electrode and the common electrode.
前記重畳する前記画素電極および前記共通電極の少なくともいずれかが透明電極であることを特徴とする請求項9記載の液晶表示装置。10. The liquid crystal display device according to claim 9, wherein at least one of the pixel electrode and the common electrode overlapping each other is a transparent electrode. 前記熱拡散部材が形成された層と、該熱拡散部材に重畳する電極が形成された層の間に無機絶縁膜と有機絶縁膜を有し、該有機絶縁膜は前記熱拡散部材と前記電極の重畳部の少なくとも一部に除去部を有することを特徴とする請求項1ないし請求項10のいずれか1項に記載の液晶表示装置。The layer on which the heat diffusion member is formed, and an inorganic insulating film and an organic insulating film between a layer on which an electrode overlapping the heat diffusion member is formed, wherein the organic insulating film is formed by the heat diffusion member and the electrode. The liquid crystal display device according to any one of claims 1 to 10, further comprising a removing portion in at least a part of the superimposed portion.
JP2003012474A 2003-01-21 2003-01-21 Liquid crystal display device Pending JP2004226549A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003012474A JP2004226549A (en) 2003-01-21 2003-01-21 Liquid crystal display device
US10/733,267 US7209194B2 (en) 2003-01-21 2003-12-12 Display device having metal heat diffusion member
CN2004100390189A CN100406968C (en) 2003-01-21 2004-01-20 Display device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012474A JP2004226549A (en) 2003-01-21 2003-01-21 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2004226549A true JP2004226549A (en) 2004-08-12

Family

ID=32709230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012474A Pending JP2004226549A (en) 2003-01-21 2003-01-21 Liquid crystal display device

Country Status (3)

Country Link
US (1) US7209194B2 (en)
JP (1) JP2004226549A (en)
CN (1) CN100406968C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100428481C (en) * 2007-04-28 2008-10-22 上海广电光电子有限公司 Thin film transistor array base board and its repairing method
WO2010131552A1 (en) * 2009-05-13 2010-11-18 シャープ株式会社 Liquid crystal display device
JP5469665B2 (en) * 2009-06-30 2014-04-16 シャープ株式会社 Liquid crystal display

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI300864B (en) * 2004-04-23 2008-09-11 Au Optronics Corp Thin film transistor array and repairing method of the same
JP5170985B2 (en) * 2006-06-09 2013-03-27 株式会社ジャパンディスプレイイースト Liquid crystal display
US8592262B2 (en) * 2006-11-16 2013-11-26 Au Optronics Corporation Residue isolation process in TFT LCD fabrication
US20120127416A1 (en) * 2009-07-03 2012-05-24 Sharp Kabushiki Kaisha Liquid crystal display device
US8922463B2 (en) * 2010-04-26 2014-12-30 Samsung Display Co., Ltd. Organic light-emitting display apparatus
JP2011233502A (en) * 2010-04-26 2011-11-17 Samsung Mobile Display Co Ltd Organic light emitting display device
JP5134676B2 (en) * 2010-11-24 2013-01-30 株式会社ジャパンディスプレイイースト Liquid crystal display device and manufacturing method thereof
CN102931189B (en) * 2012-11-01 2016-12-21 京东方科技集团股份有限公司 Array base palte and make and method for maintaining, display device
JP2014186169A (en) * 2013-03-22 2014-10-02 Toshiba Corp Manufacturing method of display device and display device
KR102078807B1 (en) 2013-07-03 2020-02-20 삼성디스플레이 주식회사 Liquid crystal display
KR102468369B1 (en) * 2015-12-31 2022-11-18 엘지디스플레이 주식회사 Organic light emitting display and repairing method of the same
CN110111739B (en) * 2019-05-07 2021-01-01 深圳市华星光电半导体显示技术有限公司 Display panel and display device
CN110675832A (en) * 2019-09-12 2020-01-10 深圳市华星光电半导体显示技术有限公司 GOA circuit layout

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2875363B2 (en) * 1990-08-08 1999-03-31 株式会社日立製作所 Liquid crystal display
JP3350991B2 (en) * 1992-03-06 2002-11-25 セイコーエプソン株式会社 Electro-optical device substrate and electro-optical device
JP3264282B2 (en) * 1995-02-23 2002-03-11 シチズン時計株式会社 Liquid crystal display device and manufacturing method thereof
US5852485A (en) 1996-02-27 1998-12-22 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing the same
US6195140B1 (en) * 1997-07-28 2001-02-27 Sharp Kabushiki Kaisha Liquid crystal display in which at least one pixel includes both a transmissive region and a reflective region
US6654073B1 (en) * 1999-09-01 2003-11-25 Nec Lcd Technologies, Ltd. Liquid crystal display having storage capacitance electrodes and method of fabricating the same
KR100736114B1 (en) * 2000-05-23 2007-07-06 엘지.필립스 엘시디 주식회사 IPS mode Liquid crystal display device and method for fabricating the same
KR100393642B1 (en) * 2000-09-14 2003-08-06 엘지.필립스 엘시디 주식회사 liquid crystal display with wide viewing angle
KR100748442B1 (en) * 2001-02-26 2007-08-10 엘지.필립스 엘시디 주식회사 a array panel of in plane switching mode liquid crystal display and manufacturing method thereof
JP4047586B2 (en) * 2002-01-10 2008-02-13 Nec液晶テクノロジー株式会社 Horizontal electric field type active matrix liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100428481C (en) * 2007-04-28 2008-10-22 上海广电光电子有限公司 Thin film transistor array base board and its repairing method
WO2010131552A1 (en) * 2009-05-13 2010-11-18 シャープ株式会社 Liquid crystal display device
CN102422210A (en) * 2009-05-13 2012-04-18 夏普株式会社 Liquid crystal display device
JP5469665B2 (en) * 2009-06-30 2014-04-16 シャープ株式会社 Liquid crystal display

Also Published As

Publication number Publication date
CN100406968C (en) 2008-07-30
US20040141098A1 (en) 2004-07-22
US7209194B2 (en) 2007-04-24
CN1517750A (en) 2004-08-04

Similar Documents

Publication Publication Date Title
JP4088619B2 (en) Active matrix substrate and display device
JP4693781B2 (en) Active matrix substrate and display device
JP2004226549A (en) Liquid crystal display device
JP2011191791A (en) Defect correcting method for liquid crystal display device
JP2008203889A (en) Active matrix substrate, display device, liquid crystal display device and television device
JP2003307748A (en) Liquid crystal display device and manufacturing method thereof
JP2004212931A (en) Substrate for display device and its manufacturing method
KR100405236B1 (en) Matrix array substrate
JPH10123563A (en) Liquid crystal display device and its fault correction method
TWI706402B (en) Display panel and method for manufacturing the same
TWI409559B (en) Liquid crystal display (lcd) panel
JP4340459B2 (en) Manufacturing method of display device
JPH0713197A (en) Matrix type wiring substrate and liquid crystal display device formed by using the same
KR100490925B1 (en) Display device and defect repairing method of the same
JP2007241183A (en) Display device and repairing method for display device
JP2009151098A (en) Flat-panel display device, array substrate, and its manufacturing method
KR100488942B1 (en) Tft-lcd with dummy pattern serving both as light shielding and repair
JP2009151094A (en) Display device
JP3310600B2 (en) Active matrix type liquid crystal display device and its defect repair method
WO2017079943A1 (en) Method for restoring pixel with bright spot defect, array substrate, and liquid crystal panel
JPH09230385A (en) Active matrix display device and method for repairing its defect
JP2009128552A (en) Liquid crystal display device and method of manufacturing the same
JP4627081B2 (en) Active matrix substrate and display device
KR100719916B1 (en) Tft-lcd with means for repairing line open and interlayer short
KR20070061976A (en) Liquid crystal display device and manufacturing for thereof