JP2004226161A - Squid nondestructive inspection apparatus - Google Patents

Squid nondestructive inspection apparatus Download PDF

Info

Publication number
JP2004226161A
JP2004226161A JP2003012229A JP2003012229A JP2004226161A JP 2004226161 A JP2004226161 A JP 2004226161A JP 2003012229 A JP2003012229 A JP 2003012229A JP 2003012229 A JP2003012229 A JP 2003012229A JP 2004226161 A JP2004226161 A JP 2004226161A
Authority
JP
Japan
Prior art keywords
squid
squid sensor
vacuum
cooling stage
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003012229A
Other languages
Japanese (ja)
Inventor
Etsuji Kawaguchi
悦治 川口
Tomio Nishitani
富雄 西谷
Yoshio Maruno
善生 丸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Industrial Gases Corp
Original Assignee
Iwatani Industrial Gases Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Industrial Gases Corp filed Critical Iwatani Industrial Gases Corp
Priority to JP2003012229A priority Critical patent/JP2004226161A/en
Publication of JP2004226161A publication Critical patent/JP2004226161A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a SQUID (Superconducting Quantum Interference Device) nondestructive inspection apparatus which is compact, reliable in operation, and has a simple and convenient structure. <P>SOLUTION: The nondestructive inspection apparatus includes a compact refrigerator 1 provided with a cold storage type refrigerator main body 2, a compressor 3, a low- and high-pressure changeover means 6, and a low- and high-pressure difference control means 7 and having an operating fluid piping system 5 for connecting 2 to 3; a vacuum container 8 having a tube body 9 and a lid 10 made of a nonmagnetic material; a SQUID sensor 11 closely opposed to a bottom wall part of the lid 10 at a location at an interval to a cooling stage 4, arranged in the vacuum container 8, and thermally insulated and supported at the container 8; a heat transfer wire 12 made of a nonmagnetic material and interposed between the cooling stage 4 and the SQUID sensor 11 in the vacuum container 8 for thermally coupling 4 and 11; a vacuum maintaining adsorptive sheet 13 made of a nonmagnetic material and wound on the cooling stage 4; and a radiation shield film 14 made of a nonmagnetic material and provided along the inner side of the lid 10 in such a way as to surround the SQUID sensor 11. The refrigerator main body 2 is airtightly inserted in the vacuum container 8, and the inside vacuum of the vacuum container 8 is maintained. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はSQUID非破壊検査装置に関し、更に詳細には、極低温レベルで超伝導状態となるSQUID(超伝導量子干渉素子:Superconducting Quantum Interference Device)を利用して非磁性体の被検査体からの僅かな漏洩磁束密度を測定して、被検査体の内部に生じる傷やクラックなどの欠陥を非破壊的に検査するのに適したSQUID非破壊検査装置に関する。
【0002】
【従来の技術】
非破壊検査としては、超音波探傷試験や放射線透過試験などがあるが、超伝導SQUIDをセンサとして用いる装置が提案されている(例えば、「SQUIDを用いた非破壊評価」葛西直子論、「低温工学 Vol.31 No.2(1996)」)。
この場合の超伝導体の一つの応用としてのSQUIDは非常に微弱な磁場を計測することが出来る。即ち、SQUIDを使用して微弱磁場の変化や変動を計測することにより材料の欠陥や割れを検出することで非破壊検査が可能である。
【0003】
これまでのSQUID非破壊検査装置は、SQUIDの冷却手段として液体窒素(77K)または液体ヘリウム(4.2K)などの低温冷媒を用いている。この場合、低温冷媒は室温部からの熱侵入により徐々に蒸発するため、定期的に低温冷媒を補充する必要がある。
【0004】
従来は、SQUID非破壊検査装置のSQUIDを冷却する手段に小型冷凍機を用いたものが多くある(例えば、特許文献1参照)。
また、小型冷凍機の振動がSQUIDに入らないようにするため、小型冷凍機を予冷系としたJT冷凍機で冷却する方法を提案したものがある(例えば、特許文献2参照)。
【0005】
一方、別の例として、冷却手段として液体窒素(77K)または液体ヘリウム(4.2K)などの低温冷媒を用いるが、熱侵入を小型冷凍機で防止し、低温冷媒の蒸発を減らして補充間隔を長くする例として発明されたものがある(例えば、特許文献3,4参照)。
さらに、低温冷媒の蒸発ガスを再液化して補充の手間を無くした例として提案された発明もある(例えば、特許文献5,6参照)。
【0006】
【特許文献1】
特開平6−11554号公報(第3頁段落番号[0011]、図1)
【特許文献2】
特開平2−302680号公報(第4頁左上欄第5行〜右上欄第15行、第2図)
【特許文献3】
特開2001−66354号公報(第4頁[0021]〜[0023]、図1)
【特許文献4】
特開2002−232029号公報(第4頁[0016]〜第5頁[0024]、図1)
【特許文献5】
特許第3084046号公報(第3頁左欄第8行〜右欄第26行、第1図)
【特許文献6】
特開平5−297092号公報(第3頁[0008]〜[0010]、図1)
【0007】
特許文献1の先行技術では小型冷凍機の振動がSQUIDに直接伝達することから、大きな検査ノイズを生じる問題があった。また、特許文献2の先行技術でも小型冷凍機から伝達する振動の影響は矢張り避けられなかった。
一方、特許文献3,4の例では、補充間隔を長くし得るが依然として補充の手間を解消することはできなく、また、特許文献5,6の例では、補充の手間を解消できるが、装置が大掛かりとなり、手軽に利用し得ない問題がある。
【0008】
【発明が解決しようとする課題】
このように従来の各特許文献に記載の先行技術では、それぞれ実用面での問題点を抱えている事実に鑑みて本発明は成されたものであり、従って、本発明の目的は、SQUIDを直接冷却する手段として低温冷媒(極低温の液化ガス)を用いないようにし、さらに、小型冷凍機からの振動をSQUIDセンサに伝達させず、かつSQUIDセンサへの磁気ノイズを低減できる構成と成すことによって、小型で動作信頼性が高くしかも手軽な構造のSQUID非破壊検査装置を提供することである。
【0009】
【課題を解決するための手段】
上記の課題を解決するためとして本発明に係るSQUID非破壊検査装置は以下に述べる構成を備える。
即ち、請求項1に記載の発明は、非磁性材の冷却ステージ4を端部に備える蓄冷式冷凍機本体2、圧縮機3、圧縮作業流体の圧送流と減圧作業流体の還流とに切換える高低圧圧力切換え手段6及び温度調節のための作動圧力を制御する高低圧圧力差制御手段7を備えて、蓄冷式冷凍機本体2と圧縮機3を連結する作業流体配管系統5からなる小型冷凍機1と、筒体9及びこの筒体9に気密結合される非磁性材の蓋10を有し、蓄冷式冷凍機本体2が筒体9内に気密に挿入され、かつ内部が真空に保たれる真空容器8と、冷却ステージ4に対し間隔をおいた位置で検出端部としての蓋10底壁部に至近・対向させて真空容器8内に配設され、かつ該容器8に熱絶縁的に支持されるSQUIDセンサ11と、振動吸収能及び高熱伝達能を有し、真空容器8内で冷却ステージ4とSQUIDセンサ11との間に介挿されて両者4、11間の熱結合を行わせる非磁性材の伝熱ワイヤ12と、冷却ステージ4を取巻いて真空容器8内に設けられる非磁性材の真空維持吸着シート13と、SQUIDセンサ11を取囲ませて蓋10の内側に添設される非磁性材の放射シールド膜14と、を含むことを特徴とするSQUID非破壊検査装置である。
【0010】
また、上記の課題を解決するためとして請求項2に記載の発明は、上記の請求項1記載のSQUID非破壊検査装置において、蓄冷式冷凍機本体2がパルス管冷凍機である構成を特徴とする。
【0011】
また、上記の課題を解決するためとして請求項3に記載の発明は、上記の請求項1または2に記載のSQUID非破壊検査装置において、高低圧圧力差制御手段6が、圧縮機3の高圧配管21と低圧配管22とに亘らせて連結される配管24と、この配管24中に介設される圧力差制御弁25と、冷却ステージ4またはSQUIDセンサ11の検出温度信号Sを圧力差制御弁25にフィードバックして弁開度を調節することにより、SQUIDセンサ11の温度調節が成される弁制御手段28とを含んでなる構成を特徴とする。
【0012】
また、上記の課題を解決するためとして請求項4に記載の発明は、上記の請求項1、2または3に記載のSQUID非破壊検査装置において、放射シールド膜14が、反射面を片面側にもつ2層膜に形成され、反射面をSQUIDセンサ11に対面する内方に向けて蓋10の内側に添設されてなる構成を特徴とする。
【0013】
請求項1に記載の発明によれば、冷却ステージ4を介してのSQUIDセンサ11の温度調節を、圧縮機3の近くの作業流体配管系統5側において高低圧圧力差制御手段7により行わせて、SQUIDセンサ11の近傍での温度制御操作をさせないようにしたから、温度制御に伴う計測ノイズをなくすることができる。
さらに、冷却ステージ4とSQUIDセンサ11との間の寒冷伝達に対して、振動吸収能及び高熱伝達能を備える非磁性材の伝熱ワイヤ12を用いる構成としたので、蓄冷式冷凍機本体2側で生じる微小な振動を伝熱ワイヤ12に及ぼさないようにすることができて、SQUIDセンサ11の計測精度をより高めることが可能である。
【0014】
また、請求項1に記載の発明によれば、冷却ステージ4とSQUIDセンサ11の間における構成要素部材を全て非磁性材としたことにより、SQUIDセンサ11への磁気ノイズを大幅に低減できて計測精度をさらに高め得る。さらに、冷却ステージ4を取巻いて真空維持吸着シート13を設けることで真空容器8内部の真空維持を確実・容易に図ることが可能であり、さらにまた、SQUIDセンサ11を取囲ませて蓋10の内側に放射シールド膜14を設けたので、真空容器8の室温部からSQUIDセンサ11に入る放射熱を減らしてSQUIDセンサ11の低温維持を安定して果たすことができる。
【0015】
一方、請求項2に記載の発明によれば、蓄冷式冷凍機本体2をパルス管冷凍機としたことにより、冷却手段としての冷凍機本体2がより低振動な構造となり、SQUIDセンサ11への振動の影響を一層少なくできる。
【0016】
また、請求項3に記載の発明によれば、圧力差制御弁25のフィードバックによる弁開度調節でSQUIDセンサ11の定温度制御を簡単かつ確実に実施することが可能である。
【0017】
また、請求項4に記載の発明によれば、2層膜に形成した放射シールド膜14を、反射面をSQUIDセンサ11に対面する内方に向けて蓋10の内側に添設してなることにより、室温部からSQUIDセンサ11に入る放射熱をより効果的に減らしてSQUIDセンサ11の低温維持を一層果たすことができる。
【0018】
【発明の実施の形態】
以下、本発明に係るSQUID非破壊検査装置の実施形態について、各図面を参照しながら説明する。
図1は、本発明の実施の形態に係るSQUID非破壊検査装置の全体の系統図を示し、図2は、図1図示のSQUID非破壊検査装置の主要部構造を一部破断して表す正面図、図3は、図2における破断部の拡大正面図をそれぞれ示す。
【0019】
図示のSQUID非破壊検査装置は、小型冷凍機1と、真空容器8と、SQUIDセンサ11と、伝熱ワイヤ12と、真空維持吸着シート13と、放射シールド膜14とを主要構成部材に含んで装置全体が構成される。
【0020】
小型冷凍機1は、ヘリウムガス等の気体を作業流体として150K〜4Kの低温度範囲の冷却を行うことができる蓄冷式冷凍機本体2と、圧縮機3と、両者2、3を連結する作業流体配管系統5とにより構成される。
蓄冷式冷凍機本体2は、室温部と、膨張部と、この両部を温度的に分離する蓄冷器(Regenerator)の3要素によって達成される、気体を作業流体とする蓄冷式冷凍サイクルを形成する公知の冷凍機であって、本実施形態の場合は各種蓄冷式冷凍機のうちのパルス管冷凍機が適用される。パルス管冷凍機は、低温の可動部(膨張機)を必要としなくて低振動性の点で優れる利点を備えているところから、本発明の趣旨に叶うとして用いられるものであり、図示のパルス管冷凍機からなる蓄冷式冷凍機本体2は、上下に延びるパルス管の下端部に接する端部に非磁性材から形成される冷却ステージ4を備える構造である。
【0021】
作業流体配管系統5は、電動切換弁を要素部材に備えて圧縮作業流体の圧送流と減圧作業流体の還流とに切換える高低圧圧力切換え手段6と、圧力差制御弁25を介設して有する配管24を要素部材に備えて温度調節のための作動圧力を制御する高低圧圧力差制御手段7とが配管系統中に設けられていて、圧縮機3の吐出口と高低圧圧力切換え手段6の高圧ポートを高圧配管21で連結し、圧縮機3の吸入口と高低圧圧力切換え手段6の低圧ポートを低圧配管22で連結し、高低圧圧力切換え手段6の切換ポートと蓄冷式冷凍機本体2の作業流体配管ポート27を連結管23で連結し、配管24を高圧配管21と低圧配管22とに亘らせて連結することによって、所定の配管系統が構成される。
【0022】
上記の高低圧圧力差制御手段7における圧力差制御弁25は、手動操作による弁開度調節を行わせるものであってもよいが、図示の実施形態ではフィードバック制御方式に基づく弁開度調節を行わせるようになっており、冷却ステージ4または後述のSQUIDセンサ11で検出した温度信号Sをフィードバック信号として弁制御手段28に戻し、該手段28からの制御出力によって圧力差制御弁25の弁を開かせ、或いは閉じさせるように自動制御が成される。
【0023】
このような小型冷凍機1は、圧縮機3を駆動し、圧力差制御弁25を絞り、高低圧圧力切換え手段6を切換え作動させて、連結管23を高圧配管21と低圧配管22とに交互に繰り返して切換え連通させることにより、蓄冷式冷凍機本体2としてのパルス管冷凍機に対し圧縮作業流体の圧送流と減圧作業流体の還流とを反復して行わせて低温冷却運転が続行されるものであり、その結果、冷却ステージ4は、150K〜4Kの低温度範囲内の所定の低温に保持される。この場合、弁制御手段28の作動により、温度上昇時には圧力差制御弁25の弁を絞らせ、逆に温度下降時には圧力差制御弁25の弁を開かせるように自動制御されるので、冷却ステージ4は一定の低温に維持される。
【0024】
次いで図2、3を参照して、真空容器8は蓄冷式冷凍機本体2としてのパルス管冷凍機におけるパルス管及び冷却ステージ4と、後述のSQUIDセンサ11と、同じく伝熱ワイヤ12とを真空保持下にて収容するための気密性容器であって、金属製の筒体9と、この筒体9と等径の有底筒状で非磁性材の蓋10とからなり、例えば表面がアルマイト処理されたアルミニウム製の筒体9とアクリル樹脂製の蓋10とを同軸に気密結合することで、所望の真空容器8が形成される。この真空容器8は、蓄冷式冷凍機本体2のパルス管及び冷却ステージ4が挿入され、かつ上記の各他部材が収容されて気密結合により組付けが終わった後に、容器の直上方部に設けられる真空排気ポート20からの抽気によって器内が高真空に保持されるものである。
【0025】
なお、図示の筒体9は、蓋10との結合端部から少し引っ込んだ内壁部にリング状の内鍔が一体に形成されて、この内鍔の外側面部に対して熱絶縁性を有する略同形のリング26が接着などにより固着されており、さらに、リング26の適当個所には、熱絶縁性及び振動吸収能を有する非磁性材の、例えばガラスエポキシ樹脂製の支持棒17が筒体9の軸に平行に突設して固定されている。
【0026】
図2、3において、符号16で示す部材は後述のSQUIDセンサ11を支持するためのサンプルステージであり、このサンプルステージ16は高熱伝達能を有する非磁性材の、例えば銅製のブロックであって、検出端部としての蓋10底壁部に近い位置の真空容器8内に配設して、前記支持棒17の下端部に支持固定されている。また、符号18で示す部材は後述の伝熱ワイヤ12の一端部を固定するためのワイヤアンカであり、このワイヤアンカ18は高熱伝達能を有する非磁性材の、例えば銅製のブロックであって、冷却ステージ4の下端面部に合着により一体的に固定されている。
【0027】
SQUIDセンサ11は、バイクリスタル基板の接合面に形成される粒界ジョセフソン接合とした酸化物超伝導体YBaCuOの超伝導薄膜と、これを取囲ませて設けたダイレクトカップリング型の磁界検出コイルとを要素部材に備えてなるチップ構造体であって、冷却ステージ4に対し間隔をおいた位置で検出端部としての蓋10底壁部に至近・対向させて真空容器8内に配設されるとともに上記サンプルステージ16の下面に密着させて固定される。このように設けてなるSQUIDセンサ11は、真空容器8内において該容器8に熱絶縁的に支持された状態で所定位置に固定されている。
【0028】
伝熱ワイヤ12は、高熱伝達能を有する非磁性材の、例えば銀被覆された銅製の線材から形成されていて、この銅線の多数本を束ね、かつ、ジグザグ状に折り曲げて振動吸収能を持たせた状態のワイヤに構成したものが用いられる。この伝熱ワイヤ12は一端部がワイヤアンカ18に固着され、他端部が高熱伝達能を有する非磁性材の例えば銅製の小板片からなるサーマルアンカ15を介してサンプルステージ16に固定されて真空容器8内に配設される。このような伝熱ワイヤ12は、真空容器8内で冷却ステージ4とSQUIDセンサ11との間に介挿されて両者4、11間の熱結合を行わせる役割を成す部材として設けられるものである。なお、符号19で示される部材は非磁性材からなる固定用のネジである。
【0029】
真空維持吸着シート13は、非磁性材の吸着シート例えば活性炭シートから形成されていて、冷却ステージ4を取巻いて真空容器8内に設けられる。この吸着シート13は、真空容器8内の部材から発生する僅かなアウトガス、または筒体9や蓋10を透過して真空容器8内に入ってくる僅かな透過ガスが真空度を下げる原因となると考えられることに基づき、アウトガスや透過ガスを吸着シート13に吸着させることによって長期間に亘って高真空度を維持することができてランニングコストの低減を果たし得る利点を有する。
【0030】
放射シールド膜14は、非磁性材の薄いシートから形成されていて、SQUIDセンサ11を取囲ませて蓋10の内側に添って配設される。この放射シールド膜14は、室温に接する蓋10の表面とこれに比して低温のSQUIDセンサ11、サンプルステージ16の表面との間において温度差に基づく真空容器8内での熱放射移動が行われて、これが蓄冷式冷凍機本体2に対する負荷増につながる虞があるところから、かかる熱放射移動を防止するためとして設けられたものである。なお、放射シールド膜14を例えばポリエステル膜の片面にアルミ蒸着法によるアルミ鏡膜を形成してなる如き、反射面を片面側にもつ2層膜としたものを用いて、この反射面をSQUIDセンサ11に対面する内方に向けて蓋10の内側に添設することは好適な実施態様であり、これによって、放射シールド効果はより一段と奏されることが明らかである。
【0031】
このように構成してなるSQUID非破壊検査装置は、蓄冷式冷凍機本体2から生じる微小な振動は、冷却ステージ4とSQUIDセンサ11の間の寒冷伝達のためとして用いてなる伝熱ワイヤ12の振動吸収作用で、SQUIDセンサ11に直接伝達することが無いため、振動ノイズを大きく低減することが可能である。
【0032】
また、冷却ステージ4とSQUIDセンサ11の間の各部材は全て非磁性材としているので、SQUIDセンサ11への磁気ノイズも小さくすることが出来る。さらに、真空維持吸着シート13を冷却ステージ4に取巻かせて設けているので、アウトガスや透過ガスの影響による真空度の低下を抑制できる。なお、この真空維持吸着シート13による真空維持作用が十分に機能し得るようにするには、伝熱ワイヤ12の本数を調整して冷却ステージ4の温度がSQUIDセンサ11よりも例えば5K〜20K低くなるように設定すればよい。
【0033】
また、放射シールド膜14をSQUIDセンサ11に取囲ませて蓋10の内側に添って設けることにより、真空容器8の室温部からSQUIDセンサ11へ入る放射熱を大幅に減らすことができる。
【0034】
【発明の効果】
本発明によれば、SQUIDセンサの近傍での温度制御操作をさせないようにしたから、温度制御に伴う計測ノイズをなくすることができる。さらに、SQUIDセンサへの寒冷伝達に対して、振動吸収能を備える非磁性材の伝熱ワイヤを用いる構成としたので、蓄冷式冷凍機本体側で生じる微小な振動を伝熱ワイヤに及ぼさないようにすることができて、SQUIDセンサの計測精度をより高めることが可能である。
【0035】
また、本発明によれば、冷却ステージとSQUIDセンサの間における構成要素部材を全て非磁性材としたことにより、SQUIDセンサへの磁気ノイズを大幅に低減できて計測精度をさらに高め得る。さらに、冷却ステージを取巻いて真空維持吸着シートを設けることで真空容器内部の真空維持を確実かつ容易に図ることが可能であり、さらにまた、SQUIDセンサを取囲ませて蓋の内側に放射シールド膜を設けたので、真空容器の室温部からSQUIDセンサに入る放射熱を減らしてSQUIDセンサの低温維持を安定させることができる。
【0036】
また、請求項2に記載の発明によれば、蓄冷式冷凍機本体をパルス管冷凍機としたことにより、冷却手段としての冷凍機本体がより低振動な構造となり、SQUIDセンサへの振動の影響を一層少なくできる。
【0037】
また、請求項3に記載の発明によれば、圧力差制御弁のフィードバックによる弁開度調節でSQUIDセンサの定温度制御を簡単かつ確実に実施することが可能である。さらにまた、請求項4に記載の発明によれば、2層膜に形成した放射シールド膜を、反射面をSQUIDセンサに対面する内方に向けて蓋の内側に添設してなることにより、室温部からSQUIDセンサに入る放射熱をより効果的に減らしてSQUIDセンサの低温維持を一層果たすことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るSQUID非破壊検査装置の全体の系統図である。
【図2】図1図示のSQUID非破壊検査装置の主要部構造を一部破断して表す正面図である。
【図3】図2における破断部の拡大正面図である。
【符号の説明】
1…小型冷凍機 2…蓄冷式冷凍機本体 3…圧縮機 4…冷却ステージ 5…作業流体配管系統 6…高低圧圧力切換え手段 7…高低圧圧力差制御手段 8…真空容器 9…筒体 10…蓋 11…SQUIDセンサ 12…伝熱ワイヤ13…真空維持吸着シート 14…放射シールド膜 21…高圧配管 22…低圧配管 24…配管 25…圧力差制御弁 28…弁制御手段 S…検出温度信号
整理番号 IWP030102 ページ(1/3)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a SQUID non-destructive inspection device, and more particularly, to a SQUID (Superconducting Quantum Interference Device) that is in a superconducting state at a cryogenic level by using a nonmagnetic material from a test object. The present invention relates to a SQUID nondestructive inspection apparatus suitable for nondestructively inspecting a defect such as a flaw or a crack generated inside an object to be inspected by measuring a slight leakage magnetic flux density.
[0002]
[Prior art]
Examples of the nondestructive inspection include an ultrasonic inspection test and a radiation transmission test. Devices using a superconducting SQUID as a sensor have been proposed (for example, “Nondestructive evaluation using SQUID”, Naoko Kasai theory, “ Engineering Vol.31 No.2 (1996) ").
The SQUID as one application of the superconductor in this case can measure a very weak magnetic field. That is, nondestructive inspection is possible by detecting a defect or a crack in a material by measuring a change or change in a weak magnetic field using the SQUID.
[0003]
The conventional SQUID nondestructive inspection apparatus uses a low-temperature refrigerant such as liquid nitrogen (77K) or liquid helium (4.2K) as a cooling means for the SQUID. In this case, since the low-temperature refrigerant evaporates gradually due to heat intrusion from the room temperature part, it is necessary to periodically replenish the low-temperature refrigerant.
[0004]
Conventionally, there are many SQUID nondestructive inspection apparatuses using a small refrigerator as a means for cooling the SQUID (for example, see Patent Document 1).
Further, in order to prevent the vibration of the small refrigerator from entering the SQUID, there has been proposed a method of cooling the small refrigerator with a JT refrigerator having a precooling system (for example, see Patent Document 2).
[0005]
On the other hand, as another example, a low-temperature refrigerant such as liquid nitrogen (77K) or liquid helium (4.2K) is used as a cooling means, but heat intrusion is prevented by a small refrigerator, evaporation of the low-temperature refrigerant is reduced, and the replenishment interval is reduced. Has been invented as an example of lengthening (see, for example, Patent Documents 3 and 4).
Furthermore, there is an invention proposed as an example in which the evaporative gas of a low-temperature refrigerant is reliquefied to eliminate the need for replenishment (for example, see Patent Documents 5 and 6).
[0006]
[Patent Document 1]
JP-A-6-11554 (page 3, paragraph [0011], FIG. 1)
[Patent Document 2]
JP-A-2-302680 (page 4, upper left column, line 5 to upper right column, line 15, FIG. 2)
[Patent Document 3]
JP 2001-66354 A (pages 4 [0021] to [0023], FIG. 1)
[Patent Document 4]
JP-A-2002-2322029 (page 4 [0016] to page 5 [0024], FIG. 1)
[Patent Document 5]
Japanese Patent No. 3084046 (page 3, left column, line 8 to right column, line 26, FIG. 1)
[Patent Document 6]
JP-A-5-297092 (pages [0008] to [0010], FIG. 1)
[0007]
In the prior art of Patent Document 1, there is a problem that large inspection noise is generated because vibration of the small refrigerator is directly transmitted to the SQUID. Further, even in the prior art of Patent Document 2, the influence of vibration transmitted from the small refrigerator cannot be avoided.
On the other hand, in the examples of Patent Literatures 3 and 4, the replenishment interval can be lengthened, but the labor of replenishment cannot be eliminated yet. In the examples of Patent Literatures 5 and 6, the labor of replenishment can be eliminated. However, there is a problem that it cannot be easily used.
[0008]
[Problems to be solved by the invention]
As described above, in the prior art described in each of the conventional patent documents, the present invention has been made in view of the fact that each of them has a problem in practical use. A structure in which a low-temperature refrigerant (cryogenic liquefied gas) is not used as a means for directly cooling, and vibration from a small refrigerator is not transmitted to the SQUID sensor and magnetic noise to the SQUID sensor can be reduced. Accordingly, an object of the present invention is to provide a SQUID non-destructive inspection device having a small size, high operation reliability and a simple structure.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a SQUID nondestructive inspection apparatus according to the present invention has the following configuration.
That is, the first aspect of the present invention provides a regenerative refrigerator main unit 2 having a cooling stage 4 made of a non-magnetic material at its end, a compressor 3, and a high pressure for switching between a pressurized flow of a compressed working fluid and a reflux of a decompressed working fluid. A small refrigerator comprising a low-pressure pressure switching means 6 and a high-low pressure difference control means 7 for controlling an operating pressure for temperature control, and comprising a working fluid piping system 5 connecting the regenerative refrigerator body 2 and the compressor 3. 1, a cylindrical body 9 and a lid 10 made of a non-magnetic material airtightly connected to the cylindrical body 9, the regenerative refrigerator main body 2 is hermetically inserted into the cylindrical body 9, and the inside is kept at a vacuum. The vacuum vessel 8 is disposed in the vacuum vessel 8 at a position spaced from the cooling stage 4 so as to be close to and opposed to the bottom wall of the lid 10 serving as a detection end. SQUID sensor 11 supported by A heat transfer wire 12 of a non-magnetic material inserted between the cooling stage 4 and the SQUID sensor 11 in the vessel 8 to perform thermal coupling between the two, 4 and 11, and a vacuum vessel 8 surrounding the cooling stage 4. A SQUID, comprising: a non-magnetic material vacuum maintenance suction sheet 13 provided therein; and a non-magnetic material radiation shielding film 14 provided inside the lid 10 so as to surround the SQUID sensor 11. It is a non-destructive inspection device.
[0010]
According to a second aspect of the present invention, there is provided a SQUID non-destructive inspection apparatus according to the first aspect, wherein the regenerative refrigerator main body 2 is a pulse tube refrigerator. I do.
[0011]
According to a third aspect of the present invention, there is provided a SQUID non-destructive inspection apparatus according to the first or second aspect, wherein the high / low pressure differential pressure control means 6 includes a high pressure A pipe 24 connected between the pipe 21 and the low-pressure pipe 22, a pressure difference control valve 25 interposed in the pipe 24, and a temperature difference S detected by the cooling stage 4 or the SQUID sensor 11. It is characterized by including a valve control means 28 for adjusting the temperature of the SQUID sensor 11 by feeding back to the control valve 25 and adjusting the valve opening.
[0012]
According to a fourth aspect of the present invention, there is provided a SQUID non-destructive inspection apparatus according to the first, second, or third aspect, wherein the radiation shield film has a reflection surface on one side. It is characterized in that it is formed in a two-layered film, and is provided inside the lid 10 with the reflection surface facing inward facing the SQUID sensor 11.
[0013]
According to the first aspect of the present invention, the temperature of the SQUID sensor 11 via the cooling stage 4 is adjusted by the high / low pressure difference control means 7 on the working fluid piping system 5 side near the compressor 3. Since the temperature control operation in the vicinity of the SQUID sensor 11 is not performed, measurement noise accompanying the temperature control can be eliminated.
Furthermore, for the cold transfer between the cooling stage 4 and the SQUID sensor 11, the heat transfer wire 12 made of a non-magnetic material having a vibration absorbing ability and a high heat transfer ability is used. Can be prevented from affecting the heat transfer wire 12 and the measurement accuracy of the SQUID sensor 11 can be further improved.
[0014]
Further, according to the first aspect of the present invention, since all the constituent elements between the cooling stage 4 and the SQUID sensor 11 are made of non-magnetic material, magnetic noise to the SQUID sensor 11 can be greatly reduced and measurement can be performed. Accuracy can be further increased. Further, by providing the vacuum maintenance suction sheet 13 around the cooling stage 4, it is possible to reliably and easily maintain the vacuum inside the vacuum vessel 8, and to further surround the SQUID sensor 11 and cover the SQUID sensor 11. Since the radiation shield film 14 is provided inside the SQUID sensor 11, the radiation heat entering the SQUID sensor 11 from the room temperature portion of the vacuum vessel 8 can be reduced, and the SQUID sensor 11 can be stably maintained at a low temperature.
[0015]
On the other hand, according to the second aspect of the present invention, since the regenerative refrigerator main body 2 is a pulse tube refrigerator, the refrigerator main body 2 as a cooling means has a structure with lower vibration. The influence of vibration can be further reduced.
[0016]
Further, according to the third aspect of the present invention, the constant temperature control of the SQUID sensor 11 can be easily and reliably performed by adjusting the valve opening by the feedback of the pressure difference control valve 25.
[0017]
According to the fourth aspect of the present invention, the radiation shield film 14 formed as a two-layer film is provided inside the lid 10 with the reflection surface facing inward facing the SQUID sensor 11. Accordingly, the radiant heat entering the SQUID sensor 11 from the room temperature portion can be more effectively reduced, and the SQUID sensor 11 can be maintained at a lower temperature.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the SQUID nondestructive inspection apparatus according to the present invention will be described with reference to the drawings.
FIG. 1 is an overall system diagram of a SQUID non-destructive inspection device according to an embodiment of the present invention, and FIG. 2 is a front view showing a main part structure of the SQUID non-destructive inspection device shown in FIG. FIG. 3 and FIG. 3 show enlarged front views of the broken portion in FIG. 2, respectively.
[0019]
The illustrated SQUID non-destructive inspection apparatus includes a small refrigerator 1, a vacuum vessel 8, a SQUID sensor 11, a heat transfer wire 12, a vacuum maintenance suction sheet 13, and a radiation shield film 14 as main constituent members. The entire device is configured.
[0020]
The small refrigerator 1 includes a regenerative refrigerator main body 2 that can perform cooling in a low temperature range of 150 K to 4 K using a gas such as helium gas as a working fluid, a compressor 3, and an operation for connecting the two 2 and 3. And a fluid piping system 5.
The regenerative refrigerator main body 2 forms a regenerative refrigerating cycle using gas as a working fluid, which is achieved by three elements: a room temperature part, an expansion part, and a regenerator that thermally separates the two parts. In the case of the present embodiment, a pulse tube refrigerator among various regenerative refrigerators is applied. The pulse tube refrigerator has the advantage that it does not require a low-temperature movable part (expander) and has an advantage in terms of low vibration, and is used as fulfilling the purpose of the present invention. The regenerative refrigerator main body 2 composed of a tube refrigerator has a structure in which a cooling stage 4 formed of a non-magnetic material is provided at an end contacting a lower end of a pulse tube extending vertically.
[0021]
The working fluid piping system 5 includes a high / low pressure switching means 6 which includes an electric switching valve as an element member and switches between a pressurized flow of a compressed working fluid and a reflux of a reduced pressure working fluid, and a pressure difference control valve 25 provided therebetween. A high / low pressure difference control means 7 for controlling an operating pressure for temperature adjustment by providing a pipe 24 as an element member is provided in the piping system, and a discharge port of the compressor 3 and a high / low pressure switching means 6 are provided. The high pressure port is connected by a high pressure pipe 21, the suction port of the compressor 3 and the low pressure port of the high / low pressure switching means 6 are connected by a low pressure pipe 22, and the switching port of the high / low pressure switching means 6 is connected to the regenerator 2 The working fluid piping port 27 is connected by the connecting pipe 23, and the pipe 24 is connected to the high-pressure pipe 21 and the low-pressure pipe 22 to form a predetermined piping system.
[0022]
The pressure difference control valve 25 in the high / low pressure difference control means 7 may be a valve for adjusting the valve opening manually, but in the illustrated embodiment, the valve opening is adjusted based on a feedback control method. The temperature signal S detected by the cooling stage 4 or the SQUID sensor 11 described later is returned to the valve control means 28 as a feedback signal, and the valve of the pressure difference control valve 25 is controlled by the control output from the means 28. Automatic control is performed to open or close.
[0023]
In such a small refrigerator 1, the compressor 3 is driven, the pressure difference control valve 25 is throttled, and the high / low pressure switching means 6 is switched to operate, so that the connecting pipe 23 is alternately switched between the high pressure pipe 21 and the low pressure pipe 22. The switching communication is repeatedly performed to cause the pulse tube refrigerator as the regenerative refrigerator main body 2 to repeatedly perform the pressurized flow of the compressed working fluid and the recirculation of the depressurized working fluid, thereby continuing the low-temperature cooling operation. As a result, the cooling stage 4 is maintained at a predetermined low temperature within a low temperature range of 150K to 4K. In this case, the cooling stage is automatically controlled by the operation of the valve control means 28 so that the valve of the pressure difference control valve 25 is throttled when the temperature rises and vice versa. 4 is maintained at a constant low temperature.
[0024]
Next, referring to FIGS. 2 and 3, the vacuum vessel 8 vacuum-evacuates the pulse tube and the cooling stage 4 of the pulse tube refrigerator as the regenerative refrigerator main body 2, the SQUID sensor 11 described later, and the heat transfer wire 12 similarly. An airtight container for holding under holding, comprising a metal cylindrical body 9 and a bottomed cylindrical non-magnetic material lid 10 having the same diameter as the cylindrical body 9, for example, an alumite surface. A desired vacuum vessel 8 is formed by coaxially and airtightly coupling the treated aluminum cylinder 9 and the acrylic resin lid 10 coaxially. The vacuum container 8 is provided immediately above the container after the pulse tube of the regenerative refrigerator main body 2 and the cooling stage 4 are inserted therein and the above-mentioned other members are accommodated and assembled by airtight coupling. The inside of the vessel is maintained at a high vacuum by bleeding air from the vacuum evacuation port 20.
[0025]
The illustrated tubular body 9 has a ring-shaped inner flange integrally formed on an inner wall portion slightly retracted from a coupling end portion with the lid 10, and has substantially thermal insulation properties with respect to an outer surface portion of the inner flange. A ring 26 of the same shape is fixed by bonding or the like, and a support rod 17 made of a non-magnetic material having thermal insulation and vibration absorbing properties, for example, made of glass epoxy resin, is provided at an appropriate position of the ring 26. Projecting in parallel with the axis of the shaft.
[0026]
2 and 3, a member indicated by reference numeral 16 is a sample stage for supporting a SQUID sensor 11, which will be described later. The sample stage 16 is a nonmagnetic material having a high heat transfer ability, for example, a block made of copper, It is disposed in the vacuum vessel 8 at a position near the bottom wall of the lid 10 as a detection end, and is supported and fixed to the lower end of the support rod 17. A member indicated by reference numeral 18 is a wire anchor for fixing one end of a heat transfer wire 12 described later. The wire anchor 18 is a block made of a nonmagnetic material having a high heat transfer ability, for example, a copper block. 4 are integrally fixed to the lower end surface by bonding.
[0027]
The SQUID sensor 11 includes a superconducting thin film of an oxide superconductor YBaCuO formed as a grain boundary Josephson junction formed on a bonding surface of a bicrystal substrate, and a direct coupling type magnetic field detecting coil provided surrounding the thin film. And a chip structure provided in an element member. The chip structure is disposed in the vacuum vessel 8 at a position spaced from the cooling stage 4 so as to be close to and opposed to the bottom wall of the lid 10 as a detection end. At the same time, it is fixed in close contact with the lower surface of the sample stage 16. The SQUID sensor 11 provided in this manner is fixed at a predetermined position in the vacuum vessel 8 while being supported by the vessel 8 in a thermally insulating manner.
[0028]
The heat transfer wire 12 is made of a non-magnetic material having a high heat transfer ability, for example, a silver-coated copper wire, bundles a large number of these copper wires, and bends them in a zigzag shape to have a vibration absorbing ability. A wire configured to be held is used. One end of the heat transfer wire 12 is fixed to a wire anchor 18, and the other end is fixed to a sample stage 16 via a thermal anchor 15 made of a small plate made of a nonmagnetic material having a high heat transfer capability, for example, a copper plate. It is arranged in the container 8. Such a heat transfer wire 12 is provided between the cooling stage 4 and the SQUID sensor 11 in the vacuum vessel 8 and is provided as a member that plays a role of performing thermal coupling between the two 4 and 11. . The member indicated by reference numeral 19 is a fixing screw made of a non-magnetic material.
[0029]
The vacuum maintenance adsorption sheet 13 is formed of an adsorption sheet of a non-magnetic material, for example, an activated carbon sheet, and is provided in the vacuum vessel 8 around the cooling stage 4. The suction sheet 13 may cause a slight outgas generated from a member in the vacuum vessel 8 or a slight permeated gas permeating the cylinder 9 or the lid 10 and entering the vacuum vessel 8 to cause a decrease in the degree of vacuum. Based on what is considered, there is an advantage that a high degree of vacuum can be maintained for a long period of time by adsorbing the outgas or permeated gas on the adsorption sheet 13 and the running cost can be reduced.
[0030]
The radiation shield film 14 is formed from a thin sheet of a non-magnetic material, and is disposed along the inside of the lid 10 so as to surround the SQUID sensor 11. The radiation shield film 14 performs heat radiation movement in the vacuum vessel 8 based on a temperature difference between the surface of the lid 10 in contact with room temperature and the surface of the SQUID sensor 11 and the sample stage 16 at a lower temperature than the surface. Since this may lead to an increase in the load on the regenerative refrigerator 2, it is provided to prevent such heat radiation transfer. The radiation shield film 14 is a two-layer film having a reflection surface on one side such as an aluminum mirror film formed on one side of a polyester film by an aluminum vapor deposition method. It is a preferred embodiment to attach the inside of the lid 10 to the inside facing the 11, and it is clear that the radiation shielding effect is further enhanced.
[0031]
The SQUID non-destructive inspection apparatus configured as described above uses the heat transfer wire 12 that is used for transmitting the cold between the cooling stage 4 and the SQUID sensor 11 by the minute vibration generated from the regenerative refrigerator main body 2. Since the vibration is not directly transmitted to the SQUID sensor 11 by the vibration absorbing function, vibration noise can be greatly reduced.
[0032]
Further, since all the members between the cooling stage 4 and the SQUID sensor 11 are made of a non-magnetic material, magnetic noise to the SQUID sensor 11 can be reduced. Furthermore, since the vacuum maintenance adsorption sheet 13 is provided so as to surround the cooling stage 4, a reduction in the degree of vacuum due to the influence of outgas or permeated gas can be suppressed. In order to ensure that the vacuum maintaining action of the vacuum maintaining suction sheet 13 can function sufficiently, the number of the heat transfer wires 12 is adjusted so that the temperature of the cooling stage 4 is lower than that of the SQUID sensor 11 by, for example, 5 to 20 K. What is necessary is just to set.
[0033]
Further, by providing the radiation shield film 14 so as to be surrounded by the SQUID sensor 11 and along the inside of the lid 10, radiant heat entering the SQUID sensor 11 from the room temperature portion of the vacuum vessel 8 can be significantly reduced.
[0034]
【The invention's effect】
According to the present invention, the temperature control operation in the vicinity of the SQUID sensor is prevented from being performed, so that measurement noise accompanying the temperature control can be eliminated. Further, since the heat transfer wire made of a non-magnetic material having a vibration absorbing capability is used for the cold transmission to the SQUID sensor, a small vibration generated on the cold storage type refrigerator main body side is not applied to the heat transfer wire. It is possible to further increase the measurement accuracy of the SQUID sensor.
[0035]
Further, according to the present invention, since all the component members between the cooling stage and the SQUID sensor are made of non-magnetic material, magnetic noise to the SQUID sensor can be greatly reduced, and the measurement accuracy can be further improved. Furthermore, it is possible to reliably and easily maintain the vacuum inside the vacuum vessel by providing a vacuum maintenance suction sheet around the cooling stage, and furthermore, a radiation shield is provided inside the lid by surrounding the SQUID sensor. Since the film is provided, radiant heat entering the SQUID sensor from the room temperature portion of the vacuum vessel can be reduced, and the SQUID sensor can be stably maintained at a low temperature.
[0036]
According to the second aspect of the present invention, since the regenerative refrigerator main body is a pulse tube refrigerator, the refrigerator main body as the cooling means has a lower vibration structure, and the influence of vibration on the SQUID sensor is obtained. Can be further reduced.
[0037]
According to the third aspect of the present invention, the constant temperature control of the SQUID sensor can be easily and reliably performed by adjusting the valve opening by feedback of the pressure difference control valve. Furthermore, according to the fourth aspect of the present invention, the radiation shield film formed in the two-layer film is provided inside the lid with the reflection surface facing inward facing the SQUID sensor, The radiant heat entering the SQUID sensor from the room temperature portion can be more effectively reduced, and the SQUID sensor can be maintained at a lower temperature.
[Brief description of the drawings]
FIG. 1 is an overall system diagram of a SQUID nondestructive inspection apparatus according to an embodiment of the present invention.
FIG. 2 is a front view showing a main part structure of the SQUID nondestructive inspection device shown in FIG.
FIG. 3 is an enlarged front view of a broken portion in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Small refrigerator 2 ... Regenerative refrigerator main body 3 ... Compressor 4 ... Cooling stage 5 ... Working fluid piping system 6 ... High-low pressure switching means 7 ... High-low pressure difference control means 8 ... Vacuum container 9 ... Cylindrical body 10 ... lid 11 ... SQUID sensor 12 ... heat transfer wire 13 ... vacuum maintenance adsorption sheet 14 ... radiation shielding film 21 ... high pressure pipe 22 ... low pressure pipe 24 ... pipe 25 ... pressure difference control valve 28 ... valve control means S ... detection temperature signal arrangement Number IWP030102 Page (1/3)

Claims (4)

非磁性材の冷却ステージ(4)を端部に備える蓄冷式冷凍機本体(2)、圧縮機(3)、圧縮作業流体の圧送流と減圧作業流体の還流とに切換える高低圧圧力切換え手段(6)及び温度調節のための作動圧力を制御する高低圧圧力差制御手段(7)を備えて、蓄冷式冷凍機本体(2)と圧縮機(3)を連結する作業流体配管系統(5)からなる小型冷凍機(1)と、
筒体(9)及びこの筒体(9)に気密結合される非磁性材の蓋(10)を有し、蓄冷式冷凍機本体(2)が筒体(9)内に気密に挿入され、かつ内部が真空に保たれる真空容器(8)と、
冷却ステージ(4)に対し間隔をおいた位置で検出端部としての蓋(10)底壁部に至近・対向させて真空容器(8)内に配設され、かつ該容器(8)に熱絶縁的に支持されるSQUIDセンサ(11)と、
振動吸収能及び高熱伝達能を有し、真空容器(8)内で冷却ステージ(4)とSQUIDセンサ(11)との間に介挿されて両者(4、11)間の熱結合を行わせる非磁性材の伝熱ワイヤ(12)と、
冷却ステージ(4)を取巻いて真空容器(8)内に設けられる非磁性材の真空維持吸着シート(13)と、
SQUIDセンサ(11)を取囲ませて蓋(10)の内側に添設される非磁性材の放射シールド膜(14)と、を含むことを特徴とするSQUID非破壊検査装置。
A regenerative refrigerator body (2) having a cooling stage (4) of non-magnetic material at the end, a compressor (3), and a high-low pressure switching means for switching between a pressurized flow of a compressed working fluid and a reflux of a reduced-pressure working fluid ( 6) and a working fluid piping system (5) for connecting the regenerative refrigerator main body (2) and the compressor (3) with high / low pressure difference control means (7) for controlling the operating pressure for temperature adjustment. A small refrigerator (1) consisting of
It has a cylinder (9) and a lid (10) of a non-magnetic material that is airtightly connected to the cylinder (9), and the regenerative refrigerator main body (2) is hermetically inserted into the cylinder (9), And a vacuum container (8) whose inside is kept in a vacuum,
At a position spaced from the cooling stage (4), the lid (10) as a detection end is disposed in the vacuum vessel (8) in close proximity to and facing the bottom wall, and heat is applied to the vessel (8). An insulated SQUID sensor (11);
It has a vibration absorbing ability and a high heat transfer ability, and is interposed between the cooling stage (4) and the SQUID sensor (11) in the vacuum vessel (8) to perform thermal coupling between the two (4, 11). A non-magnetic heat transfer wire (12);
A non-magnetic material vacuum-maintaining suction sheet (13) provided in a vacuum vessel (8) surrounding the cooling stage (4);
A non-destructive SQUID inspection device comprising: a radiation shield film (14) of a non-magnetic material, which is provided inside the lid (10) so as to surround the SQUID sensor (11).
蓄冷式冷凍機本体(2)がパルス管冷凍機である請求項1記載のSQUID非破壊検査装置。The SQUID nondestructive inspection device according to claim 1, wherein the regenerative refrigerator main body (2) is a pulse tube refrigerator. 高低圧圧力差制御手段(6)が、圧縮機(3)の高圧配管(21)と低圧配管(22)とに亘らせて連結される配管(24)と、この配管(24)中に介設される圧力差制御弁(25)と、冷却ステージ(4)またはSQUIDセンサ(11)の検出温度信号(S)を圧力差制御弁(25)にフィードバックして弁開度を調節することにより、SQUIDセンサ(11)の温度調節が成される弁制御手段(28)とを含む請求項1または2に記載のSQUID非破壊検査装置。A high-low pressure difference control means (6) is connected to a high-pressure pipe (21) and a low-pressure pipe (22) of the compressor (3). Feedback of the temperature difference signal (S) from the interposed pressure difference control valve (25) and the cooling stage (4) or the SQUID sensor (11) to the pressure difference control valve (25) to adjust the valve opening. The SQUID nondestructive inspection device according to claim 1 or 2, further comprising a valve control means (28) for controlling the temperature of the SQUID sensor (11) by the following. 放射シールド膜(14)が、反射面を片面側にもつ2層膜に形成され、反射面をSQUIDセンサ(11)に対面する内方に向けて蓋(10)の内側に添設されてなる請求項1、2または3に記載のSQUID非破壊検査装置。A radiation shield film (14) is formed as a two-layer film having a reflection surface on one side, and is provided inside the lid (10) with the reflection surface facing inward facing the SQUID sensor (11). The SQUID nondestructive inspection device according to claim 1, 2 or 3.
JP2003012229A 2003-01-21 2003-01-21 Squid nondestructive inspection apparatus Pending JP2004226161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003012229A JP2004226161A (en) 2003-01-21 2003-01-21 Squid nondestructive inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012229A JP2004226161A (en) 2003-01-21 2003-01-21 Squid nondestructive inspection apparatus

Publications (1)

Publication Number Publication Date
JP2004226161A true JP2004226161A (en) 2004-08-12

Family

ID=32900904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012229A Pending JP2004226161A (en) 2003-01-21 2003-01-21 Squid nondestructive inspection apparatus

Country Status (1)

Country Link
JP (1) JP2004226161A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100941613B1 (en) 2008-01-22 2010-02-11 한국표준과학연구원 Absorber with a hole for Metallic Magnetic Cryogenic Detector and the Aligning Method thereof
EP2797132A4 (en) * 2011-12-20 2015-08-12 Japan Oil Gas & Metals Jogmec Liquid nitrogen cooling sensor device container and liquid nitrogen cooling sensor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100941613B1 (en) 2008-01-22 2010-02-11 한국표준과학연구원 Absorber with a hole for Metallic Magnetic Cryogenic Detector and the Aligning Method thereof
US7807967B2 (en) 2008-01-22 2010-10-05 Korea Research Institute Of Standards And Science Absorber with hole for metallic magnetic cryogenic detector and aligning method thereof
EP2797132A4 (en) * 2011-12-20 2015-08-12 Japan Oil Gas & Metals Jogmec Liquid nitrogen cooling sensor device container and liquid nitrogen cooling sensor device
US10113695B2 (en) 2011-12-20 2018-10-30 Japan Oil, Gas And Metals National Corporation Liquid nitrogen cooling sensor device container and liquid nitrogen cooling sensor device

Similar Documents

Publication Publication Date Title
JP5942699B2 (en) Magnetic resonance signal detection module
US5811816A (en) Closed cycle gas cryogenically cooled radiation detector
JP2758774B2 (en) Superconducting magnet and method of assembling the same
US7191601B2 (en) Magnetic field generating assembly
WO2012127255A2 (en) Cryostat with ptr cooling and two stage sample holder thermalization
JPH05251774A (en) Squid fluxmeter
JP2004226161A (en) Squid nondestructive inspection apparatus
JPH06109821A (en) Measuring probe cooling device of squid fluxmeter
JPH11337631A (en) Strong magnetic field low-temperature device for measuring physical property
WO2014203826A1 (en) Nmr system
JP2004116914A (en) Cooling pipe and cryogenic cryostat using it
CN112556231B (en) Temperature fluctuation suppression device
JP2551875B2 (en) Superconducting coil cooling device
Jirmanus Introduction to laboratory cryogenics
JP2001066354A (en) Cryogenic container for superconducting quantum interference device storage
US10677499B2 (en) Closed-cycle cryogenic refrigeration system
JPH05297092A (en) Superconducting device
JP2000018744A (en) Pulse-pipe-type refrigerator and magnetic-shielding-type refrigeration system
Abe et al. Nuclear demagnetization for ultra-low temperatures
Okamoto et al. A low-loss, ultrahigh vacuum compatible helium cryostat without liquid nitrogen shield
CN115308653B (en) Sample cooling device for performance test of high-temperature superconducting material
JPH04263768A (en) Cooling method of superconductive magnetic sealed vessel and device therefor
US20230263445A1 (en) Magnetocardiography measuring apparatus
RU2198356C2 (en) Cryostat
Hiratsuka et al. Recent development status of stirling type pulse tube cryocooler for HTS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A131 Notification of reasons for refusal

Effective date: 20080701

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118